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Abstract

We consider Markov processes that alternate continuous motions and jumps in a general locally
compact polish space. Starting from a mechanistic construction, a first contribution of this article
is to provide conditions on the dynamics so that the associated transition kernel forms a Feller
semigroup, and to deduce the corresponding infinitesimal generator. In a second contribution, we
investigate the ergodic properties in the special case where the jumps consist of births and deaths, a
situation observed in several applications including epidemiology, ecology and microbiology. Based
on a coupling argument, we obtain conditions for the convergence to a stationary measure with a
geometric rate of convergence. Throughout the article, we illustrate our results by general examples
of systems of interacting particles in R? with births and deaths. We show that in some cases the
stationary measure can be made explicit and corresponds to a Gibbs measure on a compact subset
of R?. Our examples include in particular Gibbs measure associated to repulsive Lennard-Jones
potentials and to Riesz potentials.
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1 Introduction

In the spirit of jump-diffusion models, we consider Markov stochastic processes that alternate con-
tinuous motions and jumps in some locally compact Polish space E. We call these general processes
jump-move processes. In this paper, the state-space F is typically not a finite-dimensional Euclidean
space, contrary to standard jump-diffusion models. Many examples of such dynamics have been con-
sidered in the literature, including piecewise deterministic processes (Davis, |1984)), branching particle
systems (Skorokhod, |1964} |Athreya and Ney, 2012)), spatially structured population models (Bansaye
and Méléard, 2015) and some variations (Cinlar and Kao, 1991; Locherbach, 2002), to cite a few. A
particular case that will be of special interest to us is when E = U,>oE,, for some disjoint spaces
E,, Ej consisting of a single element, and the jumps can only occur from E, to E,1 (like a birth)
or from E, to E,_1 (like a death). We call the latter specific dynamics a birth-death-move process
(Preston, 1975; Lavancier and Le Guével, 2021). We will provide several illustrations in the particular
case of interacting particles in R¢, with births and deaths. These processes are observed in a various
range of applications, including microbiology (Lavancier and Le Guével, 2021)), epidemiology (Masuda,
and Holme, 2017)) and ecology (Renshaw and Sarkka, 2001; [Pommerening and Grabarnik, 2019). The
main motivation of this contribution is to provide some foundations for the statistical inference of such
processes, by especially studying their ergodic properties.

We start in Section [2] from a mechanistic general definition of jump-move processes, in the sense
that we explicitly construct the process iteratively over time, which equivalently provides a simulation



algorithm. This defines a Markov process (X¢):>0, the jump intensity function of which reads a(X¢),
for some continuous function «, and which follows between its jumps a continuous Markov motion on
E. We then derive in Section [3| conditions ensuring that the transition kernel of (X¢):>o forms a Feller
semigroup on Cy(E) or on Cy(E). We obtain the natural result that if a is bounded, then a jump-move
process is Feller whenever the transition kernel of the jumps and the transition kernel of the inter-jumps
motion (i.e. the move part) are. Similarly, the infinitesimal generator is just the sum of the generator
of the jumps and the generator of the move, the domain corresponding under mild conditions to the
domain of the generator of the move.

In Section 4} we focus on birth-death-move processes and we obtain simple conditions on the birth
and death intensity functions ensuring their ergodicity with a geometric rate of convergence, in line
with standard results for simple birth-death processes on N (Karlin and McGregor, |1957) and for
spatial birth-death processes (the case without move) established by Preston| (1975) and Mgller| (1989)).
Following [Preston| (1975]), the main ingredient to establish such results is a coupling with a simple
birth-death process on N, that provides conditions implying that the single element of Fj is an ergodic
state for the process. However the inclusion of inter-jumps motions make this coupling more delicate
to justify than for the pure spatial birth-death processes of Preston! (1975)). We manage to realise this
coupling under the assumption that the birth-death-move process is Feller on Cy(FE), making necessary
the properties discussed before.

We emphasise that the above results are very general in the sense that neither E is specified, nor
the exact jump transition kernel, nor the form of the inter-jumps continuous Markov motion. Our only
real working assumption is the boundedness of the intensity function . We however provide many
illustrations in the case where (X¢);>o represents the dynamics of a system of particles in R?, introduced
in Section In this situation, we consider continuous inter-jumps motions driven by deterministic
growth-interacting dynamics, as already exploited in ecology (Renshaw and Sarkkal |2001; Hébel et al.|
2019), or driven by interacting SDE systems, in particular overdamped Langevin dynamics, the Feller
properties of which translate straightforwardly to the move part of (X;)i>0. As to the jumps, they
are continuous Feller in general, but not necessarily Feller on Cy(F). The picture becomes however
more intelligible when they only consist of births and deaths. We present in Section general birth
transition kernels that imply the Feller properties under mild assumptions. On the other hand, a simple
uniform death kernel cannot be Feller on Cy(F) in this setting, unless the particles are restricted to a
compact subset of R%, a situation where any death kernel is Feller. We finally show in Section 5| that
for a system of interacting particles in R? with births and deaths, we may obtain an explicit Gibbs
distribution for the invariant probability measure. This happens when the inter-jumps motion is driven
by a Langevin dynamics based on some potential function V', and the jumps characteristics depend in
a proper way on the same potential V. Our assumption on V include in particular Riesz potentials,
repulsive Lennard-Jones potentials, soft-core potentials and (regularised) Strauss potentials, that are
standard models used in spatial statistics and statistical mechanics.

We have gathered in Appendix [A] the details of the coupling used in Section [ to get the ergodic
properties, while most proofs are postponed to a supplementary material along with additional results.

2  Jump-move processes

2.1 Iterative construction

Let E be a Polish space equipped with the Borel o—algebra £ and a distance d. Let (2, F) be a
measurable space and (P,),cg a family of probability measures on (€2, F). In order to define a jump-
move process (X;):>0 on E, we need three ingredients:

1. An intensity function o : E — R4 that governs the inter-jumps waiting times.



2. A transition kernel K for the jumps, defined on F x &.

3. A continuous homogeneous Markov process ((Y:)¢>0, (Pz)zer) on E, the distribution of which will
drive the inter-jumps motion of (X3):>o.

We will work throughout this paper under the assumption that « : E — R is continuous and bounded
by a* >0, i.e. forallz € F
0<alx)<a’. (1)

We denote by (Q} )i>o the transition kernel of (Y;);>0, given by
Qf (@, A) =P, (Y; € 4), zeE AcE.

The following iterative construction provides a clear intuition of the dynamics of the process (X¢)>0.
It follows closely the presentation in the supplementary material of Lavancier and Le Guével| (2021)),
where an algorithm of simulation on a finite time interval is also derived.

Let (Y}(]))tzo, j > 0, be a sequence of processes on E identically distributed as (Y;)¢>0. Set Tp = 0
and let zp € E. Then (X;):>0 can be constructed as follows: for j > 0, iteratively do

(i) Given X7, = z;, generate (Yt(j))tzo conditional on Yo(j) = x; according to the kernel (Q} (z;,.)):>0-

(ii) Given X7, = x; and (Yt(j ))tzo, generate 7;41 according to the cumulative distribution function
t )
Fji1(t) =1—exp (—/ e (Yu(])> du> . (2)
0

(iii) Given X7, = zj, (Yt(j))tzo and 741, generate ;41 according to the transition kernel K(YT(J.]L, ).
(iv) Set Tjy1 =T + Tj41, Xt = (Yt(j)T]) for t € [T}, Tj11) and X7,,, = 7)1

We denote by (F} )i>0 the natural filtration of (Y;)i>o, i.e. FY = o(Yu,u < t), and by (Fi)iso0
the natural filtration of (X;);>0. We make these filtrations complete (Bassl 2011, Section 20.1) and
abusively use the same notation. The jump-move process ((Xt)i>0,(Pz)zer) constructed above is
a homogeneous Markov process with respect to (F¢)¢>0. The trajectories of (X;)¢>¢ are continuous
except at the jump times (7});>1 where they are right-continuous. The specific form implies that
the law of the waiting time 7; under P, is absolutely continuous with respect to the Lebesgue measure
with density E, {a(Y;(j_l))exp (— I u(j_l)) du)} 1;~0. It also implies that the intensity of jumps is
a(X¢). Denote by Ny = >>.~ 17,<¢ the number of jumps before ¢ > 0. Under the assumption (1)), we

have for any n > 0 and ¢t > 0,
P(Ny > n) <P(N; > n) (3)

where N; follows a Poisson distribution with rate a*t. This in particular implies that (N;)¢>o is a
non-explosive counting process. All the aforementionned properties of (X;)¢>o are either immediate or
verified in Lavancier and Le Guével (2021]).

Note that the above construction only implies the weak Markov property of (X;):>0 in general, at
least because the process (Y:):>0 is only assumed to be a (weak) Markov process. A more abstract
construction obtained by “piecing out” strong Markov processes is introduced in [Tkeda et al.| (1968),
leading to a strong Markov jump-move process. The strong Markov property can also be obtained in
our case by strengthening the assumptions, see Section [3.1

The transition kernel of (X;);>¢ will be denoted, for any t > 0, z € E and A € £, by

Qi(z, A) =P(X; € A|Xg=2) =Pi(X; € A).
Also for f € M*(E), where M*(E) is the set of real valued bounded and measurable functions on F,
we will denote Q1 f(z) = E,[f(X¢)] = [ Qi(z,dy) f(y). Similarly we will write QY f(z) = EY (f(¥2)).
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2.2 Special case of the birth-death-move process

A birth-death-move process is the particular case of a jump-move process where E takes the form
E =U;2o En, with (Ey)n>0 a sequence of disjoint Polish spaces, and where the jumps are only births
and deaths. We assume that each E, is equipped with the Borel o—algebra &,,, so that E is associated
with the o—field £ = o (Up=o &n). We further assume that Ey consists of a single element denoted by
(. In this setting, the Markov process (Y;):>o driving the motions of (X;);>0 is supposed to satisfy

Po((Ye)iz0 C En) =1p,(z), Vz € E,Vn >0.

We introduce a birth intensity function g : E — R and a death intensity function § : £ — R,
both assumed to be continuous on F and satisfying o = 8 4+ §. We prevent a death in Ey by assuming
that §(@) = 0. The probability transition kernel K for the jumps then reads, for any z € E and A € €,
B(x) 6(x)

K A+ —=Ks(x, A 4
Oé($) /3(1‘, )+ Oé(.%‘) 5(1‘, )7 ( )
where K3 : E x € — [0,1] is a probability transition kernel for a birth and K5 : £ x £ — [0,1] is a
probability transition kernel for a death. They satisfy, for x € £ and n > 0,

K(z,A) =

Kﬁ(x,En_H) =1g,(r) and Ks(z,E,) = 1g,4 ().

Notice that a simple birth-death process is the particular case where E = N, E,, = {n} and the
intensity functions 8 and § are sequences.

For later purposes, when E = ;> E,, as in the present section, we define the function n(.) : £ — N
by n(x) = k when = € Fy, so that « € E, (2 is always satisfied.

2.3 Kolmogorov backward equation

The goal of this section is to present the Kolmogorov backward equation for the transition kernel of
the general jump-move process (X¢):>0 of Section providing a more probabilistic viewpoint of its
dynamics, and to show that the solution exists and is unique. To obtain these results we use similar
methods as in |Feller| (1971) for pure jump processes, see also [Preston| (1975). The key assumption is
the boundedness of the intensity «, which prevents the explosion of the process. The proofs are
postponed to Section [S-1]in the supplementary material.

Theorem 1. For all x € E and all A € &, the function t — Qi(x, A), for t > 0, satisfies the following
Kolmogorov backward equation:

Qi(x, A) = EY [meAe‘fota(Yu)d“} +/Ot/EQts(y,A)E;f [K (Ys, dy) a(YS)e_fOSOé(Yu)du} ds.  (5)
In the case of the birth-death-move process of Section the above equation reads, for x € E,,
Qulo, ) =B [tyeac ho000] o [1 [ Qo VR[50 B (V) e o090 g
1
L Qe B [0 Ks () e 200 s )
n—1
To show the existence of a unique solution to , let Q¢ p(z, A) = Py(Xy € AT, > t) be the

transition probability from state z to A in time ¢ with at most p jumps. Notice that we can define
Qt,o0 = h_}m Qtp because Qi p < Qi p+1 < 1. We prove in the following proposition that ()t is the
pP—00

unique solution to using a minimality argument as in Feller| (1971).
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Proposition 2. Q¢ o is the unique sub-stochastic solution of , i.e. it is the unique solution satisfying
Qi(z,E) <1 for all x € E. Moreover Qo is stochastic, i.e. Qi oo(z,E) =1 for all z € E.

To conclude this section, we present an interpretation of Q)¢ , for the birth-death-move process of
Section which is much in the spirit of Preston (1975). We write Qy (7, A) for the transition
probability from x to A in time ¢ without having entered U,;“;p 11 Bk, that is

Qt,p)(x, A) =P (X € A, Vs € [0,1] n(Xs) <p).
We can also define Qy («)(z, A) = plirglo Qt,(p) (7, A) < 1 by monotonicity.

Proposition 3. For allz € E and all A € £, Q4 (o0) (7, A) = Q00(z, A).

2.4 Systems of interacting particles in R?

In this section, we focus on the dynamics of a system of interacting particles in R? and we provide
general examples of birth kernels, death kernels and inter-jumps motions in this setting, that to our
opinion constitute realistic models for applications and are actually already used in some domains.
Some of them moreover lead to an explicit Gibbs stationary measure of the dynamics, as we will show
in Section These running examples will serve in the rest of the paper to illustrate the theoretical
results and make explicit our assumptions.

Let W C R? be a closed set where the particles live, equipped with a o—field B. A collection of
n particles in W is a point configuration for which the ordering does not matter. For this reason, for
n > 1, we will identify two elements (z1,...,zy,) and (y1,...,yn) of W™ if there exists a permutation
o of {1,...,n} such that x; = y,(;) for any 1 <7 < n. Following Preston| (1975), Locherbach| (2002)
and others, we thus define E,, as the space obtained by this identification. Specifically, denoting by
Tt (T1,. .. xn) € W™ = {x1,...,2,} the associated projection, the space E,, corresponds for n > 1 to
E,, = m,(W") equipped with the o—field &, = m,(B%"), while Ey = {@} is just composed of the empty
configuration. The general state space of a system of particles is then £ = U,,>0F,, equipped with the
o—field £ = 0 (Up>0&y) - This formalism allows us to go back and forth quite straightforwardly between
the space E, and the space W™, the latter being in particular more usual to define the inter-jumps
motion of n particles, as detailed below. Note that an alternative formalism consists in viewing a
configuration of particles as a finite point measure in W, in which case E becomes the set of finite point
measures in W, see for instance |[Kallenberg (2017)). We choose in this paper to adopt the former point
of view. We denote by ||.|| the Euclidean norm on R?. If z = {x1,...,2,} € E, and £ € W, 2U¢ stands
for {z1,...,2n,&} € Epgq and if 1 < i < n, we write z \ z; for {x1,..., i1, Tiy1,...,2n} € Ep_1.

As long as we are concerned by continuous inter-jumps motions, we need to equip E with a distance.
Following |Schuhmacher and Xia| (2008), we consider the distance d; defined for z = {z1, ..., 7y, } and
Y =1{Y1,- -, Yn(y} in £ such that n(x) < n(y) by

n(z)

) = i S w2 D) + (1)~ (e | @

with di(z, ) = 1 and where S,, denotes the set of permutations of {1,...,n}. Schuhmacher and Xia
(2008) and Section in the supplementary material detail some topological properties of (E,dy).
For the purposes of this section, let us quote in particular that n(.) : (E,d;) — (N,|.|) is continuous
and that 7, is continuous. Note that other distances than d; could have been chosen, provided these
two last properties (at least) are preserved. Incidentally, the Hausdorff distance, which is a common
choice of distance between random sets, does not satisfy these properties (see Section and is not
appropriate in our setting.



