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Abstract. The paper addresses the fundamental task of semantic im-
age analysis by exploiting structural information (spatial relationships
between image regions). We propose to combine a deep neural network
(CNN) with graph matching where graphs encode efficiently structural
information related to regions segmented by the CNN. Our novel ap-
proach solves the quadratic assignment problem (QAP) sequentially for
matching graphs. The optimal sequence for graph matching is conve-
niently defined using reinforcement-learning (RL) based on the region
membership probabilities produced by the CNN and their structural re-
lationships. Our RL based strategy for solving QAP sequentially allows
us to significantly reduce the combinatorial complexity for graph match-
ing. Preliminary experiments are performed on both a synthetic dataset
and a public dataset dedicated to the semantic segmentation of face im-
ages. Results show that the proposed RL-based ordering significantly
outperforms random ordering, and that our strategy is about 386 times
faster than a global QAP-based approach, while preserving similar seg-
mentation accuracy.

Keywords: Semantic image analysis · Structural information · Graph
matching · Quadratic assignment problem · Reinforcement learning.

? This research was conducted in the framework of the regional program Atlanstic
2020, Research, Education and Innovation in Pays de la Loire, supported by the
French Region Pays de la Loire and the European Regional Development Fund.



2 J. Chopin et al.

1 Introduction

Semantic segmentation is a fundamental but challenging task in computer vision,
often managed using deep neural networks such as U-Net [9]. Structural infor-
mation [2,5] such as spatial relationships is not explicitly used in such networks,
although some recent works aim at exploiting it, e.g. CRF-based approaches [7]
and CNN based semantic segmentation followed by inexact graph matching [3].

In this paper, we focus likewise on graph-based approaches exploiting rela-
tionships observed at high semantic level in annotated training images or pro-
vided by qualitative descriptions of the scene content [5]. In this context, graph
vertices and edges encode regions and spatial relationships produced by a seg-
mentation network and observed in annotated training images, leading to an in-
exact graph matching problem, expressed classically as a quadratic assignment
problem (QAP) [16]. Note that some recent approaches solve graph matching
with machine learning (e.g. graph neural networks [1]). Although promising for
many application domains [17], large and representative training datasets of an-
notated graphs are required. Another difficulty is the definition of the appropri-
ate architecture, and the management of both vertex and edge information, while
edge features (related to relationships between regions) are often ignored [17].

One of the main drawbacks of QAP-based graph matching lies in its highly
combinatorial nature [16]. In this context, our proposal is to solve it in a sequen-
tial manner, where vertices are progressively matched in order to reduce the
complexity. This means that the semantic image analysis is done progressively:
first identified regions are used to discover next ones [4,6] (this is closed to the
notion of seeded graph matching [8]). The difficulty is to learn the optimal seg-
mentation/graph matching order, to ensure that all regions are finally recovered.
In this paper, we propose to solve this problem by reinforcement learning [12,14].
Note that, to our knowledge, such an approach has never been considered for
graph-based semantic image segmentation, although it has been recently stud-
ied for graph matching (but in a different context [8]). Recent related works in
computer vision focus on other tasks such as, for instance, object detection [10],
object tracking [15], landmark detection [11] or control of regions of interest in
video analysis [11].

This work is an extension of a recently proposed approach involving QAP-
based graph matching that ignores this sequential alternative and therefore suf-
fers from a high complexity [3]. The originality and contribution of this paper rely
on challenging image understanding tasks by combining, on top of deep-learning-
based segmentation, high-level structural information, inexact graph matching
and a reinforcement-learning-based sequential strategy. Section 2 describes the
proposed method while Section 3 presents experiments and results demonstrat-
ing the performance of our approach. We finally conclude in Section 4.

