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Abstract

Graph partitioning, or community detection, has been widely investigated in
network science. Yet, the correct community structure on a given network is
essentially data-driven. Thus, instead of a formal definition, diverse measures
have been conceived to capture intuitive desirable properties shared by most
of the community structures. In this work, we propose a preprocessing based
on a doubly stochastic scaling of network adjacency matrices, to highlight these
desirable properties. By investigating a range of community detection measures,
and carefully generalising them to doubly stochastic graphs, we show that such a
scaling unifies a whole category of these measures—namely, the so-called linear
criteria—onto two unique measures to set up. Finally, to help practitioners
setting up these measures, we provide an extensive numerical comparison of the
capacity of these measures to uncover community structures within stochastic
block models, using the Louvain algorithm.

Keywords: Network Analysis, Community Detection, Graph Partitioning
Measures, Doubly Stochastic Scaling.

1. Introduction

By mapping local-level elementary interactions between data, networks pro-
vide a powerful template that enables one to analyse emergent behaviours in
complex systems, such as biological systems, social networks, etc. [1, Chap.5].
Hence, these last decades, analysis of complex networks has been at the core of5

several research works [2]. One aspect has gained a lot of attention: the prob-
lem of graph partitioning, also called community detection [3, 4, 1, Chap.21].
Defining a network as a set of entities (called nodes or vertices) connected by in-
teractions (called links or edges), the aim of community detection is to partition
the set of the nodes into groups of nodes that are similar or strongly related.10
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Figure 1: Left: Adjacency matrices of networks with community structures. Middle: The
Louvain algorithm cannot detect the smallest community (top matrix, the smallest community
highlighted in the red square); and it is unable to detect the two communities connected in an
imbalanced fashion (bottom). Right: After scaling, Louvain can detect small communities
in presence of larger ones (top); and it can detect the community structure when there is an
imbalance in the flows of edges (bottom).

In real-world applications, the rightful community structure depends on the
network. For this reason, there exists no formal definition of a community struc-
ture since it is always possible to find a community structure that contradicts the
definition. However, it is generally admitted that community structures share
similar properties: a community should be a group of nodes densely connected,15

and sparsely connected to the rest of the graph—see Table 1.1 from [5]. Thus,
a number of measures that capture these properties has been designed to assess
the quality of a community structure proposed on a network, e.g. [6, 7, 8]. Opti-
mising such measures is generally a NP-complete problem [9, 3, 5], thus approx-
imation algorithms have been proposed that perform community detection by20

approximating the “best” community structure. The most famous is probably
the Louvain algorithm [10] that aims to maximise the so-called Newman-Girvan
modularity [6]. Because of its simplicity, its accuracy in detecting communities,
and its efficiency in terms of computational cost [11], it has been one of the most
widely-used community detection algorithms for more than 10 years. But there25

are communities, very intuitive and yet poorly detected by algorithms in general,
that even Louvain is unable to detect: 1) Small communities in large networks
are generally missed—this is typically the so-called resolution limit [12]. 2) In
directed networks, flow-based communities are usually not detected in presence
of an imbalance of the edges leaving and entering these communities. Points 1)30

and 2) are illustrated in the middle panels of fig. 1, where the results of Louvain
algorithm applied to two toy networks exhibiting such community structures
are displayed.

The aim of this study is to investigate the potential of matrix scaling as a
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preprocessing for community detection. Our contributions are three-folds:35

• We propose a preprocessing based on the so-called doubly stochastic scal-
ing, to increase the detectability of communities, in particular those usu-
ally hardly detectable as illustrated in fig. 1.

• By extending several graph partitioning measures to weighted graphs, in
particular doubly stochastic graphs, we show that the proposed propre-40

cessing unifies these measures onto two unique measures to set up.

• We conduct extensive comparisons of the capacity of these measures to
uncover community structures within stochastic block models (SBMs),
which provides guidance for customising them.

The paper is organised as follows: Section 2 lists the definitions and no-45

tations to be used through the paper. Section 3 gives an overview of related
work. Section 4 presents the method: we introduce the doubly stochastic scal-
ing (section 4.1) and detail the proposed preprocessing (section 4.2), showing its
potential on toy examples and a real-world network (section 4.3). In section 5,
we discuss the generalisation of six graph partitioning measures to weighted50

graphs, in particular doubly stochastic ones. Section 6 compares these mea-
sures, first theoretically in section 6.1, then experimentally in section 6.2. We
finally conclude the study and discuss future work in section 7.

2. Definitions and Notations

In this section, we present some definitions and notations to be used through55

the study. Basic mathematical objects are listed in table 1.

Object Typoface Examples

Unweighted graph 2-element tuple G = (V,E)
Weighted graph 3-element tuple G = (V,E,Ω)
Edge in a directed graph Tuple of nodes (u, v)
Edge in an undirected graph Curly brackets of nodes {u, v}
Matrix Bold capital letter A, S
Matrix entry Letter with subscripts ai,j
Matrix of 1s J J
Identity matrix I I
Transpose of a matrix .T AT

Vector Bold minuscule letter u, x
Vector entry Parentheses on a vector u(i)
Vector of 1s e e
Diagonal matrix from a vector D(.) D(u), D(e) = I
Cardinality of a set |.| |S|

Table 1: Typography of mathematical objects.
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Graphs. In this study, we investigate networks (also called graphs) that can be
weighted or not. Except when stated otherwise, networks are undirected. For a
network G = (V,E,Ω), V is the set of nodes, E ⊂ V × V the set of edges, and
the function

Ω : E → R+

{u, v} 7→ ω({u, v})
provides the weights of edges. We limit the study to graphs that are positively
weighted. To simplify notations, we assume that graphs have integer nodes, i.e.
V = {1, ..., n}.

When there is no possible confusion about the network, letters n and m60

denote the number of nodes and the total weight of edges respectively, that
is n = |V | and m =

∑
{u,v}∈E

ω({u, v}). The degree of a node u is defined as

du =
∑

v:{u,v}∈E
ω({u, v}). If ∃δ ∈ R : ∀u ∈ V, du = δ, the graph is said to

be δ-regular. We denote by simple graphs the unweighted undirected networks
without self-loop—i.e. ∀u ∈ V, {u, u} /∈ E.65

Adjacency Matrices. A (directed) graph G = (V,E,Ω) can be represented by
its adjacency matrix, that is a matrix A ∈ Rn×n+ where

ai,j =

{
ω((i, j)) if (i, j) ∈ E
0 otherwise

.

Conversely, given a matrix A ∈ Rn×n+ , we call the adjacency graph of A the
graph whose A is the adjacency matrix.

For undirected graphs, when the adjacency graph of A has no self-loop, then

2m =
n∑
i=1

n∑
j=1

ai,j = eTAe. When the adjacency graph of A is unweighted, we

define the complementary of A (denoted A) as the matrix in Rn×n+ such that

ai,j =

{
1 if {i, j} /∈ E
0 otherwise

, (1)

that is A = J−A.

Community Structures. Given a graph G = (V,E), a community structure is a
partitioning of the set of nodes V , that is a set of subsets of V : C = {Ct}t=1..k

such that
k⋃
t=1

Ct = V and ∀t 6= s, Ct ∩ Cs = ∅. This community structure can

be represented as an equivalence relation X on V × V such that

uX v ⇐⇒ ∃t ∈ {1, .., k} : u, v ∈ Ct.

It can also be represented as a matrix X ∈ {0, 1}n×n such that

xi,j =

{
1 if iX j
0 otherwise.
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A matrix X ∈ {0, 1}n×n encodes an equivalence relation X (and hence a com-
munity structure) if and only if:

∀i ∈ {1, .., .n}, xi,i = 1 (a)
∀i, j ∈ {1, ..., n}, xi,j = xj,i (b)
∀i, j, k ∈ {1, ..., n}, xi,k + xj,k − xi,j ≤ 1 (c)

where (a), (b), (c) indicate respectively the reflexivity, the symmetry and the
transitivity of the equivalence relation represented by X [13]. We denote by70

Eq(n) the set of the equivalence relations on a set V such that |V | = n. That
is, we write X ∈ Eq(n) when a matrix X ∈ {0, 1}n×n verifies (a), (b), (c), and
X ∈ Eq(n) for an equivalence relation defined on the set V . For any X ∈ Eq(n),
its complementary is defined by X = J−X.

Double Stochasticity. In the following, we specifically focus on networks that are
doubly stochastic, that is such that their adjacency matrices have their row and
column sums equal to 1. Formally, a (directed) network G = (V,E,Ω) is said
to be doubly stochastic if its adjacency matrix S ∈ Rn×n+ is doubly stochastic,
that is {

Se = e

STe = e.
(2)

We remark that doubly stochastic graphs are 1-regular graphs.75

In this study, we preprocess graphs so that they (or equivalently their adja-
cency matrices) are doubly stochastic. Transforming a matrix A ∈ Rn×n+ onto
a doubly stochastic matrix is an operation called “scaling A onto its doubly
stochastic form”. One achieves this by finding two vectors r, c ∈ R∗+

n such that{
D(r)AD(c)e = e

D(c)ATD(r)e = e.
(3)

The matrix S = D(r)AD(c) is called the doubly stochastic scaling of A, and
vectors r and c are called the scaling factors. The existence of a doubly stochas-
tic scaling is non-straightforward and is detailed in section 4.1.

3. Related Work

Doubly Stochastic Scaling for Community Detection. In this study, we design80

a preprocessing for community detection, based on doubly stochastic scaling.
This scaling has already been used in the context of community detection. It
is the first stage of the algorithm from [14] that partitions migration networks.
However, the rationales for scaling in [14] (invariance of relative odds and ap-
proximation of maximum entropy) greatly differ from ours. Also in [15], doubly85

stochastic scaling is used as a preprocessing step for a spectral algorithm. Fur-
thermore, in [16], authors aim to partition a dataset by finding the doubly
stochastic matrix that best approximates the dataset similarity matrix. Finally,
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in [17], authors use doubly stochastic scaling to perform co-clustering, as scal-
ing factors should approximate the joint densities between the random variables90

inferring data, and the random variables inferring partitions. We remark that
all these studies use the doubly stochastic scaling for a very specific purpose:
achieving uniform marginals in the flow table [14], obtaining staircase-like singu-
lar vectors [15] or scaling factors [17], or approximating a similarity matrix [16].
On the other hand, the method proposed here is a wider-purpose preprocessing95

that can be used prior to any community detection method.

