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Abstract

We consider Markov processes that alternate continuous motions and jumps in a general locally
compact polish space. Starting from a mechanistic construction, a first contribution of this article
is to provide conditions on the dynamics so that the associated transition kernel forms a Feller
semigroup, and to deduce the corresponding infinitesimal generator. In a second contribution, we
investigate the ergodic properties in the special case where the jumps consist of births and deaths, a
situation observed in several applications including epidemiology, ecology and microbiology. Based
on a coupling argument, we obtain conditions for the convergence to a stationary measure with a
geometric rate of convergence. Throughout the article, we illustrate our results by general examples
of systems of interacting particles in Rd with births and deaths. We show that in some cases the
stationary measure can be made explicit and corresponds to a Gibbs measure on a compact subset
of Rd. Our examples include in particular Gibbs measure associated to repulsive Lennard-Jones
potentials and to Riesz potentials.

Keywords: Feller processes ; birth-death-move processes ; coupling ; Gibbs measures ; Riesz potential

1 Introduction
In the spirit of jump-diffusion models, we consider Markov stochastic processes that alternate con-
tinuous motions and jumps in some locally compact Polish space E. We call these general processes
jump-move processes. In this paper, the state-space E is typically not a finite-dimensional Euclidean
space, contrary to standard jump-diffusion models. Many examples of such dynamics have been con-
sidered in the literature, including piecewise deterministic processes (Davis, 1984), branching particle
systems (Skorokhod, 1964; Athreya and Ney, 2012), spatially structured population models (Bansaye
and Méléard, 2015) and some variations (Çinlar and Kao, 1991; Löcherbach, 2002), to cite a few. A
particular case that will be of special interest to us is when E = ∪n≥0En for some disjoint spaces
En, E0 consisting of a single element, and the jumps can only occur from En to En+1 (like a birth)
or from En to En−1 (like a death). We call the latter specific dynamics a birth-death-move process
(Preston, 1975; Lavancier and Le Guével, 2021). We will provide several illustrations in the particular
case of interacting particles in Rd, with births and deaths. These processes are observed in a various
range of applications, including microbiology (Lavancier and Le Guével, 2021), epidemiology (Masuda
and Holme, 2017) and ecology (Renshaw and Särkkä, 2001; Pommerening and Grabarnik, 2019). The
main motivation of this contribution is to provide some foundations for the statistical inference of such
processes, by especially studying their ergodic properties.

We start in Section 2 from a mechanistic general definition of jump-move processes, in the sense
that we explicitly construct the process iteratively over time, which equivalently provides a simulation
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algorithm. This defines a Markov process (Xt)t≥0, the jump intensity function of which reads α(Xt),
for some continuous function α, and which follows between its jumps a continuous Markov motion on
E. We then derive in Section 3 conditions ensuring that the transition kernel of (Xt)t≥0 forms a Feller
semigroup on Cb(E) or on C0(E). We obtain the natural result that if α is bounded, then a jump-move
process is Feller whenever the transition kernel of the jumps and the transition kernel of the inter-jumps
motion (i.e. the move part) are. Similarly, the infinitesimal generator is just the sum of the generator
of the jumps and the generator of the move, the domain corresponding under mild conditions to the
domain of the generator of the move.

In Section 4, we focus on birth-death-move processes and we obtain simple conditions on the birth
and death intensity functions ensuring their ergodicity with a geometric rate of convergence, in line
with standard results for simple birth-death processes on N (Karlin and McGregor, 1957) and for
spatial birth-death processes (the case without move) established by Preston (1975) and Møller (1989).
Following Preston (1975), the main ingredient to establish such results is a coupling with a simple
birth-death process on N, that provides conditions implying that the single element of E0 is an ergodic
state for the process. However the inclusion of inter-jumps motions make this coupling more delicate
to justify than for the pure spatial birth-death processes of Preston (1975). We manage to realise this
coupling under the assumption that the birth-death-move process is Feller on C0(E), making necessary
the properties discussed before.

We emphasise that the above results are very general in the sense that neither E is specified, nor
the exact jump transition kernel, nor the form of the inter-jumps continuous Markov motion. Our only
real working assumption is the boundedness of the intensity function α. We however provide many
illustrations in the case where (Xt)t≥0 represents the dynamics of a system of particles in Rd, introduced
in Section 2.4. In this situation, we consider continuous inter-jumps motions driven by deterministic
growth-interacting dynamics, as already exploited in ecology (Renshaw and Särkkä, 2001; Häbel et al.,
2019), or driven by interacting SDE systems, in particular overdamped Langevin dynamics, the Feller
properties of which translate straightforwardly to the move part of (Xt)t≥0. As to the jumps, they
are continuous Feller in general, but not necessarily Feller on C0(E). The picture becomes however
more intelligible when they only consist of births and deaths. We present in Section 3.3 general birth
transition kernels that imply the Feller properties under mild assumptions. On the other hand, a simple
uniform death kernel cannot be Feller on C0(E) in this setting, unless the particles are restricted to a
compact subset of Rd, a situation where any death kernel is Feller. We finally show in Section 5 that
for a system of interacting particles in Rd with births and deaths, we may obtain an explicit Gibbs
distribution for the invariant probability measure. This happens when the inter-jumps motion is driven
by a Langevin dynamics based on some potential function V , and the jumps characteristics depend in
a proper way on the same potential V . Our assumption on V include in particular Riesz potentials,
repulsive Lennard-Jones potentials, soft-core potentials and (regularised) Strauss potentials, that are
standard models used in spatial statistics and statistical mechanics.

We have gathered in Appendix A the details of the coupling used in Section 4 to get the ergodic
properties, while most proofs are postponed to a supplementary material along with additional results.

2 Jump-move processes

2.1 Iterative construction

Let E be a Polish space equipped with the Borel σ−algebra E and a distance d. Let (Ω,F) be a
measurable space and (Px)x∈E a family of probability measures on (Ω,F). In order to define a jump-
move process (Xt)t≥0 on E, we need three ingredients:

1. An intensity function α : E → R+ that governs the inter-jumps waiting times.
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2. A transition kernel K for the jumps, defined on E × E .

3. A continuous homogeneous Markov process ((Yt)t≥0, (Px)x∈E) on E, the distribution of which will
drive the inter-jumps motion of (Xt)t≥0.

We will work throughout this paper under the assumption that α : E → R+ is continuous and bounded
by α∗ > 0, i.e. for all x ∈ E

0 ≤ α(x) ≤ α∗. (1)
We denote by (QYt )t≥0 the transition kernel of (Yt)t≥0, given by

QYt (x,A) = Px(Yt ∈ A), x ∈ E,A ∈ E .

The following iterative construction provides a clear intuition of the dynamics of the process (Xt)t≥0.
It follows closely the presentation in the supplementary material of Lavancier and Le Guével (2021),
where an algorithm of simulation on a finite time interval is also derived.

Let (Y (j)
t )t≥0, j ≥ 0, be a sequence of processes on E identically distributed as (Yt)t≥0. Set T0 = 0

and let x0 ∈ E. Then (Xt)t≥0 can be constructed as follows: for j ≥ 0, iteratively do

(i) GivenXTj = xj , generate (Y (j)
t )t≥0 conditional on Y (j)

0 = xj according to the kernel (QYt (xj , .))t≥0.

(ii) Given XTj = xj and (Y (j)
t )t≥0, generate τj+1 according to the cumulative distribution function

Fj+1(t) = 1− exp
(
−
∫ t

0
α
(
Y (j)
u

)
du
)
. (2)

(iii) Given XTj = xj , (Y (j)
t )t≥0 and τj+1, generate xj+1 according to the transition kernel K(Y (j)

τj+1 , .).

(iv) Set Tj+1 = Tj + τj+1, Xt = (Y (j)
t−Tj ) for t ∈ [Tj , Tj+1) and XTj+1 = xj+1.

We denote by (FYt )t≥0 the natural filtration of (Yt)t≥0, i.e. FYt = σ(Yu, u ≤ t), and by (Ft)t>0
the natural filtration of (Xt)t≥0. We make these filtrations complete (Bass, 2011, Section 20.1) and
abusively use the same notation. The jump-move process ((Xt)t≥0, (Px)x∈E) constructed above is
a homogeneous Markov process with respect to (Ft)t>0. The trajectories of (Xt)t≥0 are continuous
except at the jump times (Tj)j≥1 where they are right-continuous. The specific form (2) implies that
the law of the waiting time τj under Px is absolutely continuous with respect to the Lebesgue measure
with density Ex

[
α(Y (j−1)

t )exp
(
−
∫ t

0 α(Y (j−1)
u ) du

)]
1t>0. It also implies that the intensity of jumps is

α(Xt). Denote by Nt =
∑
j≥0 1Tj≤t the number of jumps before t ≥ 0. Under the assumption (1), we

have for any n ≥ 0 and t ≥ 0,
P(Nt > n) ≤ P(N∗t > n) (3)

where N∗t follows a Poisson distribution with rate α∗t. This in particular implies that (Nt)t≥0 is a
non-explosive counting process. All the aforementionned properties of (Xt)t≥0 are either immediate or
verified in Lavancier and Le Guével (2021).

Note that the above construction only implies the weak Markov property of (Xt)t≥0 in general, at
least because the process (Yt)t≥0 is only assumed to be a (weak) Markov process. A more abstract
construction obtained by “piecing out” strong Markov processes is introduced in Ikeda et al. (1968),
leading to a strong Markov jump-move process. The strong Markov property can also be obtained in
our case by strengthening the assumptions, see Section 3.1.

The transition kernel of (Xt)t≥0 will be denoted, for any t ≥ 0, x ∈ E and A ∈ E , by

Qt(x,A) = P(Xt ∈ A|X0 = x) = Px(Xt ∈ A).

Also for f ∈ M b(E), where M b(E) is the set of real valued bounded and measurable functions on E,
we will denote Qtf(x) = Ex[f(Xt)] =

∫
E Qt(x, dy)f(y). Similarly we will write QYt f(x) = EYx (f(Yt)).
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2.2 Special case of the birth-death-move process

A birth-death-move process is the particular case of a jump-move process where E takes the form
E =

⋃∞
n=0En, with (En)n≥0 a sequence of disjoint Polish spaces, and where the jumps are only births

and deaths. We assume that each En is equipped with the Borel σ−algebra En, so that E is associated
with the σ−field E = σ (

⋃∞
n=0 En). We further assume that E0 consists of a single element denoted by

Ø. In this setting, the Markov process (Yt)t≥0 driving the motions of (Xt)t≥0 is supposed to satisfy

Px((Yt)t≥0 ⊂ En) = 1En(x), ∀x ∈ E, ∀n ≥ 0.

We introduce a birth intensity function β : E → R+ and a death intensity function δ : E → R+,
both assumed to be continuous on E and satisfying α = β + δ. We prevent a death in E0 by assuming
that δ(Ø) = 0. The probability transition kernel K for the jumps then reads, for any x ∈ E and A ∈ E ,

K(x,A) = β(x)
α(x)Kβ(x,A) + δ(x)

α(x)Kδ(x,A), (4)

where Kβ : E × E → [0, 1] is a probability transition kernel for a birth and Kδ : E × E → [0, 1] is a
probability transition kernel for a death. They satisfy, for x ∈ E and n ≥ 0,

Kβ(x,En+1) = 1En(x) and Kδ(x,En) = 1En+1(x).

Notice that a simple birth-death process is the particular case where E = N, En = {n} and the
intensity functions β and δ are sequences.

For later purposes, when E =
⋃∞
n=0En as in the present section, we define the function n(.) : E → N

by n(x) = k when x ∈ Ek, so that x ∈ En(x) is always satisfied.

2.3 Kolmogorov backward equation

The goal of this section is to present the Kolmogorov backward equation for the transition kernel of
the general jump-move process (Xt)t≥0 of Section 2.1, providing a more probabilistic viewpoint of its
dynamics, and to show that the solution exists and is unique. To obtain these results we use similar
methods as in Feller (1971) for pure jump processes, see also Preston (1975). The key assumption is
the boundedness (1) of the intensity α, which prevents the explosion of the process. The proofs are
postponed to Section S-1 in the supplementary material.

Theorem 1. For all x ∈ E and all A ∈ E, the function t 7→ Qt(x,A), for t > 0, satisfies the following
Kolmogorov backward equation:

Qt(x,A) = EYx
[
1Yt∈A e−

∫ t
0 α(Yu) du

]
+
∫ t

0

∫
E
Qt−s(y,A)EYx

[
K (Ys, dy) α(Ys)e−

∫ s
0 α(Yu) du

]
ds. (5)

In the case of the birth-death-move process of Section 2.2, the above equation reads, for x ∈ En,

Qt(x,A) = EYx
[
1Yt∈A e−

∫ t
0 α(Yu) du

]
+
∫ t

0

∫
En+1

Qt−s(y,A)EYx
[
β (Ys)Kβ (Ys, dy) e−

∫ s
0 α(Yu) du

]
ds

+
∫ t

0

∫
En−1

Qt−s(y,A)EYx
[
δ (Ys)Kδ (Ys, dy) e−

∫ s
0 α(Yu) du

]
ds. (6)

To show the existence of a unique solution to (5), let Qt,p(x,A) := Px(Xt ∈ A, Tp > t) be the
transition probability from state x to A in time t with at most p jumps. Notice that we can define
Qt,∞ = lim

p→∞
Qt,p because Qt,p ≤ Qt,p+1 ≤ 1. We prove in the following proposition that Qt,∞ is the

unique solution to (5) using a minimality argument as in Feller (1971).
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Proposition 2. Qt,∞ is the unique sub-stochastic solution of (5), i.e. it is the unique solution satisfying
Qt(x,E) ≤ 1 for all x ∈ E. Moreover Qt,∞ is stochastic, i.e. Qt,∞(x,E) = 1 for all x ∈ E.

To conclude this section, we present an interpretation of Qt,∞ for the birth-death-move process of
Section 2.2, which is much in the spirit of Preston (1975). We write Qt,(p)(x,A) for the transition
probability from x to A in time t without having entered

⋃∞
k=p+1Ek, that is

Qt,(p)(x,A) = Px (Xt ∈ A, ∀s ∈ [0, t] n(Xs) ≤ p) .

We can also define Qt,(∞)(x,A) = lim
p→∞

Qt,(p)(x,A) ≤ 1 by monotonicity.

Proposition 3. For all x ∈ E and all A ∈ E, Qt,(∞)(x,A) = Qt,∞(x,A).

2.4 Systems of interacting particles in Rd

In this section, we focus on the dynamics of a system of interacting particles in Rd and we provide
general examples of birth kernels, death kernels and inter-jumps motions in this setting, that to our
opinion constitute realistic models for applications and are actually already used in some domains.
Some of them moreover lead to an explicit Gibbs stationary measure of the dynamics, as we will show
in Section 5. These running examples will serve in the rest of the paper to illustrate the theoretical
results and make explicit our assumptions.