2 Reinforcement learning for sequential graph matching

Figure 1 provides an overview of the approach. A Convolutional Neural Net-
work (CNN) is trained for image semantic segmentation using an annotated
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Fig. 1. Overview of the proposed approach. Training: Annotated data are used to
train a CNN and learn the model graph. Segmentations over the training data are used
with the graph model to learn the Q-function. Inference: Segmentation produced by
the CNN is used to create image graph. A sequential one-to-one matching is done with
a sequential refinement to improve the semantic segmentation.

dataset (Figure 1-Training). To correct segmentation errors (Figure 1-Inference),
we propose to use spatial relationships observed between identified regions of the
annotated training dataset, leading to an inexact-graph-matching procedure, be-
tween Gm (built from the training dataset) and Gr (built from the CNN out-
put). When analysing an unknown image (Figure 1-right), a hypothesis graph
Gr is built from the initial CNN segmentation result. To identify regions, Gr is
matched with Gm, which is an inexact graph matching problem, as there are
more regions in Gr than in Gm due to artifacts. We propose to do this sequen-
tially in two steps. First, an initial “one-to-one” matching is performed to recover
one region candidate (vertex of Gr) per class (one vertex of Gm). This is done
sequentially according to the ordering learned by reinforcement (based on a Q-
Function resulting from a preliminary training - Figure 1-Training). The second
step (refinement) focuses on matching remaining artifacts, this being also done
sequentially in any order. We hereafter detail each of these steps.

2.1 Neural network and graphs

When analysing an image, the neural network provides a tensor S ∈ RP×N with
P the dimensions of the query image (e.g. P = I × J pixels for 2D images)
and N is the total number of classes considered for segmentation. At each pixel
location p, the value S(p, n) ∈ [0, 1] is the probability of belonging to class n. The
segmentation map L∗ selects the label n of the class with the highest probability:

∀p ∈ {1, . . . , P}, L∗(p) = argmax
n∈{1,...,N}

S(p, n). (1)
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From L∗, we define a set R of all resulting connected components, and finally the
graph Gr = (Vr, Er, A,D), where Vr is the set of vertices, Er the set of edges,
A a vertex attribute assignment function, and D an edge attribute assignment
function. Each vertex v ∈ Vr is associated with a region Rv ∈ R, with an at-
tribute provided by the function A which is the average membership probability
vector over the set of pixels p ∈ Rv, therefore computed on the initial tensor S:

∀v ∈ Vr,∀n ∈ {1, . . . , N}, A(v)[n] =
1

|Rv|
∑
p∈Rv

S(p, n). (2)

We consider a complete graph where each edge e = (i, j) ∈ Er has an attribute
defined by the function D (hyperparameter in our method, detailed in experi-
ments), associated with a relation between the regions Ri and Rj .

The model graph Gm = (Vm, Em, A,D) is built from the training set and
is composed of N vertices (one vertex per class). The attribute of a vertex is a
vector of dimension N with only one non-zero component (with value equal to 1),
associated with the index of the corresponding class. The edges are obtained by
calculating the average relationships (in the training set) between the regions
(according to the relation D considered).

2.2 Sequential one-to-one matching by reinforcement learning

The proposed sequential one-to-one matching between Gr = (Vr, Er, A,D) and
Gm = (Vm, Em, A,D) is formulated as a QAP to be solved sequentially by Q-
learning, for finally finding the best assignment X∗:

X∗ = argmin
X

{
vec(X)TK vec(X)

}
, (3)

where X ∈ {0, 1}|Vr|×|Vm|, Xij means that the vertex i ∈ Vr is matched to the
vertex j ∈ Vm, vec(X) is the column vector representation of X, and T denotes
the transposition operation. The matrix K is defined by:

K = α Kv + (1− α) Ke, (4)

and embeds the dissimilarities between the two graphs: Kv embeds the dissimi-
larities between Vr and Vm (diagonal elements) and Ke embeds the dissimilarities
between Er and Em (non-diagonal elements). The parameter α ∈ [0, 1] allows
weighting the relative contributions of vertex and edge dissimilarities.