We now show how we can easily construct a continuous Markov process (Y;)¢>0 on E from continuous
Markov processes on W™ for any n > 1. We focus on the case where for any x € E and n > 0,
P.((Y:)e>0 C Ep) = 1g, (x), as we required it for birth-death-move processes in Section It is then

enough to define a process Y™ on each E,. To do so consider a continuous Markov process (Zln)tzo
on W™ whose distribution is permutation equivariant with respect to its initial value Zoln. This means
that for any permutation o € S, the law of Zt|n = (Ztlfll, . .,Ztm) given Z0|n = (2Zo(1)s+ -+ » Zo(n)) 18
the same as the law of (Zt‘;;(l)’ . "Zt‘j;(n)) given Zo‘n = (z1,...,2n). Let © = {x1,...,2,} € E, and
take the process Zt|n with initial state Z0|n = (z1,...,xy). Note that from the previous permutation
equivariance property the choice of ordering for the coordinates of this initial state does not matter, as
it will become clear below. We finally define the process Yt‘n on FE,, starting from x as

v =m (2") ={z]1,.... 25} (8)

Note that the continuity of ¢ — Y;‘n (with respect to d;) follows from the continuity of ¢ — Zt‘n and
the continuity of m,. The continuity of ¢ — Y; is then implied by the continuity of n(.).
With this construction, the transition kernel of Y reads, for any f € M°(E),

)= B[O Y =] Laep, = S B (f(m(Z") | 20" = (31, 50)) Leck,
n>0 n>0

so that denoting by Q7 "™ the transition kernel of ZI" in W™ we have

=3 Q" (fom) (w1, 20))lucn, -

n>0

Note that if we had chosen another ordering for the initial state, that is Z0|" = (To(1)s -+ To(n)) for

some o € S,, then the transition kernel of Y would have remained the same, since by permutation
equivariance

E (f(ﬁn(Ztln)) ’ Z0|” = (xa(l)a e 7xa(n))) =K (f<7n<Zt|Z(1)a s Zt o (n) ) ‘ Z|n (.1'1, S 7-%'71))

which is E (f(wn(Zt|")) | Z" = (21, . ,a:n)).

We are now in position to present general examples of jump transition kernels and inter-jumps
motions for a system of particles in W. The first example introduces a death transition kernel where
an existing particle dies with a probability that may depend on the distance to the other particles. The
next two examples focus on birth transition kernels, either driven by a mixture of densities around each
particle, or by a Gibbs potential. The last two examples apply the above construction of (Y;)¢>0 on E
to introduce inter-jumps Langevin diffusions and growth interaction processes.

Example (death kernel): Let g : Ry — R% be a continuous function and for z = {x1,...,2,} € Ey,
set w(zy,z) =1ifn=1and if n > 2, for any i € {1,...,n},

w(w;,z) = Zg |2k — i) 5

with 2(x) = 3771 2k 9([|ok — zi|). A general example of death transition kernel is

Ks(xz, A) = Z w(zi, x)la(z\x;), x€FE, A€f.



The probability w(z;, ) that z; disappears then depends on the distance between x; and the other
particles in z through g. Uniform deaths correspond to the particular case w(z;, x) = 1/n(x).

Example ( birth kernel as a mixture): Let ¢ be a density function on W, and ¢; : W — R and
¢2 : Ry — R be two continuous functions. We set for x = {x1,..., 2,2} € E\ Ep, v(w;,x) =

exp (d)l () + 2 ki D2 (|lzg — 1:1||)) and we consider the birth kernel defined for A C W and « € E'\ Ey
by K3(0,A) = [5 ¢(§)d¢ and

n(zx

Ko, AU D) e /A (f(;”;)) d,

=1

~

where AUz = {{u}Uz,u € A} and z(z;,2) = [i ¢ (€ — z;)/v(2i, x)) d€. Note that z(z;, z) = v(z;, 2)?
if W = R% Tt is easily checked that Ks(z, Epy1) = Kg(z,W Ux) = 1 for z € E,, and in particular
this kernel is a genuine birth kernel in the sense that the transition from FE, to E,11 is only due to
the addition of a new particle, the existing ones remaining unchanged. Moreover, the new particle
is distributed as a mixture of distributions driven by ¢, each of them being centred at the existing
particles. The term v(z;, x) quantifies the dispersion of births around the particle z; and it depends on
the distance between x; and the other particles through ¢-. A natural example is a mixture of isotropic
Gaussian distributions on R?% (restricted to W), respectively centred at x; with standard deviation
v(z, x).

Example ( birth kernel based on a Gibbs potential): We introduce a measurable function V : E — R,
so called a potential, satisfying z(x) := [ exp(=(V(z U&) — V(x)))d{ < oo for all € E, and we
consider the birth kernel defined for A C W and x € E by

1 OV aLE V(e
Kg(x,AUx)—Z(ac)/Ae (V@) -V(@) ge,

Note that Kg(z,W Ux) = 1 for x € E. With this kernel, given a configuration z, a new particle
is more likely to appear in the vicinity of points & € W that make V(x U ) — V(x) minimal. This
kind of kernels K3 has been introduced in Preston| (1975) for spatial birth-death processes, the case
of a birth-death-move process with no move. Their importance is due to the fact that the invariant
measure of a spatial birth-death process associated to Kz, uniform deaths and specific birth and death
intensities has been explicitly obtained in |[Preston| (1975) and corresponds to the Gibbs measure with
potential V. This result is at the basis of perfect simulation of spatial Gibbs point process models, see
Moller and Waagepetersen| (2004). We will similarly show in Section [5| that the same Gibbs measure is
also invariant for a birth-death-move process associated to the same characteristics for the jumps and
a well chosen inter-jumps move process (Y;):>0 constructed as in the next example.

Example @(Langem’n diffusions as inter-jumps motions): Let g : R — R? be a globally Lipschitz
continuous function, § > 0 and {B;}i1<i<n, n > 1, a collection of n independent Brownian motions on
R%. We start from the following system of SDEs usually called overdamped Langevin equations

JFi

For z = (21,...,2,) € (RY)", denoting by ®, : (RY)" — (RY)"™ the function defined by ®,(z) =
(@n1(2)s -y Prp(2)) with @5,:(2) = 32,4 g(2i — z;), this system of SDEs reads

dz/" = —o,(z/" dt + \/28-1aB/", (9)
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where Bt|n = (By1,...,Bip). Since @, is a permutation equivariant function, that is for any o € S,
(I)n(za(l)a s 7ZO'(TL)) = ((I)n,o(l) (Z)’ SER) (I)n,(r(n) (Z))a

and since BtIn is exchangeable, we can verify by writing @ in integral form that the law of Zln is
permutation equivariant with respect to its initial state. So when W = R%, we can define each inter-
jumps process Y " in E, from ZI" as in , yielding (Y;)i>0 on E. The same construction can be
generalised if W C R¢ by considering a Langevin equation with reflecting boundary conditions (Fattler
and Grothaus, 2007)). This inter-jumps dynamics, associated with the birth kernel of Example [3|and a
drift function g related to the potential V', converges to a Gibbs measure on W with potential V' (see

Section .

Example ( Growth interaction processes): This example is motivated by models used in ecology
(Renshaw and Sarkkal 2001; [Renshaw et al., 2009; |Comas|, 2009; Hébel et al., 2019). Each particle
consists of a plant located in S C R? and associated with a positive mark, that typically represents the
size of the plant, so that W = S x R™ here. Births and deaths of plants occur according to a spatial
birth and death process, while a deterministic growth applies to their mark. Specifically, when a plant
appears, its mark is set to zero or generated according to a uniform distribution on [0,&]| for some
e > 0 (Renshaw and Sarkka, (2001))). Then the mark increases over time in interaction with the other
marks. In order to formally define this inter-jumps dynamics, let us denote by (U;(t), m;(t))¢>0, for
i =1,...,n, each component of the process (Ztln)tzo where U;(t) € S and m;(t) > 0, so that Zln e Wn.
We introduce the system

az/"
at

= ((0, Fin(2"), . (0, Fun(2™))) , (10)

where for all 1 <i <n, Fj,, is a function from W" into Ry. We thus have U;(t) = U;(0) for all 7 and the
evolution of the marks (mq(t),...,m,(t)) is driven by a deterministic differential equation depending
on (U1(0),...,U,(0)) as expected. To define Y'I" by (§), we finally assume permutation equivariance,
namely that F, ) (21, .., 20) = Fin(26(1)s - - Zo(n)) for all i and all o € Sy, which is satisfied for all
examples in the aforementioned references.

3 Feller properties and infinitesimal generator

3.1 Feller properties

We assume henceforth that E is a locally compact Polish space. Let Cy,(E) be the set of continuous
and bounded functions on E and Cy(E) be the set of continuous functions that vanish at infinity in
the sense that for all € > 0, there exists a compact set B € E such that z ¢ B = |f(z)| <.

Following Dynkin (1965) and |@ksendal (2013), we say that the jump-move process (X;);>0 on E
with transition kernel @, is Feller continuous if Q;Cy(E) C Cy(E), and we say that it is Feller if both
limy—0 ||Qtf — flloo = 0 for any f € Co(E) (strong continuity) and Q:Co(E) C Co(E).

The following proposition, proved in Section[S-2]of the supplementary material, provides information
on the continuity property of @J; when ¢ goes to 0.

Proposition 4. We have

1. For any f € Cy(E) and any z € E, %i_r)r(l]Qtf(x) = f(x).

b . . _ . . Y _
2. Let f € MY(E). Then lim [Quf — flloo = 0 if 1 Q) f — fllc = 0.



By the second point above, the strong continuity of @Q; is implied by the strong continuity of Q) ,
which in turn holds automatically true if Q) Co(E) C Co(FE) by continuity of Y;. We thus obtain the
following natural conditions on the jump-move process on E to be Feller continuous or Feller. The
proof is given in Section of the supplementary material.

Theorem 5. Let (X;)i>0 be a general jump-move process on E.
1. If QY Cy(E) C Cy(E) and K Cy(E) C Cy(E) then (Xi)i>0 is a Feller continuous process.
2. If QY Co(E) C Co(E) and K Co(E) C Co(E) then (Xy)i>o is a Feller process.

We deduce in particular from this theorem that if Q) Cy(E) C Cy(FE) and K Cy(E) C Cy(E) (or
alternatively with Cy(F) instead of Cy(E)), then (X;):>0 is a strong Markov process for the filtration
(Ft)t>0, a property implied by the Feller continuous and Feller properties (Bass (2011])). The Feller
property will also be useful to us in Section [] to construct a coupling between a birth-death-move
process and a simple birth-death process on N, in a view to establish ergodic properties.

We investigate in Section [3.3] the conditions of Theorem [f] for the examples of dynamics of systems
of interacting particles in R? introduced in Section They turn out to be generally satisfied under
mild conditions for these examples.

3.2 Infinitesimal generator

In this section we compute the infinitesimal generator associated to the jump-move process (Xi)¢>o.
We first introduce some notations and recall below the definition of the generator, see for instance
Dynkin (1965)). In connection, remember that the family (Q):>0 of transition operators is a semigroup
on (My(E), ||.]leo)- If moreover the process (X¢)¢>0 is Feller continuous (resp. Feller), then (Q)¢>0 is a

semigroup on (Ch(E), |.|c) (resp. (Co(E),.lx0)).

Definition 1. Let L C M°(E) and (Uy);>0 be a semigroup on (L, ||.||s0). We set

_ e _ _ o Uif = f
Lo—{fGL-}f(l)HUtf—fHoo—O} and DA—{f€L~}1_>mOT

exists in (L, ||.||o0)}.  (11)
For f € Dy, define Af = limpo(Usf — f)/t. The operator A : Dy — L is called the infinitesimal
generator associated to the semigroup (Up)i>0 and D4 is called the domain of the generator A.

In the following we denote by Lo (resp. Ly ) and A (resp. AY) the set as in and the infinitesimal
operator associated to (Q¢)i>0 (resp. (QF )i>0). Note that Ly = L{ by Proposition

Theorem 6. Let (X;)i>0 be a general jump-move process on a Polish space E. Suppose that if f € LY,
then a x f € LY and Kf € LY. Then Do =D v and for any f € D 4v,

Af =A f+ax Kf —ax f.

This result, proved in Section [S-3] of the supplementary material, shows that the generator A of
the jump-move process (X;);>0 is just the sum of the generator of the move AY and the generator of
the jump, specifically of a pure jump Markov process with intensity « and transition kernel K, that is
a x (K — Id) (see Feller| (1971))).

Note that for a pure jump process, Q) = Id for any t > 0, L} = Dy = MP°(E) and AY = 0, so that
all assumptions of Theorem [ are trivially true in this setting. More generally, consider a jump-move
process with a Feller inter-jumps process, i.e. Q) Co(E) C Co(E), and a Feller jump transition, i.e.
K Co(E) C Cy(E), so that (X;)¢>0 is Feller by Theorem [5, then we can take L} = Cy(E) and again
the assumptions of Theorem [6] are satisfied since « is bounded.



3.3 Application to systems of interacting particles in R?

We go back to the setting of Section concerned with systems of interacting particles in W C R¢,
in order to inspect whether the examples of dynamics presented therein are (continuous) Feller or not.
To do so and be able to check the conditions of Theorem [, we need to first clarify what are the sets
Cy(F) and Cy(E) in this framework. Remember that in this setting E = U,>0E, where E, = m,(W")
corresponds to the set of unordered n-tuples of W, and we have equipped F with the distance d
defined by . As a first result, it can be verified that (F,d;) is a locally compact Polish space, see
(Schuhmacher and Xial 2008, Proposition 2.2) and Section in the supplementary material. To
characterise the elements of Cy(FE), we shall use the following proposition, proved in Section

Proposition 7. Let v € E and (x(p))pzl a sequence converging to x, i.e. di(z®,z) = 0 as p — .
Then there exist po > 1 such that for all p > po n(z®) = n(z) and, when n(z) > 1, a sequence (0,)p>po
of Sp(x) such that for anyi € {1,...,n(x)},

2,5 = @ill =2, 0- (12)

On the other side, to deal with Cy(E), we provide a characterization of the compact sets of each
E,, for n > 1, and an important property about the compact sets of F.

Proposition 8. Suppose that W is a closed set of RY.

1. Let n > 1 and A be a closed subset of (E,,d1). Then A is compact if and only if the following
property holds:

VweW, IR >0, s.t. Vo = {x1,...,z,} € A, max {l|lzx, — w|} < R.

no
2. Let A be a compact set of E. Then there exists ng > 0 such that A C U E,.
n=0

The two previous propositions are the main tools to investigate the continuous Feller and Feller
properties of the jump kernel K of a jump-move process. Concerning the inter-jumps move process
(Y2)¢>0, remember that we can easily define it on each E,, from a continuous process (Zln)tzo on W™ by
the projection . Similarly as for the continuity property discussed in Section the Feller properties
of (Y2)¢>0 on (E,d;) inherit from that of (Zt|">t20 on W".

Proposition 9. Let (Y;)i>0 be defined on E by (8), then if (Zt‘n)tzo is a Feller continuous (resp.
Feller) process on W™ for every n > 1 then (Yi)i>o is a Feller continuous (resp. Feller) process on E.

By this result, standard inter-jumps motions are Feller continuous and Feller, as this is the case
under mild assumptions for our examples [4] and [f] detailed below. Concerning the jump kernels, the
global picture is as follows. They are generally Feller continuous, but not necessarily Feller even if the
underlying space W is compact, as showed in the following example. However if we restrict ourselves
to birth kernels, then they are generally Feller (see Examples |2/ and [3| below). On the other hand, if
we restrict ourselves to death kernels, then they are Feller if W is compact, but not otherwise, see
Example 1| below. Remark that a birth-and-death jump kernel as in is (continuous) Feller when the
birth kernel Kz and the death kernel K are. So it is generally continuous Feller, and if W is compact,
it is generally Feller.

Let us make these informal claims more specific through some examples. The first one presents an
example of jump kernel on a set W, possibly compact, that is continuous Feller but not Feller. The
other ones correspond to the examples introduced in Section [2.4]
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Example. Consider the jump kernel K defined for f € M°(E) by Kf(z) = Z?:(? f{x;i})/n(z) for
T = {T1,...,Tpm)} € E, so that K(x,E1) = 1 for any z € E. Let ) be a sequence converging
to x, from which we define py and (0,)p>p, as in Proposition [/} Let f € Cy(E). Then K f(z®) =
Z?:(Ji) f(a:gi)(i))/n(a:) tends to Z?:(?) f(z;)/n(z) = K f(x) as p — oo, which shows the continuous Feller
property of K, i.e. K Cy(E) C Cp(E). Let us now show that K is not Feller. Assume without loss of
generality that 0 € W. Consider the function f(z) = max(1 — [[z[],0)1,()=1, where we abusively write
|z|| := [|z1]| when & = {z1}, 1 € W. Note that f € Cy(E). Let B be a compact subset of E. From
Theorem [§] there exists ng > 0 such that B C U;° (E,. Choose y = {0,...,0} € E,,+1. Then y ¢ B
but K f(y) = 1 proving that K f ¢ Co(E).

Example [1] (continued) (death kernel): For the death kernel Ky of this example, we have
(i) KsCy(E) C Cy(E)
(ii) KsCo(E) C Cy(E) if W is compact, but not necessarily otherwise.
To prove the first property, take x € F, a sequence (CC(p))pZO converging to z, and py and (op)p>p, from

Proposition Then it is not difficult to verify that lim, w(xff’;)(i)yx(p)) = w(x;, x) by continuity of g.

