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ABSTRACT: Suitably functionalized porous matrices represent
versatile platforms to support well-dispersed catalytic centers. In the
present study, porous organic polymers (POPs) containing
phosphine oxide groups were fabricated to bind transition metals
and to be investigated for potential electrocatalytic applications.
Cross-linking of mono- and di-phosphine monomers with multiple
phenyl substituents was subject to the Friedel−Crafts (F-C) reaction
and the oxidation process, which generated phosphine oxide porous
polymers with pore capacity up to 0.92 cm3/g and a surface area of
about 990 m2/g. The formation of the R3P·BH3 borohydride adduct
during synthesis allows to extend the library of phosphine-based
monomeric entities when using FeCl3. The porous polymers were
loaded with 0.8−4.2 w/w % of cobalt(II) and behaved as hydrogen evolution reaction (HER) catalysts with a Faradaic efficiency of
up to 95% (5.81 × 10−5 mol H2 per 11.76 C) and a stable current density during repeated controlled potential experiments (CPE),
even though with high overpotentials (0.53−0.68 V to reach a current density of 1 mA·cm−2). These studies open the way to the
effectiveness of tailored phosphine oxide POPs produced through an inexpensive and ecofriendly iron-based catalyst and for the
insertion of transition metals in a porous architecture, enabling electrochemically driven activation of small molecules.

■ INTRODUCTION

Many classes of porous materials were devised in the past
decades, with a great variety of chemical composition,
structural order, and functions. These materials encompass
purely inorganic zeolites,1 hybrid metal organic-frameworks
(MOFs, crystalline),2−5 and purely organic materials6 like
covalent organic frameworks (COFs, crystalline).7,8 The
functional properties of these materials are strongly determined
by the permanent porosity, large accessible surface, and size
and shape of the pores.3,9−11 More recently, amorphous porous
organic polymers (POPs) have been developed, showing a
higher stability than MOFs and COFs, and they can be
prepared with a number of chemical functionalities within the
cavities. Symmetric aromatic synthons, with tetrahedral- or
trigonal-planar geometries, condensed through controlled and
directional synthetic methodologies, produced porous materi-
als with uniform pore size distribution and high capacity.12−17

POPs can also be prepared with more conformationally flexible
monomers with nonunivocal position of the linkage bond
between monomers and linkers.18,19 Similar to other porous
materials, POPs can be prepared by incorporating into the
framework Lewis basic sites that can serve as electron-donor
systems for metal centers, and thus are suitable for proton
transport,20 or the capture of volatile species.21

Additionally, POPs have been investigated in the domain of
heterogeneous catalysis,18,22−25 usually after the incorporation
of metal centers.26−28 In particular, porous frameworks
containing phosphine groups coordinated to metal ions were
successfully applied in catalysis.29−32 Although phosphine
oxide functional groups can bind metal ions33 and promote
the interaction with heavy elements, providing anchoring sites
for metals in the active sites of catalysts, to date, rarely they are
incorporated in POPs.34,35 A high degree of chemical tunability
makes POPs potentially adapted to applications in the energy
conversion domain, including electrocatalysis for small
molecule activation.36 However, while the electrocatalytic
applications of MOFs37−41 and COFs42−44 are extensively
explored, the study of POP-based electrocatalysts is only in its
infancy.45−48

In this work, a series of porous organic polymers bearing
PO functional groups was synthesized and loaded with
metal ions to obtain hybrid materials containing highly
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dispersed, yet accessible, catalytic sites, which promoted
electrocatalysis for hydrogen evolution.
Specifically, the porous frameworks have in common the

R3PO structural motif covalently bound within the robust
architecture. Various synthetic procedures were applied to
prepare phosphine oxide POPs, namely, the Friedel−Crafts (F-
C) reaction with FeCl3 or AlCl3 on phenylphosphines or a
two-step procedure starting from trichlorophosphine.30 The P
atoms of the resulting porous polymers were oxidized,
providing the PO moiety that was demonstrated to be a
good anchoring site for transition metals.49

