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Abstract

Graph partitioning, or community detection, has been widely investigated in
network science. Yet, the correct community structure on a given network is
essentially data-driven. Thus, instead of a formal definition, diverse measures
have been conceived to capture intuitive desirable properties shared by most
of the community structures. In this work, we propose a preprocessing based
on a doubly-stochastic scaling of network adjacency matrices, to highlight these
desirable properties. By investigating a range of community detection measures,
and carefully generalising them to doubly-stochastic graphs, we show that such a
scaling unifies a whole category of these measures—namely, the so-called linear
criteria—onto two unique measures to set up. Finally, to help practitioners
setting up these measures, we provide an extensive numerical comparison of
the capacity of these measures to uncover community structures within block
stochastic models, using the Louvain algorithm.

Keywords: Network Analysis, Community Detection, Graph Partitioning
Measures, Doubly-Stochastic Scaling.

1. Introduction

By mapping local-level elementary interactions between data, networks pro-
vide a powerful template that enables one to analyse emergent behaviours in
complex systems, such as biological systems, social networks, etc. [1, Chap.5].
Hence, these last decades, analysis of complex networks has been at the core of5

several research works [2]. One aspect has gained a lot of attention: the prob-
lem of graph partitioning, also called community detection [3, 4, 1, Chap.21].
Defining a network as a set of entities (called nodes or vertices) connected by in-
teractions (called links or edges), the aim of community detection is to partition
the set of the nodes into groups of nodes that are similar or strongly related.10
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Figure 1: Left: Adjacency matrices of networks with community structures. Middle: The
Louvain algorithm cannot detect the smallest community (top matrix, the smallest community
highlighted in the red square); and it is unable to detect the two communities connected in an
imbalanced fashion (bottom). Right: After scaling, Louvain can detect small communities
in presence of larger ones (top); and it can detect the community structure when there is an
imbalance in the flows of edges (bottom).

In real-world applications, the rightful community structure depends on the
network. For this reason, there exists no formal definition of a community struc-
ture since it is always possible to find a community structure that contradicts the
definition. However, it is generally admitted that community structures share
similar properties: a community should be a group of nodes densely connected,15

and sparsely connected to the rest of the graph—see Table 1.1 from [5]. Thus, a
number of measures that capture these properties have been designed to assess
the quality of a community structure proposed on a network, e.g. [6, 7, 8]. Opti-
mising such measures is generally a NP-complete problem [9, 3, 5], thus approx-
imation algorithms have been proposed that perform community detection by20

approximating the “best” community structure. The most famous is probably
the Louvain algorithm [10], that aims to maximise the so-called Newman-Girvan
modularity [6]. Because of its simplicity, its accuracy in detecting communities,
and its efficiency in terms of computational cost [11], it has been one of the most
widely-used community detection algorithms for more than 10 years. But there25

are communities, very intuitive and yet poorly detected by algorithms in general,
that even Louvain is unable to resolve: 1) Small communities in large networks
are generally missed—this is typically the so-called resolution limit [12]. 2) In
directed networks, flow-based communities are usually not detected in presence
of an imbalance of the edges leaving and entering these communities. Points 1)30

and 2) are illustrated in the middle panels of fig. 1, where the results of Louvain
algorithm applied on two toy networks exhibiting such community structures
are displayed.

The aim of this study is to investigate the potential of matrix balancing as
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a preprocessing for community detection. Our contributions are three-folds:35

• We propose a preprocessing based on the so-called doubly-stochastic scal-
ing, to increase the detectability of communities, in particular those usu-
ally hardly detectable as illustrated in fig. 1.

• By extending several graph partitioning measures to weighted graphs, in
particular doubly-stochastic graphs, we show that our proprecessing uni-40

fies these measures onto two unique measures to set up.

• We conduct extensive comparisons of the capacity of these measures to
uncover community structures within stochastic block models, which pro-
vides guidance for customising them.

The paper is organised as follows: Section 2 lists the definitions and nota-45

tions to be used through the paper. Section 3 gives an overview of related work.
Section 4 presents our method: we introduce the doubly-stochastic scaling (sec-
tion 4.1) and detail our preprocessing (section 4.2), showing its potential on
toy examples and a real-world network (section 4.3). In section 5, we discuss
the generalisation of six graph partitioning measures to weighted graphs, in50

particular doubly-stochastic ones. Section 6 compares these measures, first the-
oretically in section 6.1, then experimentally in section 6.2. We finally discuss
our conclusions and future work in section 7.

2. Definitions and Notations

In this section, we present some definitions and notations to be used through55

the paper. Basic mathematical objects are listed in table 1.

Object Typoface Examples

Unweighted graph 2-element Tuple G = (V,E)
Weighted graph 3-element Tuple G = (V,E,Ω)
Edge in a directed graph Tuple of nodes (u, v)
Edge in a undirected graph Curly brackets of nodes {u, v}
Matrix Bold capital letter A, S
Matrix entry Letter with subscripts ai,j
Matrix of 1s J J
Identity matrix I I
Transpose of a matrix .T AT

Vector Bold minuscule letter u, x
Vector entry Parentheses on a vector u(i)
Vector of 1s e e
Diagonal matrix from a vector D(.) D(u), D(e) = I
Cardinal function |.| |S|

Table 1: Typography of mathematical objects.
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Graphs. In this study, we investigate networks (that we also call graphs) that
can be weighted or not. Except when stated otherwise, networks are undirected.
For a network G = (V,E,Ω), V is the set of nodes, E ⊂ V ×V the set of edges,
and the function

Ω : E → R+

{u, v} 7→ ω({u, v})
provides the weights of edges. To simplify notations, we will assume that graphs
have integer nodes, that is V = {1, ..., n}.

When there is no possible confusion about the network, letters n and m
denote the number of nodes and the total weight of edges respectively, that60

is n = |V | and m =
∑

{u,v}∈E
ω({u, v}). The degree of a node u is defined as

du =
∑

v:{u,v}∈E
ω({u, v}). If ∃δ ∈ R : ∀u ∈ V, du = δ, the graph is said to be

δ-regular. We will denote by simple graphs the unweighted undirected networks
without self-loop—i.e. ∀u ∈ V, {u, u} /∈ E.

Adjacency Matrices. A (directed) graph G = (V,E,Ω) can be represented by
its adjacency matrix, that is a matrix A ∈ Rn×n where

ai,j =

{
ω((i, j)) if (i, j) ∈ E
0 otherwise

.

Conversely, given a matrix A ∈ Rn×n, we will call the adjacency graph of A65

the graph whose A is the adjacency matrix.
For undirected graphs, when the adjacency graph of A has no self-loop, then

2m =
n∑
i=1

n∑
j=1

ai,j = eTAe. When the adjacency graph of A is unweighted, we

define the complementary of A (and we denote A) the matrix in Rn×n such
that

ai,j =

{
1 if {i, j} /∈ E
0 otherwise

, (1)

that is A = J−A.

Community Structures. Given a graph G = (V,E), a community structure is a
partitioning of the set of nodes V , that is a set of subsets of V : C = {Ct}t=1..k

such that
k⋃
t=1

Ct = V and ∀t 6= s, Ct ∩ Cs = ∅. This community structure can

be represented as an equivalence relation X on V × V such that

uX v ⇐⇒ ∃t ∈ {1, .., k} : u, v ∈ Ct.

It can also be represented as a matrix X ∈ Rn×n such that

xi,j =

{
1 if iX j
0 otherwise.
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A matrix X ∈ {0, 1}n×n represents an equivalence relation X (and hence a
community structure) if and only if:

∀i ∈ {1, .., .n}, xi,i = 1 (a)
∀i, j ∈ {1, ..., n}, xi,j = xj,i (b)
∀i, j, k ∈ {1, ..., n}, xi,k + xj,k − xi,j ≤ 1 (c)

where (a), (b), (c) indicate respectively the reflexivity, the symmetry and the
transitivity of the equivalence relation represented by X [13]. We will denote by
Eq(n) the set of the equivalence relations on a set V such that |V | = n. That is,70

we will write X ∈ Eq(n) when a matrix X ∈ {0, 1}n×n verifies (a), (b), (c), and
X ∈ Eq(n) for an equivalence relation defined on the set V . For any X ∈ Eq(n),
its complementary is defined by X = J−X.

Double Stochasticity. In the following, we specifically focus on networks that
have the property of being doubly-stochastic, that is such that their adjacency
matrices have their row and column sums equal to 1. Formally, a (directed)
network G = (V,E,Ω) is said to be doubly-stochastic if its adjacency matrix
S ∈ Rn×n+ is doubly-stochastic, that is{

Se = e

STe = e.
(2)

We remark that doubly-stochastic graphs are 1-regular graphs.
In this study, we will preprocess graphs so that they (or equivalently their ad-

jacency matrices) are doubly-stochastic. Transforming a matrix A ∈ Rn×n onto
a doubly-stochastic matrix is an operation called “scaling A onto its doubly-
stochastic form”. One achieves this by finding two vectors r, c ∈ R∗+

n such that{
D(r)AD(c)e = e

D(c)ATD(r)e = e.
(3)

The matrix S = D(r)AD(c) is called the doubly-stochastic scaling of A, and vec-75

tors r and c are called the scaling factors. The existence of a doubly-stochastic
scaling is non-straightforward and will be detailed in section 4.1.

3. Related Work

Doubly-stochastic scaling for community detection. In this study, we design a
preprocessing for community detection, based on a doubly-stochastic scaling80

of adjacency matrices. Doubly-stochastic scaling has already been used in the
context of community detection, and more globally of matrix partitioning. It
is the first stage of the two-stage algorithm used in [14] to partition migration
networks. However, the rationales for scaling in [14] (invariance of relative odds
and approximation of maximum entropy) differ from ours; authors even propose85

solutions to avoid the vanishing effect that we find desirable. Also, in [15], we
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proposed to scale a matrix onto its doubly-stochastic form as a preprocessing
step for a spectral algorithm, to get singular vectors whose piecewise constant
patterns highlight the matrix block structure. Furthermore, in [16], authors also
aim to partition a dataset by finding the doubly-stochastic matrix that best ap-90

proximates the dataset similarity matrix. Finally, in [17], authors propose to use
doubly-stochastic scaling to perform co-clustering, by exploiting the piecewise
constant shapes of the scaling factors that are expected to approximate the joint
densities between the random variables inferring the data, and random variables
inferring the partitions.95

We remark that all these studies use the doubly-stochastic scaling as a step
of a whole pipeline and for a very specific purpose: achieving uniform marginals
in the flow table [14], obtaining staircase-like singular vectors [15] or scaling
factors [17], or approximating a similarity matrix [16]. On the other hand, our
present method is a wider-purpose preprocessing that can be used prior to any100

community detection method.