Moreover, dy (a:(p) \m((fi)(i),m \ a:z) < 34 sz(ri)(j) —x||/(n—1) which shows that () \x(()_i)@ v \ 2.
Therefore, for any f € Cy(FE),

Jim K5/ () = lim (Z) wia! 2 ®) P\ )
n(z)
= Jim 3wl 2P )
n(z)
= w(zg, x) f(z\ x;)
=1
= Ksf(z)

Let us now consider the second claim (ii). Take f € Cy(E) and € > 0. We fix A a compact set of (E, d;)
such that |f(z)| < € for ¢ A. By Proposition |8 A C ;% E, for some ny. As a straightforward
consequence of Proposition [§] (see Corollary in Section of the supplementary material) the set
B = UZOZJBI E, is a compact set when W is compact and it satisfies K5(z, A) = 0 for = ¢ B. This
implies that for x ¢ B,

Ko@) < | [ @ Estw.dn)|+ | [ F0)Ks(wd)| < 1Ko, A) 4 Ko A <2, (13)

and so Ksf € Cy(E). Let us finally show that this result is not valid any more if W is not compact.
Assume without loss of generality that 0 € W and consider as in the previous example the function
f € Co(E) defined by f(z) = max(1 — ||z||,0)1,;)—1. Let B be any compact subset of E. Then
By = BN Ey is compact because Es is closed and by Proposition 8] for any = = {x1, 22} € Ba, there
exists R > 0 such that max{||zi|],|z2||} < R. Take y = {0,y2} in E5 such that ||y > R+ 1, which is
possible since W is not compact. Then y ¢ B but Ksf(y) = w(y2,y) proving that K f ¢ Co(E).

Example |2| (continued) (birth kernel as a mizture): For this example, we shall prove that if W+ o
and if the dispersion function v is continuous, then KzCy(F) C Cy(E) and KgCo(E) C Co(E). Take
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f € Cy(E), x € F and a sequence (z(P)),>( converging to x, from which we define py and (¢,)p>p, from
Proposition [7] We have, for p > po,

1 ) -
Kﬁf(m(p))zn(x)z ((p) e / FaP Ui}y (W) dg§

i=1 % p(3)? (
_ 1 Tf: Jra 1w($$,)(i) Jr”(x(p)(z‘)’ rP)Of (P U frg it ) ol ( DI ee)de
n(z) i=1 f a L ( (p)( ) +v(x (v )( i)’ 93( )5)%0(5)61‘5

By continuity of v, the involved indicator functions tend to Ly (z;+v(z;, 2)€) for any z;+v(x;, 2)€ € W.
On the other hand, for any i € {1,...,n(z)} and any &,

dy ( U{x(p +v(x (,,)(z 2P}, 2 U {x; + v(xi, @) 5})

1 Z (p) (p) (p) , ,
< ( ) + 1 ( H g'p _I ” + ||xgp(1 +U(xgp(i)’x )g_xl _/l)(xZ?"’U)é-H

PRSI (g ey = @ill + 1) = will + 1] fo(@P) 2) - m,x),)

which tends to 0 as p — co. So by continuity of f, f(z® U {:c(p + v(x ((fp)( zP)EY) tends to
flzU{z; +v(x;,x)€). We conclude by the dominated convergence theorem, since f is bounded and ¢
is a density, that Kz f(2()) converges to Kz f(z) as p — oo, which proves that KzCy(E) C Cy(E).
Let us now prove that KzCy(E) C Cy(E). Let f € Co(F) and € > 0. We fix A C E a compact set
such that x ¢ A = |f(z)| < e. By Proposition |8, A C U, E,, for some ng. Letting A4, = AN E,,
for n = 0,...,n0, we remark that A, is a compact set because E, is closed. By Proposition [§]
there exists R, > 0 such that for every a = {a1,...,a,} € Ay, maxj<p<y|lagl]| < R,. Let now
B, ={z € E,, X%, |lzkl/n < Ry} and B = U',! B,,. We can verify (see the proof of Proposition
that B,, is compact and so is B. We claim that if ¢ B, then Kg(x, A) = 0. Indeed, if Kg(z, A) >0
then Kpz(z,A,) > 0 for some n € {0,...,n0}, but since Kg(z,Ay) < Kg(z,{O}) = 0 it cannot be
n = 0. Now, for n =1,...,n9, Kg(z,A,) > 0 implies that z € £, and A,, C {zUx, 2 € W} since
Kg(x,WUz) =1. So maxi<g<p—1 ||| < Ry, whereby « € B,_;. This shows that if Kg(z, A) > 0
then z € B, as we claimed it. We deduce that for any z ¢ B, |Kzf(z)| < € as in (13).

Example |3| (continued) (birth kernel based on a Gibbs potential): This birth kernel Kz is both Feller
continuous and Feller, whenever the potential V' is continuous and locally stable. By the latter, we
mean that there exists 1 € L*(W) such that for any z € E, exp(—(V(z U &) — V(2))) < ¥(¢) (Moller
and Waagepetersen, 2004). Under these conditions, we can prove similarly as in Example [2[ that
K3Cy(E) C Cy(E) by use of the dominated convergence theorem and that KgCy(E) C Co(F). Note
that the examples of potentials considered in Section 5| leading to an invariant Gibbs measure, are
continuous and locally stable.

Example (continued) (Langevin diffusions as inter-jumps motions): The inter-jumps process (Y )¢>o0,
defined through the stochastic differential equation @, is a Feller continuous and a Feller process on FE.
This is due to the fact that g being globally Lipschitz, the function ®,, in @ is also globally Lipschitz
for any n > 1, and so the solution (Zt‘n)tzo of @D is Feller continuous and Feller (Schilling and Partzsch),
2012). The conclusion then follows from Proposition [9]

Example [5 (continued) (Growth interaction processes): In this example, the inter-jumps motion is
driven by . If the functions F1 p, ..., Fy,, are Lipschitz continuous, then (Y;)¢>¢ is Feller continuous
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and Feller. Indeed, the solution of is continuous in the initial condition Z(‘)n under this assumption
(Markley, 2004]), implying the Feller continuity of (Y;);>¢ by Proposition @ Moreover, since the marks
m;(t) in (Zt‘n)tzo are all increasing functions, we have that HZt‘nH > ||Z(|]nH Let f € Co(W™), e > 0 and
R > 0 such that ||z|| > R = |f(x)| < e. Therefore if ||Z(|)n|| > R, we have ||Zln|| > R and so f(Zln) <€,
proving that Zln is Feller and so is (Y;)¢>0 by Proposition |9}

4 FErgodic properties of birth-death-move processes

In this section we focus on birth-death-move processes as described in Section Accordingly, the
state space is E = (U,—y E,, where (E,,),>1 is a sequence of disjoint locally compact Polish spaces with
Ey = {0}, and the jump-kernel K reads as in . Remember that in this setting the jump intensity
function is a« = 8 4+ § where 5 and § are the birth and death intensity functions. We introduce the
following notation

Bn = sup B(z), 0p = inf 6(x) and o, = By + dp. (14)

2€E, zek,

We present in Section conditions on the sequences (3,) and (d,) ensuring the convergence of
the birth-death-move process towards a unique invariant probability measure. Section provides a
geometric rate of convergence and we characterize some invariant measures in Section [4.3]

4.1 Convergence to an invariant measure

Let (X¢)i>0 be a birth-death-move process as in Section Inspired by |Preston| (1975)), the first step
to establish the ergodic properties of (X¢);>0 is to construct a coupling between (X¢):>0 and a simple
birth-death process (1:);>0 on N with birth rates /3, and death rates d,,. This coupling is detailed in
Appendix |Al In a nutshell, we built a jump-move process C, = (X{,n;) so that the properties stated in
the following theorem are satisfied, in particular we have the equality in distribution (X/)i>0 = (Xt)t>0
and (1))>0 = (M¢)¢>0. We denote by Q; the transition kernel of C; and by P(N) the power set of N.

Theorem 10. Suppose that (Yi)i>0 is a Feller process and that KCo(E) C Co(E). Then for anyt > 0,
(x,n) €e ExN, A€ & and S € P(N) we have :

1. Qi((z,n); E x S) = ¢(n, S),
2. Qu((z,n); A x N) = Qy(z, A),
3. if x € E with n(x) < n, then Qy((z,n);T) =0 where I = {(y,m) € E x N; n(y) > m}.

This theorem is proved in Appendix When the move (Y;);>0 is constant, which is the setting
in Preston| (1975), then the proof is easy under by use of the derivative form of the Kolmogorov
backward equation. In the general case of a birth-death-move process, this strategy does not work
anymore and the proof becomes more challenging. We managed to do it by exploiting the generator of
(X¢t)t>0, see Theorem |§|7 which explains the Feller conditions in Theorem .

We deduce from the third point of Theorem [10| that for any x € E,, with m < n, then

P(%n) ((és)szo C FC) =1.

This means that the simple process (1:)¢>0 converges more slowly to the state 0 than (X;);>¢ converges
to the state . We can thus build upon the renewal theory (Feller, 1971)) to prove that () is an ergodic
state for (X;);>0 whenever 0 is an ergodic state for (1:);>0. Conditions ensuring the latter are either
or below (Karlin and McGregor, [1957)), so that we obtain the following, proved in Section .
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Theorem 11. Suppose that (Yz)¢>0 is a Feller process and that KCo(E) C Co(E). Suppose that 5, > 0
for alln > 1 and one of the following condition holds :

(7) there exists ng > 1 such that B, =0 for any n > nyg, (15)

(i1) Bn >0 for allm > 1, Zﬁ(g 5§1<ooadz 2 = 00. (16)
1- n

Then, p(A) = limy_oo Q¢(x, A) exists for all x € E and A € £, and is independent of x. Moreover
is a probability measure on (E,E) and it is the unique invariant probability measure for the process, i.e.
such that (A) = [ Qu(x, A) p(dzx) for any A € € and t > 0.

4.2 Rate of convergence

Based on the coupling given by Theorem [I0 and under the assumptions of Theorem [II] the rate
of convergence of (J; towards the invariant measure p follows from the rate of convergence of the
simple birth-death process n towards its invariant distribution. This is proven and exploited in Mgller
(1989) in the case of spatial birth-death processes (without move), based upon the coupling of |Preston
(1975). Since Theorem |10 extends this coupling, we deduce in the following theorem the same rates of
convergence as in Mgller| (1989)). The proof is readily the same and we omit the details.

Theorem 12. Suppose that (Y)i>o is a Feller process and that KCy(E) C Co(E). Let 1 and vz be
two probability measures on (E,E), such that one of the two following conditions holds:

no
i) holds true and for k =1,2, v (U En> =1, (17)
n=0
01...0p

(17) holds true and for k = 1,2 Z v (E W 0. (18)
n—1

Then there exist real constants ¢ > 0 and 0 < r < 1 such that for anyt > 0

sup
Aeé

[ @it apnlde) = [ @ity Ayl < '

Moreover when the condition holds, the constants ¢ and r can be chosen independently of v and k.

This result is declined into several particular cases in (Mpller}, 1989 Corollary 3.1), that are also valid
in our setting. In particular, when 7, corresponds to the invariant measure p obtained in Theorem [T}
and 9 is a point measure, the assumptions and simplify and we get the following corrollary.

Corollary 13. Suppose that (Yi)i>0 is a Feller process and that KCo(E) C Co(E). Assume either
or along with

Z ﬁn !5 and 3N >0, st.¥n>N, By < dpy1- (19)

n

Denote by u the invariant measure given by Theorem [I1. Then for any y € E, there exists ¢ > 0 and
0 <r <1 such that

sup |[(A) — Q¢(y, A)| < er.
Ae&
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4.3 Characterisation of some invariant measures

In general the invariant measure p of a birth-death-move process (X¢)¢>0, provided it exists, can be
a very complicated distribution that mixes the repartition in £ due to births and deaths of points,
including the probability to be in FE,, for each n, with the average distribution on each FE,, due to the
move process Y. In particular, note that according to Theorem Y does not need to be a stationary
process for (X¢):>0 to converge to an invariant measure. Heuristically, this is because the move process
is always eventually “killed” by a return to @ of (X¢);>0 under the hypotheses of Theorem

The situation becomes more intelligible when Y admits an invariant measure that is compatible
with the jumps of (X¢):>0, as formalised in the next proposition.

Proposition 14. Suppose that (Y):>0 is a Feller process and that KCo(E) C Co(E). Assume moreover
that there exists a finite measure p on E such that for any f € D 4v,

[E AY f(2)dpp, (z) =0, ¥n >0, (20)

and [ (@@)Kf@) - a@)f(@) dulz) =0, (21)
E

Then for any f € D v, /EAf(a:) du(x) = 0.

Proof. By Theorem [0}, for any f € D 4,

| AT @ du@) = [ (@@)K (@)~ al@)f @) dule) + [ A () du(a)
E E E
=3 [ A @) dus, @) =0

n>0
O

This proposition will be useful to characterize the invariant measure of the birth-death-move pro-
cesses considered in Section [5] Indeed, suppose that the hypotheses of Theorem [11] are satisfied. Then
(Xt)tzo converges to a unique invariant measure v. Suppose moreover that the pure jump Markov
process with intensity o and transition kernel K admits some invariant measure p, and that for any
n > 0, yg, is also invariant for the move process Y™ on E,. Then by Proposition (14| and the unicity
of v, we have that v = p.

5 Application to pairwise interaction processes on R

We present in this section examples of birth-death-move processes, defined through a pairwise potential
function V on a compact set W C R?, that converge to the Gibbs probability measure associated to
V. The specificity is that we make compatible the jumps dynamics with the inter-jumps diffusion, so
that Proposition [14] applies and allows us to characterize this Gibbs measure as the invariant measure.

When there is no inter-jumps motion, this type of convergence is proved in Preston| (1975)) and is a
prerequisite for perfect simulation of spatial Gibbs point process models (see (Mgller and Waagepetersen,
2004, Chapter 11)). However the weakness of this approach is that for rigid interactions (as for in-
stance induced by a Lennard-Jones or a Riesz potential, see the examples below), the dynamics based
on spatial births and deaths may mix poorly, so that the convergence to the associated Gibbs measure
may be very slow. Adding inter-jumps motions that do not affect the stationary measure, as carried
out in this section, may alleviate this issue.
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Let W := I} x --- x I; where, for i € {1,...,d}, I; is a compact interval of R. Define W, =
{(@1,...,zp) € (W)™, i #j = a # xj}. Asin Section we let By = {0}, E, = m,(W,,) for n > 1,
and E = J;2, En.

We consider a pairwise potential function V' : E' — R U {oo}, in the sense that there exist a > 0
and ¢ : R? — RU {oo} satisfying ¢(&) = ¢(—¢€) for all £ € R? such that for any z = {x1,...,2,} € Ep,

Viz)=an(z)+ Y ¢xi—x)),

1<i#j<n

when n > 2, while V({@}) = 0 and V({¢}) = a for £ € W. Let ¢ : (0,00) — Ry be a decreasing
function with ¢g(r) — oo as r — 0. We will assume the following on ¢.

(A) The potential is locallly stable, i.e there exists ¢ : W — R integrable such that :

Vn>1,Vee E,, VE€ W, exp (—Zn:gb(xl —f)) < (§).
i=1

(B) ¢ is bounded, or otherwise there exists 71 > 0 such that ¢(&) > ¢o(||€]|) for all ||£]| < r1.

(C) ¢ is weakly differentiable on R\ {0}, exp(—¢) is weakly differentiable on R? and for any p > d
we have e V¢ € LV

loc*

Let us present some examples of pairwise potentials ¢ that fulfil these assumptions. These are standard
instances used in spatial statistics and statistical mechanics.

Example. (repulsive Lennard-Jones potential): For &€ € RY, ¢(€) = ¢||€]| 72 with ¢ > 0. This potential
verifies condition with ¢ = 1 and condition It is moreover differentiable on R%\{0} and for
any ¢ € RA\{0}, Vo(¢) = —12¢£/||€]|*. We deduce that the function e"?V¢ can be extended to a
continuous function on R? by setting (e"?V¢)(0) = 0. As a consequence the condition is satisfied.

Example. (Riesz potential): Tt is defined on R?\{0} by ¢(&) = ¢||€||* ¢ for ¢ > 0and 0 < a < d. As
in the previous example, we obtain that ¢ satisfies the conditions |(A)] and

Example. (soft-core potential): $(&) = —In (1 — exp(—c||¢]|?)) for ¢ > 0. Again this potential ver-
ifies condition with ¢ = 1 and condition |(B)l Moreover, we compute for ¢ € R¥\{0}, V(&) =
—(2ce=lEIy(1—eelEl*) ¢, As V()] ~ 1/(c||€]]) as ||€]| = 0, we also obtain that the function e=?V¢
can be extended to a continuous function on R? and condition follows.

Example. (reqularised Strauss potential): For R > 0 and 7 > 0, the standard Strauss potential
corresponds to ¢(§) = v1|¢<r- We consider a regularised version by introducing a parameter 0 < e <
R, so that ¢(§) =~y if ||§]| <K R—¢, ¢(§) =0 if ||£]| > R+ ¢, and ¢ is interpolated between R — ¢ and
R + ¢ in such a way that it is differentiable. With this regularised version, ¢ satisfies the conditions
(A)| with ¢ = 1,|(B)| and

Based on a potential V' as above, we construct a birth-death-move process (X;);>o with the following
characteristics. The birth transition kernel is given as in Example [3 by

1
Kalz. A - —(V(@U§)-V(x)) q

5('1:’ U$) Z(iE)Ae 57
for any € E and A C W, where z(z) = [ exp(—(V(z U &) — V(x)))d{. Note that by the local
stability assumption |[(A)| z(x) < oo for any x € E. The death transition kernel is just the uniform
kernel, a particular case of Example [T} i.e.