These processes yielded porous frameworks containing
isolated phosphine oxide building units (P1Fe, P2Al, and
P3Li, Figure 1) and bidentate units in which two adjacent
phosphine oxide units can cooperate to increase the metal-
binding ability (P4Fe, P6Fe, P7Fe, and P5Al). N2 gas-adsorption
measurements of the polymers show permanent porosity in
both the micro- and mesopore regions, facilitating the diffusion
of metal species for the formation of catalytic metal centers.
The materials were characterized using thermal methods,
multinuclear solid-state nuclear magnetic resonance (NMR)
and energy-dispersive X-ray spectroscopy (EDX). In a proof-
of-concept study, we screened the hydrogen evolution reaction
(HER) activity of the Co-containing materials under neutral
pH conditions, which are more environmentally benign with
respect to HER in acidic and basic electrolytes,50−54 even if
more challenging to achieve efficient catalysis.54

■ RESULTS AND DISCUSSION

Synthesis. Porous organic polymers were obtained by the
F-C reaction;12 in particular, phosphine monomers and
external linkers such as benzene with formaldehyde dimethyl
acetal (FDA) or 1,3-bis(bromomethyl)benzene were mixed
together with a Lewis acid (FeCl3 or AlCl3) to promote
polymerization, Figure 1. In the synthesis, we used
monodentate or bidentate P-donors; specifically, the bidentate
and conformationally rigid monomers [BPPB (1,2-bis-
(diphenylphosphino)benzene), and TPPB (1,2,4,5-tetrakis-
(diphenylphosphaneyl)benzene)] gave rise to P-POPs with
the two donor functions properly oriented to provide chelation
to the metal center. In the case of bidentate DPPE (1,2-
bis(diphenylphosphaneyl)ethane), the complexation of P with
BH3 was necessary to prevent the scavenging effect of
phosphine groups. The synthesis of compound P3Li involved
the polymerization of the 4,4′-dibromobiphenyl precursor
treated with butyllithium and PCl3.

Characterization of the Frameworks. The materials
prepared were characterized by thermal analysis, showing
thermal stability above 400 °C (Figures 2 and S21−S27). The
thermogravimetric analysis (TGA) profile of P3Li was different
from that of the other systems, and it showed a sharp
multistage decomposition profile with the first weight loss
(49%) between 300 and 455 °C and the second weight loss
(40%) from 530 to 640 °C. The Fourier transform infrared
(FT-IR) spectra of P1-P7 showed similarities with the

Figure 1. Synthetic pathways (left, a−d) and polymers described in this work (right).
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corresponding phosphine precursors, even though the IR
bands were usually larger in the frameworks. All the systems,
except P3Li, exhibited 2900−3000 cm−1 C−H stretching
bands, which were associated to the methylene bridge linking
the aromatic moieties, Figures S14−S20.
One-dimensional (1D) 13C, 1H, and 31P and two-dimen-

sional (2D) 1H−13C NMR spectroscopy were used to study

the structural organization at the molecular level. 13C spectra of
the porous polymers showed peaks between 110 and 150 ppm
easily ascribed to the aromatic rings of monomeric units,
Figure 3. Additional signals were present in the aliphatic region
for F-C reaction polymers, irrespective of the monomer. The
complex pattern was due to multiple alkylation of the aromatic
rings.

13C Cross-Polarization Magic-Angle-Spinning (CP MAS)
NMR spectra of the compounds P1Fe, P4Fe, P6Fe, and P7Fe
synthesized by the Fe-based F-C reaction exhibited a
prominent signal at about δ = 37 ppm owing to the methylene
bridges connecting the aromatic rings of monomer units.
Moreover, minor alkyl and alkoxy (CH3, CH2−O and CH3−O
at δ = 16.8−18.7, 56.5, and 73.0 ppm) originated by pendant
groups were identified as already observed in porous aromatic
polymers by the F-C reaction.55 A lower content of chlorine-
containing pendant groups resonated at 40−44 ppm together
with ph-CH2-ph in the broad signal centered at 37 ppm. In
13C CP MAS spectra, the pendant group signals were
intensified because of hydrogen-to-carbon magnetization
transfer, while in the quantitative 13C MAS NMR spectra,
they appeared to be negligible. In the case of Al-based F-C
compounds (P2Al and P5Al), we observed CH2-bridging
groups and CH3 pendants in the benzyl position (Figure
S10). In P3Li, the aromatic signals substantially dominated,
encompassing the carbon−carbon signal of the diphenyl
connecting group.30

The connectivity of methylene groups, which linked the
aromatic rings in the F-C reaction was inferred by 2D 1H-13C
NMR spectra, which provided evidence of the close spatial

Figure 2. Characterization of P4Fe. (a) TGA in the 25−700 °C
temperature range under oxygen flux. (b) EDX spectrum. Chlorine
signal from the residual DCE solvent. (c) SEM image.