Community detection measures. This paper investigates, generalises and unifies
a bunch of measures designed to assess the quality of a community structure
on a network. As stated in section 1, in a community structure, nodes within
a community are densely connected, while being loosely connected to nodes105

outside their community. Several measures have thus been proposed, that rely
on different ways to define “densely” and/or “loosely” connected. We propose
to roughly divide them onto two categories: those totally unsupervised, and
those partially supervised.

The totally unsupervised measures do not make any a priori assumption110

about the community structure, and are only based on the network structural
properties. They can be subdivided onto three families. Measures based on
density, such as Newman-Girvan modularity [6] or coverage [18], define a com-
munity as a group of nodes with a high density of edges. On the other hand,
measures based on sparsity also exist, that consider that the amount of edges115

between two communities must be low. Among others one can cite conductance,
expansion [19], or normalised cut [7]. Some measures are a mixture of density
and sparsity, such as LambdaCC [5] or Balanced modularity [13]. Given a dy-
namic process defined on the graph edges (e.g. a random walk), unsupervised
measures from the third kind consider that a community is a group of nodes120

from which the process will struggle to escape. These are for instance the Map
equation [8], Markov stability [20], or the community distance from [21].

Partially supervised measures are derived from some maximum likelihood,
and thus require a priori hypotheses, or ground truth knowledge, about the
network community structure. They are of two kinds: Stochastic Block Model125

(SBM) based, and node-embedding based. SBM-based measures assume that
a modular network is a realisation of some SBM, whose parameters are un-
known. Discovering these parameters elucidates the community structure in-
ferred by the SBM. This is done via likelihood maximisation [22]. Finally,
node-embedding-based methods aim to find a low-dimensional feature repre-130

sentation of vertices, consistent with the network community structure. They
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generally require to know the assignation to a community of a subset of nodes.
For instance node2vec [23] that aims to maximise the likelihood of preserving
node neighbourhoods, needs to know the label of some nodes to learn some
hyper-parameters, in order to get a definition of neighbourhood consistent with135

the network community structure. On the other hand, Graph Convolutional
Networks [24] aim to learn node embeddings that minimise the cross-entropy
error—that counts the number of falsely labelled nodes—over all nodes whose
label is known.

In this study, we focus on a range of unsupervised measures. Most of them140

were listed in [25], where it was shown that they can be used in the Louvain al-
gorithm instead of the Newman-Girvan modularity. This required the measures
to be defined for graphs whose edge weights are integers, and the measures have
thus been extended to such graphs when needed. Since generalisation was not
the purpose of [25], this was done straightforwardly and did not always fit the145

philosophy of the initial measures, as shown in section 5.

4. Doubly-Stochastic Scaling Preprocessing

In this section we describe and discuss the preprocessing we propose for
community detection, that relies on a doubly-stochastic scaling of the graph
adjacency matrix. Not every square matrix is amenable to a doubly-stochastic150

matrix. We thus first provide the conditions for such a scaling to exist, and
discuss the relations with graph connectivity. We will then present our prepro-
cessing, and discuss its impact on some community structures.

4.1. Doubly-Stochastic Scaling and Graph Connectivity

The Sinkhorn-Knopp Theorem. Given a square matrix A ∈ Rn×n+ , it is not155

always possible to find two vectors r, c ∈ Rn+ such that eq. (3) is verified. In
order for such a scaling to exist, the pattern of A—i.e. the positions of its
nonzero entries—must respect certain conditions, which are provided by the
so-called Sinkhorn-Knopp theorem [26]. In order to introduce this theorem, we
first provide two definitions about the pattern of a matrix on which it relies.160

These definitions can be found in [27].

Definition 1. Bi-Irreducibility A matrix A ∈ Rn×n is called bi-irreducible if
there is no pair of permutation matrices R,Q such that:

RAQ =

[
A1 A1,2

0 A2

]
with A1,A2 two square and non empty matrices.

This definition implies that A is not amenable to a block triangular matrix
by independent permutations of its rows and its columns.
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Definition 2. Total Support A matrix A ∈ Rn×n is said to have a total
support if every nonzero entry lies on a strictly positive diagonal. One charac-
terisation of this definition proposed in [27] is that there are two permutation
matrices R,Q such that:

RAQ =

A1

. . .

Ak


with A1, ...,Ak bi-irreducible matrices.165

We can now enunciate the Sinkhorn-Knopp theorem [26].

Theorem 1. Sinkhorn-Knopp Given a matrix A ∈ R+
n×n, a necessary and

sufficient condition that there exists a doubly-stochastic matrix S = D(r)AD(c)
with r, c ∈ R∗+

n, is that A has a total support. If S exists then it is unique.
Vectors r and c are also unique up to a scalar multiple if and only if A is170

bi-irreducible.

Relations with the Connectivity of the Adjacency Graph. We now introduce
the definition of irreducibility, that draws a link between the connectivity of a
network and the pattern of its adjacency matrix.

Definition 3. Irreducibility: A matrix A ∈ Rn×n is called irreducible if there
is no permutation matrix Q such that:

QAQT =

[
A1 A1,2

0 A2

]
with A1,A2 square and non empty. A characterisation of irreducible matrices175

from [28] is that they are the adjacency matrices of strongly connected graph.

Every bi-irreducible matrix is also irreducible. Reciprocally, if a matrix
is irreducible with a zero-free main diagonal—ai,i 6= 0,∀i ∈ {1, ..., n}—, then
this matrix is bi-irreducible (easily proved by applying the algorithm from [29]
to such a matrix). Since definition 3 states that irreducible matrices are adja-180

cency matrices of strongly connected graphs, then the adjacency matrix of every
strongly connected graph can be made bi-irreducible (thus scalable) by ensuring
that its diagonal is strictly positive (e.g. by adding a positive diagonal matrix
to the adjacency matrix, which is equivalent to adding self-loop to the graph).

Remark 1. For an undirected graph, adding a diagonal matrix to its adjacency185

matrix is sufficient to make it scalable onto a doubly-stochastic graph, whatever
its connectivity. Indeed, every symmetric matrix with a zero-free main diagonal
has a total support (Lemma 3.3 from [30]).

For a directed graph, each strongly connected component must be scaled and
partitioned apart1. These components can be found by applying the Dulmage-190

1This means that nodes from different strongly connected components cannot end within
a same community.
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Algorithm 1: Preprocessing Undirected Graphs

Data: A symmetric matrix A ∈ Rn×n+ .
Result: A doubly-stochastic matrix S ∈ Rn×n+ .

1 ε← 10−8 × min
i,j:ai,j 6=0

(ai,j);

2 S = symscalone(A + εI);

Algorithm 2: Preprocessing Directed Graphs

Data: A non-symmetric matrix A ∈ Rn×n+ .

Result: A doubly-stochastic matrix S ∈ Rp×p+ , with p ≤ n.
1 B←largest block returned by dmperm(A + I);
2 ε← 10−8 × min

i,j:bi,j 6=0
(bi,j);

3 S = RAS(B + εI);

Mendelsohn decomposition on the graph adjacency matrix whose diagonal has
been made zero-free [29].

4.2. The Preprocessing

We propose to apply a doubly-stochastic scaling on networks as a prepro-
cessing for community detection. As discussed in section 4.1, some requirements195

have to be fulfilled to ensure that the network can be scaled, which depend on
whether the graph is directed. The steps to follow to scale a matrix A ∈ Rn×n+

are described in algo. 1 if A is the adjacency matrix of an undirected graph,
respectively in algo. 2 if the adjacency graph of A is directed.

In algo. 1, symscalone is the method from [31] that can compute a doubly-200

stochastic scaling of a general square matrix with total support. It is partic-
ularly well designed for symmetric matrices, in particular, as it preserves the
matrix symmetry. In algo. 2, dmperm is the Dulmage-Mendelsohn decompo-
sition, evoked in remark 1. When applied to A + I, it returns the strongly
connected components of the adjacency graph of A. The largest component205

is then scaled using the so-called RAS or Sinkhorn-Knopp Algorithm [26, 30].
For both directed and undirected networks, the adjacency graph of the doubly-
stochastic matrix S returned by the algorithm is the one on which communities
will be further detected. We remark that for directed network, it means that
only the largest strongly connected component will be partitioned. However,210

this is straightforward to extend to the whole graph, by scaling and partitioning
each component in turn.

For both algorithms, it is necessary to add entries in the diagonal of the
matrix to scale, to ensure that conditions from theorem 1 are verified. We
remark that the addition of diagonal elements leaves the community structure215

intact, as the community structure of a graph is linked to the diagonal block
structure of its adjacency matrix, which is not impacted by its diagonal entries.
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In our methods, we choose to add very small entries (10−8 times the matrix
minimum entry) to impact as little as possible the numerical values in the final
scaling. This is an empirical choice which is not theoretically justified, and220

it would be interesting to analyse how these diagonal entries impact the final
scaling. We leave this analysis to further work.

4.3. Impact of our Preprocessing

Rationales on Toy Examples. Our intuition that the doubly-stochastic scaling
may improve community detection comes from the two toy examples in fig. 1,225

that we used in section 1 to illustrate the difficulty of detecting some community
structures.

Firstly, doubly-stochastic scaling leverages the weight of the edges in small
and large communities. One may think at a trivial example, where a simple
graph is composed of two disjoint communities of different size n1 > n2, such230

that the probability for two nodes in a same community to be linked is equal
to pin, for both communities. Then, in average, a node in the large community
shares more links with nodes from its community than a node in the small
community (pin × n1 > pin × n2). This is not true anymore if we look at the
doubly-stochastic scaling of the adjacency matrix. In this case, every node in235

both communities shares strictly the same amount of edges with nodes from its
community, that is 1 by definition of the doubly-stochastic scaling.

Secondly, the doubly-stochastic scaling can rationally be expected to miti-
gate against an existing imbalance in the direction of edges, because of its so-
called vanishing effect. To understand it, we explain the behaviour of doubly-240

stochastic scaling on A =

[
1 1
0 1

]
. This matrix has no total support. Thus,

according to theorem 1, it is not amenable to a doubly-stochastic form. Nev-
ertheless, doubly-stochastic scaling algorithms provide scaling factors r and c
that tend towards (0,+∞)T and (+∞, 0)T respectively, such that the doubly-

stochastic scaling of A tends towards S =

[
1 0
0 1

]
, in which the off-diagonal245

element had vanished [30, 26].
As a matter of fact, our preprocessing indeed improves the detectability of

community structures of the toy examples from fig. 1: Louvain algorithm applied
directly on the graphs fails to detect their structures; on the other hand, when
applied on the preprocessed graphs, it returns their groundtruth community250

structures, as shown in the right panels of fig. 1.