Let W ⊂ Rd be a closed set where the particles live, equipped with a σ−field B. A collection of
n particles in W is a point configuration for which the ordering does not matter. For this reason, for
n ≥ 1, we will identify two elements (x1, . . . , xn) and (y1, . . . , yn) of Wn if there exists a permutation
σ of {1, . . . , n} such that xi = yσ(i) for any 1 ≤ i ≤ n. Following Preston (1975), Löcherbach (2002)
and others, we thus define En as the space obtained by this identification. Specifically, denoting by
πn : (x1, . . . , xn) ∈Wn 7→ {x1, . . . , xn} the associated projection, the space En corresponds for n ≥ 1 to
En = πn(Wn) equipped with the σ−field En = πn(B⊗n), while E0 = {Ø} is just composed of the empty
configuration. The general state space of a system of particles is then E = ∪n≥0En equipped with the
σ−field E = σ (∪n≥0En) . This formalism allows us to go back and forth quite straightforwardly between
the space En and the space Wn, the latter being in particular more usual to define the inter-jumps
motion of n particles, as detailed below. Note that an alternative formalism consists in viewing a
configuration of particles as a finite point measure inW , in which case E becomes the set of finite point
measures in W , see for instance Kallenberg (2017). We choose in this paper to adopt the former point
of view. We denote by ‖.‖ the Euclidean norm on Rd. If x = {x1, . . . , xn} ∈ En and ξ ∈W , x∪ξ stands
for {x1, . . . , xn, ξ} ∈ En+1 and if 1 ≤ i ≤ n, we write x \xi for {x1, . . . , xi−1, xi+1, . . . , xn} ∈ En−1.

As long as we are concerned by continuous inter-jumps motions, we need to equip E with a distance.
Following Schuhmacher and Xia (2008), we consider the distance d1 defined for x = {x1, . . . , xn(x)} and
y = {y1, . . . , yn(y)} in E such that n(x) ≤ n(y) by

d1(x, y) = 1
n(y)

 min
σ∈Sn(y)

n(x)∑
i=1

(‖xi − yσ(i)‖ ∧ 1) + (n(y)− n(x))

 , (7)

with d1(x,Ø) = 1 and where Sn denotes the set of permutations of {1, . . . , n}. Schuhmacher and Xia
(2008) and Section S-4 in the supplementary material detail some topological properties of (E, d1).
For the purposes of this section, let us quote in particular that n(.) : (E, d1) → (N, |.|) is continuous
and that πn is continuous. Note that other distances than d1 could have been chosen, provided these
two last properties (at least) are preserved. Incidentally, the Hausdorff distance, which is a common
choice of distance between random sets, does not satisfy these properties (see Section S-4) and is not
appropriate in our setting.
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We now show how we can easily construct a continuous Markov process (Yt)t≥0 on E from continuous
Markov processes on Wn for any n ≥ 1. We focus on the case where for any x ∈ E and n ≥ 0,
Px((Yt)t≥0 ⊂ En) = 1En(x), as we required it for birth-death-move processes in Section 2.2. It is then
enough to define a process Y |n on each En. To do so consider a continuous Markov process (Z |nt )t≥0

on Wn whose distribution is permutation equivariant with respect to its initial value Z |n0 . This means
that for any permutation σ ∈ Sn, the law of Z |nt = (Z |nt,1, . . . , Z

|n
t,n) given Z

|n
0 = (zσ(1), . . . , zσ(n)) is

the same as the law of (Z |nt,σ(1), . . . , Z
|n
t,σ(n)) given Z

|n
0 = (z1, . . . , zn). Let x = {x1, . . . , xn} ∈ En and

take the process Z |nt with initial state Z |n0 = (x1, . . . , xn). Note that from the previous permutation
equivariance property the choice of ordering for the coordinates of this initial state does not matter, as
it will become clear below. We finally define the process Y |nt on En starting from x as

Y
|n
t = πn

(
Z
|n
t

)
=
{
Z
|n
t,1, . . . , Z

|n
t,n

}
. (8)

Note that the continuity of t → Y
|n
t (with respect to d1) follows from the continuity of t → Z

|n
t and

the continuity of πn. The continuity of t→ Yt is then implied by the continuity of n(.).
With this construction, the transition kernel of Y reads, for any f ∈M b(E),

QYt f(x) =
∑
n≥0

E
[
f(Y |nt ) |Y |n0 = x

]
1x∈En =

∑
n≥0

E
(
f(πn(Z |nt )) | Z |n0 = (x1, . . . , xn)

)
1x∈En ,

so that denoting by QZ |nt the transition kernel of Z |n in Wn we have

QYt f(x) =
∑
n≥0

QZ
|n

t (f ◦ πn)((x1, . . . , xn))1x∈En .

Note that if we had chosen another ordering for the initial state, that is Z |n0 = (xσ(1), . . . , xσ(n)) for
some σ ∈ Sn, then the transition kernel of Y would have remained the same, since by permutation
equivariance

E
(
f(πn(Z |nt )) | Z |n0 = (xσ(1), . . . , xσ(n))

)
= E

(
f(πn(Z |nt,σ(1), . . . , Z

|n
t,σ(n))) | Z

|n
0 = (x1, . . . , xn)

)
which is E

(
f(πn(Z |nt )) | Z |n0 = (x1, . . . , xn)

)
.

We are now in position to present general examples of jump transition kernels and inter-jumps
motions for a system of particles in W . The first example introduces a death transition kernel where
an existing particle dies with a probability that may depend on the distance to the other particles. The
next two examples focus on birth transition kernels, either driven by a mixture of densities around each
particle, or by a Gibbs potential. The last two examples apply the above construction of (Yt)t≥0 on E
to introduce inter-jumps Langevin diffusions and growth interaction processes.

Example 1(death kernel): Let g : R+ → R∗+ be a continuous function and for x = {x1, . . . , xn} ∈ En,
set w(x1, x) = 1 if n = 1 and if n ≥ 2, for any i ∈ {1, . . . , n},

w(xi, x) = 1
z(x)

∑
k 6=i

g (‖xk − xi‖) ,

with z(x) =
∑n
i=1

∑
k 6=i g(‖xk − xi‖). A general example of death transition kernel is

Kδ(x,A) =
n(x)∑
i=1

w(xi, x)1A(x \xi), x ∈ E, A ∈ E .
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The probability w(xi, x) that xi disappears then depends on the distance between xi and the other
particles in x through g. Uniform deaths correspond to the particular case w(xi, x) = 1/n(x).

Example 2(birth kernel as a mixture): Let ϕ be a density function on W , and φ1 : W → R and
φ2 : R+ → R be two continuous functions. We set for x = {x1, . . . , xn(x)} ∈ E \ E0, v(xi, x) =
exp

(
φ1(xi) +

∑
k 6=i φ2 (‖xk − xi‖)

)
and we consider the birth kernel defined for Λ ⊂W and x ∈ E \E0

by Kβ(Ø,Λ) =
∫

Λ ϕ(ξ)dξ and

Kβ(x,Λ ∪ x) = 1
n(x)

n(x)∑
i=1

1
z(xi, x)

∫
Λ
ϕ

(
ξ − xi
v(xi, x)

)
dξ,

where Λ∪x = {{u}∪x, u ∈ Λ} and z(xi, x) =
∫
W ϕ ((ξ − xi)/v(xi, x)) dξ. Note that z(xi, x) = v(xi, x)d

if W = Rd. It is easily checked that Kβ(x,En+1) = Kβ(x,W ∪ x) = 1 for x ∈ En, and in particular
this kernel is a genuine birth kernel in the sense that the transition from En to En+1 is only due to
the addition of a new particle, the existing ones remaining unchanged. Moreover, the new particle
is distributed as a mixture of distributions driven by ϕ, each of them being centred at the existing
particles. The term v(xi, x) quantifies the dispersion of births around the particle xi and it depends on
the distance between xi and the other particles through φ2. A natural example is a mixture of isotropic
Gaussian distributions on Rd (restricted to W ), respectively centred at xi with standard deviation
v(xi, x).

Example 3(birth kernel based on a Gibbs potential): We introduce a measurable function V : E → R,
so called a potential, satisfying z(x) :=

∫
W exp(−(V (x ∪ ξ) − V (x))) dξ < ∞ for all x ∈ E, and we

consider the birth kernel defined for Λ ⊂W and x ∈ E by

Kβ(x,Λ ∪ x) = 1
z(x)

∫
Λ
e−(V (x∪ξ)−V (x)) dξ.

Note that Kβ(x,W ∪ x) = 1 for x ∈ E. With this kernel, given a configuration x, a new particle
is more likely to appear in the vicinity of points ξ ∈ W that make V (x ∪ ξ) − V (x) minimal. This
kind of kernels Kβ has been introduced in Preston (1975) for spatial birth-death processes, the case
of a birth-death-move process with no move. Their importance is due to the fact that the invariant
measure of a spatial birth-death process associated to Kβ, uniform deaths and specific birth and death
intensities has been explicitly obtained in Preston (1975) and corresponds to the Gibbs measure with
potential V . This result is at the basis of perfect simulation of spatial Gibbs point process models, see
Møller and Waagepetersen (2004). We will similarly show in Section 5 that the same Gibbs measure is
also invariant for a birth-death-move process associated to the same characteristics for the jumps and
a well chosen inter-jumps move process (Yt)t≥0 constructed as in the next example.

Example 4(Langevin diffusions as inter-jumps motions): Let g : Rd → Rd be a globally Lipschitz
continuous function, β > 0 and {Bt,i}1≤i≤n, n ≥ 1, a collection of n independent Brownian motions on
Rd. We start from the following system of SDEs usually called overdamped Langevin equations

dZ |nt,i = −
∑
j 6=i

g(Z |nt,i − Z
|n
t,j ) dt+

√
2β−1 dBt,i, 1 ≤ i ≤ n.

For z = (z1, . . . , zn) ∈ (Rd)n, denoting by Φn : (Rd)n → (Rd)n the function defined by Φn(z) =
(Φn,1(z), . . . ,Φn,n(z)) with Φn,i(z) =

∑
j 6=i g(zi − zj), this system of SDEs reads

dZ |nt = −Φn(Z |nt ) dt+
√

2β−1 dB |nt , (9)
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where B |nt = (Bt,1, . . . , Bt,n). Since Φn is a permutation equivariant function, that is for any σ ∈ Sn

Φn(zσ(1), . . . , zσ(n)) = (Φn,σ(1)(z), . . . ,Φn,σ(n)(z)),

and since B |nt is exchangeable, we can verify by writing (9) in integral form that the law of Z |nt is
permutation equivariant with respect to its initial state. So when W = Rd, we can define each inter-
jumps process Y |n in En from Z |n as in (8), yielding (Yt)t≥0 on E. The same construction can be
generalised if W ( Rd by considering a Langevin equation with reflecting boundary conditions (Fattler
and Grothaus, 2007). This inter-jumps dynamics, associated with the birth kernel of Example 3 and a
drift function g related to the potential V , converges to a Gibbs measure on W with potential V (see
Section 5).

Example 5(Growth interaction processes): This example is motivated by models used in ecology
(Renshaw and Särkkä, 2001; Renshaw et al., 2009; Comas, 2009; Häbel et al., 2019). Each particle
consists of a plant located in S ⊂ Rd and associated with a positive mark, that typically represents the
size of the plant, so that W = S × R+ here. Births and deaths of plants occur according to a spatial
birth and death process, while a deterministic growth applies to their mark. Specifically, when a plant
appears, its mark is set to zero or generated according to a uniform distribution on [0, ε] for some
ε > 0 (Renshaw and Särkkä (2001)). Then the mark increases over time in interaction with the other
marks. In order to formally define this inter-jumps dynamics, let us denote by (Ui(t),mi(t))t≥0, for
i = 1, . . . , n, each component of the process (Z |nt )t≥0 where Ui(t) ∈ S and mi(t) > 0, so that Z |nt ∈Wn.
We introduce the system

dZ |nt
dt =

(
(0, F1,n(Z |nt )), . . . , (0, Fn,n(Z |nt ))

)
, (10)

where for all 1 ≤ i ≤ n, Fi,n is a function fromWn into R+. We thus have Ui(t) = Ui(0) for all i and the
evolution of the marks (m1(t), . . . ,mn(t)) is driven by a deterministic differential equation depending
on (U1(0), . . . , Un(0)) as expected. To define Y |n by (8), we finally assume permutation equivariance,
namely that Fσ(i),n(z1, . . . , zn) = Fi,n(zσ(1), . . . , zσ(n)) for all i and all σ ∈ Sn, which is satisfied for all
examples in the aforementioned references.

3 Feller properties and infinitesimal generator

3.1 Feller properties

We assume henceforth that E is a locally compact Polish space. Let Cb(E) be the set of continuous
and bounded functions on E and C0(E) be the set of continuous functions that vanish at infinity in
the sense that for all ε > 0, there exists a compact set B ∈ E such that x /∈ B ⇒ |f(x)| < ε.

Following Dynkin (1965) and Øksendal (2013), we say that the jump-move process (Xt)t≥0 on E
with transition kernel Qt is Feller continuous if QtCb(E) ⊂ Cb(E), and we say that it is Feller if both
limt→0 ‖Qtf − f‖∞ = 0 for any f ∈ C0(E) (strong continuity) and QtC0(E) ⊂ C0(E).

The following proposition, proved in Section S-2 of the supplementary material, provides information
on the continuity property of Qt when t goes to 0.

Proposition 4. We have

1. For any f ∈ Cb(E) and any x ∈ E, lim
t→0

Qtf(x) = f(x).

2. Let f ∈M b(E). Then lim
t→0
‖Qtf − f‖∞ = 0 iff lim

t→0
‖QYt f − f‖∞ = 0.
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By the second point above, the strong continuity of Qt is implied by the strong continuity of QYt ,
which in turn holds automatically true if QYt C0(E) ⊂ C0(E) by continuity of Yt. We thus obtain the
following natural conditions on the jump-move process on E to be Feller continuous or Feller. The
proof is given in Section S-2 of the supplementary material.

Theorem 5. Let (Xt)t≥0 be a general jump-move process on E.

1. If QYt Cb(E) ⊂ Cb(E) and K Cb(E) ⊂ Cb(E) then (Xt)t≥0 is a Feller continuous process.

2. If QYt C0(E) ⊂ C0(E) and K C0(E) ⊂ C0(E) then (Xt)t≥0 is a Feller process.

We deduce in particular from this theorem that if QYt Cb(E) ⊂ Cb(E) and K Cb(E) ⊂ Cb(E) (or
alternatively with C0(E) instead of Cb(E)), then (Xt)t≥0 is a strong Markov process for the filtration
(Ft)t≥0, a property implied by the Feller continuous and Feller properties (Bass (2011)). The Feller
property will also be useful to us in Section 4 to construct a coupling between a birth-death-move
process and a simple birth-death process on N, in a view to establish ergodic properties.

We investigate in Section 3.3 the conditions of Theorem 5 for the examples of dynamics of systems
of interacting particles in Rd introduced in Section 2.4. They turn out to be generally satisfied under
mild conditions for these examples.