Figure 3. (a) 13C{1H} CP MAS spectra of P1Fe, P4Fe, P6Fe, P7Fe, and P3Li materials performed at a spinning speed of 12.5 kHz and a contact time
of 2 ms. (b) Quantitative 13C{1H} MAS spectrum of P4Fe performed at a spinning speed of 12.5 kHz and a recycle delay of 60 s. (c) 2D 1H-13C
PMLG HETCOR NMR spectrum of P4Fe performed at 12.5 kHz and a contact time of 2 ms. The cross-peaks, highlighted in orange, show the
through-space interactions between the aromatic ring and the methylene moiety.
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proximity between 1H and 13C nuclei. The 2D 1H-13C MAS
spectrum of P4Fe highlighted the aromatic hydrogens of the
main architecture (δH = 6.5 ppm) correlated to the carbons of
the bridging methylene groups (δC = 37.3 ppm), Figure 3.
Likewise, the bridging CH2 hydrogens at δH = 4.0 ppm
correlated with the aromatic carbons, confirming the
reticulation of the monomers by the CH2 linkers. Moreover,
the abundance of the CH2 linkers created using the synthetic
procedure could be inferred by a quantitative analysis of the
13C MAS spectrum obtained with a long recycle delay of 60 s.
The quantitative results of 1 methylene per 9 aromatic carbons
were in agreement with the fact that all phenyls of the
precursor are reacted and connected through −CH2−
benzene−CH2− bridges (Table S2).
According to the 31P SS NMR spectra, the signals of the

phosphorus atoms resonated at about 30 ppm, in agreement
with the presence of the PO moiety. In P3Li, P7Fe, and P6Fe
the minor peaks at δ = −7.2, −10.5, and −14.8 ppm,
respectively, suggested the minor presence of reduced aryl
phosphorus (Figure S11). This result was in line with previous
findings.30 The 19F SS NMR spectrum of P6Fe showed the
peaks associated to the presence of aromatic fluorine atoms,
Figure S13.
The porosity of the frameworks was assessed by N2

adsorption isotherms at 77 K, which exhibited a steep slope
in gas uptake at very low relative pressures and a continuous
increase at higher pressures, reflecting the simultaneous
presence of micro- and meso-pores (Figure 4). We could

observe that the highest surface area [Langmuir and
Brunauer−Emmett−Teller (BET) surface areas of 1125 and
990 m2/g, respectively for P4Fe] was achieved by the rigid
monomer structure in which four aromatic rings connected to
two phosphorus atoms in the core protrude at different angles,
ensuring the expansion of the framework in all directions. An
analogous monomer, which contained a flexible ethyl group
connecting the two phosphorus atoms, instead of a rigid

aromatic ring, allowed higher degrees of conformational
freedom and did not generate a framework with a high surface
area (P7Fe). Relatively high surface areas of 727 and 640 m2/g
were obtained from the monomer triphenylphosphine bearing
three phenyl rings. Interestingly, a number of aromatic rings
greater than four did not produce any increase in both the
surface area and the pore capacity, most likely as a result of the
overcrowded reticulation on the same monomer (P6Fe).
Hysteresis loops were observed between the adsorption and
desorption branches. Such a behavior was indicative of the
swelling of the network during sorption owing to capillary
condensation in the mesopores, which caused some expansion
in the network, as systematically observed in soft polymeric
materials.16,56,57 In the case of P6Fe, the closure at P/P0 of
about 0.4 in the hysteresis loop suggested the mesopore shrink
to a less extent. Lower surface areas were obtained by the Al-
based F-C frameworks (ESI).