For a sequential graph matching, one learns, by reinforcement, from inter-
actions between the agent and the environment [12]. From a given state st (set
of already matched nodes, at step t of the sequential matching procedure), the
agent (the algorithm) selects and triggers an action (i.e. trying to match a new
vertex of |Vr| with a new one of |Vm|, or a new subset of vertices). The environ-
ment (encompassing image, semantic segmentation, graphs and graph matching
computations) performs this action, and gives back to the agent the resulting
new state st+1 (matching result) together with a reward.
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In this work, the considered reinforcement learning (RL) method is based on
Q-learning using a Q-function defined by a Q-Table, that appeared appropriate
for preliminary experiments. As underlined in [12], it is widely accepted that such
a value-based RL algorithm is appropriate for a discrete RL scenario, which is
the case of our graph matching problem (discrete decision making problem).

The design of the agent for our graph matching problem is detailed hereafter
in terms of state, action and reward.

State. As in [8], the state st ∈ S (at the step t of the episode or matching proce-
dure) is the subset Vr,t ⊆ Vr of vertices matched with a subset Vm,t ⊆ Vm,
where |Vr,t| = |Vm,t|, and S represents all possible partial matchings. The
related bijective assignment matrix is Xt ∈ {0, 1}|Vr,t|×|Vm,t|, so that ∀p ∈
Vm,t, (

∑|Vm,t|
i=1 Xpi = 1) ∧ (

∑|Vm,t|
i=1 Xip = 1). The matching procedure (episode)

goes from t = 0 (Vr,0 = Vm,0 = ∅) to t = ∞ (|Vr,∞| = |Vm| and Vm,∞ = Vm).
We observed experimentally that only a limited number of steps is needed.

Action. The action at ∈ At, achieved by the agent at step t, consists in selecting
a set of vertices of Vm not in Vm,t (i.e. Vm \ Vm,t) and finding the corresponding
ones in Vr \ Vr,t. At is the set of possible sets of vertices, and depends on t (i.e.
already matched vertices at step t are ignored). In our case, at t = 0, sets of
size larger than one element are considered, while, for t > 0, single nodes are
investigated. The motivation is to begin by finding a small subgraph matching
(seeded graph matching [8]) and then to consider only single nodes to ensure a
low complexity. At each step, a QAP optimization is achieved to find the new
matching(s), according to Equation 3, where the assignment matrix is initialized
according to Xt.

Reward. When learning, the agent receives a reward r, based on the quality of
the resulting matching. Compared to [8], the reward is not based on the cost
related to Equation 3 but on the quality of the resulting semantic segmentation,
similarly to [11], involving a similarity measurement between the recovered re-
gion(s) and the expected one(s). The motivation is to favor the matching with
the most similar regions, as several regions (over-segmentation) of the image
being analyzed can be associated (and therefore matched) with the same region
of the reference segmentation. The reward, depending on both the state st and
the selected action at, is the one considered in [11]:

r(at, st) =

{
DC + 1 if DC > 0.1,

−1 otherwise
(5)

where DC is the Dice index between the region(s) associated with the newly
matched vertex (or vertices) and the expected one(s).

Sequential matching. After the learning procedure leading to the Q function,
the matching ordering (i.e. optimal action at to be selected at step t) is defined,
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at each step t ∈ [0,∞], by:

at = argmax
a∈At

(Q(st, a)). (6)

where Q (Q : S×A → <) is the learned Q-Table [12], representing the maximum
expected future rewards for actions at each state (At ⊆ A in Equation 6).
Q is learned [12] over several episodes achieved on the training dataset, using
previously defined notions of state, action and reward. Applying this policy leads
to the one-to-one matching XI .

Complexity. The complexity is directly related to the number of evaluated
assignments according to Equation 3, depending on the number of vertices in-
volved and the related set of possible matchings (i.e. set of X ∈ {0, 1}|Vr|×|Vm|).
Without considering the proposed sequential approach, the number of evalua-
tions NEQAP equals the following number of |Vm|-permutations of |Vr| (without
repetitions), or arrangements (i.e. vertex sets from Vr, of size |Vm|, to be matched
with the Vm vertices):

NEQAP = P
|Vr|
|Vm| =

|Vr|!
(|Vr| − |Vm|)!