3.2 Infinitesimal generator

In this section we compute the infinitesimal generator associated to the jump-move process (Xt)t≥0.
We first introduce some notations and recall below the definition of the generator, see for instance
Dynkin (1965). In connection, remember that the family (Qt)t≥0 of transition operators is a semigroup
on (Mb(E), ‖.‖∞). If moreover the process (Xt)t≥0 is Feller continuous (resp. Feller), then (Qt)t≥0 is a
semigroup on (Cb(E), ‖.‖∞) (resp. (C0(E), ‖.‖∞)).

Definition 1. Let L ⊂M b(E) and (Ut)t≥0 be a semigroup on (L, ‖.‖∞). We set

L0 = {f ∈ L : lim
t→0
‖Utf − f‖∞ = 0} and DA = {f ∈ L : lim

t→0

Utf − f
t

exists in (L, ‖.‖∞)}. (11)

For f ∈ DA, define Af = limt↘0(Utf − f)/t. The operator A : DA → L is called the infinitesimal
generator associated to the semigroup (Ut)t≥0 and DA is called the domain of the generator A.

In the following we denote by L0 (resp. LY0 ) and A (resp. AY ) the set as in (11) and the infinitesimal
operator associated to (Qt)t≥0 (resp. (QYt )t≥0). Note that L0 = LY0 by Proposition 4.

Theorem 6. Let (Xt)t≥0 be a general jump-move process on a Polish space E. Suppose that if f ∈ LY0 ,
then α× f ∈ LY0 and Kf ∈ LY0 . Then DA = DAY and for any f ∈ DAY ,

Af = AY f + α×Kf − α× f.

This result, proved in Section S-3 of the supplementary material, shows that the generator A of
the jump-move process (Xt)t≥0 is just the sum of the generator of the move AY and the generator of
the jump, specifically of a pure jump Markov process with intensity α and transition kernel K, that is
α× (K − Id) (see Feller (1971)).

Note that for a pure jump process, QYt = Id for any t ≥ 0, LY0 = DAY = M b(E) and AY ≡ 0, so that
all assumptions of Theorem 6 are trivially true in this setting. More generally, consider a jump-move
process with a Feller inter-jumps process, i.e. QYt C0(E) ⊂ C0(E), and a Feller jump transition, i.e.
K C0(E) ⊂ C0(E), so that (Xt)t≥0 is Feller by Theorem 5, then we can take LY0 = C0(E) and again
the assumptions of Theorem 6 are satisfied since α is bounded.
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3.3 Application to systems of interacting particles in Rd

We go back to the setting of Section 2.4 concerned with systems of interacting particles in W ⊂ Rd,
in order to inspect whether the examples of dynamics presented therein are (continuous) Feller or not.
To do so and be able to check the conditions of Theorem 5, we need to first clarify what are the sets
Cb(E) and C0(E) in this framework. Remember that in this setting E = ∪n≥0En where En = πn(Wn)
corresponds to the set of unordered n-tuples of W , and we have equipped E with the distance d1
defined by (7). As a first result, it can be verified that (E, d1) is a locally compact Polish space, see
(Schuhmacher and Xia, 2008, Proposition 2.2) and Section S-4 in the supplementary material. To
characterise the elements of Cb(E), we shall use the following proposition, proved in Section S-4.

Proposition 7. Let x ∈ E and (x(p))p≥1 a sequence converging to x, i.e. d1(x(p), x) → 0 as p → ∞.
Then there exist p0 ≥ 1 such that for all p ≥ p0 n(x(p)) = n(x) and, when n(x) ≥ 1, a sequence (σp)p≥p0

of Sn(x) such that for any i ∈ {1, . . . , n(x)},

‖x(p)
σp(i) − xi‖ −→p→∞ 0. (12)

On the other side, to deal with C0(E), we provide a characterization of the compact sets of each
En, for n ≥ 1, and an important property about the compact sets of E.

Proposition 8. Suppose that W is a closed set of Rd.

1. Let n ≥ 1 and A be a closed subset of (En, d1). Then A is compact if and only if the following
property holds:

∀w ∈W, ∃R ≥ 0, s.t. ∀x = {x1, ..., xn} ∈ A, max
1≤k≤n

{‖xk − w‖} ≤ R.

2. Let A be a compact set of E. Then there exists n0 ≥ 0 such that A ⊂
n0⋃
n=0

En.

The two previous propositions are the main tools to investigate the continuous Feller and Feller
properties of the jump kernel K of a jump-move process. Concerning the inter-jumps move process
(Yt)t≥0, remember that we can easily define it on each En from a continuous process (Z |nt )t≥0 onWn by
the projection (8). Similarly as for the continuity property discussed in Section 2.4, the Feller properties
of (Yt)t≥0 on (E, d1) inherit from that of (Z |nt )t≥0 on Wn.

Proposition 9. Let (Yt)t≥0 be defined on E by (8), then if (Z |nt )t≥0 is a Feller continuous (resp.
Feller) process on Wn for every n ≥ 1 then (Yt)t≥0 is a Feller continuous (resp. Feller) process on E.

By this result, standard inter-jumps motions are Feller continuous and Feller, as this is the case
under mild assumptions for our examples 4 and 5 detailed below. Concerning the jump kernels, the
global picture is as follows. They are generally Feller continuous, but not necessarily Feller even if the
underlying space W is compact, as showed in the following example. However if we restrict ourselves
to birth kernels, then they are generally Feller (see Examples 2 and 3 below). On the other hand, if
we restrict ourselves to death kernels, then they are Feller if W is compact, but not otherwise, see
Example 1 below. Remark that a birth-and-death jump kernel as in (4) is (continuous) Feller when the
birth kernel Kβ and the death kernel Kδ are. So it is generally continuous Feller, and if W is compact,
it is generally Feller.

Let us make these informal claims more specific through some examples. The first one presents an
example of jump kernel on a set W , possibly compact, that is continuous Feller but not Feller. The
other ones correspond to the examples introduced in Section 2.4.
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Example. Consider the jump kernel K defined for f ∈ M b(E) by Kf(x) =
∑n(x)
i=1 f({xi})/n(x) for

x = {x1, . . . , xn(x)} ∈ E, so that K(x,E1) = 1 for any x ∈ E. Let x(p) be a sequence converging
to x, from which we define p0 and (σp)p≥p0 as in Proposition 7. Let f ∈ Cb(E). Then Kf(x(p)) =∑n(x)
i=1 f(x(p)

σp(i))/n(x) tends to
∑n(x)
i=1 f(xi)/n(x) = Kf(x) as p→∞, which shows the continuous Feller

property of K, i.e. K Cb(E) ⊂ Cb(E). Let us now show that K is not Feller. Assume without loss of
generality that 0 ∈W . Consider the function f(x) = max(1−‖x‖, 0)1n(x)=1, where we abusively write
‖x‖ := ‖x1‖ when x = {x1}, x1 ∈ W . Note that f ∈ C0(E). Let B be a compact subset of E. From
Theorem 8 there exists n0 ≥ 0 such that B ⊂ ∪n0

n=0En. Choose y = {0, . . . , 0} ∈ En0+1. Then y /∈ B
but Kf(y) = 1 proving that Kf /∈ C0(E).

Example 1 (continued)(death kernel): For the death kernel Kδ of this example, we have

(i) KδCb(E) ⊂ Cb(E)

(ii) KδC0(E) ⊂ C0(E) if W is compact, but not necessarily otherwise.

To prove the first property, take x ∈ E, a sequence (x(p))p≥0 converging to x, and p0 and (σp)p≥p0 from
Proposition 7. Then it is not difficult to verify that limp→∞w(x(p)

σp(i), x
(p)) = w(xi, x) by continuity of g.

Moreover, d1
(
x(p) \x(p)

σp(i), x \xi
)
≤
∑
j 6=i ‖x

(p)
σp(j)−xj‖/(n−1) which shows that x(p) \x(p)

σp(i) −→p→∞ x \xi.
Therefore, for any f ∈ Cb(E),

lim
p→∞

Kδf(x(p)) = lim
p→∞

n(x)∑
i=1

w(x(p)
i , x(p))f(x(p) \x(p)

i )

= lim
p→∞

n(x)∑
i=1

w(x(p)
σp(i), x

(p))f(x(p) \x(p)
σp(i))

=
n(x)∑
i=1

w(xi, x)f(x\xi)

= Kδf(x).

Let us now consider the second claim (ii). Take f ∈ C0(E) and ε > 0. We fix A a compact set of (E, d1)
such that |f(x)| < ε for x /∈ A. By Proposition 8, A ⊂

⋃n0
n=0En for some n0. As a straightforward

consequence of Proposition 8 (see Corollary S35 in Section S-4 of the supplementary material) the set
B :=

⋃n0+1
n=0 En is a compact set when W is compact and it satisfies Kδ(x,A) = 0 for x /∈ B. This

implies that for x /∈ B,

|Kδf(x)| ≤
∣∣∣∣∫
A
f(y)Kδ(x, dy)

∣∣∣∣+ ∣∣∣∣∫
Ac
f(y)Kδ(x, dy)

∣∣∣∣ ≤ ||f ||∞Kδ(x,A) + εKδ(x,Ac) ≤ ε, (13)

and so Kδf ∈ C0(E). Let us finally show that this result is not valid any more if W is not compact.
Assume without loss of generality that 0 ∈ W and consider as in the previous example the function
f ∈ C0(E) defined by f(x) = max(1 − ‖x‖, 0)1n(x)=1. Let B be any compact subset of E. Then
B2 = B ∩ E2 is compact because E2 is closed and by Proposition 8, for any x = {x1, x2} ∈ B2, there
exists R > 0 such that max{‖x1‖, ‖x2‖} ≤ R. Take y = {0, y2} in E2 such that ‖y2‖ > R+ 1, which is
possible since W is not compact. Then y /∈ B but Kδf(y) = w(y2, y) proving that Kf /∈ C0(E).

Example 2 (continued)(birth kernel as a mixture): For this example, we shall prove that if W̊ 6= ∅
and if the dispersion function v is continuous, then KβCb(E) ⊂ Cb(E) and KβC0(E) ⊂ C0(E). Take
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f ∈ Cb(E), x ∈ E and a sequence (x(p))p≥0 converging to x, from which we define p0 and (σp)p≥p0 from
Proposition 7. We have, for p ≥ p0,

Kβf(x(p)) = 1
n(x)

n(x)∑
i=1

1
z(x(p)

σp(i), x
(p))

∫
W
f(x(p) ∪ {ξ})ϕ

 ξ − x(p)
σp(i)

v(x(p)
σp(i), x

(p))

 dξ
= 1
n(x)

n(x)∑
i=1

∫
Rd 1W (x(p)

σp(i) + v(x(p)
σp(i), x

(p))ξ)f(x(p) ∪ {x(p)
σp(i) + v(x(p)

σp(i), x
(p))ξ})ϕ(ξ)dξ∫

Rd 1W (x(p)
σp(i) + v(x(p)

σp(i), x
(p))ξ)ϕ(ξ)dξ

.

By continuity of v, the involved indicator functions tend to 1W (xi+v(xi, x)ξ) for any xi+v(xi, x)ξ ∈ W̊ .
On the other hand, for any i ∈ {1, ..., n(x)} and any ξ,

d1
(
x(p) ∪ {x(p)

σp(i) + v(x(p)
σp(i), x

(p))ξ}, x ∪ {xi + v(xi, x) ξ}
)

≤ 1
n(x) + 1

n(x)∑
j=1
‖x(p)

σp(j) − xj‖+ ‖x(p)
σp(i) + v(x(p)

σp(i), x
(p)) ξ − xi − v(xi, x) ξ‖


≤ 1
n(x) + 1

n(x)∑
j=1
‖x(p)

σp(j) − xj‖+ ‖x(p)
σp(i) − xi‖+ ‖ξ‖ |v(x(p)

σp(i), x
(p))− v(xi, x)|


which tends to 0 as p → ∞. So by continuity of f , f(x(p) ∪ {x(p)

σp(i) + v(x(p)
σp(i), x

(p))ξ}) tends to
f(x ∪ {xi + v(xi, x)ξ). We conclude by the dominated convergence theorem, since f is bounded and ϕ
is a density, that Kβf(x(p)) converges to Kβf(x) as p→∞, which proves that KβCb(E) ⊂ Cb(E).

Let us now prove that KβC0(E) ⊂ C0(E). Let f ∈ C0(E) and ε > 0. We fix A ⊂ E a compact set
such that x /∈ A ⇒ |f(x)| < ε. By Proposition 8, A ⊂

⋃n0
n=0En for some n0. Letting An = A ∩ En,

for n = 0, . . . , n0, we remark that An is a compact set because En is closed. By Proposition 8,
there exists Rn ≥ 0 such that for every a = {a1, . . . , an} ∈ An, max1≤k≤n ‖ak‖ ≤ Rn. Let now
Bn = {x ∈ En,

∑n
k=1 ‖xk‖/n ≤ Rn} and B =

⋃n0−1
n=0 Bn. We can verify (see the proof of Proposition 8)

that Bn is compact and so is B. We claim that if x /∈ B, then Kβ(x,A) = 0. Indeed, if Kβ(x,A) > 0
then Kβ(x,An) > 0 for some n ∈ {0, . . . , n0}, but since Kβ(x,A0) ≤ Kβ(x, {Ø}) = 0 it cannot be
n = 0. Now, for n = 1, . . . , n0, Kβ(x,An) > 0 implies that x ∈ En−1 and An ⊂ {z ∪ x, z ∈ W} since
Kβ(x,W ∪ x) = 1. So max1≤k≤n−1 ‖xk‖ ≤ Rn, whereby x ∈ Bn−1. This shows that if Kβ(x,A) > 0
then x ∈ B, as we claimed it. We deduce that for any x /∈ B, |Kβf(x)| ≤ ε as in (13).

Example 3 (continued)(birth kernel based on a Gibbs potential): This birth kernel Kβ is both Feller
continuous and Feller, whenever the potential V is continuous and locally stable. By the latter, we
mean that there exists ψ ∈ L1(W ) such that for any x ∈ E, exp(−(V (x ∪ ξ) − V (x))) ≤ ψ(ξ) (Møller
and Waagepetersen, 2004). Under these conditions, we can prove similarly as in Example 2 that
KβCb(E) ⊂ Cb(E) by use of the dominated convergence theorem and that KβC0(E) ⊂ C0(E). Note
that the examples of potentials considered in Section 5, leading to an invariant Gibbs measure, are
continuous and locally stable.

Example 4 (continued)(Langevin diffusions as inter-jumps motions): The inter-jumps process (Yt)t≥0,
defined through the stochastic differential equation (9), is a Feller continuous and a Feller process on E.
This is due to the fact that g being globally Lipschitz, the function Φn in (9) is also globally Lipschitz
for any n ≥ 1, and so the solution (Z |nt )t≥0 of (9) is Feller continuous and Feller (Schilling and Partzsch,
2012). The conclusion then follows from Proposition 9.