Food Web of Florida Bay. Here we observe the impact of our preprocessing on
the network of trophic dynamics within Florida Bay. In this directed network,
a node is a compartment and an edge indicates carbon exchanges—roughly, an
edge from node a to node b means that species in compartment a are eaten255

by species in compartment b. The network contains 128 compartments, that
can be divided onto 9 types according to [32], namely Phytoplankton pro-
ducers, Seagrass and seagrass roots, Microfauna, Macroinvertebrates, Fishes,
Birds, Reptiles, Mammals, and Detritus. This type partitioning corresponds
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to the network underlying community structure, according to [33]. The largest260

strongly connected component contains 103 compartments: 11 are Microfauna,
22 Macroinvertebrates, 47 Fishes, 16 Birds, 3 Reptiles, 2 Mammals, and 2 are
Detritus.

Figure 2: Output of algo. 2 on the Florida Bay network and the groundtruth partitioning.

The matrix S ∈ Rp×p+ returned by algo. 2 is illustrated in fig. 2. The
groundtruth community structure is indicated by the black lines. Because nu-265

merical values range from 1 to 10−82, only entries higher than 10−12 are plotted.
Nonzero entries below this threshold are shown by black ‘+’s. From fig. 2 we
observe that the preprocessing clearly tends to make vanish the edges between
communities. This is highlighted by the high density of black ‘+’s in the off-
diagonal blocks, meaning that numerous entries in S off-diagonal blocks have a270

value that falls below 10−12.
To assess the extent to which the preprocessing indeed sharpens the network

community structure, we compare the consistency of these communities on both
the raw and the scaled networks, by computing the average strength of node’s
community membership, for each community. Assuming a matrix M ∈ Rp×p+275

and C its groundtruth community structure. The level to which a node u ∈

{1, ..., p} belongs to a community C ∈ C is assessed2 by ϕ(u,C) =

∑
i∈C

m(u, i)

p∑
j=1

m(u, j)

,

2ϕ is actually the opposite of the so-called mixing parameter introduced in section 6.2.
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Figure 3: Φ values for the raw network (left) and the scaled network without self-loop (right).

that is the ratio between the amount of edges that node u shares with nodes in
C and the degree of u. Thus, the average level to which nodes from community

C ∈ C belong to community K ∈ C is Φ(C,K) =
1

|C|
∑
u∈C

ϕ(u,K). The higher280

the reflexive values of Φ, the more consistent the community structure.
We have computed the values of Φ for two matrices that are symmetrisations

of the raw and preprocessed directed networks, namely B + BT , where B is the
adjacency matrix of the raw network largest strongly connected component; and
S̃ + S̃T , where S̃ is the matrix S with a zero main diagonal. We remove the285

diagonal because most of S diagonal entries are scaled close to 1 (whereas they
were initially very small). Thus, keeping the diagonal provides spuriously high
values for Φ(C,C),∀C ∈ C, whatever the community structure C.

These values of Φ are displayed in fig. 3. The three last communities that
contain no more than 3 nodes are missed by both the raw and the preprocessed290

matrices. And looking at the structure of these communities restricted to the
analysed component in fig. 2, it is indeed not possible to consider them as stan-
dalone communities, without having been told so. The community correspond-
ing to the Birds tends to be merged with Fishes by both raw and preprocessed
networks. This is also in line with what can be observed from fig. 2. Finally, the295

three non trivial communities corresponding to Microfauna, Macroinvertebrates
and Fishes, are assessed as fairly consistent by the preprocessed network (lowest
reflexive value of Φ is 0.58, highest non reflexive value is 0.26). On the other
hand, in the raw component, Microfauna and Macroinvertebrates are missed and
merged with Fishes. We also remark that the preprocessing has more impact300

on the consistency of smaller communities—reflexive Φ values are 3.74 times
higher in the preprocessed network than in the raw one for Microfauna and
Macroinvertebrates, 1.73 for Fishes. These observations illustrate the poten-
tial of our preprocessing to increase the detectability of community structures
within networks with an imbalance in edge direction between communities, as305

well as small-scale communities.
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5. Generalisation of some Graph Partitioning Measures to Weighted
Networks

In this section, we investigate six measures—or criteria—that assess the
quality of a community structure on a graph, namely: the Newman-Girvan310

modularity [6], Balanced modularity [13], the Deviation to Uniformity crite-
rion [34, Chap.5.2.6], the Deviation to Indetermination criterion [13], the Zahn
criterion [35] and the Correlation Clustering criterion [36].

This list of graph partitioning measures is not exhaustive. These measures
are actually the linear criteria from [34]. Formally, denoting by F a criterion
that assesses the quality of a community structure on a graph represented by
its adjacency matrix, F is a linear criterion [25] if it can be written as:

F : Rn×n × Eq(n) −→ R

(A,X) 7→
n∑
i=1

n∑
j=1

ϕ(ai,j)xi,j +K , (4)

where A and X are respectively a graph adjacency matrix and a community
structure, ϕ : R→ R is a function and K is some constant scalar.315

For each criterion, we address three points:

• First we explain quickly the measure background, that is how it works
and why it assesses community structures, as well as its formulation.

• Most of these measures were initially designed for unweighted networks,
and some have been generalised to weighted graphs afterward. When320

such a generalisation exists, we may either use it or derive another one
that we find more suitable for the community structure detection on
doubly-stochastic graphs. We hence discuss the measure generalisation
to weighted graphs and especially to doubly-stochastic ones.

• We provide a reduced form for the problem of finding the best commu-
nity structure on a graph represented by its adjacency matrix A using a
criterion F . Namely, we express the measure as

X∗ = argmax
X∈Eq(n)

(
F (A,X) =

∑
i,j

(
φ(ai,j)− φ(ai,j)

)
xi,j

)
, (5)

where φ and φ are two functions in R+ respectively called the positive and325

negative agreements, as in [34]. This reduced form allows us to compare
the criteria in section 6.

5.1. Newman-Girvan modularity

Principle. The Newman-Girvan modularity introduced in [6] is the most famous
graph partitioning measure. The idea behind this criterion is that a community330

structure in a network actually characterises the property of assortative mixing
in this network [37]. The assortative mixing is the tendancy of similar nodes
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to draw connection amongst themselves instead than with dissimilar nodes: as
an example, in a social network, people who speak the same language or have
similar sociological background have more chance to be friends. Hence, given an335

assortative network, a good community structure is one such that the fraction
of edges that connect nodes in a same community is high.

However, this notion cannot be used as a standalone. Indeed, the trivial
structure that brings all the nodes in a same community always maximises this
fraction of edges. Thus, to derive the modularity, Newman and Girvan also
assume that random graphs do not exhibit a community structure [6]. The
modularity is hence designed to compare the fraction of intra-community edges
in a network with the expected fraction of intra-community edges in random
graphs, with the same degree sequence than the initial graph, that is, random
graphs generated using the configuration model. In the configuration model of
degree sequence {d1, ..., dn}, the probability of an edge between two nodes i and
j is approximated by didj/2m. The modularity is thus defined as:

FNG(A, C) =
∑
C∈C

∑
i∈C

∑
j∈C

(
ai,j
2m
− didj/2m

2m

)
,

with A the adjacency matrix of the network, and C a community structure. In
turn, this can be re-written (as in [38]):

FNG(A,X) =
1

2m

∑
i,j

(ai,j −
didj
2m

)xi,j , (6)

with X ∈ Eq(n) the matrix representation of community structure C.

Generalisation. The modularity measure from [6] was initially designed for un-
weighted graphs only. Later in [38], Newman proposed two steps to generalise340

modularity to weighted graphs. First, he investigates multi-graphs, that are
simple networks in which two vertices can share more than one simple edge, as
in fig. 4. Newman generalises some basics from simple networks to multi-graphs
to derive an adapted modularity. Namely, let A ∈ Nn×n be a multi-graph ad-
jacency matrix: 1) The degree di of a vertex i in the multi-graph is the number345

of simple edges adjacent to i: di =
∑
k

ai,k. 2) The constant 2m becomes the

1

3

2

4

2

1

3

1

≡ 1

3

2

4

Figure 4: A weighted graph with non-negative integer edges and the corresponding mutligraph.

14



sum over the degrees, that is 2m =
∑
i

di. With these simple adaptations of de-

grees and edge number, Newman generalises the modularity by simply applying
eq. (6) to multi-graphs, with ai,j , di and 2m as defined above.

Secondly, modularity is extended from multi-graphs to non-negative weighted350

graphs with the following idea: Given a graph whose adjacency matrix can be
written as A = αN, with α ∈ R+ and N ∈ Nn×n, and considering di =

∑
k

ai,k

and 2m =
∑
i

di, then for any X ∈ Eq(n), the results of the formula from eq. (6)

applied to A and to N are equal. Hence, the modularity as defined in eq. (6) can
be extended to graphs for which we can find a unit flow—i.e. an α—allowing355

to consider them as multi-graphs.
We showed in [39, Property 1] that for every square matrix whose entries

are rational, a unit flow can be found, but that this is not true for any weighted
matrix. However, we also provide [39, Property 2] a proof that eq. (6) can
be extended more generally for any undirected weighted graph with positive360

weights3. We will thus directly apply eq. (6) to doubly-stochastic matrices in
the following.

Reduced Form. Given an adjacency matrix A, finding the best community
structure in the sense of the Newman-Girvan modularity provided in eq. (6)
is equivalent to maximising the function

X 7→ FNG(A,X) =
∑
i,j

(ai,j −
didj
2m

)xi,j . (7)

This provides the reduced form of eq. (5), with positive and negative agreements
equal to respectively φ(ai,j) = ai,j and φ(ai,j) = didj/2m.

Moreover, for a doubly-stochastic graph, we have ∀i, di = 1 and 2m = n.
Thus, for a doubly-stochastic matrix S, we can simplify the Newman-Girvan
modularity as

X 7→ FNG(S,X) =
∑
i,j

(si,j −
1

n
)xi,j , (8)

and the negative agreement φ(si,j) = 1/n does not depends on i, j.365

5.2. Balanced Modularity

Principle. This criterion has been proposed in [13] to complete the Newman-
Girvan modularity. Recall from section 5.1 that, given a simple graph G =
(V,E) and a community structure, the Newman-Girvan modularity compares
the ratio of edges within communities—i.e. intra-community edges—with the370

expected ratio of intra-community edges within a random graph that has the
same degree sequence than G. Then, the idea behind the Balanced modularity is

3Since Newman proposed this extension of modularity to weighted graphs in [38], this
measure has been widely applied to any positively valued graph. However, as far as we know,
[39] is the first proof that eq. (6) can be consistently applied to such general graphs.
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to also take into account the ratio of inter-community edges. In other words, the
Newman-Girvan modularity considers that a good community structure on G
should have a ratio of intra-community edges “higher than by chance”, whereas375

the Balanced modularity considers that a good community structure should
have a ratio of inter-community edges lower than by chance as well.