Community Detection Measures. This study investigates a bunch of measures
designed to assess the quality of a community structure on a network, based
on the network structural properties. Nodes within a community are supposed
to be densely connected, while being loosely connected to nodes outside their100

community. Different manners to define “densely” and/or “loosely” lead to dif-
ferent measures. They can be subdivided into three families. Measures based
on density, such as Newman-Girvan modularity [6] or coverage [18], define a
community as a group of nodes with a high density of edges. Measures based
on sparsity also exist, that consider that the amount of edges between two com-105

munities must be low (e.g. conductance, expansion [19], or normalised cut [7]).
Some measures are a mixture of density and sparsity, such as LambdaCC [5] or
Balanced modularity [13]. Given a dynamic process defined on the graph edges
(e.g. a random walk), measures from the third kind consider a community as
a group of nodes from which the process struggle to escape (such as the Map110

equation [8], the Markov stability [20], or the community distance from [21]).
Remark that some measures based on a priori hypotheses about the ground
truth community structure exist, such as the likelihood from SBM-based tech-
niques [22], the likelihood of preserving node neighbourhoods in node2vec [23],
or the cross-entropy error over nodes with known label in Graph Convolutional115

Networks [24]. But they are beyond the scope of this study.
Most of the measures investigated here are listed in [25] to be used in the

Louvain algorithm. This requires them to be defined for graphs with integer
weights, and the measures are thus extended to such graphs when needed. Since
generalisation is not the purpose of [25], this is done straightforwardly and does120

not always fit the philosophy of the initial measures, as shown in section 5.

4. Doubly Stochastic Scaling Preprocessing

In this section we describe and discuss the preprocessing that we propose
for community detection, that relies on a doubly stochastic scaling of the graph
adjacency matrix. Not every square matrix is amenable to a doubly stochastic125

matrix. We thus first provide the conditions for such a scaling to exist, and
discuss the relations with graph connectivity. We then present the proposed
preprocessing, and discuss its impact on some community structures.
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4.1. Doubly Stochastic Scaling and Graph Connectivity

The Sinkhorn-Knopp Theorem. Given a square matrix A ∈ Rn×n+ , it is not130

always possible to find two vectors r, c ∈ Rn+ such that eq. (3) is verified. In
order for such a scaling to exist, the pattern of A—i.e. the positions of its
nonzero entries—must respect certain conditions, which are provided by the
so-called Sinkhorn-Knopp theorem [26]. In order to introduce this theorem, we
first provide two definitions about the pattern of a matrix on which it relies.135

These definitions can be found in [27].

Definition 1. Bi-Irreducibility. A matrix A ∈ Rn×n is called bi-irreducible
if there is no pair of permutation matrices R,Q such that

RAQ =

[
A1 A1,2

0 A2

]
with A1,A2 two square and non empty matrices.

This definition implies that A is not amenable to a block triangular matrix
by independent permutations of its rows and its columns.

Definition 2. Total Support. A matrix A ∈ Rn×n is said to have a total
support if every nonzero entry lies on a strictly positive diagonal. One charac-
terisation of this definition proposed in [27] is that there are two permutation
matrices R,Q such that

RAQ =

A1

. . .

Ak


with A1, ...,Ak bi-irreducible matrices.140

We can now enunciate the Sinkhorn-Knopp theorem [26].

Theorem 1. Sinkhorn-Knopp. Given a matrix A ∈ R+
n×n, a necessary and

sufficient condition that there exists a doubly stochastic matrix S = D(r)AD(c)
with r, c ∈ R∗+

n, is that A has a total support. If S exists then it is unique.
Vectors r and c are also unique up to a scalar multiple if and only if A is145

bi-irreducible.

Relations with the Connectivity of the Adjacency Graph. We now introduce
the definition of irreducibility, that draws a link between the connectivity of a
network and the pattern of its adjacency matrix.

Definition 3. Irreducibility. A matrix A ∈ Rn×n is called irreducible if there
is no permutation matrix Q such that

QAQT =

[
A1 A1,2

0 A2

]
with A1,A2 square and non empty. A characterisation of irreducible matrices150

from [28] is that they are the adjacency matrices of strongly connected graph.

7



Algorithm 1: Preprocessing Undirected Graphs

Data: A symmetric matrix A ∈ Rn×n+ .
Result: A doubly stochastic matrix S ∈ Rn×n+ .

1 ε← 10−8 × min
i,j:ai,j 6=0

(ai,j);

2 S = symscalone(A + εI);

Algorithm 2: Preprocessing Directed Graphs

Data: A non-symmetric matrix A ∈ Rn×n+ .

Result: A doubly stochastic matrix S ∈ Rp×p+ , with p ≤ n.
1 B←largest block returned by dmperm(A + I);
2 ε← 10−8 × min

i,j:bi,j 6=0
(bi,j);

3 S = RAS(B + εI);

Every bi-irreducible matrix is also irreducible. Reciprocally, if a matrix is
irreducible with its diagonal zero-free—ai,i 6= 0,∀i ∈ {1, ..., n}—, then this ma-
trix is bi-irreducible (easily proven by applying the algorithm from [29] to such
a matrix). Since definition 3 states that irreducible matrices are adjacency ma-155

trices of strongly connected graphs, then the adjacency matrix of every strongly
connected graph can be made bi-irreducible (thus scalable) by ensuring that its
diagonal is strictly positive (e.g. by adding a positive diagonal matrix to the
adjacency matrix, which is equivalent to adding self-loop to the graph).

Remark 1. For an undirected graph, adding a diagonal matrix to its adjacency160

matrix is sufficient to make it scalable onto a doubly stochastic graph, whatever
its connectivity. Indeed, every symmetric matrix with zero-free diagonal has a
total support (Lemma 3.3 from [30]).

For a directed graph, each strongly connected component must be scaled and
partitioned apart1. These components can be found by applying the Dulmage-165

Mendelsohn decomposition on the graph adjacency matrix whose diagonal has
been made zero-free [29].

4.2. The Preprocessing

We propose to apply a doubly stochastic scaling on networks as a prepro-
cessing for community detection. As discussed in section 4.1, some requirements170

have to be fulfilled to ensure that the network can be scaled, which depend on
whether the graph is directed. The steps to follow to scale a matrix A ∈ Rn×n+

are described in algo. 1 if A is the adjacency matrix of an undirected graph,
respectively in algo. 2 if the adjacency graph of A is directed.

1This implies that nodes from different strongly connected components cannot end within
a same community.
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In algo. 1, symscalone is the method from [31] that can compute a dou-175

bly stochastic scaling of a general square matrix with total support. It is well
designed for symmetric matrices in particular, because it preserves matrix sym-
metry. In algo. 2, dmperm is the Dulmage-Mendelsohn decomposition, evoked
in remark 1. When applied to A + I, it returns the strongly connected compo-
nents of the adjacency graph of A. The largest component is then scaled using180

the so-called RAS or Sinkhorn-Knopp Algorithm [26, 30]. For both directed
and undirected networks, the adjacency graph of the doubly stochastic matrix
S returned by the algorithm is the one on which communities are then detected.
For directed network, it means that only the largest strongly connected com-
ponent is partitioned. However, this is straightforward to extend to the whole185

graph, by scaling and partitioning each component in turn.
For both algorithms, it is necessary to add entries in the diagonal of the

matrix to scale, to ensure that conditions from theorem 1 are verified. We
remark that adding diagonal elements leaves the community structure intact,
as the community structure of a graph is linked to the diagonal block structure190

of its adjacency matrix, which is not impacted by its diagonal entries. In both
versions of the preprocessing, we choose to add very small entries (10−8 times
the matrix smallest entry) to impact as little as possible the numerical values in
the final scaling. This is an empirical choice which is not theoretically justified,
and it would be interesting to analyse how these diagonal entries impact the195

final scaling. We leave this analysis to further work.

4.3. Impact of the Preprocessing on Synthetic and Real-World Data

Rationales on Toy Examples. Our intuition that the doubly stochastic scaling
may improve community detection comes from the two toy examples from fig. 1,
used in section 1 to illustrate the difficulty of detecting some community struc-200

tures. First, doubly stochastic scaling leverages the weight of the edges in small
and large communities. One may think at a trivial example, where a simple
graph is composed of two disjoint communities of different size n1 > n2, such
that the probability for two nodes in a same community to be linked is equal
to pin, for both communities. Then, in average, a node in the large commu-205

nity shares more links with nodes from its community than a node in the small
community (pin × n1 > pin × n2). This is not true anymore if we look at the
doubly stochastic scaling of the adjacency matrix. In this case, every node in
both communities shares strictly the same amount of edges with nodes from its
community, that is 1 by definition of the doubly stochastic scaling.210

Secondly, doubly stochastic scaling can rationally be expected to mitigate
against an existing imbalance in the direction of edges, because of its so-called
vanishing effect. To understand it, we explain the behaviour of doubly stochastic

scaling on A =

[
1 1
0 1

]
. This matrix has no total support. Thus, according

to theorem 1, it is not amenable to a doubly stochastic form. Nevertheless,215

doubly stochastic scaling algorithms provide scaling factors r and c that tend
towards (0,+∞)T and (+∞, 0)T respectively, so that the doubly stochastic
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scaling of A tends towards S =

[
1 0
0 1

]
, in which the off-diagonal element had

vanished [30, 26].
As a matter of fact, the proposed preprocessing indeed improves the de-220

tectability of community structures of the toy examples from fig. 1: Louvain
algorithm applied directly on the graphs fails to detect their structures; on the
other hand, when applied on the preprocessed graphs, it returns their ground
truth community structures, as shown in the right panels of fig. 1.

Food Web of Florida Bay. Here we observe the impact of the proposed prepro-225

cessing on the network of trophic dynamics within Florida Bay. In this directed
network, a node is a compartment and an edge indicates carbon exchanges—
roughly, an edge from node a to node b means that species in compartment a are
eaten by species in compartment b. The network contains 128 compartments,
that can be divided onto 9 types according to [32], namely Phytoplankton pro-230

ducers, Seagrass and seagrass roots, Microfauna, Macroinvertebrates, Fishes,
Birds, Reptiles, Mammals, and Detritus. According to [33], this partitioning
into types corresponds to the network underlying community structure. The
largest strongly connected component contains 103 compartments: 11 are Mi-
crofauna, 22 Macroinvertebrates, 47 Fishes, 16 Birds, 3 Reptiles, 2 Mammals,235

and 2 are Detritus.

Figure 2: Output of algo. 2 on the Florida Bay network, and its ground truth partitioning.
Black ‘+’s indicate nonzero entries with numerical values below 10−12.