—~

1 n(z)
Ksf(x) = —— > fla\z)

n(z) &=

.
Il

16



for any f € My(E) and & = {z1,..., %, } € E. For the birth and death intensity functions, we take

G _
B(z) = n@) V1 and  0(z) = 1y()>1,

for any z € E. Finally, for the move process, we start with the following Langevin diffusion on W

dz) = - Ve(2Z" — 2]")dt +V2dB,;, 1<i<n,
i#i

with reflecting boundary conditions (Fattler and Grothaus, [2007), and we deduce the move process Y
on E as in Example [4

Proposition 15. The birth-death-move process (X¢)i>0 defined above is a Feller process and converges
towards the invariant Gibbs probability measure on W with potential V', i.e. the mesure having a density
proportional to exp(—V (x)) with respect to the unit rate Poisson point process on W.

Proof. First note that by the local stability assumption B(z) < e ¢||¢|1/(n(x) V1), where ||¥|1 =
Jw ¥(&)dE, so that a(x) = B(x) + d(x) is uniformly bounded as required by .

Under the assumptions and Fattler and Grothaus| (2007)) proved that the process (Z,ln)tzo
is a well defined Markov process on W,, and it is a Feller process. By Proposition |§|, Y is then a Feller
process on E. On the other hand the jump transition kernel K given by (4) satisfies KCo(E) C Co(E),
as verified in Examples [I] and [3] in Section [3.3] since W is compact. We thus obtain by Theorem [5] that
(X¢t)t>0 is a Feller process. Moreover, by we have that for all n > 1, £, < e ¢||¢/1/n, so that
is verified. All assumptions of Theorem [11] are satisfied, which implies that (X;)¢>0 converges to
a unique invariant probability measure as t — oo.

It remains to characterize this invariant measure. The choice of 3, §, Kz and Ky satisfy the
conditions of (Preston, 1975, Theorem 8.1), see also (Mgller and Waagepetersen, 2004, Chapter 11),
which implies that the invariant measure p for the birth-death process (without move) having the
previous characteristics is the one claimed in the proposition. We deduce that holds true. On the
other hand, Fattler and Grothaus (2007)) proved under and that (Zt‘n)tzo converges towards
the invariant measure on W, with a density (with respect to the Lebesgue measure) proportional to
exp(— D1<izj<pn ¢(@i — x5)). After projection on E,, this means that follows, with the same
measure 4 as before. Proposition [14] then applies and p is the invariant measure of (X;):>o. O

A Appendix: coupling of birth-death-move processes

A.1 Construction of the coupling

We start from a birth-death-move process (X;);>o as defined in Section We consider a simple
birth-death process (1¢);>0 on N with birth rate 3, and death rate &, given by (14). Note that (1:):>0
can be viewed as a birth-death-move process on N having a constant move process y; = yo, for all £ > 0.
We denote by (;);>1 the jump times of (1;)i>0 and by n; := 3,51 14,<¢ the number of jumps before
t > 0. We also denote by ¢; the transition kernel of (n:)¢>0, i.e. ¢(n,S) = P(n: € S|no = n) for any
n € Nand S € P(N).

We define the coupled process C = (X’,n') as a jump-move process on the state space E=FExN
equipped with the o—algebra E=€E® P(N). Denoting by d the distance on F, we also equip E with
the distance d((z, k); (y,n)) := d(x,y) + |n — k|/(n A k)1,k20. To fully characterize C, we now specify
its jump intensity function ¢, its jump kernel K and its inter-jump move process Y.
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The intensity function & : F x N — R, is given by

« ) B(x)+(x) + B+ 0n if v € Ep,, m #n,
&ern) = { Bu + 8() if 2 € By

One can easily check that & is a continuous function on E, bounded by 2a*.
The transition kernel K : ' x & — [0, 1] takes the same specific form as in |Preston, (1975):

1. fze By, m#n:

K((z,n); A x {n}) = do(‘fi)mx,m;
R((om: o) x fn+13) = g0
K((z,n);{z} x {n —1}) = d(i’?n).
2. fx e By :
R((oan)i A x {n 1) = 2050 Ko A )
R((won)i (o} x (-4 1) = 20,
K((z,n); Ap—y x {n—1}) = &(ifn) Ks(x, An_1);
R((2,n); Au_sy x {n}) = WKg(x,An_l).

The inter-jump move process Y is finally obtained by an independent coupling of (Y;)¢>0 and (y¢)¢>0,
specifically its transition kernel Q) is given for any (x,p) € Eand Ax S €& by

QY ((2,p); A x 8) = P(V € A x S|Vg = (x,p)) = P(Y; € AYy = 2)15(p) = Q) (2, As(p).  (22)

This means that Y; = (Y/,y,) = (Y/,y}) for any t > 0, where (Y/)i>0 and (y})s>0 are independent
and follow the same distribution as (Y;):>0 and (y¢)r>0, respectively. Since Y is a continuous Markov
process for the distance d, we can choose a version of Y’ such that Y is also continuous for d. Remark

moreover that (Y/%)tzo satisfies
P((Ye)i>0 C En x {k}| Yo = (2,p)) = 1k, (2) 14=p, Yz € E, ¥n > 0.

Given @, K and Y as above, the jump-move process C is well defined and can be constructed as in
Section We denote by () its transition kernel, by (7});>1 its jump times and by N; 1= 37,5 1ij .
the number of jumps before ¢ > 0. We also set 7; = TJ — Tj,l. The fact that C' defines a relevant
coupling of X with 7 is the object of Theorem [I0}
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A.2 Proof of Theorem [10]

To prove the first point of the theorem, we use the following results, proved in Section of the
supplementary material. Fix (z,n) € E x N and ¢ > 0, and let

et €Ry = Qu(z,n), E x {q}).
Lemma 16. For any (z,n) € E x N and g > 0, 1, is a continuous function.

Lemma 17. For any (z,n) € E x N and q > 0, ¢ is right differentiable and satisfies :

0
5 Yat) = —0g¥q(t) + o1 g1 (t) + Gg1 g4 (1):

Corollary 18. For any (z,n) € E x N and ¢ > 0,

Yq(t) = 1g(n) + /Ot (—ag¥q(s) + Bg—1¥g-1(8) + 011 ¥g+1(s)) ds

and in particular 14 is differentiable.
Let now ws(z,n) = Qu_s(1p x qslgqy)(z,n) for s € [0,¢]. Then using Corollary we have:
Lemma 19. For any (z,n) € E x N and ¢ > 0, s — wy is differentiable on [0,t] and Ows/ds = 0.

Since wo(z,n) = Qi((x,n); E x {¢}) and wy(z,n) = q;(n,{q}), Lemma [19| entails that these two
quantities are equal. The first part of Theorem [10] then follows from the decomposition:

qi(n, ) = th(n, {a}) = Z Qt((x7n);E x{q}) = Qt((x7n);E x S).

q€eSs qeS

We turn to the proof of the second point of Theorem [I0] Similarly as for the first part, it is based
on the following results proved in Section For (z,n) € E x Nand f € Cy(E), we set

byt € Ry Qu(f x In)(x,n).

Lemma 20. Suppose that (Yi)i>o is a Feller process. Then for any (x,n) € ExN and any f € Cy(E),
WYy is a continuous function.

Lemma 21. Suppose that (Y;)i>0 is a Feller process and that KCy(E) C Co(E). Then for any (z,n) €
E x N and any f € Dyv the function 1y is right-differentiable and satisfies :

0
a%?/}f(t) =Paf(t), (23)
where A is the infinitesimal generator of X given by Theorem [6]

Corollary 22. Suppose that (Yi)i>0 is a Feller process and that KCy(E) C Co(E). Then for any
(x,n) € ExN and any f € Dyv,

ur(0) = 5@ + [ asls)ds, 24

and in particular the function vy is differentiable with derivative corresponding to .
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By the Dynkin theorem, the second point of Theorem [10|is implied by the equality Qt((aj, n); U x
N) = Q¢(z,U) for any open set U C E, or equivalently

Qu(g x 1n)(z,n) = Qu(9)(x) (25)

for g = 1y7. We first prove for g € D 4v, second for g € Cy(E), before getting the result for g = 1.

Let g € D 4v and for s € [0, t], define vy(z,n) = g, 4(t—5) = Qi—s (Qs9 % 1n) (x,n). We shall prove

that s — v, is differentiable with v, = 0. For any h € R, write (vsyp(z,n) —vs(x,n))/h = A1+ As+ As
with

Av =3 (Vaunalt =5 = W) = bauglt =5 = 1)) = aqualt =5 — h),
A2 = w-Ang(t —S5— h‘) - ¢Ang(t - S)’

1
Ay =5 (VQug(t =8 —h) —1q,q(t = 8)) + Yaqg.q(t — 5).

We know by Theorem |§|, with LY = Cy(E), that Dy = Dy and since QsD4 C D4 (Dynkin, 1965,
Chapter 1, §2), we deduce from Corollary 22| that Az tends to —09g 4(t —s)/0t + 1Y aq.4(t —s) =0 as
h — 0. Regarding As, note that Qsg € D 4 implies that AQsg € Co(E) (Dynkinl |1965, Chapter 1, §2),
so that Lemma 20| applies and Az — 0 as h — 0. Concerning A, using the linearity of ¢;(¢) in f, we
can write

|A1| = 1Y@, n—00)g/h—AQsg(t = 8 = )| < [[(Qsn — Qs)g/h — AQs9 |l
which also tends to 0 as h — 0 (Dynkin, 1965, Chapter 1, §2). We therefore obtain that v, = 0 and so
vi(z,m) = (Qrg X 1n)(x,n) = Q(g X 1n)(z,n) = vo(x,n), proving when g € D 4v.

Now let g € Cy(E). By our assumptions and Theorem 5 (X¢)i>0 is Feller, which implies that
Co(E) = D 4 (Dynkin, [1965). So there exists a sequence of functions (g,)p>0 in D 4v so that ||gy—glleco —
0 as p — oo. The two linear operators f € My(E) — Qi(f X 1y) and f € My(E) — Q(f) being
bounded, we can take the limit in when applied to g, to get the same relation for g € Cy(E).

Finally take U C F an open subset. Then define for any p > 0 the function

d(x, E\U)

(z, E\U) 4 d(z,U,)’

where U, = {y € E, d(y, E\U) > 1/p}. Then ¢, € Co(F) for any p > 0, and for any x € E we have
¢p(x) — 1y(z) as p — oo. Taking the limit we obtain by the dominated convergence theorem the
relation for g = 1y, concluding the proof of the second statement of Theorem

We finish by the proof of the third point of Theorem Let x € E and n € N such that n(xz) < n.
We show by induction on k£ > 0 that P(x,n)(cfk el) :VO. If £ =0, then P(x,n)(cjb €l) =1 ner =0.
Suppose next that there exists k > 0 such that P(m)(on eI') =0, then

Cr, (th(k))po ’%k“)

¢p:x€E»—>d

v

Pl (Cryy, €T) = En) | Bz (1%“@

~ ~

(k)
+ E(en) [K (Y%,M,F) 1.0 ercl

Th+1

k) EF] (by definition of K)

e, er} (for any ¢t > 0, C’Tk els )V/;(k) el




which proves the induction step. To conclude, recall that P(x’n)(]\vft < o0) = 1 and notice that due to
the form of I’ one has {C; € I'} = {C’T € I'} for any t > 0. Then
Ny

Qt((az, n); F) = ]P(x,n)(ét S F) = P(m’n)(éfﬁt S P) = Z P(xvn)(éiﬂk S F,Nt = k) = 0.
k=0
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Supplementary material: proofs and additional results

This supplementary material contains the proofs of some results of the article. It also describes some
topological properties of the space E' endowed with the distance d; in the case of interacting particles
in R%, as introduced in Section All numbering and references in this supplementary material begin
with the letter S, the other references referring to the main article.

S-1 Proofs of Section [2.3] about the Kolmogorov backward equation
S-1.1 Proof of Theorem [1I
On the one hand, for any x € F,t >0 and A € &,
P.(X: € A, > t) = Ex(1x,ea 1r>1)
= Eq [Ea(Lx,ea Lr st (V{)ux0)|

= Ex _Eac(lyt(O)eA ]-7'1>t|Y(0)):|

=E, _1Yt(0)€A E$(171>t |Y(O) )}

[ t (0)
_ - f a(Yy ') du
=E, 1Yt(°)eA e Jo ]

=E} |ly,eae” b “(Yu)d“} . (S26)
On the other hand, by construction of the process
Ex[1x,ealFr|ln<t = Qt—r (Xry, A)1r <t
where Fr, ={F € F: Fn{n <t} e F, Vt >0}. Then
Py(Xy € A,m < t) = Eo[Eo[1x,eaFr]1n <]
= By [Qt—r, (X7 A) 17, <]
= EalEo[Qi-r, (Xry, A)Lry<olr, YO

= Em / K(Y7-(10)7 dy)Qt—ﬁ (y7 A)1T1 St:|
L/yeE

—E, By / KO dy)Qr (y,A)lTlSt\Y(O)ﬂ
L Yy

B[ [ KOO.a)Qs( Aa(r e o0 gy
yekE

= [ ] @ty A, [K (v, dy) a(v)e 0] g,
- / / Qes(y, AEY [K (Y, dy) am)efosa‘md“] ds. (527)

The result then follows gathering (S26)) and ( -

S-1.2 Proof of Proposition

The proof is made up from Lemmas [S23] [S24] and [S25| the approach being similar to [Feller| (1971)). In
Lemma we built a solution Q¢ o (z, A) of (9] for any x € F and A € &, while Lemmas and
will imply the unicity of the solution.
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Lemma S23. For allz € E and A € £, the function t € Ry — Q¢ oo(x, A) is a solution of .

Proof. We will proceed as in the proof of Theorem (1| First
t
Po(X; € A, Tpyr > t,1 > ) = Bo(Xy € A,y > 1) = EY |1y,eqe Jo @) ]
Secondly, if the process jumps once before ¢ (at time 71) and is in A at time ¢ with at most p+ 1 jumps,

the process has at most p jumps after the time 7. By construction of the process, the law of X; given
X7, is the same as the one of X;_, given Xg = X;,. We then obtain

Ex[lXt€A171§t<Tp+1|]:ﬁ] = Qt—n,p(Xﬁ’A)lnSt-
This leads to

PJ:(Xt € A7 Tp+1 > t7 71 < t) = EJJ [Qt—7'1,p(XT17A)17'1§t]
EI[Qt—n,p(XTUA)lﬁﬁt‘Y(O) T H

= E,|
“Eol [ Qinply ALKV, dy)
yer
=E; [EE [/EE Qt—ﬁm(ya A)]'TlStK(YT(l())’ dy)|Y(O)H
y
t — fs a(Y(O)) du
= B / L Qrsp( Aln K (VY dy)a(Y e o ]
—/ /QtWy, ! i) are ] ag
We then obtain the induction formula
Qs A) =B [tyeae™ b0 o [0 Qo A)BY [K (Vi) a(vige o200 as
This leads by monotone convergence to
Qt,oo($7A) = |:1Yt€Ae fo a(Yu)du] / / Qt 8,00 ya )E { (}/;ady) ( )e_ fos a(Yu)du} dS.

O

Lemma S24. Q;  is called the minimal solution of in the sense that for any non-negative solution

Q: of , we have Qr > Qt 00-
Proof. Let Q; be a non-negative solution of . Then for any z € E and A € £

R

We then proceed by induction. If @ > Q¢ , then

Qular, ) =B [Lyicac™hi o090 4 //@s% YK () ave o094 gy

> Y |Lyeqe b0y / [ @l AEY [ K (Yeydy) a(ve o002 as
= Qtap“’l(x’ A)
Finally Q¢(z, A) > Q¢ p(x, A) for every p > 1 and the result follows by letting p go to infinity. O
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Lemma S25. The minimal solution Qi is stochastic, i.e. Q¢ oo(x,E) = 1.