To take into account the ratio of inter-community edges, the Balanced modu-
larity focuses on the complementaries of the graph and the community structure.
We can state its concept as follows:380

Let us denote by Φ : Rn×n × Rn×n → R the function such that:

Φ(A,B) =
∑
i,j

ai,j −
(

n∑
k=1

ai,k

)(
n∑
l=1

aj,l

)
n∑
k=1

n∑
l=1

ak,l

 bi,j ,

which is equivalent to the Newman-Girvan modularity from eq. (7) when A is
an adjacency matrix and B ∈ Eq(n). Thus, given A the adjacency matrix of a
simple graph and X a community structure, the Balanced modularity is defined
as:

FBM (A,X) = Φ(A,X) + Φ(A,X). (9)

A simple explicit formula can be derived from eq. (9) by expressing the degrees
and number of edges in the complementary of graph, using those of the graph.
As it can be indeed observed from fig. 5, we have

∀i ∈ {1, ..., n}, di =
n∑
k=1

ai,k = n− di
n∑
k=1

dk = n2 −
n∑
k=1

di = n2 − 2m

Hence, we can write

FBM (A,X) =
∑
i,j

(
ai,j −

didj
2m

)
xi,j

+
∑
i,j

(
ai,j −

(n− di)(n− dj)
n2 − 2m

)
xi,j ,

(10)

which is the formula of the Balanced modularity provided in [13].

Generalisation. The Balanced modularity is built on the complementary of the
graph, which stands for simple graphs only. However, a generalisation of this
criterion to weighted graphs has already been proposed in [25]. It consists
in stating that ai,j = max

k,l
(ak,l) − ai,j = amax − ai,j in eq. (10). But this385

generalisation does not fit with the spirit of this criterion as stated in eq. (9),
because it does not update di and

∑
k

dk according to the new definition of

A = amaxJ −A in the second sum in eq. (10). That is, it does not inject the
weighted generalisation of A in eq. (9).
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a

b c

d e

⇐⇒

a b c d e


a 0 1 1 0 0 da = 2
b 1 0 1 1 0 db = 3
c 1 1 0 0 0 dc = 2
d 0 1 0 0 1 dd = 2
e 0 0 0 1 0 de = 1

=⇒
∑
k

dk = 10

a

d e

c b

⇐⇒

a b c d e


a 1 0 0 1 1 da = 3

b 0 1 0 0 1 db = 2

c 0 0 1 1 1 dc = 3

d 1 0 1 1 0 dd = 3

e 1 1 1 0 1 de = 4

=⇒
∑
k

dk = 15 = 25− 10

Figure 5: Top: A simple graph and its adjacency matrix. Bottom: the corresponding com-
plementary graph and its adjacency matrix. Degree of each node is given next to the corre-
sponding row, the sum of degrees lies below the matrices.

Hence, we propose another generalisation. Let us consider that, for a weighted
graph defined by its adjacency matrix A, the complementary of A can be ex-
pressed as A = α×J−A, with α a scalar (that may depends on A). Thus, the
degrees of nodes in the complementary graph are:

∀i ∈ {1, ..., n}, di =
n∑
k=1

ai,k = α× n− di
n∑
k=1

dk = α× n2 −
n∑
k=1

di = α× n2 − 2m,

and by injecting A in eq. (9), the Balanced modularity becomes:

FBM (A,X) =
∑
i,j

(
ai,j −

didj
2m

)
xi,j

+
∑
i,j

(
(α− ai,j)−

(α× n− di)(α× n− dj)
α× n2 − 2m

)
xi,j .

(11)

It remains to discuss the value of α. First, we remark that, for A the390

adjacency matrix of any simple graph, the graph associated with A + A is the
complete graph with self-loop: it is not possible to add any edge in this graph,
that is, all edges are saturated. In a general case, given A ∈ Rn×n+ the adjacency
matrix of some positively weighted graph, without any other knowledge on the
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graph, we can assume that an edge is saturated if its value is amax, with amax as395

defined above. In this case, we have A = amaxJ−A as in [25]. This generalised
Balanced modularity is provided by setting α = amax in eq. (11), which is
slightly different than changing ai,j for amax − ai,j in eq (10), as proposed
in [25].

For doubly-stochastic graphs, we have an upper-bound for the weight of an400

edge, which is 1. Indeed, as a doubly-stochastic graph is a 1-regular, positively
weighted graph, no edge can have a weight above 1. Hence, 1 is the value
that saturates an edge, and we can state α = 1 in eq. (11) if the matrix is
doubly-stochastic.

Reduced Form. We derive the reduced form for the formula given in eq. (11),
as this formula can be used for weighted and simple graphs as well (by setting
α = 1, it becomes equal to eq. (10) when A represents a simple graph). Recalling
that X = J−X—or equivalently, ∀i, j, xi,j = 1− xi,j—, maximising eq. (11) is
equivalent to maximising:

FBM (A,X) =∑
i,j

(
ai,j +

(αn− di)(αn− dj)
2αn2 − 4m

− α2m+ didj
4m

)
xi,j

, (12)

and the positive and negative agreements for the Balanced modularity in the405

general case can be stated as respectively φ(ai,j) = ai,j +
(αn− di)(αn− dj)

2αn2 − 4m

and φ(ai,j) =
α2m+ didj

4m
.

However, for a doubly-stochastic matrix S, a certain number of simplifica-
tions can be done that allow to reduce the formula of eq. (12): with α = 1, by
remarking that ∀i, di = 1 and 2m = n:

FBM (S,X) =
∑
i,j

(
si,j +

(n− di)(n− dj)
2n2 − 4m

− 2m+ didj
4m

)
xi,j

=
∑
i,j

(
si,j +

(n− 1)2

2n2 − 2n
− n+ 1

2n

)
xi,j

=
∑
i,j

(
si,j +

n− 1

2n
− n+ 1

2n

)
xi,j

=
∑
i,j

(
si,j −

1

n

)
xi,j ,

which allows us to simplify the positive and negative agreements as φ(si,j) = si,j

and φ(si,j) =
1

n
, with the latter one that does not depends on i, j.

5.3. Deviation to Uniformity410

Principle. This criterion, proposed in [34, Chap.2.5.6], is based on a principle
very similar to Newman-Girvan’s one. The main conceptual difference between
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these two criteria is that, given a graph and a community structure, the Devia-
tion to Uniformity criterion compares the ratio of intra-community edges within
the graph with the expected ratio of intra-community edges within δ-regular ran-415

dom graphs, by stating δ as the average degree in the initial graph—whereas
the random model in Newman-Girvan modularity has the same degree sequence
than the initial graph.

Such a random model corresponds to graphs where edges are uniformly dis-
tributed among nodes, and thus the probability that there is an edge between

two nodes i and j is equal to

∑
k

dk

n2
, where dks are the degrees of the nodes in

the initial graph. Hence, given A ∈ Rn×n+ the adjacency matrix of some posi-
tively weighted graph, and X ∈ Eq(n) a community structure, the Deviation to
Uniformity can be written as:

FDU (A,X) =
∑
i,j

ai,j −
∑
k

dk

n2

xi,j (13)

This criterion has been defined for weighted graphs such that those that fall
into the scope of this study, so we do not discuss its generalisation.420

Reduced Form. The reduced form

FDU (A,X) =
∑
i,j

(
φ(ai,j)− φ(ai,j)

)
xi,j

is directly derived from eq. (13) by stating the positive and negative agreements

as respectively φ(ai,j) = ai,j and φ(ai,j) =

∑
k

dk

n2
.

Furthermore, for a doubly-stochastic matrix S, we have
∑
k

dk = n and we

can simplify the criterion from eq. (13) as:

FDU (S,X) =
∑
i,j

(
si,j −

1

n

)
xi,j , (14)

in which case, the negative agreement becomes φ(si,j) =
1

n
.

5.4. Deviation to Indetermination

Principle. This criterion, introduced in [13], is based on the principle of inde-
termination between two categorical variables, that we briefly explain below.
Given a set S of M objects, and P,Q two categorical variables on S. Roughly, a
categorical variable indicates the category taken by an object of the set. For in-
stance, the objects can be human beings, and the categories are mother tongues,
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or first names, as far as we can consider that each human being has only one
mother tongue and only one first name. Formally, we can state:

P : S → {p1, ..., pπ}
u 7→ P (u)

and
Q : S → {q1, ..., qσ}

u 7→ Q(u)

where {p1, ..., pπ} are the categories of variable P—e.g., languages if P (u) is
the mother tongue of individual u—, respectively {q1, ..., qσ} the categories of
variable Q. We remark that, as a unique category is attributed to each object by
a variable, P and Q also represent equivalence relations—e.g., two individuals
named Morgan are in relation according to Q if the variable Q represents first
names. We remark that P and Q can be represented by two matrices P ∈
{0, 1}M×π, respectively Q ∈ {0, 1}M×σ, such that:

P(u, i) =

{
1 if P (u) = pi

0 otherwise
, Q(u, i) =

{
1 if Q(u) = qi

0 otherwise
,

which allows us to write the equivalence relations defined by the variables P
and Q as C(p) = PPT ∈ Eq(M), respectively C(q) = QQT ∈ Eq(M). We can
also derive their contingency table N = PTQ, with

ni,j = |{u ∈ S : P (u) = pi and Q(u) = qj}|

the number of objects with both category pi from P and category qj from Q.425

Given these matrix notations, we explain below the indetermination between
categorical variables. Considering two categorical variables as two equivalence
relations—or partitionings—, an interesting problem is to measure their asso-
ciation [40], which is done by comparing the agreements and disagreements
between the two variables—these notions are illustrated in table 2.

P \Q Q(u) = Q(v) Q(u) 6= Q(v)
P (u) = P (v) agreement disagreement
P (u) 6= P (v) disagreement agreement

Table 2: All possible agreement/disagreement relations between two objects u and v according
to two categorical variables P and Q.

430

Indetermination is a special case of association: strictly speaking, one says
two variables are indetermined if their number of agreements is equal to the
their number of disagreements, that is:∑

u,v∈S

(
c(p)u,v × c(q)u,v + c

(p)
u,v × c(q)u,v

)
=
∑
u,v∈S

(
c(p)u,v × c

(q)
u,v + c

(p)
u,v × c(q)u,v

)
The notion of indetermination can be generalised to allow one to weight positive
and negative cases differently: it might worth to give more weight to objects
that are related than to those that are not [41]. Recall that π (respectively
σ) is the number of categories for variable P (respectively Q), an interesting
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generalisation of indetermination is to weight positive cases with π − 1 and
negative cases with 1 in P , respectively σ − 1 for positive and 1 for negative
cases in Q. This provides the following equality for indetermination:

(π − 1)(σ − 1)
∑

u,v∈S
c
(p)
u,v × c(q)u,v +

∑
u,v∈S

c
(p)
u,v × c(q)u,v =

(π − 1)
∑

u,v∈S
c
(p)
u,v × c(q)u,v + (σ − 1)

∑
u,v∈S

c
(p)
u,v × c(q)u,v

(15)

This choice of weights is special because two categorical variables that verify
eq. (15) verify also other properties, e.g. they make vanish the so-called Jansen-
Vegelius criterion, one of the most famous association criteria. Besides, eq. (15)
is strongly related to another special case of association, called the geometri-
cal independence—see [41] for comparisons and discussions about the different435

notions of independence and indetermination. From here, we use the term in-
determination to speak about the generalised indetermination weighted as in
eq. (15).