The matrix S ∈ Rp×p+ returned by algo. 2 is illustrated in fig. 2. The ground
truth community structure is indicated by the black lines. Because numeri-
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cal values range from 1 to 10−82, only entries higher than 10−12 are plotted.
Nonzero entries below this threshold are shown by black ‘+’s. From fig. 2 we240

observe that the preprocessing clearly tends to make vanish the edges between
communities. This is highlighted by the high density of black ‘+’s in the off-
diagonal blocks, meaning that numerous entries in S off-diagonal blocks have
a value that falls below 10−12. To assess the extent to which the preprocess-
ing indeed sharpens the network community structure, we need to compare the245

consistency of these communities on both the raw and the scaled networks. We
base this comparison on the concepts defined below.

Definition 4. Community Structure Consistency. Assuming a matrix
M ∈ Rp×p+ and C its ground truth community structure. The level to which a
node u ∈ {1, ..., p} belongs to a community C ∈ C is assessed2 by ϕ(u,C) =∑
i∈C

m(u, i)

p∑
j=1

m(u, j)

, that is the ratio between the amount of edges that node u shares

with nodes in C and the degree of u. Thus, the average level to which nodes
from community C ∈ C belong to community K ∈ C is

Φ(C,K) =
1

|C|
∑
u∈C

ϕ(u,K), (4)

and matrix Φ provides a view of the community structure consistency.

Clearly, the higher the reflexive values of Φ, the more consistent the com-
munity structure. We compute the values of Φ for two matrices that are sym-250

metrisations of the raw and preprocessed directed networks, namely B + BT ,
where B is the adjacency matrix of the raw network largest strongly connected
component; and S̃+ S̃T , where S̃ is the matrix S with its diagonal values put to
0. We remove the diagonal because most of S diagonal entries are scaled close
to 1 (whereas they are initially very small). Thus, keeping the diagonal provides255

spuriously high values for Φ(C,C),∀C ∈ C, whatever the community structure.
These values of Φ are displayed in fig. 3. The three last communities that

contain no more than 3 nodes are missed by both the raw and the preprocessed
matrices. And looking at the structure of these communities restricted to the
analysed component in fig. 2, it is indeed not possible to consider them as stan-260

dalone communities, without having been told so. The community correspond-
ing to the Birds tends to be merged with Fishes by both raw and preprocessed
networks. This is also in line with what can be observed from fig. 2. Finally, the
three non trivial communities corresponding to Microfauna, Macroinvertebrates
and Fishes, are assessed as fairly consistent in the preprocessed network (lowest265

reflexive value of Φ is 0.58, highest non reflexive value is 0.26). On the other
hand, in the raw component, Microfauna and Macroinvertebrates are missed and

2ϕ is actually the opposite of the so-called mixing parameter introduced in section 6.2.
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Figure 3: Φ values for the raw network (left) and the scaled network without self-loop (right).
The three first communities are much more consistent in the scaled network (diagonal Φ values
are dominant) than in the raw one.

merged with Fishes. We also remark that the preprocessing has more impact on
the consistency of smaller communities—reflexive Φ values are 3.74 times higher
in the preprocessed network than in the raw one for Microfauna and Macroin-270

vertebrates, 1.73 for Fishes. These observations illustrate the potential of the
proposed preprocessing to increase the detectability of community structures
within networks with an imbalance in edge direction between communities, as
well as small-size communities.

5. Generalisation of some Graph Partitioning Measures to Weighted275

Networks

In this section, we investigate six measures—or criteria—that assess the
quality of a community structure on a graph, namely: the Newman-Girvan
modularity [6], Balanced modularity [13], the Deviation to Uniformity crite-
rion [34, Chap.5.2.6], the Deviation to Indetermination criterion [13], the Zahn280

criterion [35] and the Correlation Clustering criterion [36].
This list of graph partitioning measures is not exhaustive. These measures

are actually the linear criteria from [34]. Formally, denoting by F a criterion
that assesses the quality of a community structure on a graph represented by
its adjacency matrix, F is a linear criterion [25] if it can be written as

F : Rn×n × Eq(n) −→ R

(A,X) 7→
n∑
i=1

n∑
j=1

ϕ(ai,j)xi,j +K , (5)

where A and X are respectively a graph adjacency matrix and a community
structure, ϕ : R→ R is a function and K is some constant scalar.

For each criterion, we address three points:

• We explain quickly the measure background, that is how it works and why285

it assesses community structures, as well as its formulation.
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• Most of these measures are initially designed for unweighted networks,
and some have been generalised to weighted graphs afterward. When
such a generalisation exists, we may either use it or derive another one
that we find more suitable for the community structure detection on dou-290

bly stochastic graphs. We hence discuss the measure generalisation to
weighted graphs and especially to doubly stochastic ones.

• We provide a reduced form for the problem of finding the best commu-
nity structure on a graph represented by its adjacency matrix A using a
criterion F . Namely, this problem is expressed as

X∗ = argmax
X∈Eq(n)

(
F (A,X) =

∑
i,j

(
φ(ai,j)− φ(ai,j)

)
xi,j

)
, (6)

where φ and φ are two functions in R+ respectively called the positive and
negative agreements, as in [34]. This reduced form allows us to compare
the criteria in section 6.295

5.1. Newman-Girvan modularity
Principle. The Newman-Girvan modularity introduced in [6] is the most famous
graph partitioning measure. The idea behind this criterion is that a community
structure in a network actually characterises the property of assortative mixing
in this network [37]. The assortative mixing is the tendency of similar nodes300

to draw connection amongst themselves instead than with dissimilar nodes: as
an example, in a social network, people who speak the same language or have
similar sociological background have more chance to be friends. Hence, given an
assortative network, a good community structure is one such that the fraction
of edges that connect nodes in a same community is high.305

However, this notion cannot be used as a standalone. Indeed, the trivial
structure that brings all the nodes in a same community always maximises this
fraction of edges. Thus, to derive the modularity, Newman and Girvan also
assume that random graphs do not exhibit a community structure [6]. The
modularity is hence designed to compare the fraction of intra-community edges
in a network with the expected fraction of intra-community edges in random
graphs with the same degree sequence than the initial graph (i.e. generated
by the configuration model). In the configuration model with degree sequence
{d1, ..., dn}, the probability of an edge between two nodes i and j can be ap-
proximated by didj/2m. The modularity is thus defined as

FNG(A, C) =
∑
C∈C

∑
i∈C

∑
j∈C

(
ai,j
2m
− didj/2m

2m

)
,

with A the adjacency matrix of the network, and C a community structure. In
turn, this can be re-written (as in [38])

FNG(A,X) =
1

2m

∑
i,j

(ai,j −
didj
2m

)xi,j , (7)

with X ∈ Eq(n) the matrix representation of the community structure C.

13



Generalisation. The initial Newman-Girvan modularity from [6] is designed for
unweighted graphs only. In [38], Newman proposes two steps to generalise
modularity to weighted graphs. First, he investigates multi-graphs, that are
simple networks in which two vertices can share more than one simple edge,310

as in fig. 4. Newman generalises some basics from simple networks to multi-

1

3

2

4

2

1

3

1

≡ 1

3

2

4

Figure 4: A weighted graph with positive integer edges (left) and the corresponding multi-
graph (right).

graphs to derive an adapted modularity. Namely, let A ∈ Nn×n be a multi-
graph adjacency matrix: 1) The degree di of a vertex i in the multi-graph is the
number of simple edges adjacent to i: di =

∑
k

ai,k. 2) The constant 2m becomes

the sum over the degrees, that is 2m =
∑
i

di. With these simple adaptations315

of degrees and number of edges, Newman generalises the modularity by simply
applying eq. (7) to multi-graphs, with ai,j , di and 2m as defined above.

Secondly, modularity is extended from multi-graphs to positively weighted
graphs with the following remark: Given a graph whose adjacency matrix can be
written as A = αN, with α ∈ R+ and N ∈ Nn×n, and considering di =

∑
k

ai,k320

and 2m =
∑
i

di, then for any X ∈ Eq(n), the results of the formula from eq. (7)

applied to A and to N are equal. Hence, the modularity as defined in eq. (7)
can be extended to graphs for which it exists a unit flow—i.e. an α—allowing
to consider them as multi-graphs.

We show in [39, Property 1] that for every square matrix whose entries are325

rational, a unit flow can be found, but that this is not true for any weighted
matrix. However, we also provide [39, Property 2] a proof that eq. (7) can be
extended to any undirected positively weighted graph3. We thus apply directly
eq. (7) to doubly stochastic matrices in the following.

Reduced Form. Given an adjacency matrix A, finding the best community
structure in the sense of the Newman-Girvan modularity provided in eq. (7)
is equivalent to maximising the function

X 7→ FNG(A,X) =
∑
i,j

(ai,j −
didj
2m

)xi,j . (8)

3Since [38], modularity has been widely applied to any positively weighted graph. However,
as far as we know, [39] is the first proof that eq. (7) can be consistently applied to these graphs.
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This provides the reduced form of eq. (6), with positive and negative agreements330

equal to respectively φ(ai,j) = ai,j and φ(ai,j) = didj/2m.
Moreover, in a doubly stochastic graph, ∀i, di = 1 and 2m = n. Thus, for a

doubly stochastic matrix S, we can simplify the Newman-Girvan modularity as

X 7→ FNG(S,X) =
∑
i,j

(si,j −
1

n
)xi,j , (9)

and the negative agreement φ(si,j) = 1/n does not depends on i, j.

5.2. Balanced Modularity

Principle. This criterion is proposed in [13] to complete the Newman-Girvan
modularity. Recall from section 5.1 that, given a simple graph G = (V,E)335

and a community structure, the Newman-Girvan modularity compares the ratio
of edges within communities—i.e. intra-community edges—with the expected
ratio of intra-community edges within a random graph with the same degree
sequence than G. Then, the idea behind the Balanced modularity is to also take
into account the ratio of inter-community edges. In other words, the Newman-340

Girvan modularity considers that a good community structure on G should have
a ratio of intra-community edges “higher than by chance”, whereas the Balanced
modularity considers that a good community structure should have a ratio of
inter-community edges lower than by chance as well.

To take into account the ratio of inter-community edges, the Balanced modu-
larity focuses on the complementaries of the graph and the community structure.
We can state its concept as follows. Let us denote by Φ : Rn×n × Rn×n → R
the function such that

Φ(A,B) =
∑
i,j

ai,j −
(

n∑
k=1

ai,k

)(
n∑
l=1

aj,l

)
n∑
k=1

n∑
l=1

ak,l

 bi,j ,

which is equivalent to the Newman-Girvan modularity from eq. (8) when A is
an adjacency matrix and B ∈ Eq(n). Thus, given A the adjacency matrix of a
simple graph and X a community structure, the Balanced modularity is defined
as

FBM (A,X) = Φ(A,X) + Φ(A,X). (10)

An explicit formula can be derived from eq. (10) by expressing the degrees and
number of edges in the complementary of a simple graph through those from
the graph. It can be indeed observed from fig. 5 that

∀i ∈ {1, ..., n}, di =
n∑
k=1

ai,k = n− di
n∑
k=1

dk = n2 −
n∑
k=1

di = n2 − 2m
.