Complexation with Transition-Metal Ions. The pres-
ence of binding sites within the frameworks was expected to
promote the anchoring of transition-metal ions within the
cavities. According to 31P NMR, the donor function was
represented by PO, which is suitable for hard transition-
metal ions such as lanthanides or the first-row transition
metals.49,58−60 Hence, the frameworks were readily loaded with
Co(II) by soaking the frameworks with tetrahydrofuran
(THF) solutions of CoCl2·6H2O. The products were
extensively washed with THF to remove the excess metal
not bound to the frameworks, until a colorless supernatant
appeared. The loading of the materials could be easily
appreciated by color change from white to green for Co@
P3Li (Figure 5), whereas Co@P1Fe, Co@P4Fe, and Co@P6Fe

were brown powders (Figure S34). Energy-dispersive X-ray
spectroscopy (EDX) confirmed the presence of the metal
centers in the functionalized polymers, Figure 5. According to
inductively coupled plasma-atomic emission spectroscopy
(ICP-AES), the amount of cobalt anchored to the polymers
was in the 0.8−4.2% w/w range, (Tables S5 and S6). The N2
adsorption isotherm of P3Li at 77 K exhibited both micro- and

Figure 4. N2 physisorption isotherms at 77 K (adsorption, ●;
desorption, ○) for P4Fe (a), P7Fe (b), P1Fe (c), and P6Fe (d).
Adsorption and desorption branches are denoted by filled and empty
symbols, respectively. Insets: differential and cumulative pore size
distributions between 0 and 50 Å (dark and light colors, respectively).

Figure 5. (a) P3Li (white) and Co@P3Li (green). (b) N2 adsorption
isotherm at 77 K of P3Li (orange) and Co@P3Li (blue). Inset:
cumulative pore size distributions. (c) EDX of P3Li (orange) and
Co@P3Li (blue).
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mesoporosity with notable swellability, as shown by the
hysteresis loop, which closed to zero at a low partial pressure
(Figure 5). In P3Li, the mesopore fraction allowed easy access
to the isolated PO moieties from the diffusing species, thus
favoring specific interactions with metal ions. Consistently,
Co@P3Li had a considerably reduced mesopore component, a
lower surface area, and a shift of the pore width profile to lower
values (Figure S30). On the other hand, the presence of the
metal ions did not lead to an occlusion of the inner cavities,
hence allowing the movement of small molecules toward and
from the metal centers.
HER Studies. The electrocatalytic activity of the Co-loaded

materials for the HER was explored by linear sweep
voltammetry (LSV) in aqueous solution at neutral pH
(phosphate buffer). In the case of P1Fe, P4Fe, P6Fe, and
P3Li-modified electrodes, a significant increase in current
density was observed in the range from ∼ −0.4 to −0.9 V vs
RHE range for metallated materials vs metal-free compounds
(Figures 6 and S39, half-wave potentials = −0.75 V for P1Fe,

−0.74 V for P4Fe, −0.76 V for P6Fe, and −0.62 V for P3Li).
This suggested the catalytic HER activity of the Co@P1,3,4,6
derivatives, induced by the presence of cobalt in the inner
cavities of the corresponding porous materials and most likely
associated to Co(II) reduction. The overpotentials to reach a
current density of 1 mA·cm−2 were 0.68 V for Co@P4Fe, 0.66
V for Co@P1Fe and Co@P6Fe, and 0.53 V for Co@P3Li,
relatively high compared to (i) other HER electrocatalysts
working at neutral pH50,61 (ii) related MOF62,63 and
COF43,61,64 materials (working under kinetically more
favorable strongly acidic or basic conditions), and (iii) the
only reported noncarbonized POP-based material for electro-
chemical HER (containing intrinsically highly active Pt
nanoparticles).46 The high HER overpotentials of these
cobalt-based materials could be tentatively explained either
with the low density of catalytic sites, the low wettability, or
the low electrical conductivity of the polymer materials.
In order to evaluate the durability of the catalysts and to

confirm the effect of P1,3,4,6 metallation on the HER
performances on a longer timescale, controlled potential
electrolysis (CPE) experiments were carried out on the Co@
P1,3,4,6 vs the respective P1,3,4,6 materials at −0.68 V vs