Proof. Recall that « is bounded by a* > 0. It is then enough to show by induction that Q,(z, E) >
1—(1—e P for any p > 1. First

t t
Qt,1($7E) _ E}y/ []-YtGE o fo oc(Yu)du] _ E;/ [e— fo a(Yu)du} >, (e—a t) — o "t
Then notice that

T

t
P.(r <t)= EY [1 e IN a(Yu)du] <1t

We then obtain by induction

t

_ t S
Quprr(2.B) =EY |Ly,epe a(yu)du} + /0 /E Qi—sp(y, AE; {K (Ya,dy) a(Yy)e Jo am)du} ds
- . ' )
2B ol [ (1@ ) BY | [ K (ady) avge ko004 s
L 0 E
S t S
>EY e Q(Y“)d“} + / (1- (- EY {a(Ys)e— Jy a(mdu} ds
L 0

=Po(ri > 1)+ (1 (1—e ") Pu(my <)
=1 —(1—e )P, (ry <t)>1— (1 —e @ HPHL

O

By bringing together the last three lemmas it does not take long to prove Proposition[2] By Lemma
Qt,00 1s a solution of ED We now prove the unicity. Let @+ be a non-negative sub-stochastic
solution of (B]). Lemma [S24] entails Q(x, A) > Qi o0(z, A) and Qi(z, E\A) > Qo0(z, E\A) for every
A € £. We get then

1> Qu(z, B) = Qiz, A) + Qu(z, E\A) > Qt oo(7, A) + Qro(z, E\A) = Qp0(z, ) = 1
by Lemma s0 Qt(x, A) = Qto0(x, A) for every A € £.

S-1.3 Proof of Proposition

We first show that @ () is a solution of . Let n > 0, x € E,, and p > n. If there is no jump before
t, then
Po(Xt € A, >, Vs € [0,t] n(Xs) <p) =Pu(Xt € A, 11 > 1).

By construction of the process, if the first jump before ¢ is a death,
P.(X¢ € A, Vs € [0,1] n(Xs) < p|Fr, a death occurs at 71) = Qy_r, () (Xr, A),
and if the first jump before ¢ is a birth,
P, (X; € A, Vs € [0,t] n(Xs) < p|Fry, a birth occurs at 71) = Q¢—7, () ( X7y, A)1p>n.

Following the same computations as in the proof of Theorem [I] we obtain
t
Qt7(p) (1.7 A) - E{ |:1Yt€A ei fO a(Yu) d’l.t:|
t S
—l—/o /E Qi—s,p)(y, A) Ey {5 (Ys) Kp (Ys,dy) e~ I a(Yu)du:| as1,.
n+1

t S
* / / Qrsr) (0 A By [5 (Y2) K5 (Yo dy) e~ Jo o0 g
0 En_1

and Qy (o) (7, A) satisfies by continuity of the probability. The proof is then complete thanks to the
unicity of the solution to .
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S-2 Proofs of Section about Feller properties

S-2.1 Proof of Proposition

Both results of the proposition are based on the following calculation, for any f € M°(E):

Quf (@)~ o) = BY [£(30)e o009 f(0) 4 B, [£(X) Ly
— QY f(@) ~ f@) + EY [ £(30) (e~ h o094 1) | 4 B, [F(X)1noa).

The last two terms goes uniformly to 0 when ¢ — 0. Indeed,

<[ flloo™t + | fllooPe (N > 1)

= [|£llso0*t + || flocEY [(1 —ef“ta(yu)duﬂ

< 207t][ f]loo-

B [£) (e h o0 1) | 4 B, (X)L

So we obtain directly the second point of the proposition. For the first point remark that when
f € Cy(E), by continuity of f oY and the dominated convergence theorem, lim;_,0 Q} f(z) = f(z).

S-2.2 Proof of Theorem |5/ (part 1)

The proof of the Feller continuous property of (X¢):;>o is based on the following Lemma that
exploits the Feller continuous property of Qf, and on Lemma which in addition makes use of the
Feller continuous property of the jump kernel K.

Lemma S26. Assume that for anyt > 0, QY Cy(E) C Cy(E). Then for anyp > 1, fi1,... f, € Cp(E)
and 0 <ty < -+ < t, the function x — EY [f1(Ys,) ... fp(Y2,)] is continuous. Furthermore, for any

t
f € Cy(E) the function x — EY [f(Y;)e™ Jo o) du] s continuous.

Proof. To prove the first statement, we proceed first by induction on p > 1. Since z + EY [f1(Y3,)] =
Q1 fi(z), the property is satisfied for p = 1 because @} Cy(E) C Cy(E) for any ¢t > 0 by assumption.
Suppose now that the property is true for some p > 1. Let f1,..., fp41 € Cp(E)and 0 <t < -+ < tpyy.
Then

EY [A(Y0) - forn (Vo)) = BY [EX (AOR) - fora (V) [Yars - Vs, )|
=Y [A(Y0) - Fp(Vi JEY (foi1 (Yo )IY3,)]
=B [A0) . (V)@ o, o1 (V)]

The function f, x Q%; ity fp+1 is continuous by assumption so we can apply the induction hypothesis.

25



Regarding the second statement of the lemma, let us take f € Cp(E) and t > 0. We have

100 Y C ([ o an)

k>0 j=1
DS
=y / / EY [f(YD)a(Ya,) ... a(Ye)] dus ... duy
k>0 . u1=0 u=0
which is valid because f x o is bounded. For any u; > 0,...,u; > 0, the function z € E

EY [f(Yi)a(Yy,) ... a(Yy,)] is continuous by the first part of the proof and this expression is bounded
uniformly in z by ||f|l x (a*)* € L'([0,#]*). Again, by normal convergence, we obtain the expected
result. O

Lemma S27. Assume that Q) Cy(E) C Cy(E) for any t > 0 and that K Cy(E) C Cy(E). Let t > 0.
Then for any k > 1, for any bounded measurable function ¢ on E x Ry such that ¢(.,u) is continuous
for any u < t, the function x — E;[p(X1,, Ti)11,<t] i continuous.

Proof. We shall proceed by induction. For k =1,
Eelo(Xry, Tl <t] = Eollry <t Eulp(Xry, TV, Th]]

_ Ex[/ K(YT(O), dz)o(z, T1) 17, <)

— B[ || BLAK(YS d2)o(z, T <ol YO
—ul [, [ K KY,:EO%dz oz tr)a(V, e o' a0 b g
_/ EY [H (Y, t)a(Ye)e b @0 4] 4y,

where H(z,u) = [ K(x,dz)p(z,u). Since z — ¢(z,t1) belongs to Cy(E) for every t; < t, the Feller
continuous property of K entails the continuity of z +— H(z,t;) for every ¢; < t. Consequently the
function

7o EY [H(Y:,, t)a(Yy, ) o' o000

is continuous for every t; by Lemma The functions H and « being bounded, the dominated
convergence theorem yields the continuity of z — E;[p(X7,, T1)17,<¢], proving the statement for k& = 1.
Assume now that the property holds for k£ > 1. We compute similarly

[ (XTk+1’Tk+1)1Tk+1<t /K Tk+1 Ty dz)e (ZaTk+1)1Tk+1St‘ka’Y(k)”

t—T}, ’
) [/0 /EK(YT,dz)cp(z,T + T)a(Yr)e I a(Yu)du]lTkgt]
= E.[6(Xmy,, Te) 11, <),

T []E}/(T
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where

plo.w) = B[ o [ KO dz)ote + wa(vie 20 ar)

t—u

— Ef[H(YT, T+ uw)a(Y,)e” I a(Yu)dU] dr.
0

By Lemma x = EY[H(Y;, 7+ u)af e Jo @ Y“)d“] is continuous for each w, 7, so ¢(.,u) is con-
tinuous for every u < t. We then obtain the result applying the induction hypothesis. OJ

We are now in position to prove the first part of Theorem [5| about the Feller continuous property
of (X¢)e>0. We compute for ¢t >0, z € E and f € Cy(E)

o0

Qif () = > Eulf(X1)1n,=1]
k=0
= E [ fO Yu du —|— ZE Xt 1Tkz<t<Tk+1]
k>1
x t + ZE Xt 1Tk+1—Tk>t Tlek<t]

k>1

where ¥ (z,t) = EY [f(Y;)e “Jye Y“)du] We get from Lemma [S26| that (., t) belongs to C(E) for every
t > 0. Then

k
E.[f(Xe)17 —Ty>t-1 11p<t]) = Ez[lTkgtf(Y;(_%“k) E.[17 1o >t-1 | FT30» Yo

_ t*Tka (k) u
= B, [f(V %) )e Jo el dug, (528)
_ thkOé u
= Eu[Ex,, [f(Yi-n)e Jo otduy g ) (529)

so Lemma entails that x — E [¢)(X7,,t — 1)) 17, <] is continuous for every k > 1. The domination

’Em[w(XTkat - Tk)lTkgt” < Hf”oopw(Tk < t)
< [[fllocP(N; = k)

where N*t ~ P(a*t) (by (3)) allows us to conclude that z — Q. f(x) is continuous.

S-2.3 Proof of Theorem [5| (part 2)

Our aim is to prove the Feller property of (X;);>¢ assuming that for every ¢ > 0, QY Co(E) C Co(E)
and that K Cy(E) C Cy(FE). We follow the same steps as for the proof of Theorem [5| (part 1), by first
inspecting the consequences of Q) Co(E) C Co(E) in Lemma and second the additional effect of

K Cy(E) C Cy(E) in Lemma [S29
Lemma S28. Suppose that for everyt >0, Qf Co(E) C Co(E). Then

1. for any f € Co(F), limyo HQ}E/JC — flloo =0,
2. for any t >0, supsc(oy QY Cy(E) c Cy(E),

t
3. for any f € Co(E) the function x — EY [f(Yi)e™ Jo o) du] e continuous.
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Proof. By continuity of (Y;):>0, %in% QY f(x) = f(x) for every f € Co(FE) and every x € E. As proved
- —

in Revuz and Yor| (1991), this is equivalent when Q) Co(E) C Co(E) to limy_o ||Q) f — f|leo = 0, which
proves the first statement of the lemma.

Concerning the second property, let € > 0 and f € Cy(E). Fix n(f) > 0 such that for every s < n(f),
1QY f — flloo < € and s(z) € [0,] satisfying SUPefo,4] QY f(z) = Qz/(m)f(x). Then we have

Qlansiwyey f(2) £ max QY% f(z) < sup QY f(x).
2" k=0,...,2% " 27 s€[0,t]

=U,...,

So

sup Q) f(z) — max Qi f(x)| <|sup Q) f(z) = Qlansiryen f(2)
s€[0,1] k=0,...,2 27 s€[0,4] om

= Qi) f(x) — Q‘{z"séi)/mf(x)

Ql(znséﬁ)/tjt (st(x)_ |_2"32(£)/tjt f(z) — f(x))‘
QY

s(m),%f—f“oo

IN

<e

whenever 127" < n(f). This leads to lim,—ec || SUPsepo QY f — maxj—o, .20 Qo flloo = 0. Since
maxg—o,. . 2n taz,nf € Cy(E) for f € Cy(F) by assumption and Cy(F) is a closed subset of M;(E) for
[-/loos we deduce that supejo g QY f € Cy(E).

We finally prove the third point of the lemma in a similar way as in the proof of Lemma [S26] First
we show by induction on p > 1 that for any ¢ > 0 and 0 < u; < --- < w, <t and f € Co(E) the
function z — EY [f(Yi)a(Yy,) ... a(Yy,)] is in Co(E). Indeed for p =1

E. [f(YDa(Yay)] = Ex [0(Yar)Eo [f(¥0) | Fur)] = Bz [a(Ya) Q1 f(Yar)| = Q1 (@ x Q1 f) (@)

and QZI (a x QY f) € Cy(E) by assumption. For the induction step we just write

t—uy

E} [F(YDa(Ya) - alVe,)a(Yiy)] = EY [al(Ya) - a(Va, ) (@), f 5 @) (Y )]

that is in Cy(F) by assumption and the induction hypothesis. We then obtain the continuity of the
function )
2= EY [f(Y)e Jo 200

similarly as in the proof of Lemma O

Lemma S29. Assume that for everyt >0, QY Co(E) C Co(E) and that K Co(E) C Co(E). Let t > 0.
Then for every k > 1 and all g € Co(E), x — Ey[g(X1, )11, <t| vanishes at infinity.

Proof. Let us prove the result by induction. For k£ =1,
t s
Eulg(Xn) i al| = | [ EKg(a(v)e hr o092 as

<o [ "EL[Kg|(¥)]ds

< a’t sup QY Klg|(x).
s€[0,¢]
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Since K Co(E) C Co(E), the function K|g| belongs to Co(E), so supycjoy QYK|g| € Co(E) by
Lemma This entails in particular that x — E;[g(X7 )17 <] vanishes at infinity. Let now k& > 1
and assume that  — E;[g(X1,)17,<¢]) vanishes at infinity. We compute similarly

E,[g(X7,,,)1 _EEY ([ k(v Ya)e Jo ¥ dupg
elg(Xn Nna <] = BalBx [) 0 | K (Y5 d2)g(z)a(Ys)e o 7<)
and
t
Bulg(Xr. )y, ]| < 0 Baligy, || Klgl(V,) sl
t
= "Bl | QY Klg|(Xr,) dslr, <
< o™ tE, | sup QY K|g|(Xp,) 17, <.
s€[0,t]

Since sup,¢o QY K|g| € Co(E), the result follows from the induction hypothesis. O

In order to prove Theorem [5 (part 2), first remark that z — @, f(z) is continuous for f € Cy(E) and
any t > 0. This follows by the same arguments as in the proof of Theorem | (part 1) taking f € Co(E).
Indeed, using the same notation as in the proof of Lemma we obtain that the function H(.,u)
belongs to Cp(F) for any v < ¢ by the assumption K Cy(E) C Cp(E) and Lemma (item 3.). The
conclusion of Lemma [S27] then follows by the same proof, using Lemma [S28] instead of Lemma [S26]
Similarly, the proof of Theorem [5| (part 1) with the same substitution entails that Q;f € Cy(E).

The strong continuity of @, follows by Proposition [4 and the first statement of Lemma [S28]

It remains to prove that z +— @Q;f(x) vanishes at infinity. By the same decomposition of Q. f as in
the proof of Theorem [5| (part 1), we obtain using in particular that for any j > 1

i
|Qef(2)] < QF £1(2) + ) Eqf sup, Q1 1f1(X7)1m,<e] + | FllocP(NF > j) (S30)
k=1 Se,

where N; ~ P(a*t). Let ¢ > 0. First, Q) |f| € Co(E) by assumption, so that Q) |f|(z) < /3 for z
outside a compact set. Second, since lim;_,o P(IN > j) = 0, there exists jo > 1 such that || f||ccP(N; >
j) <e/3. Third, Lemma entails that for every k < jo the function

z By sup QY |f|(X1,)17, <]
s€[0,t]

vanishes at infinity because sup,c(o QY |f| € Co(E) by Lemma [S28] It is therefore bounded by €/7jo
for x outside a compact set. Combining these three results in (S30|) concludes the proof.

S-3 Proof of Theorem [6] about the infinitesimal generator

Let f € L}, x € E and h > 0. We decompose +(Qnf(z) — f(z)) as

1

7 (@nf(@) = £() = 3 (B [ 0™l =09 = f(a) 4 B [0 L] + B [F(Xn)L22))

_ E;f {f(yh) — f(=)

3 } +T(x),
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T(z) = —%Exy lf(yh)/oh a(Yy,) du| + %EIY lf(Yh) (e Jyaaydu _ /Oh a(Yu)duﬂ
+ %Ex [f(Xp)1n,=1] + %Em [f(Xn)1n,>2] . (S31)

To prove the theorem, we thus need to show that for any f € LY

sup [T(z) + a(x) (x) = (@)K f(@)] ;0.

Following (S31)), we denote T'(z) = T1(z) + Ta(x) + T3(x) + T4(z) and we shall prove that

Ty(x) + 0, $32

jgg' 1(7) + a(x) f ()] o~ (S32)
f}elg |To ()| h—\f] 0, (S33)

sup T3(z) — o) K f ()] 0 (S34)
Ty(z)| —s 0. S35

sup |T(a)] . (535)

For (S32), we compute for h > 0 and x € F,

1 h
Ty(x) + a(2)f(z) = a(z) f(z) — 7B [f(Yh)/O a(Yy) dU]

h
1 h
= E) [a(z)f(z) — f(Yn)a(Ya)] du
0
1 h

1 h

=5 | Y o@)f (@) - Qi f(Vu)a(Ya)] du
1 h 1 [h

=7 0 E} [a(2)f(2) = f(Ya)a(Yy)] du+ E/O E; {f(Yu)a(Yu) - Q%—uf(yu)a(yu)} du
1

h 1 h
=5 [ (Fxa=Qiux ) @aut g [TEX [atvi) (7 - @1us) (1) du
! Y Ty Y
= | (Fxa-Qi(f xa)) @) do+ /0 E} [a(Yin) (f = QNanf) (V)| dv.
So,
1 1
Ti(e) + @) /@) < [ 1@ (7 x @) = f x allaedo+a® [ 1@Fu-0f = Fledo
0 0
that does not depend on x € F and converges to zero when h N\, 0 by the dominated convergence

theorem, the fact that f € L} and the assumption a x f € LY. This proves (S32).
Now for f € LY andz € F

(Ty(a)) < ey [(/Oha(Yu)du) ]

< Ml (1) _ |1 flloc(@7)? h,
2h 2
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that does not depend on x € E and converges to zero when h \ 0, proving (S33)).