Example 5 (continued)(Growth interaction processes): In this example, the inter-jumps motion is
driven by (10). If the functions F1,n, . . . , Fn,n are Lipschitz continuous, then (Yt)t≥0 is Feller continuous

12



and Feller. Indeed, the solution of (10) is continuous in the initial condition Z |n0 under this assumption
(Markley, 2004), implying the Feller continuity of (Yt)t≥0 by Proposition 9. Moreover, since the marks
mi(t) in (Z |nt )t≥0 are all increasing functions, we have that ‖Z |nt ‖ ≥ ‖Z

|n
0 ‖. Let f ∈ C0(Wn), ε > 0 and

R > 0 such that ‖x‖ > R⇒ |f(x)| < ε. Therefore if ‖Z |n0 ‖ > R, we have ‖Z |nt ‖ ≥ R and so f(Z |nt ) < ε,
proving that Z |nt is Feller and so is (Yt)t≥0 by Proposition 9.

4 Ergodic properties of birth-death-move processes
In this section we focus on birth-death-move processes as described in Section 2.2. Accordingly, the
state space is E =

⋃∞
n=0En where (En)n≥1 is a sequence of disjoint locally compact Polish spaces with

E0 = {Ø}, and the jump-kernel K reads as in (4). Remember that in this setting the jump intensity
function is α = β + δ where β and δ are the birth and death intensity functions. We introduce the
following notation

βn = sup
x∈En

β(x), δn = inf
x∈En

δ(x) and αn = βn + δn. (14)

We present in Section 4.1 conditions on the sequences (βn) and (δn) ensuring the convergence of
the birth-death-move process towards a unique invariant probability measure. Section 4.2 provides a
geometric rate of convergence and we characterize some invariant measures in Section 4.3.

4.1 Convergence to an invariant measure

Let (Xt)t≥0 be a birth-death-move process as in Section 2.2. Inspired by Preston (1975), the first step
to establish the ergodic properties of (Xt)t≥0 is to construct a coupling between (Xt)t≥0 and a simple
birth-death process (ηt)t≥0 on N with birth rates βn and death rates δn. This coupling is detailed in
Appendix A. In a nutshell, we built a jump-move process Čt = (X ′t, η′t) so that the properties stated in
the following theorem are satisfied, in particular we have the equality in distribution (X ′t)t≥0 = (Xt)t≥0
and (η′t)t≥0 = (ηt)t≥0. We denote by Q̌t the transition kernel of Čt and by P(N) the power set of N.

Theorem 10. Suppose that (Yt)t≥0 is a Feller process and that KC0(E) ⊂ C0(E). Then for any t ≥ 0,
(x, n) ∈ E × N, A ∈ E and S ∈ P(N) we have :

1. Q̌t((x, n);E × S) = qt(n, S),

2. Q̌t((x, n);A× N) = Qt(x,A),

3. if x ∈ E with n(x) ≤ n, then Q̌t((x, n); Γ) = 0 where Γ = {(y,m) ∈ E × N ; n(y) > m}.

This theorem is proved in Appendix A. When the move (Yt)t≥0 is constant, which is the setting
in Preston (1975), then the proof is easy under (1) by use of the derivative form of the Kolmogorov
backward equation. In the general case of a birth-death-move process, this strategy does not work
anymore and the proof becomes more challenging. We managed to do it by exploiting the generator of
(Xt)t≥0, see Theorem 6, which explains the Feller conditions in Theorem 10.

We deduce from the third point of Theorem 10 that for any x ∈ Em with m ≤ n, then

P(x,n)
(
(Čs)s≥0 ⊂ Γc

)
= 1.

This means that the simple process (ηt)t≥0 converges more slowly to the state 0 than (Xt)t≥0 converges
to the state Ø. We can thus build upon the renewal theory (Feller, 1971) to prove that Ø is an ergodic
state for (Xt)t≥0 whenever 0 is an ergodic state for (ηt)t≥0. Conditions ensuring the latter are either
(15) or (16) below (Karlin and McGregor, 1957), so that we obtain the following, proved in Section S-7.
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Theorem 11. Suppose that (Yt)t≥0 is a Feller process and that KC0(E) ⊂ C0(E). Suppose that δn > 0
for all n ≥ 1 and one of the following condition holds :

(i) there exists n0 ≥ 1 such that βn = 0 for any n ≥ n0, (15)

(ii) βn > 0 for all n ≥ 1,
∞∑
n=2

β1 . . . βn−1
δ1 . . . δn

<∞ and
∞∑
n=1

δ1 . . . δn
β1 . . . βn

=∞. (16)

Then, µ(A) := limt→∞Qt(x,A) exists for all x ∈ E and A ∈ E, and is independent of x. Moreover µ
is a probability measure on (E, E) and it is the unique invariant probability measure for the process, i.e.
such that µ(A) =

∫
E Qt(x,A)µ(dx) for any A ∈ E and t ≥ 0.

4.2 Rate of convergence

Based on the coupling given by Theorem 10, and under the assumptions of Theorem 11, the rate
of convergence of Qt towards the invariant measure µ follows from the rate of convergence of the
simple birth-death process η towards its invariant distribution. This is proven and exploited in Møller
(1989) in the case of spatial birth-death processes (without move), based upon the coupling of Preston
(1975). Since Theorem 10 extends this coupling, we deduce in the following theorem the same rates of
convergence as in Møller (1989). The proof is readily the same and we omit the details.

Theorem 12. Suppose that (Yt)t≥0 is a Feller process and that KC0(E) ⊂ C0(E). Let γ1 and γ2 be
two probability measures on (E, E), such that one of the two following conditions holds:

(i) (15) holds true and for k = 1, 2, γk

(
n0⋃
n=0

En

)
= 1, (17)

(ii) (16) holds true and for k = 1, 2,
∞∑
n=2

γk(En)
√

δ1 . . . δn
β1 . . . βn−1

<∞. (18)

Then there exist real constants c > 0 and 0 < r < 1 such that for any t ≥ 0

sup
A∈E

∣∣∣∣∫
E
Qt(x,A)γ1(dx)−

∫
E
Qt(y,A)γ2(dy)

∣∣∣∣ ≤ crt.
Moreover when the condition (17) holds, the constants c and r can be chosen independently of γ and κ.

This result is declined into several particular cases in (Møller, 1989, Corollary 3.1), that are also valid
in our setting. In particular, when γ1 corresponds to the invariant measure µ obtained in Theorem 11,
and γ2 is a point measure, the assumptions (17) and (18) simplify and we get the following corrollary.

Corollary 13. Suppose that (Yt)t≥0 is a Feller process and that KC0(E) ⊂ C0(E). Assume either (15)
or (16) along with

∞∑
n=2

√
β1 . . . βn−1
δ1 . . . δn

<∞ and ∃N ≥ 0, s.t. ∀n ≥ N, βn ≤ δn+1. (19)

Denote by µ the invariant measure given by Theorem 11. Then for any y ∈ E, there exists c > 0 and
0 < r < 1 such that

sup
A∈E
|µ(A)−Qt(y,A)| ≤ crt.
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4.3 Characterisation of some invariant measures

In general the invariant measure µ of a birth-death-move process (Xt)t≥0, provided it exists, can be
a very complicated distribution that mixes the repartition in E due to births and deaths of points,
including the probability to be in En for each n, with the average distribution on each En due to the
move process Y . In particular, note that according to Theorem 11, Y does not need to be a stationary
process for (Xt)t≥0 to converge to an invariant measure. Heuristically, this is because the move process
is always eventually “killed” by a return to Ø of (Xt)t≥0 under the hypotheses of Theorem 11.

The situation becomes more intelligible when Y admits an invariant measure that is compatible
with the jumps of (Xt)t≥0, as formalised in the next proposition.

Proposition 14. Suppose that (Yt)t≥0 is a Feller process and that KC0(E) ⊂ C0(E). Assume moreover
that there exists a finite measure µ on E such that for any f ∈ DAY ,∫

En
AY f(x) dµ|En(x) = 0, ∀n ≥ 0, (20)

and
∫
E

(α(x)Kf(x)− α(x)f(x)) dµ(x) = 0. (21)

Then for any f ∈ DAY ,
∫
E
Af(x) dµ(x) = 0.

Proof. By Theorem 6, for any f ∈ DAY ,∫
E
Af(x) dµ(x) =

∫
E

(α(x)Kf(x)− α(x)f(x)) dµ(x) +
∫
E
AY f(x) dµ(x)

=
∑
n≥0

∫
En
AY f(x) dµ|En(x) = 0.

This proposition will be useful to characterize the invariant measure of the birth-death-move pro-
cesses considered in Section 5. Indeed, suppose that the hypotheses of Theorem 11 are satisfied. Then
(Xt)t≥0 converges to a unique invariant measure ν. Suppose moreover that the pure jump Markov
process with intensity α and transition kernel K admits some invariant measure µ, and that for any
n ≥ 0, µ|En is also invariant for the move process Y |n on En. Then by Proposition 14 and the unicity
of ν, we have that ν = µ.

5 Application to pairwise interaction processes on Rd

We present in this section examples of birth-death-move processes, defined through a pairwise potential
function V on a compact set W ⊂ Rd, that converge to the Gibbs probability measure associated to
V . The specificity is that we make compatible the jumps dynamics with the inter-jumps diffusion, so
that Proposition 14 applies and allows us to characterize this Gibbs measure as the invariant measure.

When there is no inter-jumps motion, this type of convergence is proved in Preston (1975) and is a
prerequisite for perfect simulation of spatial Gibbs point process models (see (Møller andWaagepetersen,
2004, Chapter 11)). However the weakness of this approach is that for rigid interactions (as for in-
stance induced by a Lennard-Jones or a Riesz potential, see the examples below), the dynamics based
on spatial births and deaths may mix poorly, so that the convergence to the associated Gibbs measure
may be very slow. Adding inter-jumps motions that do not affect the stationary measure, as carried
out in this section, may alleviate this issue.
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Let W := I1 × · · · × Id where, for i ∈ {1, . . . , d}, Ii is a compact interval of R. Define W̃n =
{(x1, . . . , xn) ∈ (W̊ )n, i 6= j ⇒ xi 6= xj}. As in Section 2.4, we let E0 = {Ø}, En = πn(W̃n) for n ≥ 1,
and E =

⋃∞
n=0En.

We consider a pairwise potential function V : E → R ∪ {∞}, in the sense that there exist a > 0
and φ : Rd → R ∪ {∞} satisfying φ(ξ) = φ(−ξ) for all ξ ∈ Rd such that for any x = {x1, . . . , xn} ∈ En,

V (x) = an(x) +
∑

1≤i 6=j≤n
φ(xi − xj),

when n ≥ 2, while V ({Ø}) = 0 and V ({ξ}) = a for ξ ∈ W . Let φ0 : (0,∞) → R+ be a decreasing
function with φ0(r)→∞ as r → 0. We will assume the following on φ.

(A) The potential is locallly stable, i.e there exists ψ : W → R+ integrable such that :

∀n ≥ 1, ∀x ∈ En, ∀ ξ ∈W, exp
(
−

n∑
i=1

φ(xi − ξ)
)
≤ ψ(ξ).

(B) φ is bounded, or otherwise there exists r1 > 0 such that φ(ξ) ≥ φ0(‖ξ‖) for all ‖ξ‖ < r1.

(C) φ is weakly differentiable on Rd\{0}, exp(−φ) is weakly differentiable on Rd and for any p > d
we have e−φ∇φ ∈ Lploc.

Let us present some examples of pairwise potentials φ that fulfil these assumptions. These are standard
instances used in spatial statistics and statistical mechanics.
Example. (repulsive Lennard-Jones potential): For ξ ∈ Rd, φ(ξ) = c‖ξ‖−12 with c > 0. This potential
verifies condition (A) with ψ ≡ 1 and condition (B). It is moreover differentiable on Rd\{0} and for
any ξ ∈ Rd\{0}, ∇φ(ξ) = −12cξ/‖ξ‖14. We deduce that the function e−φ∇φ can be extended to a
continuous function on Rd by setting (e−φ∇φ)(0) = 0. As a consequence the condition (C) is satisfied.
Example. (Riesz potential): It is defined on Rd\{0} by φ(ξ) = c‖ξ‖α−d for c > 0 and 0 < α < d. As
in the previous example, we obtain that φ satisfies the conditions (A), (B) and (C).
Example. (soft-core potential): φ(ξ) = − ln

(
1− exp(−c‖ξ‖2)

)
for c > 0. Again this potential ver-

ifies condition (A) with ψ ≡ 1 and condition (B). Moreover, we compute for ξ ∈ Rd\{0}, ∇φ(ξ) =
−(2ce−c‖ξ‖2)(1−e−c‖ξ‖2) ξ. As ‖∇φ(ξ)‖ ∼ 1/(c‖ξ‖) as ‖ξ‖ → 0, we also obtain that the function e−φ∇φ
can be extended to a continuous function on Rd and condition (C) follows.
Example. (regularised Strauss potential): For R > 0 and γ ≥ 0, the standard Strauss potential
corresponds to φ(ξ) = γ1‖ξ‖<R. We consider a regularised version by introducing a parameter 0 < ε <
R, so that φ(ξ) = γ if ‖ξ‖ ≤ R − ε, φ(ξ) = 0 if ‖ξ‖ ≥ R + ε, and φ is interpolated between R − ε and
R + ε in such a way that it is differentiable. With this regularised version, φ satisfies the conditions
(A) with ψ ≡ 1, (B) and (C).

Based on a potential V as above, we construct a birth-death-move process (Xt)t≥0 with the following
characteristics. The birth transition kernel is given as in Example 3 by

Kβ(x,Λ ∪ x) = 1
z(x)

∫
Λ
e−(V (x∪ξ)−V (x)) dξ,

for any x ∈ E and Λ ⊂ W , where z(x) =
∫
W exp(−(V (x ∪ ξ) − V (x))) dξ. Note that by the local

stability assumption (A), z(x) < ∞ for any x ∈ E. The death transition kernel is just the uniform
kernel, a particular case of Example 1, i.e.

Kδf(x) = 1
n(x)

n(x)∑
i=1

f(x \xi)
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for any f ∈Mb(E) and x = {x1, . . . , xn(x)} ∈ E. For the birth and death intensity functions, we take

β(x) = z(x)
n(x) ∨ 1 and δ(x) = 1n(x)≥1,

for any x ∈ E. Finally, for the move process, we start with the following Langevin diffusion on W̃n:

dZ |nt,i = −
∑
j 6=i
∇φ(Z |nt,i − Z

|n
t,j) dt+

√
2 dBt,i, 1 ≤ i ≤ n,

with reflecting boundary conditions (Fattler and Grothaus, 2007), and we deduce the move process Y
on E as in Example 4.