Hence, we can write
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a

b c

d e

⇐⇒

a b c d e


a 0 1 1 0 0 da = 2
b 1 0 1 1 0 db = 3
c 1 1 0 0 0 dc = 2
d 0 1 0 0 1 dd = 2
e 0 0 0 1 0 de = 1

=⇒
∑
k

dk = 10

a

d e

c b

⇐⇒

a b c d e


a 1 0 0 1 1 da = 3

b 0 1 0 0 1 db = 2

c 0 0 1 1 1 dc = 3

d 1 0 1 1 0 dd = 3

e 1 1 1 0 1 de = 4

=⇒
∑
k

dk = 15 = 25− 10

Figure 5: Top: A simple graph and its adjacency matrix. Bottom: the corresponding
complementary graph and its adjacency matrix. Degree of each node is given next to the
corresponding row, the sum of degrees lies below the matrices.

FBM (A,X) =
∑
i,j

(
ai,j −

didj
2m

)
xi,j

+
∑
i,j

(
ai,j −

(n− di)(n− dj)
n2 − 2m

)
xi,j ,

(11)

which is the formula of the Balanced modularity provided in [13].345

Generalisation. The Balanced modularity is built on the complementary of the
graph, which stands for simple graphs only. However, a generalisation of this
criterion to weighted graphs is proposed in [25]. It consists in stating that
ai,j = max

k,l
(ak,l) − ai,j = amax − ai,j in eq. (11). But this generalisation does

not fit with the spirit of this criterion as stated in eq. (10), because it does not
update di and

∑
k

dk according to the new definition of A = amaxJ −A in the

second sum of eq. (11). That is, it does not inject the weighted generalisation
of A in eq. (10). Hence, we propose another generalisation. Considering that,
for a weighted graph defined by its adjacency matrix A, the complementary of
A can be expressed as A = α × J −A, with α a scalar (that may depends on
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A). Thus, the degrees of nodes in the complementary graph are
∀i ∈ {1, ..., n}, di =

n∑
k=1

ai,k = α× n− di
n∑
k=1

dk = α× n2 −
n∑
k=1

di = α× n2 − 2m
.

By injecting A in eq. (10), the Balanced modularity becomes

FBM (A,X) =
∑
i,j

(
ai,j −

didj
2m

)
xi,j

+
∑
i,j

(
(α− ai,j)−

(α× n− di)(α× n− dj)
α× n2 − 2m

)
xi,j .

(12)

It remains to discuss the value of α. First, we remark that, for A the
adjacency matrix of any simple graph, the graph associated with A + A is
the complete graph with self-loop: it is not possible to add any edge in this
graph, that is, all edges are saturated. In a general case, given A ∈ Rn×n+

the adjacency matrix of some positively weighted graph, without any other350

knowledge on the graph, we can assume that an edge is saturated if its value is
amax, with amax as defined above. In this case, we cant state A = amaxJ−A as
in [25]. This generalised Balanced modularity is provided by setting α = amax
in eq. (12), which is slightly different than changing ai,j for amax−ai,j in eq (11),
as proposed in [25]. For doubly stochastic graphs, there is an upper-bound on355

the weight of an edge, that is 1. Indeed, as a doubly stochastic graph is a 1-
regular, positively weighted graph, no edge can have a weight above 1. Hence,
1 is the value that saturates an edge, and we can state α = 1 in eq. (12) if the
matrix is doubly stochastic.

Reduced Form. We derive the reduced form for the formula given in eq. (12),
as this formula can be used for weighted and simple graphs as well (by setting
α = 1, it becomes equal to eq. (11) when A represents a simple graph). Recalling
that X = J−X—or equivalently, ∀i, j, xi,j = 1− xi,j—, maximising eq. (12) is
equivalent to maximising

FBM (A,X) =∑
i,j

(
ai,j +

(αn− di)(αn− dj)
2αn2 − 4m

− α2m+ didj
4m

)
xi,j

, (13)

and the positive and negative agreements for the Balanced modularity in the360

general case can be stated as respectively φ(ai,j) = ai,j +
(αn− di)(αn− dj)

2αn2 − 4m

and φ(ai,j) =
α2m+ didj

4m
.

However, for a doubly stochastic matrix S, the formula of eq. (13) can be
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greatly simplified. With α = 1, by remarking that ∀i, di = 1 and 2m = n

FBM (S,X) =
∑
i,j

(
si,j +

(n− di)(n− dj)
2n2 − 4m

− 2m+ didj
4m

)
xi,j

=
∑
i,j

(
si,j +

(n− 1)2

2n2 − 2n
− n+ 1

2n

)
xi,j

=
∑
i,j

(
si,j +

n− 1

2n
− n+ 1

2n

)
xi,j

=
∑
i,j

(
si,j −

1

n

)
xi,j ,

which allows us to simplify the positive and negative agreements as φ(si,j) = si,j

and φ(si,j) =
1

n
, with the latter one that does not depends on i, j.

5.3. Deviation to Uniformity365

Principle. This criterion, proposed in [34, Chap.2.5.6], is based on a principle
very similar to Newman-Girvan’s one. The conceptual difference between these
two criteria is that, given a graph and a community structure, the Deviation
to Uniformity criterion compares the ratio of intra-community edges within
the graph with the expected ratio of intra-community edges within δ-regular
random graphs, by stating δ as the average degree in the initial graph—whereas
the random model in Newman-Girvan modularity has the same degree sequence
than the initial graph. Such a random model corresponds to graphs where edges
are uniformly distributed among nodes. Thus the probability that there is an

edge between two nodes i and j is equal to

∑
k

dk

n2
, where dks are the degrees of

the nodes in the initial graph. Hence, given A ∈ Rn×n+ the adjacency matrix
of some positively weighted graph, and X ∈ Eq(n) a community structure, the
Deviation to Uniformity can be written as

FDU (A,X) =
∑
i,j

ai,j −
∑
k

dk

n2

xi,j . (14)

This criterion is defined for weighted graphs such that those that fall into
the scope of this study, so we do not discuss its generalisation.

Reduced Form. The reduced form

FDU (A,X) =
∑
i,j

(
φ(ai,j)− φ(ai,j)

)
xi,j

is directly derived from eq. (14) by stating the positive and negative agreements

as respectively φ(ai,j) = ai,j and φ(ai,j) =

∑
k

dk

n2
. For a doubly stochastic
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matrix S, then
∑
k

dk = n and the criterion from eq. (14) can be simplified as

FDU (S,X) =
∑
i,j

(
si,j −

1

n

)
xi,j . (15)

The negative agreement thus becomes φ(si,j) =
1

n
.

5.4. Deviation to Indetermination

Principle. This criterion introduced in [13], is based on the principle of inde-
termination between two categorical variables as explained below. Given a set
S of M objects, and P,Q two categorical variables on S. A categorical variable
indicates the category taken by an object from the set. For instance, the objects
can be human beings, and the categories are mother tongues, or first names, as
long as we can consider that each human being has only one mother tongue and
only one first name. Formally, we state

P : S → {p1, ..., pπ}
u 7→ P (u)

and
Q : S → {q1, ..., qσ}

u 7→ Q(u)

where {p1, ..., pπ} are the categories of variable P—e.g., languages if P (u) is
the mother tongue of individual u—, respectively {q1, ..., qσ} the categories of
variable Q. We remark that, as a unique category is attributed to each object
by a variable, P and Q also represent equivalence relations—two individuals
named Morgan are in relation according to the Q that represents first names.
We remark that P and Q can be represented by two matrices P ∈ {0, 1}M×π,
respectively Q ∈ {0, 1}M×σ, such that

P(u, i) =

{
1 if P (u) = pi

0 otherwise
, Q(u, i) =

{
1 if Q(u) = qi

0 otherwise
,

which allows us to write the equivalence relations defined by the variables P
and Q as C(p) = PPT ∈ Eq(M), respectively C(q) = QQT ∈ Eq(M). We can
also derive their contingency table N = PTQ, with

ni,j = |{u ∈ S : P (u) = pi and Q(u) = qj}|

the number of objects with both category pi from P and category qj from Q.370

Given these matrix notations, we explain below the indetermination be-
tween categorical variables. Considering two categorical variables as two equiv-
alence relations, an interesting problem is to measure their association [40].
This is done by comparing the agreements and disagreements between the two
variables—these notions are illustrated in table 2. Indetermination is a special
case of association. Strictly speaking, one says that two variables are indeter-
mined if their number of agreements is equal to the their number of disagree-
ments, that is∑

u,v∈S

(
c(p)u,v × c(q)u,v + c

(p)
u,v × c(q)u,v

)
=
∑
u,v∈S

(
c(p)u,v × c

(q)
u,v + c

(p)
u,v × c(q)u,v

)
.
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P \Q Q(u) = Q(v) Q(u) 6= Q(v)
P (u) = P (v) agreement disagreement
P (u) 6= P (v) disagreement agreement

Table 2: All possible agreement/disagreement relations between two objects u and v according
to two categorical variables P and Q.

The notion of indetermination can be generalised to allow one to weight positive
and negative cases differently. Indeed, it might worth to give more weight to ob-
jects that are related than to those that are not [41]. Recall that π (respectively
σ) is the number of categories for variable P (respectively Q), an interesting
generalisation of indetermination is to weight positive cases with π−1 and neg-
ative cases with 1 in P , respectively σ − 1 for positive and 1 for negative cases
in Q. This provides the following equality for indetermination

(π − 1)(σ − 1)
∑

u,v∈S
c
(p)
u,v × c(q)u,v +

∑
u,v∈S

c
(p)
u,v × c(q)u,v =

(π − 1)
∑

u,v∈S
c
(p)
u,v × c(q)u,v + (σ − 1)

∑
u,v∈S

c
(p)
u,v × c(q)u,v

. (16)

This choice of weights is special because two categorical variables that verify
eq. (16) verify also other properties, e.g. they make vanish the so-called Jansen-
Vegelius criterion, one of the most famous association criteria. Besides, eq. (16)
is strongly related to another special case of association, called the geometri-
cal independence—see [41] for comparisons and discussions about the different375

notions of independence and indetermination. From here, we use the term in-
determination to speak about the generalised indetermination weighted as in
eq. (16).