For (S34), we have for any f € L},

1

—E; [f(Xh)1T1§h17'2>h—7'1]

x _Ez [f(Xh)lT1§h1T2>h—ﬁ

Ey

Tg(CL‘) =

i
= -E
1
“h

1

h

Py YO

T <Py (2> h =7

[ — hiTIa YTEI) du
f(Yh(i)n)lTlShe fo < ) 1

Fr YD)

- "F,

— hﬂ—la qul) du 1
= —E, |1 <nEq lf(y,f”ﬁ)e ) ( ) yfﬁ}

L a(Yy) du:| :|

{171 ShE}/(Tl

h—T

x 17‘1§hE§(71 [f(Yth)e fo

1
h
1
=_E
h
1

1
+ 7Ex

“E, [1
i h

yEo (1B [F(Yir)]

1) (¢

h—7q

oYu)du _ 1)” . (S36)

The second term above converges uniformly to 0 when A N\ 0 because

_ fh_Tl
0

1 a
‘hEaz |:17'1<hE}/(7—1 |:f(Yh—7’1) (e (¥e)

<

)<=

ha[| flloo

ha*|| flloo _
_ a}‘LfH E;/(l—e

1T1Sh ”f”ooEY

h—11
. X, /0 a(Yy,) du

|

P.(m1 < h)

h
foh a(Yy) du)

h
< o |flloo EY ( | e du)

< (a

)21 fllooh

Let us now consider the first term in (S36)) and prove that it converges uniformly to a(x)K f(z).

1

FEa (LB [f(Yaen)]] = 5B |
1
- EECC T1<h/ E Yh T1
1
— E]E:E 7’1<h/ Qh 7'1

1
EEI _ x[ T1§h/EQh—ﬁ 2)K

o "oy 0)
hEx -/0 /EQh—sf(Z)K Y,

—EY [ / 1 [, Qi K (Vi d2) a(¥a)e o

o[ lacors
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Tl),dz>]

1., <E, [E§ O] YO, ]

(y(o)

T 7

)

(s42.02) v

dZ) o(YO)e Jo ¥y du ds]

a(Yy) du dv:l

K (Vi d2) a(¥h,) o)

w2 [ QoK

hv
(Yios d2) a(Yao) (e Jy* et du _ 1) dv} .



On one hand,
B[ [ ] @K M d2) (i) (e 2008 1) 4

which tends uniformly to 0 when h N\ 0. And on the other hand,

< *||f EY l/ /hv dudv]

< (@[ flloc b

EY U /Qh(l K (Vi d2) (th)dv} ~ (@)K f(z)

<

y [a(Yhn KQY oy f (Vo) = a(Yio) K f (Yho)] ¥ [0(Yho) K (Vi) = a(@) K f()]| dv

1 1

<0 | WKQu-f = K loodvct [ [Qhfox K )e) = (o x KA )] o
1 1

<o’ [ 1QkS = fleodvt [ [Qhulax K1) = (@ x K)o do,

converges to 0 when h \, 0 by the dominated convergence theorem and the fact that f € Lg and
a x Kf € LY. The latter is implied by the fact that by assumption g := Kf € L}, implying

a x g € LY. This proves (S34).
To complete the proof, it remains to remark that (S35 follows from the following, using ,

< Hffuoo (1 —e @ a*he*a*h)

(X* 2
_ Il (0)?

)
5 h+h%o(h)'

P, (N > 2)

S-4 Topological results for systems of interacting particles in R?

We detail the topological properties of the state space F for systems of interacting particles in W C R¢,
introduced in Section Remember that in this setting £ = U2 E, where E,, = m,(W") with
Tn((1,...,2n)) = {x1,...,2,}, and we have equipped the space E with the distance d; defined for
r={z1,...,Tp@} and y = {y1,...,Yp(y)} in E such that n(z) < n(y) by

n(z)
di(z,y) = n(ly) (Uglgi?y) Z‘:l(Hl’z‘ — Yol A1) + (n(y) — n(@)) ,
with dy(z, ) = 1 and where S,, denotes the set of permutations of {1,...,n}.

We verify in this section that if W is a closed subset of R? (possibly W = R%), then (E,d;) is
a locally compact and complete set, strengthening results already obtained in [Schuhmacher and Xial
(2008). We also show that n(.) and 7, (.) are continuous under this topology, as claimed in Section [2.4]
We continue with the proof of Proposition [, which clarifies the meaning of converging sequences in
(E,dy), and of Proposition 8| that describes the compact sets of E,, and E, along with some useful
corollaries. We finally show that the Hausdorff distance is not appropriate in our setting, not the least
because it does not make n(.) continuous.
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In the following, we will often use in a equal way the spaces (]R”d, HH) and ((Rd)”, H||n) where

1
l2lln = = > llill.
n -

=1

Indeed, introducing the natural bijection ¢, : z € R™ — (21,...,2,) € (R)" we observe that for any
z € R™ ||z||/n < ||n(2)|ln < ||2]|/+v/n by the Cauchy-Schwarz inequality. The norms being equivalent,
we henceforth abusively confuse z and v,,(z). Similarly, any function from R™ to R? can be seen as a
function from (R%)" to R? and we will confuse the two points of view.

We start in the following lemmas with the continuity of n(.) and m,(.). We will use the following

straightforward property, for all z,y € E,

dy(z,y) > (S37)

Lemma S30. The function n(.) : (E,d1) — (N, |.|) is continuous.

Proof. Take x € E and a sequence (x(P)),>q such that dy(z®),z) — 0 as p — co. Assume that the

sequence (n(z(®)),>o is not bounded. We then may define a subsequence (n(z(?))),>q such that
n(z)) — oo, and by (S37) we obtain

n(z) — n(z®))]
n(z) vV n(z®)) p'jxa

dr (2, 20)) > | 1,

which is a contradiction. The sequence (n(x(®))),>¢ is therefore bounded by some M > 0, which gives

again by (S37)

In(z®) — n(z)| < (M Vn(z))di (2P, z) — 0,

p—r00
that is
(p)
n(z )pjo n(x).
O
Lemma S31. The projection m, : (W™, |.||n) = (En,d1) is continuous.
Proof. Let x,y € W™. Then
1
dl(ﬂ'n(x)aﬂ'n(y)) = E mln Z sz ycr(i)” A 1)
1 n
SEZ |zi —yil| A1)
< [lz = ylln-
O

From Lemma we deduce that (F,d;) is a locally compact space.

Corollary S32. Let W a closed subset of RY. Then (E,dy) is a locally compact space.

33



Proof. First recall that d; (z,?) = 1so {} is a compact neighborhood of @. Now take x = {x1,...,2,} €
E, with n > 1. The space W" is locally compact so there exists K C W" a compact neighborhood of

(z1,...,2n). Now set K = m,(K). Then, z € K and K is a compact set by Lemma We show that

there is an open set containing 2 which is included in K. By definition there exists € € (0 ) such that

By, (1, .-y z0),6) NW™ C K, where B, ((x1,...,2n),€) is the open ball centred at (xl, cey Tp)

with radius € for the norm ||.||,. If z € By, (z,e) N En there exists o € S,, such that

1 n
= i — 2o || <&,
i

80 2 = Tn((25(1), - - - » Zo(n))) A (25(1)s - - Zo(n)) € B, (71, ..., 75),€) N W™, To sum up,
Bd1 (x, 8) NE, Cmy, (B”Hn((l‘l, - ,xn),E) N Wn> CK
so K is a compact neighborhood of z in E,, and so in E. O

A further consequence of Lemma [S31] is the following result, that will turn to be useful when
considering the Feller continuous property of a process on E.

Corollary S33. If f € Cy(FE) then for anyn > 1, fom, € Cp(W™).

Proof. For any n > 1 and f € Cy(E), the function f o 7, is well-defined on W", continuous as the
composition of two continuous functions and bounded by || f|sc- O

Let us now prove that (E,d;) is a complete space.

Proposition S34. Suppose that W is closed. Then (E,dy) is a complete space and for any n > 1,
(En,dy) is also complete.

Proof. Let (zP)),>0 be a Cauchy sequence in (E,d;). First, we show that the sequence (n(z®))),>q is
constant for p large enough. Fix ¢ € (0,1). There exists ¢ > 0 such that for any p > g, dl(a;(p), 3:(‘1)) < g,

so by (537)

‘n(x(p)) _ n(x(q))‘ < (n@®) v n(z9)) e < (n(z®) + n(z@))e,

implying that (1 — &) n(z®) < (14¢)n(z'?) and n(z®) < n(z'?P)(1 4 )/(1 — ¢). This entails that
the sequence (n(z))),>0 is bounded by some Ny > 0. Now take ¢ € (0,1) and p; > 0 such that for
any p > p1, di(z®,2PV)) < ¢/Ny. Write n = n(z®)) for short. Then by (S37) one has for any p > p;

‘n(x(p)) _ n‘ < (n(@®) v n)di (@, 2P)) < Nydy (2@, 2P)) < e < 1,

which implies that n(z®) = n for all p > p;.
Second, we may fix ps > 0 such that dy (z(®), :E(Q)) < ¢ for any p, ¢ > po. Finally let py = max(p1, p2),
so that for all p,q > po,
dy (P, 2\?) = = min Z Hx ((;q()z)” <e.

N 0ESK =1

Po)

In particular for ¢ = po, this leads to minges, Y iy Hx Ig(i) |I/n < e for any p > pg. The minimum

over o is reached for some oy, , € Sy, so that we may define the sequence (2(P)),>,, in W" by #(®) =
(l,(p) (p)

opg.p(1)? "7 T opg,p
This proves that the sequence (fc(p))pzpo is a Cauchy sequence in the finite dimensional vector space
(RH™,||.]ln), implying its convergence to some & € W™ because W is a closed set. Finally for p > po

a1 (@), 7,(8)) = dy (10 (2P)), 7 (2)) < 3P — 2l < 2,

(n)) satisfying ||2(P) —z(®0)||,, < & for all p > pg. Then for p, ¢ > po, ||2®) —2(D]|,, < 2e.

which proves that (2(P)),>0 converges to m,(#) in E, and so (E,d;) is complete.
Finally for any n > 1, (F,, dy) is also complete as a closed subset of (E, d1) by continuity of n(.). O
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S-4.1 Proof of Proposition [7]

Let z € E and set n = n(z). By Lemma if £(P) converges to x as p — oo, i.e. di(z),z) = 0, then
n(z®)) tends to n, which means that there exists pg > 1 such that n(z®) = n for all p > py. From the
definition of dy, for any p > po there exists a permutation o, € S, satisfying

Assume that there exists i € {1,...,n} such that limsup,,_, [lz; — xgi)(z.)H > 0. We then may ﬁx n>0

and a subsequence (¢(p))p>p,, both depending on 4, such that for every p > po, [|z; — xg @) H > .

This implies dy (#®) 2) > (pA1)/n and lim SUP, 00 dy(z®) ) > 0 which is a contradiction. Finally,

(»)

for every i = 1,...,n, limsup,_, [|z; — xap(i)H = 0, proving the result.

S-4.2 Proof of Proposition [8 and corollaries

In order to prove this proposition, we first recall the following definitions and results (see e.g. |Bourbaki
(1966))):

e A finite subset L of a metric space (X, d) is called an e—net, for € > 0, if the following property

is satisfied :
Vee X, dle L, st.d(z,l) <e

e A metric space (X, d) is said to be totally bounded if it contains an e—net for any € > 0.

e Let (X,d) a metric space. Then (X,d) is compact if and only if (X,d) is totally bounded and
complete.

To prove the first statement of the proposition, let A be a closed subset of (E,,d;). We start by
assuming that we may fix € € (0,1/n) and w € W such that

VR>0, 3z ={x1,...,xn} € A, max {|lxx — w||} > R+ ne, (S38)
1<k<n
and we show that A is not a compact set because it does not contain any e—net. Take L = {l(l), ce l(N)}

a finite subset of A and let us define

= 19— .
Fo = gy, e o =l

By (S38)) we may define x € A and 1 < j < n such that

- = — >R .
2 = wll = max (o — wll} > Ro+ne

This leads for allc € S,, and 1 <7 < N to

s = 80 > |llzg = wll = 18y = wll| = llzg = wl = 1) = w]| > ne

a(j)
and forany 1 <i < N

n

dy(2,19) = = N S!
(2,10) =~ ;gmz(uxk Sl A1)
1
2 (1)
ne
> — =&,
n



Therefore L cannot be an e—net and A cannot be a compact set.
Let us now prove the converse. Fix w € W and assume that there exists a positive R such that for
all x € A,

- <R.
e (. — w]} <

Under this assumption, A is a subset of
1 n
C:={x € E,, - Z |lzr —w|| < R}.
k=1

Let us show that C is a compact set. To this end we define w = (w,...,w) € W" and write
By, (w, R) for the closed ball of radius R and center w for the norm |||, on the finite dimen-
sional vector space (Rd)". The closed set BII.Hn<W> R) N W™ is then a compact set of W™ and by

continuity of the projection m,, we get that m, (B”.Hn(W,R) N W”) is a compact set of F,. Let us

prove that m, (BH~”n(W7 R)N W”) = C to conclude the proof. First, if x = {x1,...,z,} € C then
= (x1,...,2p) € B”.Hn(w, R) N W™ and m,(2) = =. Second, if z = m,(&) with Z = (x1,...,2,) €
BHHn(W’ R) NW™, then

n
23l — vl = &~ wl < R
"=
which proves the claim. The set C is then compact and so is A because it is a closed set.

Let us finally prove the second statement of Proposition [§ by contradiction. Let A be a compact
subset of E and suppose that P = {p > 0, AN E, # 0} is infinite. Then we can construct a sequence
(Yp)per with y, € AN E,. But A is a compact set so there exists a subsequence (y,/),cp Which
converges to some y € F when p’ — oo. But by Lemma n(yy) = p — n(y) as p’ — oo which is
absurd, concluding the proof.

We end this section with two corollaries of Proposition

Corollary S35. If W is a compact set, then (E,,d1) is a compact set for any n > 1.

Proof. W is a compact set of R? so it is bounded, i.e. we may fix a non-negative R such that ||w| < R
for any w € W. Let w € W and x € E,,. Then

_ < < 2R.
e (o — wl} < max ] + ] <

E,, is therefore a compact set by the first statement of Proposition [§ O
Corollary S36. If f € Co(E) then for anyn > 1, fom, € Co(W™).

Proof. Take f € Co(E) and ¢ > 0. There exists a compact set B C E such that if z ¢ B then
|f(x)| < e. In this case B, := BN E, is a compact set because E, is closed so by Proposition [§| there
exists w € W and R > 0 such that for any z = {z1,...,2,} € By, maxi<g<y ||z — w|| < R. Then for
any z ¢ By |, (w, R/n) we get |f omy(2)] <e. O

S-4.3 The Hausdorff distance is not appropriate

For systems of particles in RY, we have equipped E with the distance d; defined in @ A common
alternative distance between random sets is the Hausdorff distance defined for x = {x1,...,2,(;)} and

Y=1{y1,- -, Yn@y} in £ by

o) =mo{ o iy -l o i o
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Yet we show in this section that this distance does not make the function n(.) continuous, which has
serious consequences on the structure of Cy(E) with this topology. In particular, we show that a simple
uniform death kernel is not even Feller continuous in this setting.

As a preliminary, for the Hausdorff distance to be a proper distance, we must focus on simple point
configurations only. We therefore consider for any n > 1

Wn:{(:zl,...,xn)eR”, it = i #75},

and the state space is
= U En:
n>0
where E,, = ﬁn(Wn) and 7, is the same projection function as in Section but defined on W,,. Then
we have

Lemma S37. The Hausdorff distance dy is a proper distance function on E.

Proof. Symmetry is obvious and triangle inequality is well known for dy. We only prove the identity
of indiscernibles. Let z = {z1,..., %)} and ¥y = {y1,..., Y} in E satisfying dy(z,y) = 0. This
implies

3 =0
) Sl}gg(y)llwz yill

for any 7 € {1,...,n(z)}, leading for any i € {1,...,n(z)} to the existence of j € {1,...,n(y)} such that
x; = y;. Since z and y are simple, we deduce that n(y) > n(z). We obtain similarly n(z) > n(y)
and then n(x) = n(y). We then may define a permutation o € S, such that for all i € {1,...,n(x)},
Tj = Yg(;) which means that z =y in E. O

We now verify that n(.) is not continuous for this topology.
Lemma S38. Assume that W # (0. Then the function n(.) is not continuous on (E,dg).

Proof. Assume without loss of generality that 0 € W. Let k > 1 and y € R? such that [jy|| = 1/k.
Take k large enough so that y € W. Then |n ({0,y}) —n({0})| =1 and dy ({0,y},{0}) = 1/k — 0 as
k — oo, proving the result. O

This result reveals a singularity caused by the distance dy. As a consequence, a simple uniform
death kernel is not even Feller continuous, as proved in the following lemma.