(7)

With the sequential approach, the number of evaluations NEQAP-RL is:

NEQAP-RL = P
|Vr|
|S| +

|Vm|−|S|∑
i=0

|Vr| − |S| − i (8)

where S ⊆ Vm is the set of vertices involved in the first step of graph matching
procedure. Each following step involves only one vertex (right term of Equa-
tion 8). Because |S| ≤ |Vm|, the number of evaluations can be significantly
reduced by minimizing |S| (i.e. |S| � |Vm|).

2.3 Sequential refinement: many-to-one-or-none matching
The unmatched remaining nodes are then matched sequentially but in a random
manner. For each node k ∈ Vr \ Vr,∞, one searches for the best assignment
(element of Vm), minimizing the matching cost according to Equation 3. In terms
of complexity, this only involves the evaluation of |Vm| assignment matrices per
remaining k ∈ Vr \ Vr,∞: NERefinement = |Vr \ Vr,∞| × |Vm| (to be added to the
complexity related to Equation 7 or 8).

3 Experiments

3.1 Datasets
The datasets considered for our experiments are a synthetic dataset and the
FASSEG-Instances5 public dataset that has been created for these experiments
(based on the FASSEG).
5 https://github.com/Jeremy-Chopin/FASSEG-instances

https://github.com/Jeremy-Chopin/FASSEG-instances
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reference   random shift artefacts

Fig. 2. Synthetic dataset. From reference images, altered ones are randomly created
by first applying a random shift on region positions and by then integrating artifacts.

Synthetic dataset. Ten types of synthetic images are used (two are reported in
Figure 2). For each one, a reference image, composed of 6 regions/classes, is
considered (from which Gm is built) together with 100 altered versions (from
which 100 Gr are built). Altered images are generated from reference ones, by
modifying region location (random shift around the initial position) and by in-
corporating randomly placed artifacts (one artifact per class). Note that the
random shift for some regions is larger than for others, in order to simulate rela-
tionships variations that can differ between any two regions in realistic images.
The considered relationships (D assignment function) are the distances between
region barycenters: ∀(i, j) ∈ V 2

. , D((i, j)) = ‖R̄j−R̄i‖, where R̄i is the barycen-
ter of the region associated with vertex i. The dissimilarity between two edges
((i, j) ∈ Em and (k, l) ∈ Er) is computed as the difference between D((i, j)) and
D((k, l)) (used to compute K in Equation 3): D1

(k,l)
(i,j) = D((k,l))−D((i,j))

Cs
, where

Cs is the length of the diagonal of the image, so as to keep the value in the inter-
val [0, 1]. To mimic the CNN output, each region is associated with an attributed
vector representing a membership probability vector (A assignment function).
For altered images, a probability is set randomly in [0.7, 0.9] and assigned to the
reference region/class, while the remaining quantity is randomly divided among
the other classes.

FASSEG-Instances. This public dataset is based on the public FASSEG6 dataset
containing 60 human face images with the associated expert segmentation of face
regions (eyes, nose, mouth...). We applied some modifications to the original
FASSEG dataset in order to subdivide original labels (e.g. right-eye and left-eye
instead of only eyes, i.e. two distinct instances of eyes), leading to 9 classes. Note
that, although FASSEG includes faces in multiple poses, one considers frontal
ones only because the considered graph matching technique may not be robust to

6 FASSEG: https://github.com/massimomauro/FASSEG-repository

https://github.com/massimomauro/FASSEG-repository
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face pose changes [3], except if spatial relations are defined in an intrinsic frame
and not absolutely, this aspect being out of the scope of our study focusing
on QAP optimization. For the sake of simplicity, the term FASSEG is used in
the rest of the paper. The considered relationships are based on both minimum
and maximum distances between regions, leading to the following assignment
function D((i, j)) = [d