It is shown in [41] that eq. (16) can be rewritten using the contingency table
N as

∀i, j : ni,j −


∑
t
ni,t

σ
+

∑
s
ns,j

π
− M

π × σ

 = 0.

Thus, for any contingency table N ∈ Np×q, the deviation to indetermination is
measured by ∑

i,j

ni,j −
∑
t
ni,t

q
−

∑
s
ns,j

p
+

∑
t,s
nt,s

p× q

 . (17)

The Deviation to Indetermination criterion is based on eq. (17), and can be
understood as follows. Let N ∈ Np×p be a contingency table built on two vari-
ables with the same categories P,Q ∈ {0, 1}M×p, thus, an equivalence relation
X ∈ Eq(p) that maximises

∑
i,j

ni,j −
∑
t
ni,t

p
−

∑
s
ns,j

p
+

∑
t,s
nt,s

p2

xi,j (18)
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a

b

c

d

e1 e2

e3
e4

e5

⇐⇒ N =


a b c d

a 0 1 0 0
b 1 0 1 2
c 0 1 0 1
d 0 2 1 0



P =



a b c d

e1(s) 1 0 0 0
e1(t) 0 1 0 0
e2(s) 0 1 0 0
e2(t) 0 0 1 0
e3(s) 0 1 0 0
e3(t) 0 0 0 1
e4(s) 0 1 0 0
e4(t) 0 0 0 1
e5(s) 0 0 1 0
e5(t) 0 0 0 1


and Q =



a b c d

e1(s) 0 1 0 0
e1(t) 1 0 0 0
e2(s) 0 0 1 0
e2(t) 0 1 0 0
e3(s) 0 0 0 1
e3(t) 0 1 0 0
e4(s) 0 0 0 1
e4(t) 0 1 0 0
e5(s) 0 0 0 1
e5(t) 0 0 1 0


Figure 6: Top: A multi-graph (left) is the contingency table (right) of two categorical vari-
ables. Bottom: In these categorical variables, variables are edges and categories are end
nodes. For undirected graphs, source and target end nodes can be swapped (right versus left).

groups together categories such that P and Q are highly determined (or far
from the indetermination) when restricted to categories from a same group.380

The parallel with community structures is done by remarking that a multi-
graph can be seen as the contingency table of two categorical variables, whose
categories are nodes and which are defined on a set S consisting in the end
nodes of edges. An example is provided in fig. 6. In this figure, the edges of a
multi-graph are named e1, ..., e5, and we define two categorical variables on their385

end nodes. Namely, each edge can be written e = (u, v), where u and v are the
end nodes of e, with u the source node (e(s)) and v the target node (e(t)). As
the direction of an edge is immaterial in a undirected graph, the two categorical
variables are created by swapping the role of end nodes—e.g. in fig. 6, P sees
e1 = (a, b), whereas Q states e1 = (b, a).390

Thus, considering A ∈ Nn×n the adjacency matrix of some multi-graph as
the contingency table of two such variables, one can look for the community
structure that groups together the nodes such that these two categorical vari-
ables are highly determined when restricted to these nodes. Roughly, given
such a group of nodes, it means that most of the edges have either both or none
of their end nodes in this group. By adapting eq. (18) to the specific case of
multi-graphs, we remark that finding such a community structure is equivalent
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to finding X ∈ Eq(n) that maximises

FDI(A,X) =
∑
i,j

ai,j − di
n
− dj
n

+

∑
k

dk

n2

xi,j . (19)

Generalisation. This criterion is naturally defined on mutli-graphs, since we
can write them as contingency tables. Using the same trick than for Newman-
Girvan modularity, this criterion can be directly applied to undirected positively
weighted graphs.

Reduced Form. The Deviation to Indetermination criterion from eq. (19) can
be rewritten as in eq.(6) by choosing the positive and negative agreements as
respectively

φ(ai,j) = ai,j +

∑
k

dk

n2
and φ(ai,j) =

di + dj
n

.

For a doubly stochastic matrix S, simplifications can be done. Indeed, since
∀i, di = 1 and

∑
k dk = n, eq. (19) can be simplified as

FDI(S,X) =
∑
i,j

(
si,j −

1

n

)
xi,j . (20)

The positive and negative agreements become respectively φ(si,j) = si,j and395

φ(si,j) = 1/n, the latter not depending on i, j.

5.5. Zahn Criterion

Principle. Strictly speaking, the Zahn criterion does not assess the consistency
of a community structure on a given network. However, it can be straightfor-
wardly extended to such a purpose. The Zahn criterion is designed to compare
two relations over a set of objects [35]. More precisely, given a finite set V
and a symmetric relation R over this set (that is ∀(u, v) ∈ V × V , R verifies
uRv ⇐⇒ vRu), Zahn wants to find the equivalence relation X which is the
closest to R. To this aim, Zahn designs a distance between two relations by
considering both relations as subsets of the cardinal set V × V , and counting
the number of pairs that belong to only one subset. An example is provided
in the top panel of fig. 7, where the symmetric relation R and the equivalence
relation X are defined on a set V = {a, b, c, d, e}. They are represented as sub-
sets of V × V by grids, where a coloured cell means that the two corresponding
objects are related. For instance, by looking at the row of object a in the grids,
we see that aRb and aRc for R, and aXa, aX b, and aX c for X . This can be
rewritten (a, b), (a, c) ∈ R and (a, a), (a, b), (a, c) ∈ X . In both grids, the dark
coloured cells correspond to pairs of objects that belong to both relations and
the light ones are pairs that lie in only one subset. With this mapping between
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R ∈ V × V :

X ∈ V × V :

a b c d e
e
d

c
b

a

a b c d e
e
d

c
b

a

R = (R∩ X ) ∪ (R∩ X )

X = (X ∩R) ∪ (X ∩R)

b
a

c
d e

Figure 7: Top: The Zahn distance defined between two relations is based on the set rep-
resentation of these relations. Coloured cells indicate pairs of related objects. Bottom: A
symmetric relation can be seen as a simple graph. An equivalence relation corresponds to a
community structure.

the relations defined on a set V and the subsets of V × V , the distance defined
by Zahn is

dZ(R,X ) = |X ∩ R|+ |R ∩ X |, (21)

with R a symmetric relation, and X an equivalence relation.
In [34], it is proposed to use this criterion to assess community structures

on simple graphs, by remarking that a simple graph can be characterised by
a symmetric relation over the set of its nodes, and a community structure on
this graph is an equivalence relation over the graph nodes as well. The bottom
panel of fig. 7 illustrates the relations R and X as respectively a graph and a
community structure. Zahn distance is also rewritten in [34] to get a matrix-
oriented formulation of this criterion. Denoting A the adjacency matrix of
the simple graph associated with the symmetric relation R, respectively X the
matrix representation of the equivalence relation X ,

R∩ X = {(i, j) ∈ V × V : ai,j(1− xi,j) 6= 0}
X ∩R = {(i, j) ∈ V × V : xi,j(1− ai,j) 6= 0}

Hence, Zahn distance can be rewritten as

dZ(A,X) =
1

2

∑
i,j

(ai,jxi,j + xi,jai,j). (22)

When used for community detection, the Zahn criterion is often stated as
equivalent to the so-called Condorcet criterion [34]. However, in [39, Chap.1.1.3],400

we show that the Condorcet criterion cannot be extended to the problem of
finding the best community structure given a graph.

Finally, we observe that the criterion of eq. (22) defines a distance in the
formal mathematical sense (i.e., it is positive, symmetric, separable and verifies
the triangle inequality). This does not hold anymore for any generalisation405

presented below.
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Generalisation. Zahn distance, originally designed for comparing relations over
a finite set, is straightforwardly extended to simple graphs and community struc-
tures. On the other hand, its generalisation to weighted graphs is not as straight-
forward since there is no trivial matching between a weighted graph and a sym-
metric relation. However, a generalisation of Zahn criterion to weighted graphs
is proposed in [25]. It is directly derived from eq. (22) by defining the comple-
mentary of the real-valued matrix A as A = amaxJ−A, with amax = max

i,j
(ai,j).

This leads to the criterion

dωZ,1(A,X) =
1

2

∑
i,j

(
ai,j(1− xi,j) + xi,j(amax − ai,j)

)
. (23)

Nevertheless, we propose other generalisations, as this one does not always
seem suitable. Indeed, the purpose of generalising criteria to weighted graphs is
to enable them to assess community structures on prepocessed doubly stochastic
graphs. Assuming that a graph before preprocessing is simple and thus associ-410

ated with a symmetric relation R over its set of nodes. Calling S the adjacency
matrix of the preprocessed graph, and X some community structure. Then,
with Zahn criterion as defined in eq. (23):

• There is an imbalance between the impact on the criterion of pairs in
R ∩ X and in X ∩ R. Any pair in R ∩ X results in a penalisation of the415

criterion equal to smax, whereas a pair in R∩X results in a penalisation
equal to si,j ≤ smax. Hence, each pair in R ∩ X penalises the criterion
equally to the highest penalisation that can be reached by a pair in R∩X .

• Except for pairs (i, j) such that si,j = smax, every pair that lies in X ∩R
penalises the criterion.420

We believe that these points are non desirable aspects of the previous gen-
eralisation of Zahn criterion. For this reason, we propose other generalisations.
As authors of [25], given a positively weighted matrix A, we choose generali-
sations that simply redefine the complementary of A in eq. (22). That is, we
define the generalised criterion as

dωZ(A,X) =
∑
i,j

(ai,j(1− xi,j) + xi,j(α− ai,j)) , (24)

with α some constant to set up. We find that choosing α as the mean element
of the matrix A, that is, α = amean, is a good trade-off to mitigate against the
two drawbacks listed above:

• Each element in R∩X penalises the criterion with the mean value of the
adjacency matrix.425

• An element in X ∩R penalises the criterion only if its value is lower than
the adjacency matrix mean value. Otherwise it even favours the criterion.
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Figure 8: A weighted graph and two community structures Xr (in red) and Xb (in blue), for
which dωZ,1(A,Xr) = 5 ≥ dωZ,1(A,Xb) = 4, dωZ,2(A,Xr) = −2 ≤ dωZ,2(A,Xb) ∼ −0.7, and

dωZ,3(A,Xr) = dωZ,3(A,Xb) = 2

We consider two possible definitions of α = amean, namely

amean =
1

n2

∑
i,j

ai,j , and (25)

amean =
1

nnz

∑
i,j

ai,j . (26)

We denote by dωZ,2 the criterion from eq. (24) obtained with α = amean from
eq. (25), respectively dωZ,3 the one obtained using α = amean from eq. (26).
Different behaviours of dωZ,1, dωZ,2 and dωZ,3 are illustrated on a toy example in430

fig. 8. This figure shows a weighted graph with two disjoint components, where
each component is a clique with its unique own edge value. In red and in blue,
two community structures are proposed, that we denote respectively Xr and
Xb. The criterion from eq (23) considers that Xb is a community structure
that better approximates the ground truth structure of the graph than Xr.435

On the other hand, the criterion dωZ,2 states that Xr is better than Xb, which
may be a more desirable situation. Finally, dωZ,3 considers the two structures as
equivalent.