Lemma S39. Assume that W # () and consider for f € MY(E) the kernel

n(z)

Kf (1 f(z\xi).
i—1

.

Then KCy(E) is not included in Cy(E), i.e. K is not Feller continuous.

Proof. Consider the function f(x) = max<j<y(y) i1 A 1 where ;) is the first coordinate of z; € W.
This function is bounded and satisfies for any z,y € E,

_ < L
|f(z) = f(y)] < | Jnax iy = max  yiil (S39)

for any x,y € E. Let us show that the latter bound is lower than d (z,%). Let Zy = ArgMax; <;j<p(z)Ti,1
and Jo = argmax;<j<p(y)¥;,1- This follows from the fact that for any ig € Zy and jy € Jo,

d > i il > mi ol > mi il =z — i
H(fc,y)_Kr%a%)lgggg(y)llﬂfz yJH—lgg,nSlTILl(y)”xlo ygll_lgg,nglg(y)\fcm,l Yial = iy — Yol
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So by (S39) |f(z y)| < dp(z,y), proving that f € Cy(E).

Assume Wlthout loss of generality that 0 € W. Let a € W, a #0, and a, = (1/k,0,...,0) € R?
with k large enough to ensure aj € W. Consider the sequence z*) = {0, a,a;} and let z = {0,a} so
that dg(z®),z) = 1/k tends to 0 as k — co. On the one hand,

KF®) = L1 ((0.a) + £ (fa i) + £ (0,ap) = HOFWR Ve 20

3 k—oco 3

and on the other hand,

Kf(z) =  (F({0}) + f({a})) =
whereby K f ¢ Cy(E). O

DO \

S-5 Proof of Proposition [9]

First we show that if (Zt‘n)tZO is a Feller continuous process on W™ for every n > 1 then (Y;)¢>0 is
a Feller continuous process on E. Indeed, let * € F and a sequence (a?(p))pzo converging to x. By
Proposition [7| we may fix pg > 1 such that n(z®) = n(z) := n for any p > py and a sequence of

permutations o, of {1,...,n} such that for any 1 < i < n, xg;)(i) — x; as p — oo. We then obtain

for any f € Cyp(E) and p > pp, using the permutation equivariance property of (Ztm)tzo (that allows
us to arbitrarily choose the ordering of its initial value), the continuity of its transition kernel, and
Corollary that

E(£(Y)|Yo =2@) =E (f(¥/")| Yo = =)
—F (f o mn(Z™) | 20" = <xg;;>(l), .. ,ng;)(n)))
— E(fom(2")12)" = (21,...,20)

p—0o0

=E(f(¥)[Yo =x).

N———

Second, let us prove that if (Zt|n)t20 is a Feller process on W" for every n > 1 then (Y;)i>0 is a
Feller process on E. Let f € Cyo(E). We start by the strong continuity. Take £ > 0. By the second
statement of Proposition [§ there exists ng > 0 such that n(x) > ng = [f(z)| < §. So for any = € E,

QY f(2) - f(2)] < |@) F(@) = (@) 1n@y<ne + EallF YD n(wysne + F@)Lnaysng

< Z \@f'"ﬂx) )| Taem, + 54

( 7rn Z‘n)) | Zon ($17 ce 7xn)> - f(ﬂ—n((xla cee xn)))’ 1176En + g

< Z HQ?'”(fom — fomllos + 2.
n=1

By Corollary for any n = 1,...,ng, there exists t, > 0 such that

9

€ (0,tn) = Q7" (f o) = f o allow < 5

So for any ¢ € (0,t(¢)) where t(¢) = 1<mln tn, we get [|QF f — fllo < &, which proves the strong

continuity of Q) at 0.
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It remains to show that Q) Co(E) C Co(E). Continuity follows from above. Take now f € Co(FE)
and fix ¢ > 0 and B C E a compact set such that z ¢ B = [f(z)| < §. By Proposition [§ I there exists
no > 0 such that © € B = n(z) < ngy. Also by Corollary-we can fix for anyn =1,...,n9 a compact

set A, of W™ such that z ¢ A, = ‘QZ‘"(f o7y (2 )’ < ¢e/(2np). Then, A =2 7 (An) is a compact
set of F and for any x ¢ {0} UAUB

QY r(@)l < ZHQ (Fomn)((@r....an)l| +5 <

S-6 Proofs of lemmas relating to the coupling of Appendix [A]

S-6.1 Proof of Lemma [16

First note that for any x € £, n > 0 and A > 0 one has

v h o5 h ~
Plany (Tt < h) = E ) (1 —e ) O‘(Y“)d“> < Egp ) ( / M(Yy,) du) < 2a”*h.
0

Next take h > 0. Then

Palt +R) = Yy (t) = By |
= By [Ewm) (1e(Xf0) Ligy )1 F2) = 1(XD1 (g ()]
= B [Qn((X570): B x {a}) = Lu(X))1 (5 ()]

—ZEW[ (X105 B x {a}) = 1e(X) gy () Ly ] -
k>0

k>0

(X7 ) 1) () = 1e(X]) 1) ()]
(

Forany k> 0and y € £
Oy, k), B x {a}) = 1 ()] = [y (16 (X7) 14y (1)) — Ly ()]
= ‘E o) (1{ (nh)1 T1>h> +Eyr) (1{q}(77h) T1<h) - 1{q}<k)’
k) |(Ligy () — 1y (K)) Tlgh} + Egy,n) ‘(1{(1}(772) - 1{q}(k))1’f1>h‘
< 2P<x,n>( < h) + Eqypy |(Lgy (K) = Ly (k)1

whereby

|thg(t + h) — |<Z4a WPy (n; = k) = 4a"h — 0.
k>0 N0

On the other hand, we obtain with the same calculations for h € [0,1]
g(t) = glt = h) = Bia ) [Eemy (Lo(X) 1y ODIFin) = 16(X]_1) Ly (1)
= By [ Qn((X o min)i B x {a}) = 1o(X[_) Ly (n]_)]
= > Eam [ QX ) B x {a}) = 1y (B, = k| Quon((w,n); B x {k})

k>0
< 4a*h — 0.
A0

Therefore the function ¢t € Ry + 1)4(¢) is continuous.
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S-6.2 Proof of Lemma
Take h > 0. Recall from (S40) that

W+ 1)~ Ug(1)) = 3 By [@u(OXE K B x {a}) — 1Bt = K] Qul(m)i B x {R)).
k>0
(S41)

For any y € Fand £k >0
Qn((y: ), B x {a}) = 11y (k) = By (Lgy (0f) = Ly ()) = Aa(h) + As(h) + As(h),  (342)

Where A1<h> = E(y,k:) ((1{q}(77;b) — 1{Q}(k))1T1>h)7 Ag(h) = E(y,k) ((1{(1}(77;1) — 1{q}<k))1]\7h=1) and
As(h) = Egyp ((1{q} (mp,) — l{q}(k))lTv2<h) . Let us treat each term separately.
First,

Al(h) = E(y,k) ((1{q}(k) — I{Q}(k))1T1>h> =0.
Second, As(h) reads
By, ((1{q}(77h) 1{q}(k))1%1§h1%2>h—%1)

=Eqr _E( ) [(1{q}(77’,?1) =1y (F) s <nli>n—sn
= E.p) _(1{q}(77/%1) — 13 (k) 1s <Py ) (ﬁ >h—T1

1)

T

Fr, YO

du | v
h—%1 . /o

= Eqx) [lﬁgh(l{q}(n/ﬁ) 1~{q}(k))EYT1 [e I a(Yu)d“”

r -~ _ h—11 ”
=Eu) |La<n(in(nh) — 1 (k))E Yq {e Jo a(Yu)d _1” + Ey 1) [1%19(1{(1}(17;1)—1{q}(k:))}.

h— 1 Y<1)
=By [(Ligp(nk) — 11 (k) 1r <pe Jo ( ) ]

_ / _rh (Y'u(,l))
=Eq i |1a<n(Ligr (m5) — Ligy (F)Ey p) le 0

For the first term above,

1

- . ry Y —fh_Tl d(ffu)du - * . *\2
By k) |La<n(Ligy () — 1igy(K)))E5  fe o L[| €4 Eqy 1) (15 <n) < 8(a®)7h.
h 1

For the second term, we have
Egy.r) [1%19(1{(1}(77%) - 1{q}(k))] =Ey ) [1%1§hE(y7k) [1{q}(77;1) — 1y (k) ){/(0)7%1”
~ B [taen ([ KOO Rz x {a) — 10 ®))
=B [La<n (KO0 B x {g}) — 1 (k)] - (943)

Following the definition of K in Section this formula takes two forms depending on whether y ¢ E},
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ory € Ey. If y ¢ Ey, then

| ()
Ey ) |1a<h(Ligy () = Ligy (k)| = By | 1r<n m =11 | gy (F)

1 )

A

that is

Ey ) [1r<n(Lgy (nhy) — 1y (k)]

1
= E(y,k) 17\;1<hv(/(0) (—Oékl{q}(k) + ﬂkl{q_l}(k) + 5k1{q+1}<k)) . (844)
a (Y ,k:)
Since
1 1 Ly hr_ > &Y, k) du *
E}E(y’k) [1{—1Shd(}/v,(0)k):| —1| = EE(Z/Jf) |:/O <e fo — 1) ds < 2c h,
T )
we then conclude that
Az (h) ‘
S ——~ + ol (k) — Bl (k) — 01 k)l — 0. S45
kzog{éEk 3 kligy (k) — Brlg—1y(k) — Okl 1y (K) N (545)
If now y € Ej, we obtain from (S43))
Ey.1) [1%1§h(1{q} (%) — l{q}(k))]
8" B — B
=K , ]_71 <h7/7—1 | (k)+E , 17‘ <h 7 . | . (k)
(y.k) | +71< d(Yﬁ(O),k) {g—-1} (k) | *Ti<h™ "~ 000) 1 {g—1}

O‘(Y{—l ’ )
(
1

1 S(Y,”) = b 1] | 1 ()
<k | — a0 — )
1S Ovz(Yv(O), k) {q}

71

O
+Eyr | 1< g
(y,k) [ 1< &Y, (0),I<:)

] Ligiy (k) + Eyp)

T1

that is the same expression as (S44)). The convergence ((S45) then remains true when the supremum is
taken over y € Ey, and so over y € F, i.e.

Az (h)
T + akl{q}(k:) - Bkl{q—l} (k‘) — 6k1{q+1}(k)‘ h—\(}) 0.

sup
k>0,ycE

Third, for As(h) in (S42|), we have, using and denoting ]\Vf,’l‘ ~ P(2a*h),

1 2 .
7 |As(h)| < EP(y,k) (Nh > 2)

< %IP (N7 >2)
< % (1 —e20Th _ 2a*he*2°‘*h)
=4(")?h+ o (h).

ANO
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Combining the results for A;(h), Az(h) and Az(h) in (S42), we get

sup HL (Qnl(y, k): B x {a}) = 1 (g (k) + Ligy (k) — Bl g1y (k) - 5k1{q+1}(k)‘ o

(y.,k)€E R\O
Finally, coming back to , we obtain by uniform convergence, for any x € F,

1 «

LWt 1) = (1)) > S Ly (b) + By (0) + 8xL gy ()} Qul(rm); B {RY),

N0 Sh
where the limit reads —oyg ¥ (t) + Bg—1Vg—1(t) + dg+1 Yg+1(t) using the convention f_; = 0.

S-6.3 Proof of Corollary
For ¢t > 0, define

G(t) qu(t) - 1q(n) - /Ot (_aq wq(s) + Bg-1 7»bq—l(s) + dg+1 wq—i-l(s)) ds.

Then G is continuous, right-differentiable on Ry by Lemma |17, and 0. G(t)/0t = 0. So G is constant.
But G(0) = 0 because s — 1),4(s) is bounded on R, for any ¢ > 0. As a consequence we obtain

t
Yq(t) = 14(n) + /0 (=g ¥g(s) + Bg—1¥g-1(8) + dg+11g+1(s)) ds.
In particular the integrand is continuous by Lemma [16]so 9, is differentiable.

S-6.4 Proof of Lemma

Let us develop gs1y4) as

41y = ¥ as(k, {a) 1y = Y Prlns = @)1y (S46)
k>0 k>0

Take p > ¢q. Then using (3) by denoting nj ~ P(a*t)

iﬂ%(ns =q) < iﬁ”k(”s >k —q)
k=p

k=p

<N Pr(ne >k —q)
k=p

<Y P(n; >k—q)
k=p
o0

Z]P’nt>] 0
j=p—q

because E(n;) < co. Coming back to (S46)), we thus have that for any € > 0, there exists p > 0 such
that any d > p satisfies

sup
s€[0,t]

<e. (547)

d
qsl{q} - Z QS(kv {q})l{k}
k=0
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Since @, is a continuous linear operator on My(E x N)
Qi—s(1g X gs1gy)

p
Qtfs <1E‘ S plgglo ’;)QS(IC’ {Q})l{k}>

Ws

p
— p]i_}nolo Qt—s <1E X Z QS(ka {Q})l{k}>

k=0

p
= pll{gokz:%]qs(k7 {q})Qt—s (1E X 1{k’})

=3 auk {a)) Qs (16 x 13y - (548)
k=0
Let ¢p(s) = qs(k, {q})Qi—s <1E X l{k}) . From the Kolmogorov backward equation (6]), we deduce that

9as(k,{a})/9s = —apas (k. {a}) + Bras(k + 1. {q}) + Sas(k — 1,{q}). Using in addition Corollary
we deduce that ¢y, is differentiable and

(ZS;c(S) = [—args(k, {qa}) + Brgs(k +1,{q}) + drgs(k — 1,{q})] Qt—s <1E X 1{k})
+qs(k, {q}) [O‘kétfs (1E X 1{k}> — Br-1Qt—s (1E X l{k—l}) — 6k 41Qr—s (1E X 1{k+1}>} :

Since

sup Qs (16 x 141 ), <12

and

SSEI[lOI?t] ’ath—s (1E X 1{k}) — Br-1@r—s (]—E X 1{k—1}) — Opa1Qr—s <1E X 1{k+1})HOO < 3a%,

we can show similarly as for (S47) that

— 0.
p—)OO

> bk(s)

k>p

sup
s€[0,t]

0

Since by (S48) ws = > x>0 ¢k (s), we deduce that wy is differentiable on [0, ] and

a o
7 Ws = ¢/ (s)
0s kz:%] k

= i [BkQS(k +1, {q})Qtfs (lE X 1{k}) — Br-14s(k, {q})Qtfs (1E X l{k—l})}

k=0

+) [5kQS(k5 —1,{q})Qs—s <1E X 1{k}> — 64105 (k, {q}) Qe—s (1E X 1{k+1})] :
k=0
where S_1 = dg = 0. The first of these two telescoping series vanishes because 5_1 = 0 and

| Beas (b + 1, {a1)@es (15 % 1y )| < a®aslk+1,{g}) < a”P(n; > k+1—g) 0.

The second series vanishes by similar arguments and we have dws/9ds = 0.
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S-6.5 Proof of Lemma
Let h > 0, then

Uyt +h) =y () = By (FOXL ) (1)) = By (F(X0) 1))
= Eom) [Bgamy (F(X0)In00i10) ‘]}t)} — Beny (F(X7)1n(n}))
= By |@n(f x 1) (X[m0) = FOX) ()] (549)
For any y € E and k € N one has
[Gn(f % 1) (w, k) = F) (k)| = [Bey (F(XR) = £(0)]

= B (FXR) Qg <+ 1ion)) = FOEGa (L + o) |
< 2| fllaoPryiy (T < 1)+ [Egypy (S5 ) = F) (1 = 15,2))
< 8a”| flloch + [E} [f(¥3) = )]
< 8a”|[fllsch+|@YF - 1] .

where we have used in the second last step. Coming back to (S49)), we deduce that

W5t 4+ 1) — 5 (1)] < 8™ fllooh + @1 F — 7]

As a Feller process, (Y;);>0 is strongly continuous at 0, whereby ¢ (t + h) — ¢ (t) as h \, 0.
On the other hand, for h € [0, ],

by (t) — byt = h)| =

E(eny (f(X)InL) — B (f(thfh)lN(erfh))‘

Esn) (B (FXDIN0) |[Fin )| = B (f(Xé—h)lN(Ui—h))‘
E(zn) {Qh(f X IN)(Xy_p, h—p) — f(Xé—h)lNO?l/t—h)”

< 8’| fllooh + QY = £ _.

and we conclude similarly that 1 ¢(t —h) — 1f(t) as h \, 0.