It has be shown in [41] that eq. (15) can be rewritten using the contingency
table N as

∀i, j : ni,j −


∑
t
ni,t

σ
+

∑
s
ns,j

π
− M

π × σ

 = 0.

Thus, for any contingency table N ∈ Np×q, the deviation to indetermination is
measured by ∑

i,j

ni,j −
∑
t
ni,t

q
−

∑
s
ns,j

p
+

∑
t,s
nt,s

p× q

 . (16)

The Deviation to Indetermination criterion is based on eq. (16), and can be
understood as follows: Let N ∈ Np×p be a contingency table built on two vari-
ables with the same categories P,Q ∈ {0, 1}M×p, thus, an equivalence relation
X ∈ Eq(p) that maximises

∑
i,j

ni,j −
∑
t
ni,t

p
−

∑
s
ns,j

p
+

∑
t,s
nt,s

p2

xi,j (17)

groups together categories such that P and Q are highly determined (or far
from the indetermination) when restricted to categories from a same group.440

The parallel with community structures is done by remarking that a simple
or multi-graph can be seen as the contingency table of two categorical variables,
whose categories are nodes and which are defined on a set S consisting in the
end nodes of edges. An example is provided in fig. 6. In this figure, the edges of
a multi-graph have been named e1, ..., e5, and we define two categorical variables445

on their end nodes: each edge can be written e = (u, v), where u and v are the
end nodes of e, with u the source node (e(s)) and v the target node (e(t)). As
the direction of an edge is immaterial in a undirected graph, the two categorical
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a

b

c

d

e1 e2

e3
e4

e5

⇐⇒ N =


a b c d

a 0 1 0 0
b 1 0 1 2
c 0 1 0 1
d 0 2 1 0



P =



a b c d

e1(s) 1 0 0 0
e1(t) 0 1 0 0
e2(s) 0 1 0 0
e2(t) 0 0 1 0
e3(s) 0 1 0 0
e3(t) 0 0 0 1
e4(s) 0 1 0 0
e4(t) 0 0 0 1
e5(s) 0 0 1 0
e5(t) 0 0 0 1


and Q =



a b c d

e1(s) 0 1 0 0
e1(t) 1 0 0 0
e2(s) 0 0 1 0
e2(t) 0 1 0 0
e3(s) 0 0 0 1
e3(t) 0 1 0 0
e4(s) 0 0 0 1
e4(t) 0 1 0 0
e5(s) 0 0 0 1
e5(t) 0 0 1 0


Figure 6: A multi-graph is the contingency table of two categorical variables defined on the
end nodes of edges.

variables are created by swapping the role of end nodes—e.g. in fig. 6, P sees
e1 as (a, b), whereas Q states e1 = (b, a).450

Thus, considering A ∈ Nn×n the adjacency matrix of some multi-graph as
the contingency table of two such variables, one can look for the community
structure that groups together the nodes such that these two categorical vari-
ables are highly determined on these nodes. Roughly, given such a group of
nodes, it means most of the edges have either both or none of their end nodes in
this group. By adapting eq. (17) to the specific case of multi-graphs, we remark
that finding such a community structure is equivalent to finding X ∈ Eq(n)
that maximises:

FDI(A,X) =
∑
i,j

ai,j − di
n
− dj
n

+

∑
k

dk

n2

xi,j . (18)

Generalisation. This criterion is naturally defined on mutli-graphs, since we
can write them as contingency tables. Using the same trick than for Newman-
Girvan modularity, this criterion can be extended to undirected graphs with
positive weights, that is, to symmetric matrices in Rn×n+ by applying eq. (18)
by stating that ∀i ∈ {1, ..., n}, di =

∑
k

ai,k.455

Reduced Form. To get the reduced form of the Deviation to Indetermination
criterion, the formula of eq. (18) can be rewritten as in eq.(5) by choosing the
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R ∈ V × V :

X ∈ V × V :

a b c d e
e
d

c
b

a

a b c d e
e
d

c
b

a

R = (R∩ X ) ∪ (R∩ X )

X = (X ∩R) ∪ (X ∩R)

b
a

c
d e

Figure 7: Top: The Zahn ’s distance defined between two relations is based on the set rep-
resentation of these relations. Bottom: A symmetric relation can be seen as a simple graph.
An equivalence relation corresponds to a community structure.

positive and negative agreements as respectively

φ(ai,j) = ai,j +

∑
k

dk

n2
and φ(ai,j) =

di + dj
n

.

Besides, for a doubly-stochastic matrix S, simplifications can be done. In-
deed, by remarking that, in this case, ∀i, di = 1 and

∑
k dk = n, we can rewrite

eq. (18) as:

FDI(S,X) =
∑
i,j

(
si,j −

1

n

)
xi,j , (19)

and the positive and negative agreements become respectively φ(si,j) = si,j and
φ(si,j) = 1/n, the latter not depending on i, j.

5.5. Zahn Criterion

Principle. Strictly speaking, the Zahn criterion does not assess the consistency
of a community structure on a given network. However, it can be straightfor-460

wardly extended to such a purpose, as we will see.
The Zahn criterion has been designed to compare two relations over a set

of objects [35]. More precisely, given a finite set V and a symmetric relation
R over this set (that is ∀(u, v) ∈ V × V , R verifies uRv ⇐⇒ vRu), Zahn
aims to find the equivalence relation X which is the closest to R. To this aim,465

Zahn designs a distance between two relations by considering both relations
as subsets of the cardinal set V × V , and counting the number of pairs that
belong to only one subset. An example is provided in the top panel of fig. 7,
where the symmetric relation R and the equivalence relation X are defined on
a set V = {a, b, c, d, e}. They are represented as subsets of V × V by grids,470

where a coloured case means that the two corresponding objects are related.
For instance, by looking at the row of object a in the grids, we see that aRb
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and aRc for R, and aXa, aX b, and aX c for relation X . This can be rewritten
(a, b), (a, c) ∈ R and (a, a), (a, b), (a, c) ∈ X . In both grids, the dark coloured
cells correspond to pairs of objects that belong to both relations and the light475

ones are pairs that lie in only one subset.
With this matching between the relations defined on a set V and the subsets

of V × V , we can write the distance defined by Zahn:

dZ(R,X ) = |X ∩ R|+ |R ∩ X |, (20)

with R a symmetric relation, and X an equivalence relation.
In [34], it is proposed to use this criterion to assess community structures

on simple graphs, by remarking that a simple graph can be characterised by a
symmetric relation over the finite set of its nodes, and a community structure on
this graph is an equivalence relation over the graph nodes as well. The bottom
panel of fig. 7 illustrates the relations R and X as respectively a graph and a
community structure. Zahn’s distance is also rewritten in [34] to get a matrix-
oriented formulation of this criterion: by denoting A the adjacency matrix of
the simple graph associated with the symmetric relation R, respectively X the
matrix representation of the equivalence relation X , we remark:

R∩ X = {(i, j) ∈ V × V : ai,j(1− xi,j) 6= 0}
X ∩R = {(i, j) ∈ V × V : xi,j(1− ai,j) 6= 0}

Hence we can rewrite the Zahn’s distance with the formula

dZ(A,X) =
1

2

∑
i,j

(ai,jxi,j + xi,jai,j). (21)

When used for community detection, the Zahn criterion is often stated as
equivalent to the so-called Condorcet criterion [34]. However, in [39, Chap.1.1.3],
we found that the Condorcet criterion cannot be extended to the problem of480

finding the best community structure given a graph.
Finally, we observe that the criterion of eq. (21) defines a distance in the

formal mathematical sense (i.e., it is positive, symmetric, separable and verifies
the triangle inequality). We note that this does not hold anymore for any
generalisation we present below.485

Generalisation. As we have seen, Zahn’s distance, which is originally designed
for comparing relations over a finite set, is straightforward to extend to simple
graphs and their community structures. On the other hand, its generalisation
to weighted graphs is not as straightforward since there is no trivial matching
between a weighted graph and a symmetric relation.490

However, a generalisation of Zahn’s criterion to weighted graphs has already
been proposed in [25]. It is directly derived from eq. (21) by defining the comple-
mentary of the real-valued matrix A as A = amaxJ−A, with amax = max

i,j
(ai,j).

This leads to the criteria

dωZ,1(A,X) =
1

2

∑
i,j

(
ai,j(1− xi,j) + xi,j(amax − ai,j)

)
. (22)
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Nevertheless, we propose other generalisations, as this one does not always
seem suitable. Indeed, our initial rationale for generalising criteria to weighted
graphs is to enable the application of these criteria on doubly-stochastic scal-
ings of graphs. Assume our initial graph is a simple graph, associated with a
symmetric relation R over the set of nodes, and let us call A the adjacency495

matrix of the doubly-stochastic scaling of this graph, and X some community
structure. Then, given Zahn’s criterion as defined in eq. (22):

• There is an imbalance between the impact on the criterion of pairs in
R ∩ X and in X ∩R: a pair in R ∩ X always results in a penalisation of
the criterion equal to amax, whereas a pair inR∩X results in a penalisation500

equal to ai,j ≤ amax. Hence, each pair in R ∩ X penalises the criterion
equally to the highest penalisation that can be reached by a pair in R∩X .

• Except for pairs (i, j) such that ai,j = amax, every pair that lies in X ∩R
penalises the criterion.

We believe that these two bullet points are non desirable aspects of the
previous generalisation of Zahn criterion. For this reason, we propose other
generalisations. As authors of [25], we choose generalisations that simply re-
define the complementary of A in eq. (21). That is, we define the generalised
criterion as

dωZ(A,X) =
∑
i,j

(ai,j(1− xi,j) + xi,j(α− ai,j)) , (23)

with α some constant to set up. We have found that choosing α as the mean505

element of the matrix A, that is, α = amean, was a good trade-off to mitigate
against the two drawbacks listed above, indeed:

• Each element in R∩ X penalises the criterion with the value amean.

• An element in X∩R penalises the criterion only if its value is below amean.
Otherwise it even favours the criterion.510

We consider two possible definitions of α = amean, namely:

amean =
1

n2

∑
i,j

ai,j , and (24)

amean =
1

nnz

∑
i,j

ai,j . (25)

We denote by dωZ,2 the criterion from eq. (23) obtained with α = amean from
eq. (24), respectively dωZ,3 the one obtained using α = amean from eq. (25).