Proposition 15. The birth-death-move process (Xt)t≥0 defined above is a Feller process and converges
towards the invariant Gibbs probability measure on W with potential V , i.e. the mesure having a density
proportional to exp(−V (x)) with respect to the unit rate Poisson point process on W .

Proof. First note that by the local stability assumption (A), β(x) ≤ e−c‖ψ‖1/(n(x)∨ 1), where ‖ψ‖1 =∫
W ψ(ξ)dξ, so that α(x) = β(x) + δ(x) is uniformly bounded as required by (1).

Under the assumptions (B) and (C), Fattler and Grothaus (2007) proved that the process (Z |nt )t≥0
is a well defined Markov process on W̃n and it is a Feller process. By Proposition 9, Y is then a Feller
process on E. On the other hand the jump transition kernel K given by (4) satisfies KC0(E) ⊂ C0(E),
as verified in Examples 1 and 3 in Section 3.3 since W is compact. We thus obtain by Theorem 5 that
(Xt)t≥0 is a Feller process. Moreover, by (A) we have that for all n ≥ 1, βn ≤ e−c‖ψ‖1/n, so that
(16) is verified. All assumptions of Theorem 11 are satisfied, which implies that (Xt)t≥0 converges to
a unique invariant probability measure as t→∞.

It remains to characterize this invariant measure. The choice of β, δ, Kβ and Kδ satisfy the
conditions of (Preston, 1975, Theorem 8.1), see also (Møller and Waagepetersen, 2004, Chapter 11),
which implies that the invariant measure µ for the birth-death process (without move) having the
previous characteristics is the one claimed in the proposition. We deduce that (21) holds true. On the
other hand, Fattler and Grothaus (2007) proved under (B) and (C) that (Z |nt )t≥0 converges towards
the invariant measure on W̃n with a density (with respect to the Lebesgue measure) proportional to
exp(−

∑
1≤i 6=j≤n φ(xi − xj)). After projection on En, this means that (20) follows, with the same

measure µ as before. Proposition 14 then applies and µ is the invariant measure of (Xt)t≥0.

A Appendix: coupling of birth-death-move processes

A.1 Construction of the coupling

We start from a birth-death-move process (Xt)t≥0 as defined in Section 2.2. We consider a simple
birth-death process (ηt)t≥0 on N with birth rate βn and death rate δn given by (14). Note that (ηt)t≥0
can be viewed as a birth-death-move process on N having a constant move process yt = y0, for all t ≥ 0.
We denote by (tj)j≥1 the jump times of (ηt)t≥0 and by nt :=

∑
j≥1 1tj≤t the number of jumps before

t ≥ 0. We also denote by qt the transition kernel of (ηt)t≥0, i.e. qt(n, S) = P(ηt ∈ S|η0 = n) for any
n ∈ N and S ∈ P(N).

We define the coupled process Č = (X ′, η′) as a jump-move process on the state space Ě = E × N
equipped with the σ−algebra Ě = E ⊗ P(N). Denoting by d the distance on E, we also equip Ě with
the distance ď((x, k); (y, n)) := d(x, y) + |n− k|/(n ∧ k)1nk 6=0. To fully characterize Č, we now specify
its jump intensity function α̌, its jump kernel Ǩ and its inter-jump move process Y̌ .
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The intensity function α̌ : E × N→ R+ is given by

α̌(x, n) =
{
β(x) + δ(x) + βn + δn if x ∈ Em, m 6= n,
βn + δ(x) if x ∈ En.

One can easily check that α̌ is a continuous function on Ě, bounded by 2α∗.
The transition kernel Ǩ : Ě × Ě → [0, 1] takes the same specific form as in Preston (1975):

1. If x ∈ Em, m 6= n :
Ǩ((x, n);A× {n}) = α(x)

α̌(x, n)K(x,A);

Ǩ((x, n); {x} × {n+ 1}) = βn
α̌(x, n) ;

Ǩ((x, n); {x} × {n− 1}) = δn
α̌(x, n) .

2. If x ∈ En :
Ǩ((x, n);An+1 × {n+ 1}) = β(x)

α̌(x, n)Kβ(x,An+1);

Ǩ((x, n); {x} × {n+ 1}) = βn − β(x)
α̌(x, n) ;

Ǩ((x, n);An−1 × {n− 1}) = δn
α̌(x, n)Kδ(x,An−1);

Ǩ((x, n);An−1 × {n}) = δ(x)− δn
α̌(x, n) Kδ(x,An−1).

The inter-jump move process Y̌ is finally obtained by an independent coupling of (Yt)t≥0 and (yt)t≥0,
specifically its transition kernel QY̌t is given for any (x, p) ∈ Ě and A× S ∈ Ě by

QY̌t ((x, p);A× S) = P(Y̌t ∈ A× S|Y̌0 = (x, p)) = P(Yt ∈ A|Y0 = x)1S(p) = QYt (x,A)1S(p). (22)

This means that Y̌t = (Y ′t , y′t) = (Y ′t , y′0) for any t ≥ 0, where (Y ′t )t≥0 and (y′t)t≥0 are independent
and follow the same distribution as (Yt)t≥0 and (yt)t≥0, respectively. Since Y is a continuous Markov
process for the distance d, we can choose a version of Y ′ such that Y̌ is also continuous for ď. Remark
moreover that (Y̌t)t≥0 satisfies

P((Y̌t)t≥0 ⊂ En × {k} | Y̌0 = (x, p)) = 1En(x) 1k=p, ∀x ∈ E, ∀n ≥ 0.

Given α̌, Ǩ and Y̌ as above, the jump-move process Č is well defined and can be constructed as in
Section 2.1. We denote by Q̌t its transition kernel, by (Ťj)j≥1 its jump times and by Ňt :=

∑
j≥1 1Ťj≤t

the number of jumps before t ≥ 0. We also set τ̌j = Ťj − Ťj−1. The fact that Č defines a relevant
coupling of X with η is the object of Theorem 10.
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A.2 Proof of Theorem 10

To prove the first point of the theorem, we use the following results, proved in Section S-6 of the
supplementary material. Fix (x, n) ∈ E × N and q ≥ 0, and let

ψq : t ∈ R+ 7→ Q̌t((x, n), E × {q}).

Lemma 16. For any (x, n) ∈ E × N and q ≥ 0, ψq is a continuous function.

Lemma 17. For any (x, n) ∈ E × N and q ≥ 0, ψq is right differentiable and satisfies :

∂+
∂t
ψq(t) = −αq ψq(t) + βq−1 ψq−1(t) + δq+1 ψq+1(t).

Corollary 18. For any (x, n) ∈ E × N and q ≥ 0,

ψq(t) = 1q(n) +
∫ t

0
(−αq ψq(s) + βq−1 ψq−1(s) + δq+1 ψq+1(s)) ds

and in particular ψq is differentiable.

Let now ws(x, n) = Q̌t−s(1E × qs1{q})(x, n) for s ∈ [0, t]. Then using Corollary 18, we have:

Lemma 19. For any (x, n) ∈ E × N and q ≥ 0, s 7→ ws is differentiable on [0, t] and ∂ws/∂s ≡ 0.

Since w0(x, n) = Q̌t((x, n);E × {q}) and wt(x, n) = qt(n, {q}), Lemma 19 entails that these two
quantities are equal. The first part of Theorem 10 then follows from the decomposition:

qt(n, S) =
∑
q∈S

qt(n, {q}) =
∑
q∈S

Q̌t((x, n);E × {q}) = Q̌t((x, n);E × S).

We turn to the proof of the second point of Theorem 10. Similarly as for the first part, it is based
on the following results proved in Section S-6. For (x, n) ∈ E × N and f ∈ C0(E), we set

ψf : t ∈ R+ 7→ Q̌t(f × 1N)(x, n).

Lemma 20. Suppose that (Yt)t≥0 is a Feller process. Then for any (x, n) ∈ E×N and any f ∈ C0(E),
ψf is a continuous function.

Lemma 21. Suppose that (Yt)t≥0 is a Feller process and that KC0(E) ⊂ C0(E). Then for any (x, n) ∈
E × N and any f ∈ DAY the function ψf is right-differentiable and satisfies :

∂+
∂t
ψf (t) = ψAf (t), (23)

where A is the infinitesimal generator of X given by Theorem 6.

Corollary 22. Suppose that (Yt)t≥0 is a Feller process and that KC0(E) ⊂ C0(E). Then for any
(x, n) ∈ E × N and any f ∈ DAY ,

ψf (t) = f(x) +
∫ t

0
ψAf (s) ds, (24)

and in particular the function ψf is differentiable with derivative corresponding to (23).
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By the Dynkin theorem, the second point of Theorem 10 is implied by the equality Q̌t((x, n);U ×
N) = Qt(x, U) for any open set U ⊂ E, or equivalently

Q̌t(g × 1N)(x, n) = Qt(g)(x) (25)

for g = 1U . We first prove (25) for g ∈ DAY , second for g ∈ C0(E), before getting the result for g = 1U .
Let g ∈ DAY and for s ∈ [0, t], define vs(x, n) = ψQsg(t−s) = Q̌t−s (Qsg × 1N) (x, n). We shall prove

that s 7→ vs is differentiable with v′s = 0. For any h ∈ R, write (vs+h(x, n)−vs(x, n))/h = A1 +A2 +A3
with

A1 = 1
h

(
ψQs+hg(t− s− h)− ψQsg(t− s− h)

)
− ψAQsg(t− s− h),

A2 = ψAQsg(t− s− h)− ψAQsg(t− s),

A3 = 1
h

(ψQsg(t− s− h)− ψQsg(t− s)) + ψAQsg(t− s).

We know by Theorem 6, with LY0 = C0(E), that DA = DAY and since QsDA ⊂ DA (Dynkin, 1965,
Chapter 1, §2), we deduce from Corollary 22 that A3 tends to −∂ψQsg(t− s)/∂t+ψAQsg(t− s) = 0 as
h→ 0. Regarding A2, note that Qsg ∈ DA implies that AQsg ∈ C0(E) (Dynkin, 1965, Chapter 1, §2),
so that Lemma 20 applies and A2 → 0 as h→ 0. Concerning A1, using the linearity of ψf (t) in f , we
can write

|A1| = |ψ(Qs+h−Qs)g/h−AQsg(t− s− h)| ≤ ‖(Qs+h −Qs)g/h−AQsg‖∞
which also tends to 0 as h→ 0 (Dynkin, 1965, Chapter 1, §2). We therefore obtain that v′s = 0 and so
vt(x, n) = (Qtg × 1N)(x, n) = Q̌t(g × 1N)(x, n) = v0(x, n), proving (25) when g ∈ DAY .

Now let g ∈ C0(E). By our assumptions and Theorem 5, (Xt)t≥0 is Feller, which implies that
C0(E) = DA (Dynkin, 1965). So there exists a sequence of functions (gp)p≥0 in DAY so that ‖gp−g‖∞ →
0 as p → ∞. The two linear operators f ∈ Mb(E) 7→ Q̌t(f × 1N) and f ∈ Mb(E) 7→ Qt(f) being
bounded, we can take the limit in (25) when applied to gp to get the same relation for g ∈ C0(E).

Finally take U ⊂ E an open subset. Then define for any p ≥ 0 the function

φp : x ∈ E 7→ d(x,E\U)
d(x,E\U) + d(x, Up)

,

where Up = {y ∈ E, d(y,E\U) ≥ 1/p}. Then φp ∈ C0(E) for any p ≥ 0, and for any x ∈ E we have
φp(x) → 1U (x) as p → ∞. Taking the limit we obtain by the dominated convergence theorem the
relation (25) for g = 1U , concluding the proof of the second statement of Theorem 10.

We finish by the proof of the third point of Theorem 10. Let x ∈ E and n ∈ N such that n(x) ≤ n.
We show by induction on k ≥ 0 that P(x,n)(ČŤk ∈ Γ) = 0. If k = 0, then P(x,n)(ČŤ0

∈ Γ) = 1(x,n)∈Γ = 0.
Suppose next that there exists k ≥ 0 such that P(x,n)(ČŤk ∈ Γ) = 0, then

P(x,n)(ČŤk+1
∈ Γ) = E(x,n)

[
E(x,n)

(
1ČŤk+1

∈Γ

∣∣∣∣ČŤk , (Y̌ (k)
t

)
t≥0

, τ̌k+1

)]
= E(x,n)

[
Ǩ
(
Y̌

(k)
τ̌k+1

,Γ
)]

= E(x,n)

[
Ǩ
(
Y̌

(k)
τ̌k+1

,Γ
)

1
Y̌

(k)
τ̌k+1

∈Γ

]
+ E(x,n)

[
Ǩ
(
Y̌

(k)
τ̌k+1

,Γ
)

1
Y̌

(k)
τ̌k+1

∈Γc

]

= E(x,n)

[
Ǩ
(
Y̌

(k)
τ̌k+1

,Γ
)

1
Y̌

(k)
τ̌k+1

∈Γ

]
(by definition of Ǩ)

= E(x,n)

[
Ǩ
(
Y̌

(k)
τ̌k+1

,Γ
)

1ČŤk∈Γ

]
(for any t ≥ 0, ČŤk ∈ Γ⇔ Y̌

(k)
t ∈ Γ)

≤ E(x,n)

[
1ČŤk∈Γ

]
= P(x,n)

[
ČŤk ∈ Γ

]
= 0,
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which proves the induction step. To conclude, recall that P(x,n)(Ňt < ∞) = 1 and notice that due to
the form of Γ one has {Čt ∈ Γ} = {ČŤŇt

∈ Γ} for any t ≥ 0. Then

Q̌t((x, n); Γ) = P(x,n)(Čt ∈ Γ) = P(x,n)(ČŤŇt
∈ Γ) =

∞∑
k=0

P(x,n)(ČŤk ∈ Γ, Ňt = k) = 0.
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Supplementary material: proofs and additional results
This supplementary material contains the proofs of some results of the article. It also describes some
topological properties of the space E endowed with the distance d1 in the case of interacting particles
in Rd, as introduced in Section 2.4. All numbering and references in this supplementary material begin
with the letter S, the other references referring to the main article.