Remark 2. With both generalisations from eq (24) using α = amean, negative
values are possible, and the symmetry is not preserved (dZ(A,X) 6= dZ(X,A)),440

whereas eq (23) ensures the positivity of the results and preserves the symmetry,
since ∀X ∈ Eq(n), xmax = 1.

Reduced Form. We now aim to find formulations of eqs. (22), (23) and (24)
that fit with the reduced form from eq. (6). We first remark that, given A
the adjacency matrix of some graph, the Zahn criterion dZ(A, .) is an objective
function that one aims to minimise, whereas in eq. (6), the criterion must be a
function to maximise. Hence, we express the opposite of dZ and remark that
minimising the function given in eq (22) is equivalent to maximising

X 7→ FZ(A,X) =
∑
i,j

(
ai,j −

1

2

)
xi,j . (27)
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For unweighted graphs, the positive and negative agreements of the Zahn crite-
rion are thus respectively φ(ai,j) = ai,j and φ(ai,j) = 1/2.

For weighted graphs, the opposite of dωZ from eq. (24) produces the following
reduced form for Zahn criterion

FωZ (A,X) =
∑
i,j

(
ai,j −

α

2

)
xi,j , (28)

with α = max
i,j

(ai,j) for the generalisation of eq. (23) and α = amean for the445

generalisation proposed here. Moreover, this second generalisation on a doubly
stochastic matrix S implies that α = 1/n using eq. (25), respectively α = n/nnz
using eq. (26). Both negative agreements φ(si,j) = 1/2n and φ(si,j) = n/2nnz
do not depend on i, j.

5.6. Correlation Clustering Criterion450

Principle. The Correlation Clustering is first introduced by Bansal et al. in [36].
Their problem can be stated as follows. Given a set of objects such that, for
each pair of objects, one knows if the objects are similar or dissimilar, the aim
is to find a clustering that “maximises agreements”, or equivalently “minimises
disagreements”. They model the set of objects as a complete graph such that455

each pair of nodes (objects)—or equivalently, each edge—has a label “+” if
objects are similar, and a label “-” if objects are dissimilar (see fig. 9), and give
a formal definition of maximising agreements/minimising disagreements.

• Maximising agreements means finding a clustering with both as many
edges labelled “+” having end nodes in a same cluster as possible, and as
many edges labelled “-” with end nodes in different clusters as possible.
With notations from fig. 9, it means solving

argmax
X∈Eq(n)

 ∑
{i,j}∈E+

xi,j +
∑

{i,j}∈E−

xi,j

 .

• Minimising disagreements means finding a clustering with both as few
edges labelled “+” with end nodes in different clusters as possible, and
as few edges labelled “-” having end nodes in a same cluster as possible.
With notations from fig. 9, it means solving

argmin
X∈Eq(n)

 ∑
{i,j}∈E+

xi,j +
∑

{i,j}∈E−

xi,j

 .

One of the authors’ rationales for formalising a clustering problem as a Cor-
relation Clustering problem is that, on the contrary of other clustering methods460

that used to exist, the Correlation Clustering problem can be solved without
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E+ = {{1, 2}, {1, 4}, {3, 4}}
= {{i, j} : `({i, j}) = +}

E− = {{1, 3}, {2, 3}, {2, 4}}
= {{i, j} : `({i, j}) = −}

Figure 9: In the graph to the left, the green edges are similarities between the nodes they link.
The set of these edges is denoted by E+. The orange edges link nodes that are dissimilar.
The set of these edges is denoted E−.

setting the number of clusters in advance. This makes this technique partic-
ularly suitable for community detection, where the number of communities is
generally not known [36].

Demaine et al. extend the Correlation Clustering problem to general weighted465

graphs in [42]4. Given a weighted, labelled graph G = (V,E,Ω, `) where

• Ω : E −→ R+

{i, j} 7→ ω({i, j}) indicates edge weights,

• ` : E −→ {+,−}
{i, j} 7→ `({i, j}) indicates edge labels,

they focus on a generalised formulation of the “minimising disagreements” prob-
lem by looking for

argmin
X∈Eq(n)

 ∑
{i,j}∈E
`({i,j})=−

ω({i, j})xi,j +
∑
{i,j}∈E
`({i,j})=+

ω({i, j})xi,j

 (29)

In [34], it is proposed to separate positive and negative labels in the weight
indicator Ω, that can be expressed as creating two functions Ω+ and Ω− such
that

Ω+ : E −→ R+

{i, j} 7→ ω+({i, j}) =

{
ω({i, j}) if `({i, j}) = +,

0 otherwise.

and

Ω− : E −→ R+

{i, j} 7→ ω−({i, j}) =

{
ω({i, j}) if `({i, j}) = −.
0 otherwise.

4Bansal et al. generalise it for complete weighted graphs whose weights lie in [−1, 1] in [36].
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This allows to simplify eq. (29) as

argmin
X∈Eq(n)

∑
i,j

(
ω+({i, j})xi,j + ω−({i, j})xi,j

)
. (30)

By denoting

gCC(G,X) =
∑
i,j

(
ω+({i, j})xi,j + ω−({i, j})xi,j

)
,

we remark that minimising X 7→ gCC(G, .) is equivalent to minimising a function
dCC defined by

X 7→ dCC(G,X) =
∑
i,j

(
ω−({i, j})− ω+({i, j})

)
xi,j . (31)

Generalisation. The case of graphs with positive and negative edges is beyond
the scope of this study. However, in positively weighted networks, it is natural
to assume that an edge indicates that its two end nodes are similar. In turn, one
can assume that dissimilarities are indicated by an absence of edge. We use this
idea to generalise the Correlation Clustering criterion to positively weighted
graphs. For this purpose, we define the pattern of a matrix as the following
function

P : Rn×n+ −→ {0, 1}n×n
M 7→ P(M) = PM ,

such that pMi,j =

{
1 if mi,j 6= 0

0 otherwise.
. Given G = (V,E,Ω) some positively weighted

graph and A ∈ Rn×n its adjacency matrix, the absence of edge in G is char-
acterised by J − PA. Thus, denoting by λ > 0 the penalisation for clustering
together nodes that are dissimilar, the Correlation Clustering from eq. (31)
becomes

dλCC(A,X) =
∑
i,j

(
λ× (1− pAi,j)− ai,j

)
xi,j , (32)

where A is the adjacency matrix of some positively weighted graph, and X is
a community structure on this graph. The proposed generalised Correlation470

Clustering hence depends on some parameter λ > 0 to set up.

Remark 3. When focusing on simple networks, this generalised Correlation
Clustering criterion is close to the LambdaCC function proposed in [43].

Remark 4. Another way to generalise the Correlation Clustering criterion may
be to consider that a positively weighted graph is actually a complete graph,
where an edge whose weight is equal to 0 is the strongest case of dissimilarity.
In this case, one can shift the weights so that the graph has positive and negative
values. Given A the adjacency matrix, the most straightforward way to do so
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is to consider that an edge is a dissimilarity if it is below the mean value of A,

that is

∑
k

dk

n2
. In this case, the criterion from eq. (31) becomes

dωCC(A,X) = −
∑
i,j

ai,j −
∑
k

dk

n2

xi,j ,

which is equivalent to the formula of the Deviation to Uniformity criterion de-
veloped in Section section 5.3.475

Reduced Form. We aim to reduce the formula from eq. (32) to make it fit with
eq. (6). As the Correlation Clustering criterion defined at eq. (32) is a criterion
to minimise to obtain the best community structure, we look at its opposite.
Minimising dλCC is equivalent to maximising

FλCC(A,X) =
∑
i,j

(
ai,j − λ× (1− pAi,j)

)
xi,j . (33)

The positive and negative agreements for this generalised criterion are respec-
tively φ(ai,j) = ai,j and φ(ai,j) = λ× (1− pAi,j).

6. Comparison of the Criteria

In this section, we compare the criteria from section 5. In table 3, we recall
the reduced formulations of these criteria when applied on simple or doubly480

stochastic graphs.

6.1. Homogenisation on Doubly Stochastic Graphs

The first key result directly observed from table 3 is that, when applied to
doubly stochastic graphs, many criteria become equivalent, as stated in theo-
rem 2.485

Theorem 2. Given S ∈ Rn×n the adjacency matrix of some doubly stochastic
graph, and X ∈ Eq(n) a community structure, thus

FωNG(S,X) = FωBM (S,X) = FωDU (S,X) = FωDI(S,X).

Theorem 2 extends theorem 6.1 from [34] that states that these criteria are
equivalent in the case of k-regular simple graphs. Furthermore, the doubly
stochastic Zahn modularities, while not strictly equivalent to these four criteria,
have very similar formulations. Actually, one can draw a parallel between Zahn
formulations and the parametrised Newman-Girvan modularity, used to miti-
gate against the so-called resolution limit of the Newman-Girvan modularity—
that is, its unability to highlight small communities [12]. This function is defined
in [44] as

F γNG(A,X) =
∑
i,j

(
ai,j − γ

didj
2m

)
xi,j ,
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with A the adjacency matrix of some simple graph, X ∈ Eq(n), and γ > 0
the parameter. In definition 5, we also define a parametrised criterion for the
doubly stochastic version of Newman-Girvan modularity.

Definition 5. Given S ∈ Rn×n the adjacency matrix of some doubly stochastic
graph, X ∈ Eq(n), and γ > 0 a scalar, the parametrised doubly stochastic
Newman-Girvan modularity is defined as

Fω,γNG(S,X) =
∑
i,j

(
si,j −

γ

n

)
xi,j .

These parametrised versions of the Newman-Girvan modularity are added
to the list of criteria, as the last row of table 3, for both simple and doubly490

stochastic graphs. The doubly stochastic versions of the Zahn criterion can be
expressed using definition 5, as stated in property 1.

Property 1. Given S ∈ Rn×n the adjacency matrix of some doubly stochastic
graph and X ∈ Eq(n). The doubly stochastic Zahn modularities can be ex-
pressed as parametrised doubly stochastic Newman-Girvan modularities, using495

the following values for the γ parameter:

• FωZ,1(S,X) is obtained with γ =
n× smax

2
,

• FωZ,2(S,X) is obtained with γ =
1

2
,

• FωZ,3(S,X) is obtained with γ =
n2

2× nnz(S)
.