A toy example of the different behaviours of dωZ,1, dωZ,2 and dωZ,3 is illustrated
fig. 8. This figure shows a weighted graph with two disjoint components, where
each component is a clique with its unique own edge value. In red and in515

blue, two community structures are proposed, that we denote respectively Xr

25



1 2

3

4 5

6

1/3

1/3 1/3 1

1

1

Figure 8: A weighted graph and two community structures.

and Xb. The criterion from eq (22) has a smaller value for Xb than for Xr

(dωZ,1(A,Xr) = 5; dωZ,1(A,Xb) = 4). This means that Xb is a community
structure that better approximates the groundtruth structure of the graph than
Xr according to this criterion. On the other hand, the criterion dωZ,2 states that520

Xr is better than Xb (dωZ,2(A,Xr) = −2; dωZ,2(A,Xb) ∼ −0.7), which may be a
more desirable situation. Finally, dωZ,3 considers the two structures as equivalent
(dωZ,3(A,Xr) = dωZ,3(A,Xb) = 2).

Remark 2. With both generalisations from eq (23) using α = amean, negative
values are possible, and the symmetry is not preserved (dZ(A,X) 6= dZ(X,A)),525

whereas eq (22) ensures the positivity of the results and preserves the symmetry,
since ∀X ∈ Eq(n), xmax = 1.

Reduced form. We now aim to find formulations of eqs. (21), (22) and (23)
that fit with the reduced form from eq. (5). We first remark that, given A
the adjacency matrix of some graph, the Zahn criterion dZ(A, .) is an objective
function that one aims to minimise, whereas in eq. (5), the criterion must be a
function to maximise. Hence, we express the opposite of dZ and remark that
minimising the function given in eq (21) is equivalent to maximising:

X 7→ FZ(A,X) =
∑
i,j

(
ai,j −

1

2

)
xi,j . (26)

For unweighted graphs, the positive and negative agreements of the Zahn’s
criterion are thus respectively φ(ai,j) = ai,j and φ(ai,j) = 1/2.

For weighted graphs, keeping the general formulation of eq. (23), the opposite
of dωZ produces the following reduced form for Zahn’s criterion:

FωZ (A,X) =
∑
i,j

(
ai,j −

α

2

)
xi,j . (27)

with α = max
i,j

(ai,j) for the generalisation of eq. (22) and α = amean for our530

proposed generalisation. Moreover, our generalisation on a doubly-stochastic
S implies that α = 1/n when the mean of S is chosen as defined in eq. (24),
respectively α = n/nnz for the mean as in eq. (25). Both negative agreements
φ(si,j) = 1/2n and φ(si,j) = n/2nnz do not depend on i, j.
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E+ = {{1, 2}, {1, 4}, {3, 4}}
= {{i, j} : `({i, j}) = +}

E− = {{1, 3}, {2, 3}, {2, 4}}
= {{i, j} : `({i, j}) = −}

Figure 9: In the graph to the left, the green edges are similarities between the nodes they link.
The set of these edges is denoted by E+. The orange edges link nodes that are dissimilar.
The set of these edges is E−.

5.6. Correlation Clustering Criterion535

Principle. The Correlation Clustering has been first introduced by Bansal et
al. in [36]. Their problem can be stated as follows: given a set of objects such
that, for each pair of objects, one knows if the objects are similar or dissimilar,
the aim is to find a clustering that “maximises agreements”, or equivalently
“minimises disagreements”. They model the set of objects as a complete graph540

such that each pair of nodes (objects)—or equivalently, each edge—has a label
“+” if objects are similar, and a label “-” if objects are dissimilar (see fig. 9), and
give a formal definition of maximising agreements/minimising disagreements:

• Maximising agreements means finding a clustering with both as many
edges labelled “+” having end nodes in a same cluster as possible, and as
many edges labelled “-” with end nodes in different clusters as possible.
With notations from fig. 9, it means solving:

argmax
X∈Eq(n)

 ∑
{i,j}∈E+

xi,j +
∑

{i,j}∈E−

xi,j

 .

• Minimising disagreements means finding a clustering with both as few
edges labelled “+” with end nodes in different clusters as possible, and
as few edges labelled “-” having end nodes in a same cluster as possible.
With notations from fig. 9, it means solving:

argmin
X∈Eq(n)

 ∑
{i,j}∈E+

xi,j +
∑

{i,j}∈E−

xi,j

 .

One of the authors’ rationales for formalising a clustering problem as a corre-
lation clustering problem was that, on the contrary of other clustering methods545

that used to exist, the correlation clustering problem can be solved without set-
ting the number of clusters in advance. This makes this technique very suitable
for community detection, where the number of communities is generally not
known [36].
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A few years later, Demaine et al. [42] extended the correlation clustering550

problem to general weighted graphs4. Given a weighted, labelled graph G =
(V,E,Ω, `) where:

• Ω : E −→ R+

{i, j} 7→ ω({i, j}) indicates edge weights,

• ` : E −→ {+,−}
{i, j} 7→ `({i, j}) indicates edge labels,

they focus on a generalised formulation of the “minimising disagreements” prob-
lem by looking for

argmin
X∈Eq(n)

 ∑
{i,j}∈E
`({i,j})=−

ω({i, j})xi,j +
∑
{i,j}∈E
`({i,j})=+

ω({i, j})xi,j

 (28)

In [34], it is proposed to separate positive and negative labels in the weight
indicator Ω, that we can formulate as creating two functions Ω+ and Ω− such
that:

Ω+ : E −→ R+

{i, j} 7→ ω+({i, j}) =

{
ω({i, j}) if `({i, j}) = +,

0 otherwise.

and

Ω− : E −→ R+

{i, j} 7→ ω−({i, j}) =

{
ω({i, j}) if `({i, j}) = −,
0 otherwise.

which allows to simplify eq. (28) as:

argmin
X∈Eq(n)

∑
i,j

(
ω+({i, j})xi,j + ω−({i, j})xi,j

)
. (29)

By denoting

gCC(G,X) =
∑
i,j

(
ω+({i, j})xi,j + ω−({i, j})xi,j

)
,

we remark that minimising X 7→ gCC(G, .) is equivalent to minimising a function
dCC defined by:

X 7→ dCC(G,X) =
∑
i,j

(
ω−({i, j})− ω+({i, j})

)
xi,j . (30)

4Bansal et al. already gave a generalisation for complete weighted graphs whose weights
lie in [−1, 1] in [36].
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Generalisation. The case of graphs with positive and negative edges is beyond
the scope of this study, since we only investigate positively weighted networks.
However, in such networks, one can assume that the existence of an edge indi-
cates that its two end nodes are similar. In turn, one can assume that dissimilar-
ities between nodes are indicated by the absence of edges. Hence, we propose to
generalise the correlation clustering to positively weighted graphs, by consider-
ing that dissimilarity between two nodes is characterised by an absence of edge.
For this purpose, we define the pattern of a matrix as the following function:

P : Rn×n −→ {0, 1}n×n
M 7→ P(M) = PM

such that pMi,j =

{
1 if mi,j 6= 0

0 otherwise.
. Hence, given G = (V,E,Ω) some positively

weighted graph and A ∈ Rn×n its adjacency matrix, the absence of edge in G
can be characterised by J − PA. Thus, denoting by λ > 0 the penalisation
for clustering together nodes that are dissimilar, the correlation clustering from
eq. (30) becomes:

dλCC(A,X) =
∑
i,j

(
λ× (1− pAi,j)− ai,j

)
xi,j , (31)

where A is the adjacency matrix of some positively weighted graph, and X555

a community structure on this graph. Our generalisation of the correlation
clustering hence depends on some parameter λ > 0 to set up.

Remark 3. When focusing on simple networks, this generalisation of the Corre-
lation Clustering criterion is close to the LambdaCC function proposed in [43].

Remark 4. Another way to generalise the Correlation Clustering criterion may
be to consider that a positively weighted graph is actually a complete graph,
where an edge whose weight is equal to 0 is the strongest case of dissimilarity.
In this case, one can shift the weights so that the graph has positive and negative
values. Given A the adjacency matrix, the most straightforward way to do so
is to consider that an edge is a dissimilarity if it is below the mean value of A,

that is

∑
k

dk

n2
. In this case, the criterion from eq. (30) becomes:

dωCC(A,X) = −
∑
i,j

ai,j −
∑
k

dk

n2

xi,j ,

which is equivalent to the formula of the Deviation to Uniformity criterion de-560

veloped in Section section 5.3.

Reduced Form. We aim to reduce the formula from eq. (31) to make it fit with
eq. (5). As the Correlation Clustering criterion defined at eq. (31) is a criterion
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to minimise to obtain the best community structure, we look at its opposite for
finding its reduced form, and we observe that minimising dλCC is equivalent to
maximising

FλCC(A,X) =
∑
i,j

(
ai,j − λ× (1− pAi,j)

)
xi,j . (32)

The positive and negative agreements for this generalised criterion are respec-
tively φ(ai,j) = ai,j and φ(ai,j) = λ× (1− pAi,j).

6. Comparison of the Criteria

In this section, we compare the criteria from section 5. In table 3, we recall565

the reduced formulations of these criteria when applied on simple or doubly-
stochastic graphs.

6.1. Homogenisation on doubly-stochastic graphs

The first key result which is directly observed from the table is that, with
the doubly-stochastic generalisation, many criteria become equivalent, as stated570

in theorem 2.

Theorem 2. Given S ∈ Rn×n the adjacency matrix of some doubly-stochastic
graph, and X ∈ Eq(n) a community structure, thus

FωNG(S,X) = FωBM (S,X) = FωDU (S,X) = FωDI(S,X)

Theorem 2 extends theorem 6.1 from [34], which states that these criteria
are equivalent in the case of k-regular simple graphs. Besides, the doubly-
stochastic Zahn modularities, while not strictly equivalent to these four criteria,
have very similar formulations. Actually, one can draw a parallel between Zahn
formulations and the so-called generalised Newman-Girvan modularity, that can
be used to mitigate against the so-called resolution limit of the Newman-Girvan
modularity—that is, its unability to highlight “small” communities [12]. This
function is defined in [44] as the parametrised function:

F γNG(A,X) =
∑
i,j

(
ai,j − γ

didj
2m

)
xi,j ,

with A the adjacency matrix of some simple graph, X ∈ Eq(n), and γ > 0 the
parameter. Indeed, in definition 4, we also define a parametrised criterion for
the doubly-stochastic version of Newman-Girvan modularity.

Definition 4. Given S ∈ Rn×n the adjacency matrix of some doubly-stochastic
graph, X ∈ Eq(n), and γ > 0 a scalar, the parametrised doubly-stochastic
Newman-Girvan modularity is defined as

Fω,γNG(S,X) =
∑
i,j

(
si,j −

γ

n

)
xi,j .
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These parametrised versions of the Newman-Girvan modularity have been575

added to our list of criteria, as the last row of table 3, for both simple and
doubly-stochastic graphs. The doubly-stochastic versions of the Zahn criterion
can be expressed using definition 4, as stated in property 1.