S-1 Proofs of Section 2.3 about the Kolmogorov backward equation

S-1.1 Proof of Theorem 1

On the one hand, for any x ∈ E, t > 0 and A ∈ E ,

Px(Xt ∈ A, τ1 > t) = Ex(1Xt∈A 1τ1>t)

= Ex
[
Ex(1Xt∈A 1τ1>t|(Y (0)

u )u≥0)
]

= Ex
[
Ex(1

Y
(0)
t ∈A

1τ1>t|Y (0))
]

= Ex
[
1
Y

(0)
t ∈A

Ex(1τ1>t|Y (0))
]

= Ex
[
1
Y

(0)
t ∈A

e−
∫ t

0 α(Y (0)
u ) du

]
= EYx

[
1Yt∈A e−

∫ t
0 α(Yu) du

]
. (S26)

On the other hand, by construction of the process

Ex[1Xt∈A|Fτ1 ]1τ1≤t = Qt−τ1(Xτ1 , A)1τ1≤t

where Fτ1 = {F ∈ F : F ∩ {τ1 ≤ t} ∈ Ft, ∀ t ≥ 0} . Then

Px(Xt ∈ A, τ1 ≤ t) = Ex[Ex[1Xt∈A|Fτ1 ]1τ1≤t]
= Ex[Qt−τ1(Xτ1 , A)1τ1≤t]
= Ex[Ex[Qt−τ1(Xτ1 , A)1τ1≤t|τ1, Y

(0)]]

= Ex
[∫
y∈E

K(Y (0)
τ1 , dy)Qt−τ1(y,A)1τ1≤t

]
= Ex

[
Ex[
∫
y∈E

K(Y (0)
τ1 , dy)Qt−τ1(y,A)1τ1≤t|Y (0)]

]
= Ex

[∫ t

0

∫
y∈E

K(Y (0)
s , dy)Qt−s(y,A)α(Y (0)

s )e−
∫ s

0 α(Y (0)
u ) du ds

]
=
∫ t

0

∫
E
Qt−s(y,A)Ex

[
K
(
Y (0)
s , dy

)
α(Y (0)

s )e−
∫ s

0 α(Y (0)
u ) du

]
ds

=
∫ t

0

∫
E
Qt−s(y,A)EYx

[
K (Ys, dy) α(Ys)e−

∫ s
0 α(Yu) du

]
ds. (S27)

The result then follows gathering (S26) and (S27).

S-1.2 Proof of Proposition 2

The proof is made up from Lemmas S23, S24 and S25, the approach being similar to Feller (1971). In
Lemma S23 we built a solution Qt,∞(x,A) of (5) for any x ∈ E and A ∈ E , while Lemmas S24 and S25
will imply the unicity of the solution.
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Lemma S23. For all x ∈ E and A ∈ E, the function t ∈ R+ 7→ Qt,∞(x,A) is a solution of (5).

Proof. We will proceed as in the proof of Theorem 1. First

Px(Xt ∈ A, Tp+1 > t, τ1 > t) = Px(Xt ∈ A, τ1 > t) = EYx
[
1Yt∈A e−

∫ t
0 α(Yu) du

]
.

Secondly, if the process jumps once before t (at time τ1) and is in A at time t with at most p+1 jumps,
the process has at most p jumps after the time τ1. By construction of the process, the law of Xt given
XT1 is the same as the one of Xt−τ1 given X0 = Xτ1 . We then obtain

Ex[1Xt∈A1τ1≤t<Tp+1 |Fτ1 ] = Qt−τ1,p(Xτ1 , A)1τ1≤t.

This leads to

Px(Xt ∈ A, Tp+1 > t, τ1 ≤ t) = Ex[Qt−τ1,p(Xτ1 , A)1τ1≤t]
= Ex[Ex[Qt−τ1,p(Xτ1 , A)1τ1≤t|Y (0), τ1]]

= Ex[
∫
y∈E

Qt−τ1,p(y,A)1τ1≤tK(Y (0)
τ1 , dy)]

= Ex[Ex[
∫
y∈E

Qt−τ1,p(y,A)1τ1≤tK(Y (0)
τ1 , dy)|Y (0)]]

= Ex[
∫ t

0

∫
y∈E

Qt−s,p(y,A)1τ1≤tK(Y (0)
s , dy)α(Y (0)

s )e−
∫ s

0 α(Y (0)
u ) du]]

=
∫ t

0

∫
E
Qt−s,p(y,A)EYx

[
K (Ys, dy) α(Ys)e−

∫ s
0 α(Yu) du

]
ds.

We then obtain the induction formula

Qt,p+1(x,A) = EYx
[
1Yt∈A e−

∫ t
0 α(Yu) du

]
+
∫ t

0

∫
E
Qt−s,p(y,A)EYx

[
K (Ys, dy) α(Ys)e−

∫ s
0 α(Yu) du

]
ds.

This leads by monotone convergence to

Qt,∞(x,A) = EYx
[
1Yt∈A e−

∫ t
0 α(Yu) du

]
+
∫ t

0

∫
E
Qt−s,∞(y,A)EYx

[
K (Ys, dy) α(Ys)e−

∫ s
0 α(Yu) du

]
ds.

Lemma S24. Qt,∞ is called the minimal solution of (5) in the sense that for any non-negative solution
Qt of (5), we have Qt ≥ Qt,∞.

Proof. Let Qt be a non-negative solution of (5). Then for any x ∈ E and A ∈ E

Qt(x,A) ≥ Qt,1(x,A) = EYx
[
1Yt∈A e−

∫ t
0 α(Yu) du

]
.

We then proceed by induction. If Qt ≥ Qt,p then

Qt(x,A) = EYx
[
1Yt∈A e−

∫ t
0 α(Yu) du

]
+
∫ t

0

∫
E
Qt−s(y,A)EYx

[
K (Ys, dy) α(Ys)e−

∫ s
0 α(Yu) du

]
ds

≥ EYx
[
1Yt∈A e−

∫ t
0 α(Yu) du

]
+
∫ t

0

∫
E
Qt−s,p(y,A)EYx

[
K (Ys, dy) α(Ys)e−

∫ s
0 α(Yu) du

]
ds

= Qt,p+1(x,A).

Finally Qt(x,A) ≥ Qt,p(x,A) for every p ≥ 1 and the result follows by letting p go to infinity.
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Lemma S25. The minimal solution Qt,∞ is stochastic, i.e. Qt,∞(x,E) = 1.
Proof. Recall that α is bounded by α∗ > 0. It is then enough to show by induction that Qt,p(x,E) ≥
1− (1− e−α∗t)p for any p ≥ 1. First

Qt,1(x,E) = EYx
[
1Yt∈E e−

∫ t
0 α(Yu) du

]
= EYx

[
e−
∫ t

0 α(Yu) du
]
≥ Ex

(
e−α∗t

)
= e−α∗t.

Then notice that

Px(τ1 ≤ t) = EYx
[
1− e−

∫ t
0 α(Yu) du

]
≤ 1− e−α∗t.

We then obtain by induction

Qt,p+1(x,E) = EYx
[
1Yt∈E e−

∫ t
0 α(Yu) du

]
+
∫ t

0

∫
E
Qt−s,p(y,A)EYx

[
K (Ys, dy) α(Ys)e−

∫ s
0 α(Yu) du

]
ds

≥ EYx
[
e−
∫ t

0 α(Yu) du
]

+
∫ t

0

(
1− (1− e−α∗(t−s))p

)
EYx

[∫
E
K (Ys, dy) α(Ys)e−

∫ s
0 α(Yu) du

]
ds

≥ EYx
[
e−
∫ t

0 α(Yu) du
]

+
∫ t

0

(
1− (1− e−α∗t)p

)
EYx

[
α(Ys)e−

∫ s
0 α(Yu) du

]
ds

= Px(τ1 > t) +
(
1− (1− e−α∗t)p

)
Px(τ1 ≤ t)

= 1− (1− e−α∗t)p Px(τ1 ≤ t) ≥ 1− (1− e−α∗t)p+1.

By bringing together the last three lemmas it does not take long to prove Proposition 2. By Lemma
S23, Qt,∞ is a solution of (5). We now prove the unicity. Let Qt be a non-negative sub-stochastic
solution of (5). Lemma S24 entails Qt(x,A) ≥ Qt,∞(x,A) and Qt(x,E\A) ≥ Qt,∞(x,E\A) for every
A ∈ E . We get then

1 ≥ Qt(x,E) = Qt(x,A) +Qt(x,E\A) ≥ Qt,∞(x,A) +Qt,∞(x,E\A) = Qt,∞(x,E) = 1
by Lemma S25 so Qt(x,A) = Qt,∞(x,A) for every A ∈ E .

S-1.3 Proof of Proposition 3

We first show that Qt,(∞) is a solution of (5). Let n ≥ 0, x ∈ En and p ≥ n. If there is no jump before
t, then

Px(Xt ∈ A, τ1 > t, ∀s ∈ [0, t] n(Xs) ≤ p) = Px(Xt ∈ A, τ1 > t).
By construction of the process, if the first jump before t is a death,

Px(Xt ∈ A, ∀s ∈ [0, t] n(Xs) ≤ p | Fτ1 , a death occurs at τ1) = Qt−τ1,(p)(Xτ1 , A),
and if the first jump before t is a birth,

Px(Xt ∈ A, ∀s ∈ [0, t] n(Xs) ≤ p | Fτ1 , a birth occurs at τ1) = Qt−τ1,(p)(Xτ1 , A)1p>n.
Following the same computations as in the proof of Theorem 1, we obtain

Qt,(p)(x,A) = EYx
[
1Yt∈A e−

∫ t
0 α(Yu) du

]
+
∫ t

0

∫
En+1

Qt−s,(p)(y,A)EYx
[
β (Ys)Kβ (Ys, dy) e−

∫ s
0 α(Yu) du

]
ds1p>n

+
∫ t

0

∫
En−1

Qt−s,(p)(y,A)EYx
[
δ (Ys)Kδ (Ys, dy) e−

∫ s
0 α(Yu) du

]
ds,

and Qt,(∞)(x,A) satisfies (5) by continuity of the probability. The proof is then complete thanks to the
unicity of the solution to (5).
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S-2 Proofs of Section 3.1 about Feller properties

S-2.1 Proof of Proposition 4

Both results of the proposition are based on the following calculation, for any f ∈M b(E):

Qtf(x)− f(x) = EYx
[
f(Yt)e−

∫ t
0 α(Yu) du

]
− f(x) + Ex [f(Xt)1Nt≥1]

= QYt f(x)− f(x) + EYx
[
f(Yt)

(
e−
∫ t

0 α(Yu) du − 1
)]

+ Ex [f(Xt)1Nt≥1] .

The last two terms goes uniformly to 0 when t→ 0. Indeed,

∣∣∣∣EYx [f(Yt)
(
e−
∫ t

0 α(Yu) du − 1
)]

+ Ex [f(Xt)1Nt≥1]
∣∣∣∣ ≤ ||f ||∞α∗t+ ||f ||∞Px(Nt ≥ 1)

= ||f ||∞α∗t+ ||f ||∞EYx
[(

1− e−
∫ t

0 α(Yu) du
)]

≤ 2α∗t||f ||∞.

So we obtain directly the second point of the proposition. For the first point remark that when
f ∈ Cb(E), by continuity of f ◦ Y and the dominated convergence theorem, limt→0Q

Y
t f(x) = f(x).

S-2.2 Proof of Theorem 5 (part 1)

The proof of the Feller continuous property of (Xt)t≥0 is based on the following Lemma S26 that
exploits the Feller continuous property of QYt , and on Lemma S27 which in addition makes use of the
Feller continuous property of the jump kernel K.

Lemma S26. Assume that for any t ≥ 0, QYt Cb(E) ⊂ Cb(E). Then for any p ≥ 1, f1, . . . fp ∈ Cb(E)
and 0 ≤ t1 < · · · < tp the function x 7→ EYx

[
f1(Yt1) . . . fp(Ytp)

]
is continuous. Furthermore, for any

f ∈ Cb(E) the function x 7→ EYx [f(Yt)e−
∫ t

0 α(Yu) du] is continuous.

Proof. To prove the first statement, we proceed first by induction on p ≥ 1. Since x 7→ EYx [f1(Yt1)] =
QYt1f1(x), the property is satisfied for p = 1 because QYt Cb(E) ⊂ Cb(E) for any t ≥ 0 by assumption.
Suppose now that the property is true for some p ≥ 1. Let f1, . . . , fp+1 ∈ Cb(E) and 0 ≤ t1 < · · · < tp+1.
Then

EYx
[
f1(Yt1) . . . fp+1(Ytp+1)

]
= EYx

[
EYx

(
f1(Yt1) . . . fp+1(Ytp+1)

∣∣Yt1 , . . . , Ytp )]
= EYx

[
f1(Yt1) . . . fp(Ytp)EYx

(
fp+1(Ytp+1)|Ytp

)]
= EYx

[
f1(Yt1) . . . fp(Ytp)QYtp+1−tpfp+1(Ytp)

]
.

The function fp×QYtp+1−tpfp+1 is continuous by assumption so we can apply the induction hypothesis.
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Regarding the second statement of the lemma, let us take f ∈ Cb(E) and t ≥ 0. We have

EYx
[
f(Yt)e−

∫ t
0 α(Yu) du

]
= EYx

f(Yt)
∑
k≥0

(−1)k

k!

(∫ t

0
α(Yu) du

)k
=
∑
k≥0

(−1)k

k! EYx

[
f(Yt)

(∫ t

0
α(Yu) du

)k]

=
∑
k≥0

(−1)k

k! EYx

f(Yt)
k∏
j=1

∫ t

0
α(Yuj ) duj


=
∑
k≥0

(−1)k

k!

∫ t

u1=0
· · ·
∫ t

uk=0
EYx [f(Yt)α(Yu1) . . . α(Yuk)] du1 . . . duk

which is valid because f × αk is bounded. For any u1 ≥ 0, . . . , uk ≥ 0, the function x ∈ E 7→
EYx [f(Yt)α(Yu1) . . . α(Yuk)] is continuous by the first part of the proof and this expression is bounded
uniformly in x by ‖f‖∞ × (α∗)k ∈ L1([0, t]k). Again, by normal convergence, we obtain the expected
result.

Lemma S27. Assume that QYt Cb(E) ⊂ Cb(E) for any t ≥ 0 and that K Cb(E) ⊂ Cb(E). Let t > 0.
Then for any k ≥ 1, for any bounded measurable function ϕ on E ×R+ such that ϕ(., u) is continuous
for any u ≤ t, the function x 7→ Ex[ϕ(XTk , Tk)1Tk≤t] is continuous.

Proof. We shall proceed by induction. For k = 1,

Ex[ϕ(XT1 , T1)1T1≤t] = Ex[1T1≤t Ex[ϕ(XT1 , T1)|Y (0), T1]]

= Ex[
∫
E
K(Y (0)

T1
, dz)ϕ(z, T1)1T1≤t]

= Ex[
∫
E
Ex[K(Y (0)

T1
, dz)ϕ(z, T1)1T1≤t|Y (0)]]

= Ex[
∫
E

∫ t

0
K(Y (0)

t1 , dz)ϕ(z, t1)α(Y (0)
t1 )e−

∫ t1
0 α(Y (0)

u ) du dt1]

=
∫ t

0
EYx [H(Yt1 , t1)α(Yt1)e−

∫ t1
0 α(Yu) du] dt1

where H(x, u) =
∫
EK(x, dz)ϕ(z, u). Since z 7→ ϕ(z, t1) belongs to Cb(E) for every t1 ≤ t, the Feller

continuous property of K entails the continuity of x 7→ H(x, t1) for every t1 ≤ t. Consequently the
function

x 7→ EYx [H(Yt1 , t1)α(Yt1)e−
∫ t1

0 α(Yu) du]

is continuous for every t1 by Lemma S26. The functions H and α being bounded, the dominated
convergence theorem yields the continuity of x 7→ Ex[ϕ(XT1 , T1)1T1≤t], proving the statement for k = 1.
Assume now that the property holds for k ≥ 1. We compute similarly

Ex[ϕ(XTk+1 , Tk+1)1Tk+1≤t] = Ex[Ex[
∫
E
K(Y (k)

Tk+1−Tk , dz)ϕ(z, Tk+1)1Tk+1≤t|FTk , Y
(k)]]

= Ex[EYXTk [
∫ t−Tk

0

∫
E
K(Yτ , dz)ϕ(z, τ + Tk)α(Yτ )e−

∫ τ
0 α(Yu) du]1Tk≤t]

= Ex[ϕ̃(XTk , Tk)1Tk≤t],
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where

ϕ̃(x, u) = EYx [
∫ t−u

0

∫
E
K(Yτ , dz)ϕ(z, τ + u)α(Yτ )e−

∫ τ
0 α(Yu) du dτ ]

=
∫ t−u

0
EYx [H(Yτ , τ + u)α(Yτ )e−

∫ τ
0 α(Yu) du] dτ.