(i,j)
min , d

(i,j)
max ], where:

d
(i,j)
min = min

p∈Ri,q∈Rj

(|p− q|) and d(i,j)max = max
p∈Ri,q∈Rj

(|p− q|) (9)

The resulting dissimilarity between two edges (i, j) ∈ Em and (k, l) ∈ Er is:

D2
(k,l)
(i,j) =

λ

Cs

(
|d(i,j)min − d

(k,l)
min |

)
+

(1− λ)

Cs
(|d(i,j)max − d(k,l)max |) (10)

where λ ∈ [0, 1] is a parameter (set to 0.5 is our experiments) to balance the
influence of the distances, and Cs the maximum diagonal length of the image.

3.2 Evaluation protocol
On the synthetic dataset, for each reference image, the Q function is learned
using 60 images, with 50 episodes per image, therefore leading to 3000 episodes.
The remaining 40 images are used for testing purposes. Results are averaged over
the 10 reference images. On this dataset, we considered two sub-experiments: one
with attributes on edges only (Synthetic 1, with α = 0 in Equation 4 to favor
structural information only) and one on both vertices and edges (Synthetic 2,
with α = 0.5 in Equation 4). On the FASSEG dataset, 20 images are used
for training both the U-Net [9] (used for the initial segmentation) and the Q
function (with 50 episodes per image, i.e. 1000 episodes for this dataset). In
both cases, a seed of 3 vertices is considered for the first step of the sequential
graph matching (the seed composition being learned by reinforcement), while
the next steps involve only single vertices.

Our sequential RL-based approach is compared to a random ordering (av-
eraged over 100 random orderings for each of the synthetic test images and for
FASSEG test ones). When possible, our approach is compared to the standard
QAP. Due to the huge number of permutations, QAP may not be applied in some
cases, in particular on FASSEG. We therefore consider a constrained QAP [3],
by reducing the number of investigated assignment matrices (in Equation 3): for
a given vertex (region) i ∈ Gm, the considered candidates in Gr are not all pos-
sible vertices (regions) but only those with the highest membership probability,
according to the U-Net, of being associated with class/vertex i.

Evaluation measures include the number of permutations (i.e. number of
assignment matrices), and, when possible, the runtime (Intel i7-8850H CPU).
One also measures, when possible, the segmentation accuracy (Dice index).

3.3 Results
Table 1 reports results on the segmentation accuracy for both synthetic and
FASSEG datasets. The reinforcement learning significantly outperforms random
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Table 1. Segmentation results (Dice index) obtained by the sequential approach (RL-
based ordering and random ordering), the QAP, and the constrained QAP. FASSEG-R
corresponds to segmentation results after the refinement step, while FASSEG concerns
only the one-to-one matching. Some results are not available (too high a computation
time).

Method Synthetic 1 Synthetic 2 FASSEG FASSEG-R
Reinforcement 0.6± 0.38 0.96± 0.08 0.82± 0.13 0.82± 0.13

Random ordering 0.21± 0.25 0.92± 0.14 0.71± 0.12 0.78± 0.1

QAP
0.72± 0.31

0.98± 0.05 NA NA
Constrained QAP 0.99± 0.03 0.83± 0.06 0.84± 0.04

ordering, demonstrating the relevance of the proposed sequential approach. Com-
pared to a global QAP-based matching, our approach is significantly less efficient
on Synthetic 1, while only slightly less efficient on Synthetic 2. This illustrates
that, even with an optimized ordering, considering few nodes (only 3 at the be-
ginning compared to the global QAP that directly searches for the 6 ones) is
not sufficient when only the relationships are considered (i.e. Synthetic 1 ignores
vertex attributes), because one fails identifying the relevant matching among the
large set of possible sub-graph matchings.

Gm
Gr Gm

Gr
Gm

Gr Gm
Gr Gm

Gr Gm
Gr

Fig. 3. Learned optimized ordering on FASSEG: starting with the nose, mouth and
hair (initial seeded graph matching), before continuing with one eye, the skin, the
second eye and finally eyebrows.