S-6.6 Proof of Lemma 211
Let h > 0. For any ¢t > 0

YW =) wfa)\ _ls, (Wf e EVICE 1N<n>>'
< s |Gl X0, B =1 _ p m(k)’.
(y,k)eE

The proof thus consists in showing that

Qn(f x 1n)(y, k) — f(y)1n(k)
h

— Af(y) x 1N(k)‘ — 0.

su
p A\

(y,k)eE

44



Forany h >0,y€ FEand k>0

(G X 10w R) — £ ) 1(R))

i [£0 -0
= 4 (B [FO L] + By [F KDLy, 1] + By [1X0)Ls, 0] - 1))
But
,11 (B [f(XA)1T1>h] f®))

= 5 (B [55 m} w)

%(E ) [FO OB (T > B [FO)] — 1)

;(Ew [f ~Jy a0 Ry ] —f(y))

=E, V(Yh)hf(y)} + EE{W [f (Y) (e‘ Jo etk du _ g /0 "R duﬂ

1_y h N ’
- Bl [ | s e du] .
Using this result and the expression of Af(y) from Theorem @ we can write

(@0 x 1) (0 K) — Fl) (k) — AF()

- % (Qh(f X In)(y; k) = f(y)lN(k)) — A f(y) + () f(y) — a(y) K f(y)
= A1(h) + Az(h) + Az(h) + As(h) + As(h),

where
Ay =Y V(Yh)h—f(y)] A,
Aa(h) = G(y.k) Bl [ [ ra ]
Ag(h) = %Efy’,ﬁ) ) <e Jy avimdu _ /0 &Y, k) duﬂ ,
As(h) = 2 X5 ] — 0V + (0(5) — 600 )W),

1 -
As(h) = B [/ (Xi) 1,00 -

The end of the proof consists in proving that each of these five terms tends uniformly to 0 as h ™\, 0.
For the first one, note that

EY {f(Yh> -

f(y)} _Qhfy) — f)
h

h )
and since f € DY, by the definition of A, sup = |A1(h)| tends to 0 as h — 0.
A (y,k)EE
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To show that sup, k)€E|A2(h)| }Kg 0, we consider two cases whether y ¢ Ej or y € Ej. First
suppose that y ¢ Ey. Then d(y, k) = a(y) + ax and

h \/ / !’
Ao(h) = [ "Bl d(y,mf(y)—f(m)d(x/,m] du
~ i) () 1 [1BY latw) f) ~ SO0 o

where the switch from Eé p to EZ is a consequence of (22)), specifically the bivariate generalization of
it. Therefore,

Aa(h) = s (F(0) = QY S ) + 5 / E} [E} [a(y)/(y) — S (¥i)a(¥.) |V, ]] du

= (1) - QN ) + 5 / EY [o)f W) - Q. (Vu)a(¥,)] du

= o (F0) ~ QY F0) + 1 [ BV fa)f )~ F¥a(v)] du
h/EY V) = Qi_uf (Va)a(V)] du

h

= (fy) - Q) fly >) +y / (fxa=QY(rf = a)) () du+t 7 | EY [t (£ = Qur) ()] du

= o (F) - QLIW) + [ (7 <@ — QLU <) v+ [ B [ahiu) (7 - Qo) ()] do

— Ok h hv Yy 0 y hv h(1—v) hv .
So when y ¢ E,

1 1
[Aa(0)| £ 0" QYF = flloo+ [ QNS x @) = X allwdv+a” [ QY S = Flwdv,  (S50)
that does not depend on (y, k) € E and converges to zero when h goes to 0 by the dominated convergence

theorem because f € DY C Cy(E). When y € Ey, &(y,k) = Bx + 6(y) and we obtain with the same
computations the same inequality (S50)), leading to the same convergence. So SUD(, 1)e il A2(h)] m 0.

Regarding As(h), its uniform convergence towards 0 is easily obtained from

h , 2 a* 2
43| < oy, >[(/0 a(Yu,kmu) ] < Wloe BT _ o ey
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Let us now prove that sup, k)EE\A4(h)| m 0. We compute

1 1
7 Ew k) [f(Xf/z)th:J = 2B [f(X0)n<nlnn-rn]

Fon VO]

Fa 7))

/]
[ / h—11
_ fE(%k) 17‘1§hEg+1 {f(y}{_ﬁ)e fo &(Yu) du }}

[ y 1 Y —[PTg Vo) du
= 7Bk [1n<hBe [f(Y};—ﬁ)]} + 3B {hﬁhEgﬁ [f(Yé_ﬁ) (e Jo a0 an 1>” :

By [E(y,k) [f(Xi/z)]-%1§h17‘2>h77“-1

Ewr | (Yh9;1)1%1§h19’(y k) (%2 >h—*
[ g (v
E(yvk) f(Yh(_l%)lﬁghe 0 ( ) ]

o [ d(qu“) du

1 a
= 7 Bwr) | La<nlep [f ¥,

1

h

The second term converges uniformly to 0 because its norm is bounded by

Liy<n || flloo ny
Ey,k) l Ex

h=r 2ha* || floo . .
h C{_l /0 a(Yu) du|‘| S ﬁp(y’k)@j S h) § 4h(a )2Hf||oo

h

Let us prove that the first term converges uniformly to a(y) K f(y) — (a(y) — &(y, k)) f(y), proving that
Sup(y,k)eE|A4(h)| h—\g 0. We have

1 ; 1 v o
EE(y,k) [1%19}3&1 [f(Yf;ﬁ)]} = EE(y,k) [1%1§hE(y,k) [Eg f(Y5_s)] ’Y(O),ﬁ”

yk |: 71<h /Z1€Eq> (21,9) f(YI;—ﬁ)} K ((Yifl(O)ak);dzl X {CI})] .

0

We separate as before the cases y ¢ Fy and y € Fy. If y ¢ Ej, we obtain

1 Y 1 0
EE(%’C) 1*19ng1 [f(Y’{ﬁ)]] - EE(y,k) {1*1% 0) k: / E (21,k) f(Ya_z)] K(Yﬁ( )7d21)]

1 Br v , ]
T Ewm 1T1ShWE(Y;1<o>,M) ()]

]. 5k YV' !
+ 7 Eyr 1ﬁ§hd (Y/(o) k:) E(Yfll(o),k—l) fYVh_s)] | - (S51)
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Let us show that the first term in (S51)) converges to a(y)K f(y):

7Bk [1ﬁ<h(y’(0>k) /E E, a [ (Vi) K (Y%(O)ydzl)] —a(y)Kf(y)

1 [ a (Y;fo)) v '(0)
= E]E(y,k) 1’?1§h . (Y/(O) ]{;) /E Qh—%l (f X ]-N)(Zla k)K(Y{-I ,le) - Oé(y)Kf(y)

1; <h—a (YT/l(O))
1< 7
( (0) k)

— B / Y)) [ QiKY dee o d(y”:’k)dudsl‘a@ﬂff(y)

—a(y)Kf(y)

| QL (1) (e K (Y den) [FO

= 7 Ewm | B

= Ef, i) [ /0 a (Vi) [E Qi1 [ (21) K (Y, dz1)e” fo””Wév@du(m} ~ aW)K f(y)
. 1
= b [ a0 [ Qo fe0K O, i) — K1)
¥ 1 hv | <,y
+Eé,k) UO a (Yy,) LQZ(lfv)f(Zl)K(Yévydzl) (e—fo &Y k) du 1) dv}

But for the last term,

‘Eé,k) [/01 o (Y1) /EQ}hf(kv)f(zl)K(Yl;del) <e_ [ a(v) k) du _ 1> dv”
hv
< o flloo B, (y,k) l/ / dudvl < 20(a)?|| flso

and from (the bivariate version of) (22), we can replace Eé k) by E?j in the other term to get

B [ [ ati) [ @ucnfG0K Vi dajdo] - al )

1
< [ [} [a(hn) K@Y/ (Vi) — @)K 3] av+ [ [EY [aWin) () — alo) )] o
< a*/o IKQh1—uyf = K fllo dv +/0 ’Q%”(a < Kf)(y) = (ax Kf)(y)’ dv
1 1
< a*/o 1Qh1—)f = fllow v +/0 |Q (@ x K f) = (@ x K f)l|os dv,

converges to 0 when h goes to 0 by the dominated convergence theorem, using the fact that f €
DY C Cy(E) and KCy(E) C Co(E). This proves the convergence to a(y)K f(y) of the first term
in (S51)). Concerning the second and third terms in (S51)), their sum converges to (Bx + dx)f(y) =
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(&(y, k) — a(y))f(y). Indeed for any ¢,

h

h :

Bl [E) [0 e 8500 40— i)
< IEY/ EY v — [ &Y, k) du EY [E v _
<|[ (,k)[ v [f( h(l_@)} ( )] ol + | [ B [£, [ha-o]] do- s

< 0| loch + /0 \th<y> - f<y>] v
< 0| fllch + QK £ = Flle:

that converges to 0 when h goes to 0 by the dominated convergence theorem because f € D}Z C Co(E).
This completes the proof of the claimed convergence of A4(h) when y ¢ Ej.
Suppose now that y € Ej. The development made in (S51)) becomes in this case

1 v
7 Ewk) [1%1 ghEgﬁ [f(Vp—#)] }

| IO A I , "o
+ EE(y’k) 15—1<ha7 ‘/E}E(Y_r/l(O),k) I:f(Yh—ﬁ)] K(S ( le) . (852)

The first, third and fourth terms above can be treated exactly as the first term in (S51)) to prove that
they converge uniformly towards 5(y)Kgf(y), 0xKsf(y) and (6(y) — 0x)Ks5f(y), respectively, the sum
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of which is a(y)K f(y). For the second term, we compute

1 v,
hE(y,m[ n<hf({5)])€)1@fygo>,k ) [f(Yz{_ﬁ)H —BW)f(y)

1

=17Bwm |Bom |1nsn— ey B

R , .
-z P ] EL [ﬁ(l@)EQ [F(Yis)e Jo a“’w’“*”du} ds — B(y)f ()

hv !
= / E(yk |: Ylw E / [f(Yh(l—y))} e_fo &(Y,, ,k+1) du

dv — B(y)f(y)‘

< / E(yk [ (Y )E ' [f(Yh(l —v) )] < = Jo" 6tk du—l)] dv
+| [ By [0, [0 dv—ﬁ<y>f<y>]
<allflee [ [ EY 600K+ ] dudo+ | [ B [506)QH0 - f0i)] do = 86)50)

< (@S eh+| [ EY [B0RIQY 1 (Tiw) = B0 (V)] o

1
+] [ B 180 (Yi)] dv - 50 0)
1 1
< @ Plh+ 0" [ 1@ = Slodvt [ QKB 1) = (5% Pl

that converges to 0 when h goes to 0 by the dominated convergence theorem because f € D}Z C Co(E).
Given this result and the convergence already proven for the second term in (S51)), we deduce that the

second term in (S52)) converges uniformly in (y, k) to (B — 8(v))f(y) = (&(y, k) — a(y)) f(y).
The study for y ¢ Ej, and y € Ej, yields to the same convergence results, so in conclusion

sup (B, (FOXG) g,y ) + (aly) — &y, 1) () — aly) K ()] — 0,

(y,k)€ExN h™\0
that is sup, , GE\A4( )| h—\g 0.
To finish the proof, it remains to handle As(h) using where N; ~ P(2a*h)

SH]C)LC’OIP(N,’ZZQ)

||f”00 —2a*h x1 —2a*h
< 2= . _
h (]. e 200 he )

at 2
— Hf}’Loo ((2 2h) +h%0(h2)>

= 2[|flloo (@) h + WS

P (N> 2)

that converges uniformly to 0 when A goes to 0.
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S-6.7 Proof of Corollary
Let

G(O) =b5(0) — @) — [ (o) ds.

This function is continuous, right-differentiable on R from Lemmas [20{ and and 04G(t)/ot = 0.
So G is constant. But G(0) = 0 because s > 0 — 1) 4(s) is bounded. As a consequence, we obtain
. Moreover Af € Cy(E) so by Lemma, 20| the function s > 0 — 1 4¢(s) is continuous, and by
we deduce that 9, is differentiable.

S-7 Proof of Theorem 11

We recall and complete notations introduced in Appendix [A] regarding the coupling between X and 7.
The coupled process is C' = (X’,7'), where from Theorem X’ and 1’ have the same distributions
as X and 1. We denote by T} and ¢; the jump times of X and n. Similarly we denote by TJ’ and
t’ the jump times of X’ and 7. To prove Theorem we start with the following lemma where
so = inf{t > t1, mx = 0} is the time of the first return of 7 in the state 0 and Sy := inf{t > 71, X; = 0}
is the time of the first return of (X¢):>o in the state @.

Lemma S40. Suppose that 0 is an ergodic state for the simple process m, that is Eg(sp) < oo.
Then tli)m Q+(D, A) exists for all A € E. Suppose moreover that for all n > 0, E,(s¢o) < oo. Then,
oo

tli}m Q¢(x, A) exists for all x € E, A € €, and is independent of x.

Proof. Let 3 := inf{t > t,, C;y € E x {0}}. Using the first statement of Theorem we can prove
that P 0)(50 > t) = Po(so > t). Similarly, by the second statement of this theorem, P(g ) (S > t) =
Py (Sg > t) where Sy := inf{t > T}, Cy € {@} x N}. We thus have

Po(Sp > t) =Pp.0)(Sp > 1) < Pg0)(50 > t) = Po(s0 > t),

where the inequality comes from the third statement of Theorem
By the assumptions of Lemma this implies that Sg < 0o Py — a.s. and that

oo o
Eq(Sp) = / Py (S > ) df < / Po(so > t) dt < oo,
0 0
proving that @ is an ergodic state for the process (X¢):>0. Note moreover that Sy has a density with
respect to the Lebesgue measure, that we denote by f1. This comes from the fact that 7; has a density

for any j, so does T}, whereby given a Lebesgue null set I € B(R), Pp(Sp € I) <3272, Py (Tj € I) = 0.
We have the following equation

Qi(D, A) = Py (X, € A, Sp > t) + /OtIP’@(Xt € A,Sy € ds)
— Py(X, € A,Sp > t) + /OtIP’@(Xt € A|Sp = s)p(s) ds
— Py(X, € A,Sp > t) + /0 " 0110, A)g(s) ds.
This is a renewal equation and we may apply the renewal theorem given in (Feller, |1971, Chapter XI).
To this end, denote by Z(t) = Q:(0, A), £(t) =Py (Xt € A, Sy > t) and F{I} = Py(Sy € I). Remark

that Z is bounded, ¢ is non-negative, bounded by 1 and directly Riemann integrable on R because it
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is dominated by the monotone integrable function t — Py (Sy > t). Moreover, 0 < Eg(Sp) < oo and
since Sy has a density, F' is not arithmetic. Then, by the renewal theorem, we obtain:

QuO, A) = Z(t) — / £(u) du = / Po(X, € A, Sp > u) du (53)

which proves the first statement of Lemma [S40]
Let now turn to the second part of Lemma [S40] Let 2 € E,,. By the arguments as in the beginning
of the proof, we get that Sp < oo, P, — a.s. and that E,(Sp) < E,(s9) < co. We have

Qi(x, A) =P, (X € A)

t—o0 E@

t
=P,(X: € A, Sy > t) +/ P.(X: € AlSg = s)ugp(s) ds
0
t
=P, (X; € 4,59 > t) +/ Py (Xi—s € A)ug(s) ds
0

t
_P,(X; € A, Sg > 1) +/0 Qi_s(D, Dpigy(s) ds.

The first term tends to 0 as t — oo because it is dominated by P,(Sgy > t) and we know that
P,(Sp < 0o) = 1. For the second term, for all s > 0, we have by (S53)

Qi—s(D, )1 (s) —> / Pey (X, € A, Sg > 1) du.

Moreover |Q;—s(D, A)1jg4(s)up(s)| < np(s) Wthh is integrable. So by the dominated convergence
theorem,

1 o0
x, A —>7/ Py(Xy € A, Sp > u) du
Qi(z, A) — Eo(So) Jo o( 0 >u)

which is independent of x. O

We are now in position to prove Theorem The conditions or of |[Karlin and McGregor
(1957) imply the assumptions made in Lemma We then deduce that pu(A) := limy_o0o Qi(x, A)
exists for all € E and A € £, and is independent of z. It is a probability measure because for any
t>0and x € E, Q¢z,.) is a probability measure.

Let us prove that p is an invariant measure. The previous convergence reads

| 1w)Qudy) = [ swntdy). (554)
E E

where f =14 with A € £. It is not difficult to extend it to any step function and by limiting arguments
to any f € M;“(E) By the Markov property, for all t,s >, x € ' and A € &,

Qe A) = [ Quly. 4) Qula.dy).

Letting s tend to oo, we obtain that the left hand side converges to p(A), while for the right hand side,
we may apply (S54) to f = Qi(., A) € M, (E) to finally obtain

= /EQt(y,A)u(dy)-

Finally, if v is a probability measure on E, such that for any A € £

)= [ Quw. Away).

then as Q¢(z, A) < 1, taking t — oo, we get by the dominated convergence theorem

v(A) = [ n(A)w(dy) = n(4).

Hence p is the unique invariant probability measure.
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