Thus, the Correlation Clustering criterion is the unique doubly stochastic cri-500

terion from table 3 that cannot be expressed as a parametrised doubly stochastic
Newman-Girvan modularity. We now provide the main result of this study in
result 1.

Result 1. Generalising the criteria to doubly stochastic graphs unifies those
criteria. Namely, there are two families of parametrised criteria:505

1. The Newman-Girvan-like ones

Fω,γNG(S,X) =
∑
i,j

(
si,j −

γ

n

)
xi,j

2. The Correlation Clustering-like ones

Fω,λCC (S,X) =
∑
i,j

(
si,j − λ× (1− pSi,j)

)
xi,j

Each criterion is obtained from one of these parametrised criteria, using a spe-
cific parameter.
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Figure 10: Two instances from the benchmark, built using the pin and pout from the first
column (left) and the last column (right) of table 4.

6.2. Numerical Comparisons

In this section we compare the behaviours of the different criteria to un-
cover community structures, applied on modular simple graphs on one hand,510

and their doubly stochastic preprocessing on the other hand. To that purpose,
we optimise those criteria using the optimisation framework proposed by the
Louvain algorithm [25].

Benchmark. For these numerical experiments, we build a range of random mod-
ular networks, using eight Stochastic Block Models (SBMs). In brief, SBMs are515

random models for generating networks with some block structure, with pre-
scribed probabilities of edges within and between the blocks. Models in which
intra-block probabilities are higher than inter-block probabilities produce net-
works with community structures [45]. Each SBM is used to generate 10 graphs
of 1600 nodes, with an average degree equal to 100 and 31 blocks: 16 blocks520

of 20 nodes, 8 blocks of 40 nodes, 4 blocks of 80 nodes, 2 blocks of 160 nodes
and one block of 320 nodes. They all have one unique probability of intra-block
edge and one unique probability of inter-block edge, denoted respectively pin
and pout. These SBMs differ in the values of parameters pin and pout, which
are chosen so that the community structures of the random graphs become less525

and less sharp. The sharpness of the community structure is assessed by the so-
called network mixing parameter [4]. The nodal mixing parameter measures the
strength of a node’s community membership by computing the ratio between its
links outside the community and its degree. The greater the mixing parameter
for each node, the weaker the community structure. The network mixing pa-530

rameter µ is the mean value of the nodal mixing parameters [11]. Two instances
from the benchmark are illustrated in fig. 10. These are two modular networks
generated by the SBMs with highest and lowest mixing parameters. Finally, 80
benchmark graphs are built using SBMs from the NetworkX library5, and pre-
processed using algo. 1. The pairs of intra- and inter-edge probabilities pin and535

5https://networkx.org/l

32

https://networkx.org/l


pin 7.32 6.58 5.83 5.09 4.34 3.60 2.86 2.11
pout 0.06 0.13 0.19 0.25 0.31 0.38 0.44 0.5

µtheo 1.79 3.02 3.98 4.81 5.56 6.27 6.97 7.67
µ̃bin 1.80 3.04 4.00 4.84 5.58 6.30 6.99 7.69

µ̃stoch 1.70 2.91 3.96 4.69 5.43 6.15 6.83 7.53

Table 4: Edge probabilities in each SBMs (pin and pout), theoretical mixing parameters
(µtheo), and the observed average mixing parameters on the simple (µ̃bin) and preprocessed
(µ̃stoch) graphs.

pout used in the SBMs are showed in table 4, along with the corresponding the-
oretical mixing parameters, and the average mixing parameters observed in the
simple graphs, and in the doubly stochastic scaling of these graphs, respectively.
All numbers are multiplied by 10 to improve readability. We observe that the
mixing parameters of the preprocessed graphs tend to be slightly below those540

of the simple graphs, and of the theoretical value as well.

Scores. To assess the quality of the community structures returned by Louvain,
we compare them to the ground truth by adapting the definitions of Precision,
Recall and F1-score to community detection. Namely, assume we have X∗ ∈
Eq(n) the ground truth, and X̃ ∈ Eq(n) the community structure returned545

by Louvain. We define the number of true positives as the number of pairs of
different elements that are put together by both community structures, that is

TP =
∑
i<j

x̃i,j × x∗i,j . The number of false positives is the number of pairs that

are put together by X̃ but not by X∗: FP =
∑
i<j

x̃i,j × (1− x∗i,j). And the

number of false negatives is the number of pairs that are put together by X∗550

but not X̃, namely FN =
∑
i<j

(1− x̃i,j)× x∗i,j . Now, we can derive Precision,

Recall and F1-score of X̃ as usual.

• Precision: Prec(X̃) =
TP

TP + FP

• Recall: Rec(X̃) =
TP

TP + FN

• F1-score: F1(X̃) = 2× Prec(X̃)×Rec(X̃)

Prec(X̃) +Rec(X̃)
.555

Furthermore, since the Louvain algorithm is sensitive to node labelling, we
apply it four times to each network in the benchmark, using a random labelling.
Thus, in the following figures, the points on the curves are the average score of
the 40 returned community structures (10 networks and 4 runs of Louvain). For
each point, these 40 community structures are summarised by box plots, that560
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indicate the median (white circle with black point), 25th and 75th percentiles
(edges of the box), and extreme values (extrema points of vertical segments).

Finally, the number of communities returned by Louvain often helps to ex-
plain some observations done on the scores. Indeed, as the number of communi-
ties is not constrained, Louvain algorithm may find either more or less commu-
nities than expected, with different impacts on Precision and Recall. Thus, we
also compare the number of communities returned by Louvain with the expected
number (31). Given nc the number of communities in X̃, we compute

r(X̃) =

{
nc/31 if nc ≥ 31,

31/nc otherwise.

This allows a fairer comparison between the criteria that over- or under-partition
the graphs. These ratios are displayed in table 5. Structures with more (respec-
tively less) communities than expected are highlighted by a “+” (respectively a565

“-”) exponent . Also, it may happen that some of the 40 structures have more
communities than expected, while other have less. Such cases are indicated by
the exponent “*”.

Parametrised Newman-Girvan Modularities. We first focus on the behaviours
of the parametrised Newman-Girvan modularities, when varying the parameter570

γ. The F1-scores (y-axis) over γ parameters (x-axis) of the Newman-Girvan
modularities applied on simple and preprocessed graphs are provided in fig. 11
and 12 respectively. As stated in the legends, each curve corresponds to one
mixing parameter value µ̃bin from table 4.

Figure 11: The F1-score (y-axis) over γ (x-axis) of the parametrised Newman-Girvan modu-
larity on simple graphs.

On these figures, we observe that both modularities are able to provide575

community structures close to the ground truth for some γ ∈ [1.25, 2]. In the
right panels, one can also observe that, for very large γ’s, F1-score tends to
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0. This means that, whatever the sharpness of the ground truth community
structure, it exists some γ beyond which Louvain returns the structure with
one community per node. We also observe that the fundamental difference580

between simple and doubly stochastic criteria is that the parametrised Newman-
Girvan modularity is much more sensitive to γ variations when applied on simple
graphs. Indeed, in fig. 11, the F1-score curves are quite sharp. For each µ, there
is a peak at the γ value that maximises the F1-score. Moreover, this peak is
not located at the same γ across the µ’s (1.625 for µ = 0.769, 1.75 for µ = 0.699585

and 1.875 for the other values of µ). On the other hand, in fig. 12, the F1-score
curves are much smoother and the maxima lie along a plateau, whose length
depends on the mixing parameter µ. Thus, there is much more chance to pick a
γ that provides a sound community structure for preprocessed graphs than for
simple ones.590

Correlation Clustering Criteria. We now focus on the behaviours of the Correla-
tion Clustering criteria, when varying the parameter λ. As previously, F1-scores
over λ parameters are provided in fig. 13 and 14, for Louvain algorithm applied
on simple and preprocessed graphs, respectively. This time, criteria on both
simple and doubly stochastic graphs highlight plateaus at their maxima. How-595

ever, one can observe that these plateaus do not appear for the same parameter
values. Indeed, there is a factor 100 between the x-axes of the two figures (on
the left panel of fig. 13, x-axis limits are 10/n and 500/n, while these are 1/10n
and 50/10n for fig. 14). This observation is consistent with property 2.

Property 2. Given A the adjacency matrix of a simple graph, and λ > nnz(A)/2.
Assuming that X∗ = argmax

X∈Eq(n)
FλCC(A,X). Thus

∀i 6= j, ai,j = 0 =⇒ x∗i,j = 0.

Figure 12: The F1-score (y-axis) over γ (x-axis) of the parametrised Newman-Girvan modu-
larity on doubly stochastic graphs.
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Figure 13: The F1-score (y-axis) over λ (x-axis) of the Correlation Clustering criterion on
simple graphs.

Respectively, if S ∈ Rn×n+ is doubly stochastic, and λω > n/2, thus X∗ ∈ Eq(n)

that maximises Fω,λωCC (S, .) is such that

∀i 6= j, si,j = 0 =⇒ x∗i,j = 0.

600

Proof. Straightforward by adapting the proof from [39, Property 8].

Figure 14: The F1-score (y-axis) over λ (x-axis) of the Correlation Clustering criterion on
doubly stochastic graphs.
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Figure 15: Precision and Recall (y-axes) of all the criteria applied on simple graphs, over the
mixing parameters (x-axes).

This property states that, for large values of the λ parameter, in the com-
munity structure that optimises the Correlation Clustering criterion, each com-
munity must be a clique of the graph. In the benchmark analysed here, this
strong constraint implies that, for such λ values, the optimal community struc-605

ture does not fit the ground truth one. Thus, in property 2, λ and λω provide an
upper bound beyond which the Correlation Clustering criteria are not able to
uncover the ground truth community structures of the graphs from the bench-
mark. Those graphs having an average degree equal to 100 implies that those
upper bounds are such that λ ≈ 100 × λω, which is consistent with the differ-610

ences of x-axes between fig. 13 and 14. Finally, we remark that, opposite to
the observations made on Newman-Girvan modularities, maximum plateaus are
smoother for simple graphs.