On FASSEG, the efficiency of our proposal is highly similar to the one of the
constrained QAP (and significantly higher than the random ordering), although
more classes (9) are involved, illustrating the relevance of our proposal. Figure 3
illustrates the learned optimized ordering on FASSEG, while Figure 4 reports
some examples of results on different faces (both our approach and constrained
QAP fail for the second face), where s∞ = s6 and Vr,∞ = Vr,6. These examples
qualitatively illustrate, in particular, the relevance of our approach compared to
a random ordering.
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CNN

output Reinforcement
Reinforcement 

+ 
refinement

Random
ordering 1

Random 
ordering 2 Constrained QAP
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+
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Fig. 4. Examples of segmentations obtained on FASSEG, using our approach (sequen-
tial matching before and after the refinement), the constrained QAP (before and af-
ter refinement) and random ordering (without considering the refinement). One also
reports expert segmentation and CNN output (red boxes surround some initially mis-
classified regions).

Table 2 provides the required number of evaluated assignment matrices (com-
puted according to Equations 7 and 8, respectively for QAP and reinforcement,
and measured for the constrained QAP), as well as measured computation times
(except for QAP on FASSEG because it is too time consuming). The QAP
involves significantly much more evaluations than our proposal (values are av-
eraged over test images on FASSEG): the sequential approach depicts a signifi-
cantly smaller complexity than QAP.

Table 2. Number of evaluated assignment matrices and measured runtime (in seconds
in brackets).

Method Synthetic 1 Synthetic 2 FASSEG
Reinforcement 1344 (0.035s) 3570 (0.25s)

QAP 665280 (13.5s) 8.89 109 (NA)
Constrained QAP 665280 (13.5s) 64 (0.001s) 81 (0.57s)

This is confirmed by measured computation times: on the synthetic dataset,
our proposal (0.035 s) is about 386 times faster that QAP (13.5 s). In our ex-
periments, the constrained QAP is used to provide segmentations on FASSEG
(too much time consuming for the QAP), by considering a global matching, to
be compared with our sequential one. The counterpart is that we assume that
the final identity/label of a region (final matching) initially corresponds to a
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label associated with the highest membership probability (CNN output), which
may be the case in practice (e.g. when the CNN hesitates between two labels).
Moreover, such a constrained QAP does not apply if vertex attributes do not
embed membership probabilities (e.g. non CNN-based over-segmentation, such
as for Synthetic 1 where the number of evaluated assignment is the same for
both QAP and constrained QAP). In such a restrictive and less generic context,
we measured that the number of permutations ranges from 1 (case of perfect
CNN-based segmentation) to 1600 (many region candidates per class), with a
mean value of 81 (see Table 2). Note that the measured computation time is, in
average, equal to 0.57 seconds (mainly due to the application of the constraint,
i.e. finding the list of region candidates) compared to 0.25 seconds with our
sequential approach, although more assignment matrices are evaluated (3570).

4 Conclusion

We propose a reinforcement-learning-based framework for the sequential seman-
tic analysis of image content by exploiting structural information formulated as a
QAP-based inexact graph matching problem. Preliminary experiments on both
a synthetic dataset and the FASSEG dataset are promising as they show that
our approach dramatically reduces the complexity of this QAP-based inexact
graph matching problem, while preserving the efficiency of the analysis.

Future works and additional studies will first evaluate our method on other
applications with larger datasets. An important point to be studied, and ignored
in this preliminary evaluation, is the influence of the size of the initial seed in
the sequential approach based on reinforcement learning, as well as the abil-
ity to automatically learn its optimal size. Another aspect to be studied is the
extension of this framework so that the ordering can be dynamically adapted,
involving, for instance, the ability to integrate revocable actions [8]. Using a Du-
eling Deep Q-Networks approach [13] would allow adapting the strategy to the
current image. Finally, the final refinement step, possibly involving outliers/ar-
tifacts, is managed by considering a random ordering. It would be interesting to
investigate whether it could benefit from an optimized ordering, again based on
reinforcement learning.
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