Property 1. Given S ∈ Rn×n the adjacency matrix of some doubly-stochastic
graph and X ∈ Eq(n), the doubly-stochastic Zahn criteria can be expressed as580

parametrised doubly-stochastic Newman-Girvan modularities, using the follow-
ing values for the γ parameter:

• FωZ,1(S,X) is obtained with γ =
n× smax

2
,

• FωZ,2(S,X) is obtained with γ =
1

2
,

• FωZ,3(S,X) is obtained with γ =
n2

2× nnz(S)
.585

Thus, the Correlation Clustering criterion is the unique doubly-stochastic
criterion from table 3 that cannot be expressed as a parametrised doubly-
stochastic Newman-Girvan modularity. We now provide our main result in
result 1.

Result 1. The generalisation to doubly-stochastic graphs unifies the criteria.590

Namely, we have two families of parametrised criteria:

1. The Newman-Girvan-like ones :

Fω,γNG(S,X) =
∑
i,j

(
si,j −

γ

n

)
xi,j

2. The Correlation Clustering-like ones:

Fω,λCC (S,X) =
∑
i,j

(
si,j − λ× (1− pSi,j)

)
xi,j

Each criterion is obtained from one of these generalisations, using a specific
parameter.

6.2. Numerical Comparisons

In this section we compare the behaviours of the different criteria to uncover595

community structures, applied on modular simple graphs on one hand, and
their doubly-stochastic preprocessing on the other hand. To that purpose, we
will optimise those criteria using the optimisation framework proposed by the
Louvain algorithm, as it as been proved possible to do in [25].
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Figure 10: Two instances from the benchmark, built using the pair of probabilities of the first
row (left panel) and the last row (right panel) of table 4.

Benchmark. For these numerical experiments, we have built a range of random600

modular networks, using eight Stochastic Block Models (SBMs). In brief, SBMs
are random models for generating networks with some block structure. Gener-
ally, the assignations of nodes to blocks and the probabilities of edges within
and between blocks are given. Edges are drawn randomly. Models in which
intra-block probabilities are higher than inter-block probabilities produce net-605

works with community structures [45]. Each SBM has been used to generate
10 graphs of 1600 nodes, with an average degree equal to 100, and partitioned
into 31 blocks: 16 blocks of 20 nodes, 8 blocks of 40 nodes, 4 blocks of 80 nodes,
2 blocks of 160 nodes and one block of 320 nodes. They all have one unique
probability of intra-block edge and one unique probability of inter-block edge,610

denoted respectively by pin and pout. These SBMs differ in the values of param-
eters pin and pout, which have been chosen so that the community structures of
the random graphs become less and less sharp. The sharpness of the community
structure has been assessed by the so-called mixing parameter [4]. Initially, the
mixing parameter measures the strength of a node’s community membership by615

computing the ratio between its links outside the community and its degree.
The greater the mixing parameter for each node, the weaker the community
structure. The network mixing parameter µ is the mean value of the nodal
mixing parameters [11]. Two instances from our benchmark are illustrated in
fig. 10. These are two modular networks generated by the extreme SBMs.620

Once that the 80 benchmark graphs had been built using SBMs from the
NetworkX library5, we have preprocessed them using algo. 1. The pairs of intra-
and inter-edge probabilities pin and pout used in our SBMs are showed in ta-
ble 4, along with the corresponding theoretical mixing parameters, and the
average mixing parameters observed on the simple graphs, and on the doubly-625

stochastic scaling of these graphs, respectively. All numbers have been multi-

5https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.

generators.community.stochastic_block_model.html#networkx.generators.community.

stochastic_block_model
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pin 7.32 6.58 5.83 5.09 4.34 3.60 2.86 2.11
pout 0.06 0.13 0.19 0.25 0.31 0.38 0.44 0.5

µtheo 1.79 3.02 3.98 4.81 5.56 6.27 6.97 7.67
µ̃bin 1.80 3.04 4.00 4.84 5.58 6.30 6.99 7.69

µ̃stoch 1.70 2.91 3.96 4.69 5.43 6.15 6.83 7.53

Table 4: Edge probabilities in each SBMs (pin and pout), theoretical mixing parameters
(µtheo), and the observed average mixing parameters on the simple (µ̃bin) and preprocessed
(µ̃stoch) graphs.

plied by 10 to improve readability. We observe that the mixing parameters of
doubly-stochastic scalings tend to be slightly below those of the initial simple
graphs, and of the theoretical value as well.

Scores. To assess the quality of the community structures returned by Louvain,630

we compare them to the groundtruth by adapting the definitions of Precision,
Recall and F1-score to community detection. Namely, assume we have X∗ ∈
Eq(n) the groundtruth, and X̃ ∈ Eq(n) a community structure returned by
Louvain. We define the number of true positives as the number of pairs of
different elements that are put together by both community structures, that is635

TP =
∑
i<j

x̃i,j × x∗i,j . The number of false positives is the number of pairs that

are put together by X̃ but not by X∗: FP =
∑
i<j

x̃i,j × (1− x∗i,j). And the

number of false negatives is the number of pairs that are put together by X∗

but not X̃, namely FN =
∑
i<j

(1− x̃i,j)× x∗i,j . Now, we can derive Precision,

Recall and F1-score of X̃ as usual:640

• Precision: Prec(X̃) =
TP

TP + FP

• Recall: Rec(X̃) =
TP

TP + FN

• F1-score: F1(X̃) = 2× Prec(X̃)×Rec(X̃)

Prec(X̃) +Rec(X̃)
.

Furthermore, since the Louvain algorithm is sensitive to node labelling, we
have applied it four times to each network in our benchmark, using a random645

labelling. Thus, in the following figures, we plot curves whose points are the
average score of the 40 returned community structures (10 networks and 4 runs
of Louvain). Besides, for each points, these 40 community structures are also
summarised by box plots, that indicate the median (white circle with black
point), 25th and 75th percentiles (edges of the large box), and extreme values650

(extrema points of vertical segments).
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Figure 11: The F1-score (y-axis) over γ (x-axis) of the parametrised Newman-Girvan modu-
larity on simple graphs.

Finally, discussions about the number of communities returned by Louvain
often help to explain some observations done on the scores. Indeed, as the
number of communities is not constrained, Louvain algorithm may find either
more or less communities than expected, which will have an impact on Precision
and Recall. Thus, we also compare the number of communities returned by
Louvain with the expected number (31 in our tests). Formally, given nc the

number of communities in the returned structure X̃ we compute:

r(X̃) =

{
nc/31 if nc ≥ 31,

31/nc otherwise.

This allows a fairer comparison between the criteria that over- or under-partition
the graphs. We indicate that the number of communities is higher (respectively
lower) than expected with a “+” (respectively a “-”) exponent. When the
comparison is done on a bunch of community structures, it may happen that655

some structures have more communities than expected, while other have less.
We indicate such cases with the exponent “*”—see table 5.

Parametrised Newman-Girvan Modularities. We first focus on the behaviours
of the parametrised Newman-Girvan modularities, when varying the parameter
γ. The F1-scores (y-axis) over γ parameters (x-axis) of the Newman-Girvan660

modularities applied on simple and preprocessed graphs are provided in fig. 11
and 12 respectively. As stated in the legends, each curve corresponds to one
mixing parameter value µ̃bin from table 4.

On these figures, we observe that both modularities are able to provide
community structures close to the groundtruth for some γ ∈ [1.25, 2]. In the665

right panels, one can also observe that, for very large γ’s, F1-score tends to
0. This means that, whatever the sharpness of the groundtruth community
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Figure 12: The F1-score (y-axis) over γ (x-axis) of the parametrised Newman-Girvan modu-
larity on doubly-stochastic graphs.

structure, it exists some γ beyond which Louvain returns the structure with one
community per node. We also observe that the fundamental difference between
simple and doubly-stochastic criteria is that the parametrised Newman-Girvan670

modularity is much more sensitive to γ variations when applied on simple graphs
than on doubly-stochastic ones. Indeed, in fig. 11, the F1-score curves are quite
sharp: for each µ, there is a peak at the γ value that maximises the F1-score.
Besides, this peak is not located at the same γ across the µ’s (1.625 for µ = 0.769,
1.75 for µ = 0.699 and 1.875 for the other values of µ). On the other hand,675

in fig. 12, the F1-score curves are much smoother and the maxima lie along a
plateau, whose length depends on the mixing parameter µ. Thus, there is much
more chance to pick a γ which will provide a sound community structure for
doubly-stochastic scaled graphs than for raw simple ones.

Correlation Clustering Criteria. We now focus on the behaviours of the Correla-680

tion Clustering criteria, when varying the parameter λ. As previously, F1-scores
over λ parameters are provided in fig. 13 and 14, for Louvain algorithm applied
on simple and doubly-stochastic graphs, respectively.

This time, criteria on both simple and doubly-stochastic graphs highlight
plateaus at their maxima. However, one can observe that these plateaus do not685

appear for the same parameter values. Indeed, there is a factor 100 between
the x-axes of the two figures (on the left panel of fig. 13, x-axis limits are 10/n
and 500/n, while these are 1/10n and 50/10n for fig. 14). This observation is
consistent with property 2.

Property 2. Given A the adjacency matrix of a simple graph, and λ > nnz(A)/2.
Assume that X∗ = argmax

X∈Eq(n)
FλCC(A,X). Thus

∀i 6= j, ai,j = 0 =⇒ x∗i,j = 0.
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Figure 13: The F1-score (y-axis) over λ (x-axis) of the Correlation Clustering criterion on
simple graphs.

Figure 14: The F1-score (y-axis) over λ (x-axis) of the Correlation Clustering criterion on
doubly-stochastic graphs.
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Figure 15: Precision and Recall (y-axes) of all the criteria to be applied on simple graphs,
over the mixing parameters (x-axes).

Respectively, if S ∈ Rn×n is doubly-stochastic, and λω > n/2, thus X∗ ∈ Eq(n)

that maximises Fω,λωCC (S, .) is such that

∀i 6= j, si,j = 0 =⇒ x∗i,j = 0.

690

Proof. Straightforward by adapting the proof from [39, Property 8].

This property states that, for large values of the λ parameter, in the com-
munity structure that optimises the Correlation Clustering criterion, each com-
munity must be a clique of the graph. In our benchmark, this strong constraint
implies that, for such λ values, the optimal community structure does not fit the695

groundtruth one. Thus, in property 2, λ and λω provide an upper bound beyond
which the Correlation Clustering criterion is not able to resolve the groundtruth
community structure when applied on simple (respectively doubly-stochastic)
graphs from our benchmark. As our networks have been built with an average
degree equal to 100, we have that λ ≈ 100 × λω, which is consistent with the700

differences of x-axes between fig. 13 and 14.
Finally, we remark that, opposite to our observations on Newman-Girvan

modularities, maximum plateaus are smoother for simple graphs.