All Criteria on Simple Graphs. In this paragraph, we compare the different
behaviours of all the criteria designed for simple graphs. Recall and Precision615

are displayed in fig. 15. The parameters for the Correlation Clustering and
the parametrised Newman-Girvan criteria, respectively λ = 210/n and γ =
1.625, are chosen so that the average F1-score is maximised over all the mixing
parameters. From the right panel, we observe that, except for Zahn criterion,
all the measures return high scores of Recall (all above 0.8 even for the largest620

mixing parameter). This is consistent with the fact that, except when used with
the Zahn criterion, the Louvain algorithm tends to return structures with less
communities than expected, when applied on simple graphs, as it can be seen
from �-highlighted cells in table 5. Thus, some of the ground truth communities
are merged into the returned ones. And a high value of Recall means that625

the returned communities tend to cover the ground truth ones. On the other
hand, Louvain with Zahn criterion returns almost 5 times more communities
than expected when µ = 0.484, and this ratio keeps increasing with µ, which
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Figure 16: Precision and Recall (y-axes) of all the criteria applied on doubly stochastic graphs,
over the mixing parameters (x-axes).

explains the slump of this criterion Recall curve. This is an expected result,
since it is proven in [34] that the community structure that maximises the Zahn630

criterion is such that subgraphs induced by each community must be 1/2-dense.
Looking at the values of pin and pout from table 4, ground truth communities are
expected to respect this property up to µ = 0.484, included. However, Louvain
algorithm only approximates the best community structure for the criterion,
which explains why the slump starts at µ = 0.484 in the tests.635

When looking at the left panel, we can roughly divide the remaining mea-
sures into two categories: the Balanced Modularity, the Deviation to the In-
determination and the Newman-Girvan modularity, that exhibit low Precision
scores, and the Deviation to the Uniformity, the Correlation Clustering crite-
rion and the parametrised Newman-Girvan modularity that exhibit much better640

Precision values. Once again, this is consistent with the ratio of the number
of communities returned by Louvain, highlighted in table 5. Indeed, low Pre-
cision values are expected when ground truth communities are merged into the
returned ones. And from �-highlighted cells in table 5, one can remark that
the tendency of Louvain algorithm to provide less communities than expected645

is emphasised for the criteria with lower Precision scores. Finally, one can focus
on the somehow strange shape of the parametrised Newman-Girvan modularity,
that achieves its minimum for the second smallest value of mixing parameter.
As observed from fig. 11, the parameter value γ that maximises the F1-score is
not consistent over all the mixing parameters. Thus the choice of γ, which is650

a trade-off between the mixing parameters, clearly disadvantages graphs with
lowest mixing parameters.

All Criteria on Doubly Stochastic Graphs. Here, we discuss the behaviours of
the criteria applied to doubly stochastic graphs. As previously, the parameters
for the Correlation Clustering criterion (λ = 20/10n) and for the parametrised655
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Newman-Girvan modularity (γ = 1.75), are chosen to maximise the average
F1-score over mixing parameters. Recall and Precision are displayed in fig. 16.
From the Recall curves on the right panel, we observe three different behaviours.
First, we remark that two of the three versions of the Zahn criteria (FωZ,1 and
FωZ,3) exhibit very low Recall values, even for the smallest mixing parameter.660

From �-highlighted cells in table 5, it can be seen that, for µ = 0.18, Louvain
used with FωZ,1 returns in average almost 47 times more communities than ex-
pected. Recalling that there are 31 ground truth communities for 1600 nodes in
the networks from the benchmark, this means that, in the community structure
returned by this version of Louvain, a community contains in average about 1.1665

node. On the other hand, Louvain used with FωZ,3 returns communities contain-
ing 5.35 nodes in average, when µ = 0.18. While larger than for FωZ,1, this size
is yet more than three times smaller than the smallest communities from the
ground truth community structures, which contain 20 nodes. This explains the
low Recall scores of FωZ,1 and FωZ,3. Opposite to this is the behaviour of Louvain670

used with the other version of the Zahn criterion, namely FωZ,2. Its Recall curve
is constant, equal to 1, which means that it does not split any of the ground
truth communities. However, when looking at �-highlighted cells in table 5,
we see that, from µ = 0.558, the number of communities returned by Louvain
with FωZ,2 is less than two, meaning that it returns some community structures675

where all the nodes belong to a unique community, and the Recall of this trivial
community structure is 1. Thus, Louvain used with FωZ,2 does not split existing
communities, but tends to merge them into one unique community as the mixing
parameter increases. Finally, the parametrised and non-parametrised Newman-
Girvan modularities, along with the Correlation Clustering criterion, have Recall680

values that remain equal to 1 for mixing parameters up to µ = 0.558, and then
start to decrease. The fact that parametrised Newman-Girvan and Correlation
Clustering criteria have a lower Recall value than the Newman-Girvan modu-
larity for µ = 0.769 is explained by the fact that Louvain algorithm used with
the two former criteria returns more communities than expected for this mixing685

parameter—see �-highlighted cells in table 5.
Looking at the Precision curves on the left panel of fig. 16, we observe that

the non-parametrised version of the Newman-Girvan modularity is not com-
petitive with the parametrised Newman-Girvan and the Correlation Clustering
criteria. On the other hand, these two latter ones exhibit an extremely close690

behaviour. About the two versions of the Zahn criteria with low Recall values,
Louvain with FωZ,3 highlights the highest Precision up to µ = 0.558, while Pre-
cision of Louvain with FωZ,1 decreases quickly. This is due to the fact that, as
already discussed, the latter one returns essentially one community per node.
Such communities account for 0 in the Recall. Finally, the version of the Zahn695

criterion FωZ,2 with the best possible Recall score, also exhibit the worst results
in terms of Precision, with a slump of its Precision as soon as the second smallest
mixing parameter.

Summary. Average F1-scores of all measures are provided in table 6, along
with standard deviations. To improve readability, F1-scores are multiplied by700
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10, and standard deviations by 100. Parameters for the Correlation Clustering
criteria and parametrised Newman-Girvan modularities are those that maximise
the average F1-score, as explained in the previous paragraphs. We observe that
the most accurate criteria are the parametrised ones. Indeed, the criterion
which provides the best F1-score overall is the Correlation Clustering criterion705

on simple graphs (FλCC), closely followed by the Correlation Clustering and

parametrised Newman-Girvan criteria on doubly stochastic graphs (Fω,λCC and
Fω,γNG). Last from this pool is the parametrised Newman-Girvan modularity on
simple graphs (F γNG). These four criteria exhibit average F1-scores above 0.85
for all the mixing parameters.710

We now compare the four criteria unified by theorem 2, namely the Devi-
ation to Indetermination (FDI), Balanced Modularity (FBM ), Newman-Girvan
modularity (FNG) and Deviation to Uniformity (FDU ). First, we observe that
the latter provides very high F1-scores compared to the other measures. Except
for the largest mixing parameter value, and its high standard deviations, the De-715

viation to Uniformity is almost competitive with the parametrised criteria. This
is an artifact due to the benchmark, in which network community structures are
typical deviations to regular graphs. On the other hand, the three others are
not competitive with the doubly stochastic Newman-Girvan modularity (FωNG)
that generalises them all.720

Our last observations concern the Zahn criteria. From table 6, it seems
that none of the doubly stochastic versions of the Zahn criterion can compete
with the one for simple graphs. However, it can be seen from table 5 that
the number of communities returned by the Zahn criteria are quite different,
making them hard to compare based on their F1-score. To highlight this, in725

fig. 17, we plot the confusion matrices of a community structure with µ = 0.4
returned using FZ (left panel), and FωZ,3 (right panel) (for each criterion, the
chosen community structure is the one that provides the maximum F1-score).
We observe that their behaviours are opposite: the community structure found
on a simple graph correctly detects the largest communities, but split those of730

sizes 20 and 40: nodes from the ground truth 20-node communities are assigned
to 36 communities by Louvain (16 are expected), and nodes from the 40-node
communities are split into 22 communities (8 expected). On the other hand,
Louvain used with FωZ,3 on a preprocessed graph perfectly detects communities
of size 20, 40 and 80. However, it splits the two communities of size 160 into 20735

communities, and the 320-node community into 225 ones. This illustrates again
the tendency of the proposed preprocessing to sharpen small-size communities,
here at the expense of the larger ones. It also highlights that finding the more
desirable partitioning remains application-dependant, and should not be chosen
on the basis of maximum F1-score only.740
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Figure 17: Confusion matrix of one community structure returned by Louvain used with FZ
(left), respectively FωZ,3 (right).

7. Conclusion and Future Perspectives

Broadly speaking, the aim of this study was to investigate the utility of
doubly stochastic scaling as a preprocessing for community detection. In par-
ticular, its capacity to increase the detectability of small-size communities and
communities with an imbalance in edge direction, such communities being in745

general poorly detected by community detection algorithms. The proposed pre-
processing was presented in section 4, along with illustrations of its potential to
sharpen those kinds of communities on toy examples and on a real-world net-
work. In section 5, we have generalised a range of graph partitioning measures
to weighted networks, with a particular focus on the case of doubly stochastic750

ones. Of utmost interest is the result that the doubly stochastic scaling unifies
these measures, as stated in section 6.1. That is, all of the six measures defined
for simple graphs can be expressed using only two parametrised measures for
doubly stochastic graphs. Extensive comparisons of these measures have been
conducted using SBMs in section 6.2, where we observed that the measures755

the most able to accurately uncover community structures are the parametrised
ones, for both simple and preprocessed graphs, but foremost that a great care
should be given to the choice of the measure to maximise, as different measures
behave extremely differently.

In the future, we would like to investigate the impact of the diagonal added760

to ensure the convergence of the scaling in algo. 1 and 2, in terms of numerical
values within the resulting preprocessed graph. This would provide us with
theoretical basis to help making the right choice. Furthermore, to keep improv-
ing community detection methods, we would like to incorporate the knowledge
obtained from scaling factors to the process of discovering communities. In-765

deed, after scaling, all nodes have the same degree. This may be seen as a non
desirable feature, as it means that some initial information about node central-
ity (namely, the degree) is lost. And for real applications, the more central the
node, the more harmful an error of assignation on this node. However, as stated
in [30], another kind of information about node centrality, similar to hub and770

authority centralities from [46], is conveyed by the scaling factors, and should
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Figure 18: Doubly stochastic scaling of a toy example of overlapping communities. Left: Val-
ues of the scaling factor. Right: The scaling form of a simple graph exhibiting two overlapping
communities.

be exploited to ensure that a greater care is taken to the correct assignation
of nodes with high centrality. Finally, we would like to extend the proposed
preprocessing to the detection of overlapping communities. Indeed, in many
applications, one node can be involved in more than one community [47]. In a775

doubly stochastic scaling, a node belonging to many communities should pro-
duce high scaling factors (because of its high degree) and thus low numerical
values in the doubly stochastic scaling, as illustrated in fig. 18. This may provide
a framework to identify those nodes.
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