By Lemma S26, x 7→ EYx [H(Yτ , τ + u)α(Yτ )e−
∫ τ

0 α(Yu) du] is continuous for each u, τ, so ϕ̃(., u) is con-
tinuous for every u ≤ t. We then obtain the result applying the induction hypothesis.

We are now in position to prove the first part of Theorem 5 about the Feller continuous property
of (Xt)t≥0. We compute for t > 0, x ∈ E and f ∈ Cb(E)

Qtf(x) =
∞∑
k=0

Ex[f(Xt)1Nt=k]

= EYx [f(Yt)e−
∫ t

0 α(Yu) du] +
∑
k≥1

Ex[f(Xt)1Tk≤t<Tk+1 ]

= ψ(x, t) +
∑
k≥1

Ex[f(Xt)1Tk+1−Tk>t−Tk1Tk≤t]

where ψ(x, t) = EYx [f(Yt)e−
∫ t

0 α(Yu) du]. We get from Lemma S26 that ψ(., t) belongs to Cb(E) for every
t > 0. Then

Ex[f(Xt)1Tk+1−Tk>t−Tk1Tk≤t] = Ex[1Tk≤tf(Y (k)
t−Tk)Ex[1Tk+1−Tk>t−Tk |FTk , Y

(k)]]

= Ex[f(Y (k)
t−Tk)e−

∫ t−Tk
0 α(Y (k)

u ) du1Tk≤t] (S28)

= Ex[EYXTk [f(Yt−Tk)e−
∫ t−Tk

0 α(Yu) du]1Tk≤t] (S29)

= Ex[ψ(XTk , t− Tk)1Tk≤t],

so Lemma S27 entails that x 7→ Ex[ψ(XTk , t− Tk)1Tk≤t] is continuous for every k ≥ 1. The domination

|Ex[ψ(XTk , t− Tk)1Tk≤t]| ≤ ‖f‖∞Px(Tk ≤ t)
≤ ‖f‖∞P(N∗t ≥ k)

where N∗t ∼ P(α∗t) (by (3)) allows us to conclude that x 7→ Qtf(x) is continuous.

S-2.3 Proof of Theorem 5 (part 2)

Our aim is to prove the Feller property of (Xt)t≥0 assuming that for every t > 0, QYt C0(E) ⊂ C0(E)
and that K C0(E) ⊂ C0(E). We follow the same steps as for the proof of Theorem 5 (part 1), by first
inspecting the consequences of QYt C0(E) ⊂ C0(E) in Lemma S28 and second the additional effect of
K C0(E) ⊂ C0(E) in Lemma S29.

Lemma S28. Suppose that for every t > 0, QYt C0(E) ⊂ C0(E). Then

1. for any f ∈ C0(E), limt→0 ‖QYt f − f‖∞ = 0,

2. for any t > 0, sups∈[0,t]Q
Y
s C0(E) ⊂ C0(E),

3. for any f ∈ C0(E) the function x 7→ EYx [f(Yt)e−
∫ t

0 α(Yu) du] is continuous.
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Proof. By continuity of (Yt)t≥0, lim
t→0

QYt f(x) = f(x) for every f ∈ C0(E) and every x ∈ E. As proved
in Revuz and Yor (1991), this is equivalent when QYt C0(E) ⊂ C0(E) to limt→0 ‖QYt f −f‖∞ = 0, which
proves the first statement of the lemma.

Concerning the second property, let ε > 0 and f ∈ C0(E). Fix η(f) > 0 such that for every s < η(f),
‖QYs f − f‖∞ ≤ ε and s(x) ∈ [0, t] satisfying sups∈[0,t]Q

Y
s f(x) = QYs(x)f(x). Then we have

QYb2ns(x)/tct
2n

f(x) ≤ max
k=0,...,2n

QYkt
2n
f(x) ≤ sup

s∈[0,t]
QYs f(x).

So ∣∣∣∣∣ sup
s∈[0,t]

QYs f(x)− max
k=0,...,2n

QYkt
2n
f(x)

∣∣∣∣∣ ≤
∣∣∣∣∣ sup
s∈[0,t]

QYs f(x)−QYb2ns(x)/tct
2n

f(x)
∣∣∣∣∣

=
∣∣∣∣QYs(x)f(x)−QYb2ns(x)/tct

2n
f(x)

∣∣∣∣
=
∣∣∣∣QYb2ns(x)/tct

2n
(QY

s(x)− b2
ns(x)/tct

2n
f(x)− f(x))

∣∣∣∣
≤ ‖QY

s(x)− b2
ns(x)/tct

2n
f − f‖∞

≤ ε

whenever t2−n ≤ η(f). This leads to limn→∞ ‖ sups∈[0,t]Q
Y
s f − maxk=0,...,2n Q

Y
kt2−nf‖∞ = 0. Since

maxk=0,...,2n Q
Y
kt2−nf ∈ C0(E) for f ∈ C0(E) by assumption and C0(E) is a closed subset ofMb(E) for

‖.‖∞, we deduce that sups∈[0,t]Q
Y
s f ∈ C0(E).

We finally prove the third point of the lemma in a similar way as in the proof of Lemma S26. First
we show by induction on p ≥ 1 that for any t ≥ 0 and 0 ≤ u1 ≤ · · · ≤ up ≤ t and f ∈ C0(E) the
function x 7→ EYx

[
f(Yt)α(Yu1) . . . α(Yup)

]
is in C0(E). Indeed for p = 1

Ex [f(Yt)α(Yu1)] = Ex [α(Yu1)Ex [f(Yt)|Fu1 ]] = Ex
[
α(Yu1)QYt−u1f(Yu1)

]
= QYu1

(
α×QYt−u1f

)
(x)

and QYu1

(
α×QYt−u1f

)
∈ C0(E) by assumption. For the induction step we just write

EYx
[
f(Yt)α(Yu1) . . . α(Yup)α(Yup+1)

]
= EYx

[
α(Yu1) . . . α(Yup)(QYt−up+1f × α)(Yup+1)

]
that is in C0(E) by assumption and the induction hypothesis. We then obtain the continuity of the
function

x 7→ EYx [f(Yt)e−
∫ t

0 α(Yu) du]

similarly as in the proof of Lemma S26.

Lemma S29. Assume that for every t > 0, QYt C0(E) ⊂ C0(E) and that K C0(E) ⊂ C0(E). Let t > 0.
Then for every k ≥ 1 and all g ∈ C0(E), x 7→ Ex[g(XTk)1Tk≤t] vanishes at infinity.

Proof. Let us prove the result by induction. For k = 1,

|Ex[g(XT1)1T1≤t]| =
∣∣∣∣∫ t

0
Ex[Kg(Ys)α(Ys)e−

∫ s
0 α(Yu) du] ds

∣∣∣∣
≤ α∗

∫ t

0
Ex[K|g|(Ys)] ds

≤ α∗t sup
s∈[0,t]

QYs K|g|(x).
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Since K C0(E) ⊂ C0(E), the function K|g| belongs to C0(E), so sups∈[0,t]Q
Y
s K|g| ∈ C0(E) by

Lemma S28. This entails in particular that x 7→ Ex[g(XT1)1T1≤t] vanishes at infinity. Let now k ≥ 1
and assume that x 7→ Ex[g(XTk)1Tk≤t]) vanishes at infinity. We compute similarly

Ex[g(XTk+1)1Tk+1≤t] = Ex[EYXTk [
∫ t−Tk

0

∫
E
K(Ys, dz)g(z)α(Ys)e−

∫ s
0 α(Yu) du]1Tk≤t]

and ∣∣∣Ex[g(XTk+1)1Tk+1≤t]
∣∣∣ ≤ α∗Ex[EXTk [

∫ t

0
K|g|(Ys) ds]1Tk≤t]

= α∗Ex[
∫ t

0
QYs K|g|(XTk) ds1Tk≤t]

≤ α∗tEx[ sup
s∈[0,t]

QYs K|g|(XTk)1Tk≤t].

Since sups∈[0,t]Q
Y
s K|g| ∈ C0(E), the result follows from the induction hypothesis.

In order to prove Theorem 5 (part 2), first remark that x 7→ Qtf(x) is continuous for f ∈ C0(E) and
any t ≥ 0. This follows by the same arguments as in the proof of Theorem 5 (part 1) taking f ∈ C0(E).
Indeed, using the same notation as in the proof of Lemma S27, we obtain that the function H(., u)
belongs to C0(E) for any u ≤ t by the assumption K C0(E) ⊂ C0(E) and Lemma S28 (item 3.). The
conclusion of Lemma S27 then follows by the same proof, using Lemma S28 instead of Lemma S26.
Similarly, the proof of Theorem 5 (part 1) with the same substitution entails that Qtf ∈ Cb(E).

The strong continuity of Qt follows by Proposition 4 and the first statement of Lemma S28.
It remains to prove that x 7→ Qtf(x) vanishes at infinity. By the same decomposition of Qtf as in

the proof of Theorem 5 (part 1), we obtain using in particular (S29) that for any j ≥ 1

|Qtf(x)| ≤ QYt |f |(x) +
j∑

k=1
Ex[ sup

s∈[0,t]
QYs |f |(XTk)1Tk≤t] + ‖f‖∞P(N∗t ≥ j) (S30)

where N∗t ∼ P(α∗t). Let ε > 0. First, QYt |f | ∈ C0(E) by assumption, so that QYt |f |(x) ≤ ε/3 for x
outside a compact set. Second, since limj→∞ P(N∗t ≥ j) = 0, there exists j0 ≥ 1 such that ‖f‖∞P(N∗t ≥
j) ≤ ε/3. Third, Lemma S29 entails that for every k ≤ j0 the function

x 7→ Ex[ sup
s∈[0,t]

QYs |f |(XTk)1Tk≤t]

vanishes at infinity because sups∈[0,t]Q
Y
s |f | ∈ C0(E) by Lemma S28. It is therefore bounded by ε/j0

for x outside a compact set. Combining these three results in (S30) concludes the proof.

S-3 Proof of Theorem 6 about the infinitesimal generator
Let f ∈ LY0 , x ∈ E and h > 0. We decompose 1

h(Qhf(x)− f(x)) as

1
h

(Qhf(x)− f(x)) = 1
h

(
EYx

[
f(Yh)e−

∫ h
0 α(Yu) du

]
− f(x) + Ex [f(Xh)1Nh=1] + Ex [f(Xh)1Nh≥2]

)
= EYx

[
f(Yh)− f(x)

h

]
+ T (x),
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where

T (x) = −1
h
EYx

[
f(Yh)

∫ h

0
α(Yu) du

]
+ 1
h
EYx

[
f(Yh)

(
e−
∫ h

0 α(Yu) du − 1 +
∫ h

0
α(Yu) du

)]

+ 1
h
Ex [f(Xh)1Nh=1] + 1

h
Ex [f(Xh)1Nh≥2] . (S31)

To prove the theorem, we thus need to show that for any f ∈ LY0

sup
x∈E
|T (x) + α(x)f(x)− α(x)Kf(x)| −→

h↘0
0.

Following (S31), we denote T (x) = T1(x) + T2(x) + T3(x) + T4(x) and we shall prove that

sup
x∈E
|T1(x) + α(x)f(x)| −→

h↘0
0, (S32)

sup
x∈E
|T2(x)| −→

h↘0
0, (S33)

sup
x∈E
|T3(x)− α(x)Kf(x)| −→

h↘0
0, (S34)

sup
x∈E
|T4(x)| −→

h↘0
0. (S35)

For (S32), we compute for h > 0 and x ∈ E,

T1(x) + α(x)f(x) = α(x)f(x)− 1
h
EYx

[
f(Yh)

∫ h

0
α(Yu) du

]

= 1
h

∫ h

0
EYx [α(x)f(x)− f(Yh)α(Yu)] du

= 1
h

∫ h

0
EYx

[
EYx [α(x)f(x)− f(Yh)α(Yu) |Yu ]

]
du

= 1
h

∫ h

0
EYx

[
α(x)f(x)−QYh−uf(Yu)α(Yu)

]
du

= 1
h

∫ h

0
EYx [α(x)f(x)− f(Yu)α(Yu)] du+ 1

h

∫ h

0
EYx

[
f(Yu)α(Yu)−QYh−uf(Yu)α(Yu)

]
du

= 1
h

∫ h

0

(
f × α−QYu (f × α)

)
(x) du+ 1

h

∫ h

0
EYx

[
α(Yu)

(
f −QYh−uf

)
(Yu)

]
du

=
∫ 1

0

(
f × α−QYhv(f × α)

)
(x) dv +

∫ 1

0
EYx

[
α(Yhv)

(
f −QYh(1−v)f

)
(Yhv)

]
dv.

So,

|T1(x) + α(x)f(x)| ≤
∫ 1

0
‖QYhv(f × α)− f × α‖∞ dv + α∗

∫ 1

0
‖QYh(1−v)f − f‖∞ dv,

that does not depend on x ∈ E and converges to zero when h ↘ 0 by the dominated convergence
theorem, the fact that f ∈ LY0 and the assumption α× f ∈ LY0 . This proves (S32).