All Criteria on Simple Graphs. In this paragraph, we compare the different
behaviours of all the criteria designed for simple graphs. Recall and Precision705

are displayed in fig. 15. The parameters for the Correlation Clustering and the
parametrised Newman-Girvan criteria are λ = 210/n and γ = 1.625, respec-
tively. They have been chosen so that the average F1-score is maximised over
all the mixing parameters.

From the right panel, we observe that, except Zahn criterion, all the measures710

return high scores of Recall (all above 0.8 even for the largest mixing parameter).
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This is consistent with the fact that, except when used with the Zahn criterion,
the Louvain algorithm tends to return structures with less communities than
expected, when applied on simple graphs, as it can be seen from �-highlighted
cells in table 5. Thus, some of the groundtruth communities are merged into the715

returned ones. And a high value of Recall means that the returned communities
tend to cover the groundtruth ones. On the other hand, Louvain with Zahn
criterion returns almost 5 times more communities than expected when µ =
0.484, and this ratio keeps increasing with µ, which explains the slump of this
criterion Recall curve. This was an expected result, since it has been shown720

in [34] that the community structure which maximises the Zahn criterion is
such that subgraphs induced by each community must be 1/2-dense. Looking
at the values of pin and pout from table 4, groundtruth communities are expected
to respect this property up to µ = 0.484, included. However, Louvain algorithm
only finds an approximate of the best community structure for the criterion,725

which explains why the slump starts at µ = 0.484 in our tests.
When looking at the left panel, we can roughly divide the remaining mea-

sures into two categories: the Balanced Modularity, the Deviation to the In-
determination and the Newman-Girvan modularity, that exhibit low Precision
scores, and the Deviation to the Uniformity, the Correlation Clustering crite-730

rion and the parametrised Newman-Girvan modularity that exhibit much better
Precision values. Once again, this is consistent with the ratio of the number
of communities returned by Louvain, highlighted in table 5. Indeed, low Pre-
cision values are expected when groundtruth communities are merged into the
returned ones. And from �-highlighted cells in table 5, one can remark that735

the tendency of Louvain algorithm to provide less communities than expected
is emphasised for the criteria with lower Precision scores.

Finally, one can focus on the somehow strange shape of the parametrised
Newman-Girvan modularity, that achieves its minimum for the second smallest
value of mixing parameter. As we observed in fig. 11, the parameter value γ740

that maximises the F1-score is not consistent over all the mixing parameters.
Thus our choice of γ, which is a trade-off between the mixing parameters, clearly
disadvantages the first mixing parameters.

All Criteria on Doubly-Stochastic Graphs. Here, we discuss the behaviours of
all the criteria for doubly-stochastic graphs. The parameters for the Correla-745

tion Clustering criterion is λ = 20/10n; and γ = 1.75 for the parametrised
Newman-Girvan modularity. As previously, the parameters have been chosen
to maximise the average F1-score over mixing parameters. Recall and Precision
are displayed in fig. 16. From the Recall curves on the right panel, we observe
three different behaviours. First, we remark that two of the three versions of750

the Zahn criteria (FωZ,1 and FωZ,3) exhibit very low Recall values, even for the
smallest mixing parameter. From �-highlighted cells in table 5, it can be seen
that, for µ = 0.18, Louvain used with FωZ,1 returns in average almost 47 times
more communities than expected. Recalling that there are 31 groundtruth com-
munities for 1600 nodes in the networks from our benchmark, this means that,755

in the community structure returned by this version of Louvain, a community
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Figure 16: Precision and Recall (y-axes) of all the criteria to be applied on doubly-stochastic
graphs, over the mixing parameters (x-axes).

contains in average about 1.1 node. On the other hand, Louvain used with
FωZ,3 returns communities containing 5.35 nodes in average, when µ = 0.18.
While larger than for FωZ,1, this size is yet more than three times smaller than
the smallest communities from the groundtruth community structures, which760

contain 20 nodes. This explains the low Recall scores of FωZ,1 and FωZ,3. Op-
posite to this is the behaviour of Louvain used with the other version of the
Zahn criterion, namely FωZ,2. Its Recall curve is constant, equal to 1, which
means that it does not split any of the groundtruth communities. However,
when looking at �-highlighted cells in table 5, we see that, from µ = 0.558, the765

number of communities returned by Louvain with FωZ,2 is less than two, meaning
that it has returned some community structures where all the nodes belong to
a unique community, and the Recall of this trivial community structure is 1.
Thus, Louvain used with FωZ,2 does not split existing communities, but tends
to merge them into one unique community as the mixing parameter increases.770

Finally, the parametrised and non-parametrised Newman-Girvan modularities,
along with the Correlation Clustering criterion, have Recall values that remain
equal to 1 for mixing parameters up to µ = 0.558, and then start to decrease.
The fact that parametrised Newman-Girvan and Correlation Clustering criteria
have a lower Recall value than the Newman-Girvan modularity for µ = 0.769775

is explained by the fact that Louvain algorithm used with the two former cri-
teria returns more communities than expected for this mixing parameter—see
�-highlighted cells in table 5.

Looking at the Precision curves on the left panel of fig. 16, we observe that
the non-parametrised version of the Newman-Girvan modularity is not com-780

petitive with the parametrised Newman-Girvan and the Correlation Clustering
criteria. On the other hand, these two latter ones exhibit an extremely close
behaviour. About the two versions of the Zahn criteria with low Recall values,
one highlights the highest Precision up to µ = 0.558—namely FωZ,3—, while
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Precision of the other one (FωZ,1) decreases quickly. This is due to the fact that,785

as already discussed, the latter one returns essentially one community per node,
and such communities are not taken into account in our formulation of the Re-
call. Finally, the version of the Zahn criterion FωZ,2 with the best possible Recall
score, also exhibit the worst results in terms of Precision, with a slump of its
Precision as soon as the second smallest mixing parameter.790

Summary. Average F1-scores of all measures are provided in table 6, along with
the corresponding standard deviation. To improve readability, F1-scores have
been multiplied by 10, and standard deviation by 100. Parameters for the Cor-
relation Clustering criteria and parametrised Newman-Girvan modularities are
those that maximise the average F1-score, as explained in the previous para-795

graphs. We observe that the most accurate criteria are the parametrised ones.
Indeed, the criterion which provides the best F1-score overall is the Correlation
Clustering criterion on simple graphs (FλCC), closely followed by the Correla-
tion Clustering and parametrised Newman-Girvan criteria on doubly-stochastic
graphs (Fω,λCC and Fω,γNG). Last from this pool is the parametrised Newman-800

Girvan modularity on simple graphs (F γNG). These four criteria exhibit average
F1-scores above 0.85 for all the mixing parameters.

We now compare the four criteria unified by theorem 2, namely the Devi-
ation to Indetermination (FDI), Balanced Modularity (FBM ), Newman-Girvan
modularity (FNG) and Deviation to Uniformity (FDU ). First, we observe that805

the latter provides very high F1-scores compared to the other measures. Except
for the largest mixing parameter value, and its high standard deviations, the
Deviation to Uniformity is almost competitive with the parametrised criteria.
This is an artifact due to the networks in our benchmark, whose community
structures are typical deviations to regular graphs. On the other hand, the810

three others are not competitive with the doubly-stochastic Newman-Girvan
modularity (FωNG) that generalises them all.

Our last observations concern the Zahn criteria. From table 6, it seems that
none of the doubly-stochastic versions of the Zahn criterion can compete with
the one for simple graphs. However, it can be seen from table 5 that the number815

of communities returned by the Zahn criteria are quite different, making them
hard to compare them based on their F1-score. To highlight this, in fig. 17, we
plot the confusion matrices of Louvain used with FZ (left panel), respectively
FωZ,3 (right panel) for one community structure obtained with µ = 0.4 (for each
measure, we choose the community structure that provides the maximum F1-820

score). We observe that their behaviours are opposite: the community structure
returned using Zahn criterion for simple graphs correctly detects the largest
communities, but split those of sizes 20 and 40: nodes from the groundtruth
20-node communities have been assigned to 36 communities by Louvain (16
were expected), and nodes from the 40-node communities have been split into825

22 communities (8 expected). On the other hand, Louvain used with FωZ,3
perfectly detects communities of size 20, 40 and 80. However, it splits the two
communities of size 160 into 20 communities, and the 320-node community into
225 ones.
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Figure 17: Confusion matrices of one community structure returned by Louvain used with FZ
(left), respectively FωZ,3 (right).

This illustrates that finding the more desirable partitioning remains application-830

dependant, and should not be chosen on the basis of maximum F1-score only.

7. Conclusion and Future Perspectives

Broadly speaking, the aim of this study was to investigate the utility of
doubly-stochastic scaling as a preprocessing for community detection. Our pro-835

posed preprocessing was presented in section 4, along with illustrations of its
potential to sharpen community structures on toy examples and a real-world net-
work. In section 5, we have generalised a range of graph partitioning measures
to weighted networks, with a particular focus on the case of doubly-stochastic
ones. Of utmost interest is our result that the doubly-stochastic scaling uni-840

fies these measures, as stated in section 6.1. That is, all of the six measures
defined for simple graphs can be expressed using only two parametrised mea-
sures for doubly-stochastic graphs. Extensive comparisons of these measures
have been conducted using SBMs in section 6.2, where we observed that the
measures the most able to accurately uncover community structures are the845

parametrised ones, for both simple and doubly-stochastic graphs, but foremost
that a great care should be given to the choice of the measure in Louvain, as
different measures behave extremely differently.

In the future, we would like to investigate the impact of the diagonal that we
add to ensure the convergence of the scaling in algo. 1 and 2, in terms of numer-850

ical values within the resulting preprocessed graph. This would provide us with
theoretical basis to help making the right choice. Furthermore, to keep improv-
ing community detection methods, we would like to incorporate the knowledge
obtained from scaling factors to the process of discovering communities. Indeed,
after scaling, all nodes have the same degree. This may be seen as a non desirable855

feature, as it means that some initial information about node centrality (namely,
the degree) is lost. And for real applications, the more central the node, the
more harmful an error of assignation on this node. However, as stated in [30],
another kind of information about node centrality, similar to hub and authority
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Figure 18: Doubly-stochastic scaling of a toy example of overlapping communities. Left: Val-
ues of the scaling factor. Right: The scaling form of a simple graph exhibiting two overlapping
communities.

centralities from [46], is conveyed by the scaling factors, and should be exploited860

to ensure that a greater care is taken to the correct assignation of nodes of high
centrality. Finally, we would like to extend our preprocessing to the detection
of overlapping communities. Indeed, in many applications, one node can be in-
volved in more than one community [47]. In a doubly-stochastic scaling, a node
belonging to many communities should produce high scaling factors (because of865

its high degree) and thus low numerical values in the doubly-stochastic scaling,
as illustrated in fig. 18. This may provide a framework to identify those nodes.
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