RHE during 8 h. Significant differences in current densities
between the Co-containing and the metal-free versions of the
material were observed only for the P1Fe and P3Li materials
(Figure S40), which were thus the only ones behaving as stable
HER catalysts. The amounts of produced H2 were measured
by gas chromatography (Figure S41), which allowed to
determine the HER Faradaic efficiency to be 82% for Co@
P1Fe (4.76 × 10−5 mol H2 per 11.25 C) and 95% for Co@P3Li
(5.81 × 10−5 mol H2 per 11.76 C). Turnover numbers
(TONs) and frequencies (TOFs) could be estimated based on
the hypothesis that each single cobalt center behaved as an
active catalyst: TONCo@P1 = 1.1 × 104, TOFCo@P1 = 1.4 × 103

h−1, TONCo@P3 = 1.2 × 104, and TOFCo@P3 = 1.5 × 103 h−1.
These catalytic parameters demonstrated a good intrinsic HER
activity of each single active Co center50,53 and a reasonable
catalyst stability, even at noncompetitive overpotentials.

■ CONCLUSIONS

In summary, we have prepared a series of porous materials with
incorporated PO functions aiming at binding metal centers
with the purpose to generate hybrid materials suitable for
application in the energy conversion domain. Different
synthetic strategies were investigated to generate porous
polymers. F-C polymerization with iron chloride, which is
widely used in industrial applications, led to larger absorption
capacity and a high surface area of up to 990 m2/g. The
detrimental issue of iron catalyst inactivation due to scavenging
operated by the phosphines could be circumvented by the
formation of the phosphine·BH3 adduct, which was then used
for the successful formation of polymer P7Fe. The presented
strategy opens the possibility to employ a wider array of
phosphines for the generation of tailored phosphine oxide
porous polymers. The presence of a homogeneous distribution
of PO moieties in the cavity allowed the functionalization of
all of the polymers investigated with cobalt(II) ions using the
impregnation method. In a proof-of-concept investigation,
Co@P1Fe and Co@P3Li have shown an electrocatalytic HER
activity under environmentally benign neutral pH conditions.
To our knowledge, they represent a rare example of HER
electrocatalysts based on noncarbonized POPs and including
non-noble metals as active species. Although the catalytic
performances of these materials are currently limited (high
overpotentials), in perspective, their properties (porosity,
surface area, density of binding sites, wettability, and electrical
conductivity) can be tuned, both by exploring new monomer
combinations and by the incorporation of other non-noble
transition metals (like iron, molybdenum, and nickel, see
Figure S33). These future investigations will have the objective
of increasing (i) the density of catalytically active centers, (ii)
their accessibility to substrates, and (iii) the activity of each
single active center. The goal is also to extend the use of POPs
to other electrodriven activation reactions (like ORR, CO2RR,
NRR, etc.) toward efficient and sustainable small molecule
conversion.

■ EXPERIMENTAL SECTION

General Methods. Anhydrous solvents were dried and
stored over molecular sieves (3 Å), and all other reagents and
solvents were used as received. Anhydrous iron(III) chloride
was purchased from Sigma Aldrich and stored in a glovebox
under nitrogen. Reactions performed under an inert atmos-
phere were carried out using Schlenk glassware using nitrogen

Figure 6. LSV curves of selected Co@PX vs PX materials (x = 1, 3, 4,
and 6).
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as the inert gas. Flash column chromatography was performed
using silica gel (230−400 mesh). NMR experiments were
performed on either a Brüker Avance 400 MHz instrument and
JEOL 600 MHz ECZ600R instrument at 298 K. Chemical
shifts are quoted in ppm relative to tetramethylsilane, using the
solvent residual peak of CDCl3 (δH 7.26, δC 77.00) as a
reference standard. TGA was performed with a PerkinElmer
TGA 8000 and by heating the polymer (0.5−3 mg) from 30 to
600/800 °C in atmospheric pressure, with a T-ramp of 5 °C
min−1 under oxygen flux (30 mL min−1). IR spectra were
obtained with a Perkin Elmer spectrum two FT-IR
spectrometer (diamond crystal) in the 4000−400 cm−1 interval
at room temperature.
General Procedures for the Polymerization. The

products P1Fe,
29 P2Al,

31 and P3Li
30 were prepared according

to published procedures. P4Fe, P7Fe, and P6Fe were prepared
by reacting the organophospine monomer, FDA, benzene,
anhydrous FeCl3, and anhydrous 1,2-dichloroethane as the
solvent under the inert gas atmosphere (N2). The mixture was
stirred at 80 °C for the required time. P5Al was prepared by
reacting the phosphine monomer, 1,4-bis(bromomethyl)-
benzene, anhydrous AlCl3, and anhydrous 1,2-dichloroethane
as solvents under the inert gas atmosphere (N2). The mixture
was stirred at 80 °C for the required time. The details of the
synthesis and purification steps are reported in the Supporting
Information (Figures S1−S9).
Solid-State NMR. Solid-state NMR experiments observing

13C, 1H, 31P, and 19F nuclei were performed using a Bruker
Avance 300 instrument equipped with high-power amplifiers
(1 kW) and a 4 mm double-resonance MAS probe. 13C{1H}
ramped-amplitude cross-polarization (CP) experiments were
carried out at a spinning speed of 12.5 kHz using a 5 s recycle
delay and 0.05−2 ms contact times. The 1H 90° pulse length
was 2.5 μs. As an external chemical shift reference, crystalline
polyethylene was set at 32.8 ppm. For a quantitative analysis,
single-pulse excitation (SPE) MAS NMR spectra were
performed using a recycle delay of 60 s. 31P{1H} ramped-
amplitude CP experiments were performed at a spinning speed
of 12.5 kHz using a recycle delay of 5 s and a contact time of
8.5 ms. 1H MAS NMR spectra were performed at a spinning
speed of 12.5 kHz using a recycle delay of 20 s. The 1H
chemical shift was referenced to adamantane. The 19F MAS
NMR spectrum of P6Fe was performed at a spinning speed of
12.5 kHz using a recycle delay of 20 s. The 90° pulse for 19F
was 2.5 μs. The 19F chemical shift was referenced to sodium
fluoride. Phase-modulated Lee−Goldburg (PMLG) hetero-
nuclear 1H−13C correlation (HETCOR) experiments coupled
with fast magic-angle spinning (MAS) allowed the recording of
the 2D spectra with a high resolution in both 1H and 13C
dimensions. The line widths of hydrogen resonances are on the
order of 1−2 ppm, as obtained by homonuclear decoupling
during t1. The 2D 1H−13C PMLG HETCOR spectra were run
with an LG period of 18.9 μs. The efficient transfer of
magnetization to the carbon nuclei was performed by applying
the RAMP-CP sequence. Quadrature detection in t1 was
achieved by the time proportional phase increment method
(TPPI). The carbon signals were acquired during t2 under

1H
decoupling by applying the two-pulse phase modulation
scheme (TPPM). The 2D 1H−13C PMLG HETCOR NMR
spectra of P4Fe were conducted at 298 K under MAS
conditions at 12.5 kHz with a contact time of 2 ms.
Gas-Adsorption Measurements. N2 adsorption iso-

therms at 77 K were collected on a sorption analyzer

(Micromeritics ASAP 2020). The samples were treated
overnight at 100 °C under high vacuum before adsorption
experiments (p < 5 μbar). Surface areas were calculated from
the N2 adsorption isotherm at 77 K using the data in the
pressure range P/P0 from 0.015 to 0.1, according to the BET
and Langmuir models. The total pore volume was calculated
from the N2 adsorption isotherms at 77 K using the nonlocal
density functional theory (NLDFT) method with the carbon
slit pore model up to P/P0 0.98.

Functionalization with Co(II). To 40−50 mg of porous
polymers P1−6, a 0.35 M CoCl2·6 H2O solution (3 mL; 1.05
mmol), and 3 mL of dry THF were added under an inert
atmosphere, forming a blue reaction mixture. The system was
stirred at r.t. for 48 h and then was washed with THF and
centrifuged until the supernatant became colorless. After this
time, the solvent was discarded, and the solid was dried under
vacuum for 4 days. The functionalization of P3Li with other
transition metals [Ni(II), Mo(III), and Fe(II)] is reported in
the Supporting Information (Figure S33).

Characterization of the Metal Content. Scanning
electron microscopy (SEM) experiments were performed
using an ESEM instrument Quanta 250 FEG (FEI, Hillsboro,
OR) equipped with an energy-dispersive spectrometer for X-
ray microanalysis (Bruker Nano GmbH, Berlin, Germany).
The energy-dispersive X-ray spectrometer is equipped with a
QUANTAX XFlash 6 | 30 detector with energy resolution
≤126 eV full width at half maximum (FWHM) at Mnkα. The
spectra were collected and analyzed using ESPRIT 1.9 software
(Bruker Nano GmbH). ICP-AES analyses were performed
with an ULTIMA 2 instrument JOBIN YVON in the radial
configuration, with a JY 2501 monochromator calibrated
against carbon lines. The optical path was continuously purged
with nitrogen (2 L/min). The samples of the functionalized
frameworks were dissolved in 2 mL of a mixture of HNO3 65%
and H2O2 30% and then heated by microwave irradiation
(Milestone, MLS-1200 MEGA, equipped with TFM inner
vessels). Calibration was performed with standard solutions,
10% of HNO3 on six different metal concentration levels,
ranging from 0.5 to 100 mg/L. No significant spectral
interferences were detected. Data were acquired by considering
the following emission lines: Fe 238.204 nm, Co 228.616 nm,
and Mo 202.030 nm. Data acquisition and processing were
performed using the ICP JY v 5.4.2 software (Jobin Yvon).

Electrochemical Measurements. Electrochemical meas-
urements were performed using an electrochemical work-
station (Metrohm-Autolab potentiostat/galvanostat,
PGSTAT100N) with a standard three-electrode setup, with
Ag/AgCl (in 3.5 M KCl solution) as the reference electrode, a
platinum plate as the counter electrode, and a glassy carbon
electrode (GCE, 3 mm in diameter) coated with as-prepared
catalysts as the working electrode. All the measurements were
carried out in 0.1 M phosphate buffer (pH 6.93) and
conducted in an argon-saturated solution at ambient temper-
ature. In a typical experiment, 5 mg of the target material and 5
mg of carbon black powder (Vulcan XC 72R) were dispersed
in 950 μL of isopropanol and 50 μL of Nafion solution (5 wt.
%). The mixture was vigorously sonicated for about 1 h to
form a “homogeneous” ink suspension. The obtained ink (5
μL) was drop-casted onto a GCE (3 mm diameter, mass
loading of ∼90 μg cm−2), previously polished with diamond
paste, sonicated in water for 10 min, washed with acetone, and
oven-dried. All the measurements were referred to the
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reversible hydrogen electrode (RHE) using the following
equation:

= + +

×

E E E(RHE) (Ag/AgCl) (Ag/AgCl) 0.059 V

pH
0

Each newly prepared electrode was first stabilized by cyclic
voltammetry (CV) between 0 and −1.18 V vs RHE at a scan
rate of 50 mV s−1 until the CV curves remain roughly stable
(10 cycles). After this step, LSV experiments were carried out
at a scan rate of 5 mV s−1 in the same potential window. The
linear portions of the Tafel plots (i.e., overpotential vs log(|j|)
plot), as derived from iR-corrected LSV curves, were analyzed
using the fitting Tafel equation:

η = × | | +b j Alog( )

where j is the current density (mA.cm−2), η is the overpotential
vs RHE, b is the Tafel slope, and A is the intercept of the linear
regression. For H2 quantification, a custom-made four-neck cell
was used and equipped with rubber septa, allowing for the
introduction of three electrodes as well as the gas inlet and
outlet tubing. The counter electrode (Pt) was separated from
the working electrode compartment with a glass frit.
The free volume of the closed cell after fitting the septa and

electrodes was determined (38.0 mL), and the electrolyte
(15.0 mL, 0.1 M phosphate buffer) was introduced. The
electrolyte was purged with N2 (10 mL min−1) for 30 min
before conditioning the working electrode (3 mm GC, coated
with the desired material) as mentioned above. The electrolyte
was further purged with N2 for 5 min before running 8 h long
CPE at −0.68 V vs RHE. The quantification of produced H2
was performed using a Perkin Elmer Clarus 580 gas
chromatograph. CPE was run under constant N2 purging (5
mL min−1), and automated injections were programmed to
sample the composition of the exhausting gas mixture every 2
min. The instant production of H2 could therefore be
monitored over time, and the total quantity of H2 produced
during the CPE was determined upon integration over 8 h of
the experiments.
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