Now for f ∈ LY0 and x ∈ E

|T2(x)| ≤ ‖f‖∞2h EYx

(∫ h

0
α(Yu) du

)2


≤ ‖f‖∞ (α∗h)2

2h = ‖f‖∞(α∗)2

2 h,
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that does not depend on x ∈ E and converges to zero when h↘ 0, proving (S33).
For (S34), we have for any f ∈ LY0 ,

T3(x) = 1
h
Ex [f(Xh)1τ1≤h1τ2>h−τ1 ]

= 1
h
Ex
[
Ex
[
f(Xh)1τ1≤h1τ2>h−τ1

∣∣∣Fτ1 , Y (1)
]]

= 1
h
Ex
[
f(Y (1)

h−τ1)1τ1≤hPx
(
τ2 > h− τ1

∣∣∣Fτ1 , Y (1)
)]

= 1
h
Ex

[
f(Y (1)

h−τ1)1τ1≤he
−
∫ h−τ1

0 α

(
Y

(1)
u

)
du
]

= 1
h
Ex

[
1τ1≤hEx

[
f(Y (1)

h−τ1)e
−
∫ h−τ1

0 α

(
Y

(1)
u

)
du
|Fτ1

]]

= 1
h
Ex
[
1τ1≤hEYXτ1

[
f(Yh−τ1)e−

∫ h−τ1
0 α(Yu) du

]]
= 1
h
Ex
[
1τ1≤hEYXτ1 [f(Yh−τ1)]

]
+ 1
h
Ex
[
1τ1≤hEYXτ1

[
f(Yh−τ1)

(
e−
∫ h−τ1

0 α(Yu) du − 1
)]]

. (S36)

The second term above converges uniformly to 0 when h↘ 0 because∣∣∣∣1hEx
[
1τ1≤hEYXτ1

[
f(Yh−τ1)

(
e−
∫ h−τ1

0 α(Yu) du − 1
)]]∣∣∣∣ ≤ Ex

[
1τ1≤h ‖f‖∞

h
EYXτ1

∣∣∣∣∣
∫ h−τ1

0
α(Yu) du

∣∣∣∣∣
]

≤ hα∗‖f‖∞
h

Px(τ1 ≤ h)

= hα∗‖f‖∞
h

EYx
(

1− e−
∫ h

0 α(Yu) du
)

≤ α∗‖f‖∞ EYx

(∫ h

0
α (Yu) du

)
≤ (α∗)2‖f‖∞h.

Let us now consider the first term in (S36) and prove that it converges uniformly to α(x)Kf(x).

1
h
Ex
[
1τ1≤hEYXτ1 [f(Yh−τ1)]

]
= 1
h
Ex
[
1τ1≤hEx

[
EYXτ1 [f(Yh−τ1)]

∣∣∣Y (0), τ1
]]

= 1
h
Ex
[
1τ1≤h

∫
E
EYz [f(Yh−τ1)]K

(
Y (0)
τ1 , dz

)]
= 1
h
Ex
[
1τ1≤h

∫
E
QYh−τ1f(z)K

(
Y (0)
τ1 , dz

)]
= 1
h
Ex
[
Ex
[
1τ1≤h

∫
E
QYh−τ1f(z)K

(
Y (0)
τ1 , dz

) ∣∣∣Y (0)
]]

= 1
h
Ex

[∫ h

0

∫
E
QYh−sf(z)K

(
Y (0)
s , dz

)
α(Y (0)

s )e−
∫ s

0 α(Y (0)
u ) du ds

]

= EYx
[∫ 1

0

∫
E
QYh(1−v)f(z)K (Yhv,dz)α(Yhv)e−

∫ hv
0 α(Yu) du dv

]
= EYx

[∫ 1

0

∫
E
QYh(1−v)f(z)K (Yhv, dz)α(Yhv) dv

]
+ EYx

[∫ 1

0

∫
E
QYh(1−v)f(z)K (Yhv, dz)α(Yhv)

(
e−
∫ hv

0 α(Yu) du − 1
)

dv
]
.
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On one hand,∣∣∣∣EYx [∫ 1

0

∫
E
QYh(1−v)f(z)K (Yhv, dz)α(Yhv)

(
e−
∫ hv

0 α(Yu) du − 1
)

ds
]∣∣∣∣ ≤ α∗‖f‖∞EYx

[∫ 1

0

∫ hv

0
α(Yu) dudv

]
≤ (α∗)2‖f‖∞ h,

which tends uniformly to 0 when h↘ 0. And on the other hand,∣∣∣∣EYx [∫ 1

0

∫
E
QYh(1−v)f(z)K (Yhv, dz)α(Yhv) dv

]
− α(x)Kf(x)

∣∣∣∣
≤
∫ 1

0

∣∣∣EYx [α(Yhv)KQYh(1−v)f(Yhv)− α(Yhv)Kf(Yhv)
]∣∣∣ dv +

∫ 1

0

∣∣∣EYx [α(Yhv)Kf(Yhv)− α(x)Kf(x)]
∣∣∣ dv

≤ α∗
∫ 1

0
‖KQYh(1−v)f −Kf‖∞ dv +

∫ 1

0

∣∣∣QYhv(α×Kf)(x)− (α×Kf)(x)
∣∣∣ dv

≤ α∗
∫ 1

0
‖QYh(1−v)f − f‖∞ dv +

∫ 1

0
‖QYhv(α×Kf)− (α×Kf)‖∞ dv,

converges to 0 when h ↘ 0 by the dominated convergence theorem and the fact that f ∈ LY0 and
α × Kf ∈ LY0 . The latter is implied by the fact that by assumption g := Kf ∈ LY0 , implying
α× g ∈ LY0 . This proves (S34).

To complete the proof, it remains to remark that (S35) follows from the following, using (3),

|T4(x)| ≤ ‖f‖∞
h

Px(Nh ≥ 2)

≤ ‖f‖∞
h

(
1− e−α∗h − α∗he−α∗h

)
= ‖f‖∞

h

(
(α∗h)2

2 + o
h↘0

(h2)
)

= ‖f‖∞ (α∗)2

2 h+ o
h↘0

(h).

S-4 Topological results for systems of interacting particles in Rd

We detail the topological properties of the state space E for systems of interacting particles inW ⊂ Rd,
introduced in Section 2.4. Remember that in this setting E = ∪∞n=0En where En = πn(Wn) with
πn((x1, . . . , xn)) = {x1, . . . , xn}, and we have equipped the space E with the distance d1 defined for
x = {x1, . . . , xn(x)} and y = {y1, . . . , yn(y)} in E such that n(x) ≤ n(y) by

d1(x, y) = 1
n(y)

 min
σ∈Sn(y)

n(x)∑
i=1

(‖xi − yσ(i)‖ ∧ 1) + (n(y)− n(x))

 ,
with d1(x,Ø) = 1 and where Sn denotes the set of permutations of {1, . . . , n}.

We verify in this section that if W is a closed subset of Rd (possibly W = Rd), then (E, d1) is
a locally compact and complete set, strengthening results already obtained in Schuhmacher and Xia
(2008). We also show that n(.) and πn(.) are continuous under this topology, as claimed in Section 2.4.
We continue with the proof of Proposition 7, which clarifies the meaning of converging sequences in
(E, d1), and of Proposition 8 that describes the compact sets of En and E, along with some useful
corollaries. We finally show that the Hausdorff distance is not appropriate in our setting, not the least
because it does not make n(.) continuous.
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In the following, we will often use in a equal way the spaces
(
Rnd, ‖.‖

)
and

(
(Rd)n, ‖.‖n

)
where

‖x‖n = 1
n

n∑
i=1
‖xi‖.

Indeed, introducing the natural bijection ψn : z ∈ Rnd 7→ (z1, . . . , zn) ∈ (Rd)n we observe that for any
z ∈ Rnd, ‖z‖/n ≤ ‖ψn(z)‖n ≤ ‖z‖/

√
n by the Cauchy-Schwarz inequality. The norms being equivalent,

we henceforth abusively confuse z and ψn(z). Similarly, any function from Rnd to Rd can be seen as a
function from (Rd)n to Rd and we will confuse the two points of view.

We start in the following lemmas with the continuity of n(.) and πn(.). We will use the following
straightforward property, for all x, y ∈ E,

d1(x, y) ≥ |n(y)− n(x)|
n(x) ∨ n(y) . (S37)

Lemma S30. The function n(.) : (E, d1)→ (N, |.|) is continuous.

Proof. Take x ∈ E and a sequence (x(p))p≥0 such that d1(x(p), x) → 0 as p → ∞. Assume that the
sequence (n(x(p)))p≥0 is not bounded. We then may define a subsequence (n(x(p′)))p′≥0 such that
n(x(p′))→∞, and by (S37) we obtain

d1(x, x(p′)) ≥ |n(x)− n(x(p′))|
n(x) ∨ n(x(p′))

−→
p′→∞

1,

which is a contradiction. The sequence (n(x(p)))p≥0 is therefore bounded by some M > 0, which gives
again by (S37)

|n(x(p))− n(x)| ≤ (M ∨ n(x)) d1(x(p), x) −→
p→∞

0,

that is
n(x(p)) −→

p→∞
n(x).

Lemma S31. The projection πn : (Wn, ‖.‖n)→ (En, d1) is continuous.

Proof. Let x, y ∈Wn. Then

d1(πn(x), πn(y)) = 1
n

(
min
σ∈Sn

n∑
i=1

(‖xi − yσ(i)‖ ∧ 1)
)

≤ 1
n

n∑
i=1

(‖xi − yi‖ ∧ 1)

≤ ‖x− y‖n.

From Lemma S31 we deduce that (E, d1) is a locally compact space.

Corollary S32. Let W a closed subset of Rd. Then (E, d1) is a locally compact space.
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Proof. First recall that d1(x,Ø) = 1 so {Ø} is a compact neighborhood of Ø. Now take x = {x1, . . . , xn} ∈
En with n ≥ 1. The space Wn is locally compact so there exists K ⊂ Wn a compact neighborhood of
(x1, . . . , xn). Now set K̃ = πn(K). Then, x ∈ K̃ and K̃ is a compact set by Lemma S31. We show that
there is an open set containing x which is included in K̃. By definition there exists ε ∈ (0, 1

2) such that
B‖.‖n((x1, . . . , xn), ε) ∩Wn ⊂ K, where B‖.‖n((x1, . . . , xn), ε) is the open ball centred at (x1, . . . , xn)
with radius ε for the norm ‖.‖n. If z ∈ Bd1(x, ε) ∩ En there exists σ ∈ Sn such that

1
n

n∑
i=1
‖xi − zσ(i)‖ < ε,

so z = πn((zσ(1), . . . , zσ(n))) and (zσ(1), . . . , zσ(n)) ∈ B‖.‖n((x1, . . . , xn), ε) ∩Wn. To sum up,

Bd1(x, ε) ∩ En ⊂ πn
(
B‖.‖n((x1, . . . , xn), ε) ∩Wn

)
⊂ K̃,

so K̃ is a compact neighborhood of x in En and so in E.

A further consequence of Lemma S31 is the following result, that will turn to be useful when
considering the Feller continuous property of a process on E.
Corollary S33. If f ∈ Cb(E) then for any n ≥ 1, f ◦ πn ∈ Cb(Wn).
Proof. For any n ≥ 1 and f ∈ Cb(E), the function f ◦ πn is well-defined on Wn, continuous as the
composition of two continuous functions and bounded by ‖f‖∞.

Let us now prove that (E, d1) is a complete space.
Proposition S34. Suppose that W is closed. Then (E, d1) is a complete space and for any n ≥ 1,
(En, d1) is also complete.
Proof. Let (x(p))p≥0 be a Cauchy sequence in (E, d1). First, we show that the sequence (n(x(p)))p≥0 is
constant for p large enough. Fix ε ∈ (0, 1). There exists q ≥ 0 such that for any p ≥ q, d1(x(p), x(q)) < ε,
so by (S37) ∣∣∣n(x(p))− n(x(q))

∣∣∣ ≤ (n(x(p)) ∨ n(x(q))) ε ≤ (n(x(p)) + n(x(q))) ε,

implying that (1− ε)n(x(p)) ≤ (1 + ε)n(x(q)) and n(x(p)) ≤ n(x(q))(1 + ε)/(1 − ε). This entails that
the sequence (n(x(p)))p≥0 is bounded by some N0 > 0. Now take ε ∈ (0, 1) and p1 ≥ 0 such that for
any p ≥ p1, d1(x(p), x(p1)) < ε/N0. Write n = n(x(p1)) for short. Then by (S37) one has for any p ≥ p1∣∣∣n(x(p))− n

∣∣∣ ≤ (n(x(p)) ∨ n) d1(x(p), x(p1)) ≤ N0 d1(x(p), x(p1)) ≤ ε < 1,

which implies that n(x(p)) = n for all p ≥ p1.
Second, we may fix p2 ≥ 0 such that d1(x(p), x(q)) ≤ ε for any p, q ≥ p2. Finally let p0 = max(p1, p2),

so that for all p, q ≥ p0,

d1(x(p), x(q)) = 1
n

min
σ∈Sn

n∑
i=1
‖x(p)

i − x
(q)
σ(i)‖ ≤ ε.

In particular for q = p0, this leads to minσ∈Sn
∑n
i=1 ‖x

(p0)
i −x(p)

σ(i)‖/n ≤ ε for any p ≥ p0. The minimum
over σ is reached for some σp0,p ∈ Sn, so that we may define the sequence (x̂(p))p≥p0 in Wn by x̂(p) =
(x(p)
σp0,p(1), . . . , x

(p)
σp0,p(n)) satisfying ‖x̂

(p)−x(p0)‖n ≤ ε for all p ≥ p0. Then for p, q ≥ p0, ‖x̂(p)−x̂(q)‖n ≤ 2ε.
This proves that the sequence (x̂(p))p≥p0 is a Cauchy sequence in the finite dimensional vector space
((Rd)n, ‖.‖n), implying its convergence to some x̂ ∈Wn because W is a closed set. Finally for p ≥ p0

d1(x(p), πn(x̂)) = d1(πn(x̂(p)), πn(x̂)) ≤ ‖x̂(p) − x̂‖n ≤ 2ε,

which proves that (x(p))p≥0 converges to πn(x̂) in E, and so (E, d1) is complete.
Finally for any n ≥ 1, (En, d1) is also complete as a closed subset of (E, d1) by continuity of n(.).
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S-4.1 Proof of Proposition 7

Let x ∈ E and set n = n(x). By Lemma S30, if x(p) converges to x as p→∞, i.e. d1(x(p), x)→ 0, then
n(x(p)) tends to n, which means that there exists p0 ≥ 1 such that n(x(p)) = n for all p ≥ p0. From the
definition of d1, for any p ≥ p0 there exists a permutation σp ∈ Sn satisfying

d1(x(p), x) = 1
n

n∑
i=1

(‖xi − x(p)
σp(i)‖ ∧ 1).

Assume that there exists i ∈ {1, . . . , n} such that lim supp→∞ ‖xi − x
(p)
σp(i)‖ > 0. We then may fix η > 0

and a subsequence (ϕ(p))p≥p0 , both depending on i, such that for every p ≥ p0, ‖xi − x(ϕ(p))
σϕ(p)(i)

‖ ≥ η.

This implies d1(x(ϕ(p)), x) ≥ (η ∧ 1)/n and lim supp→∞ d1(x(p), x) > 0 which is a contradiction. Finally,
for every i = 1, . . . , n, lim supp→∞ ‖xi − x

(p)
σp(i)‖ = 0, proving the result.

S-4.2 Proof of Proposition 8 and corollaries

In order to prove this proposition, we first recall the following definitions and results (see e.g. Bourbaki
(1966)):

• A finite subset L of a metric space (X, d) is called an ε−net, for ε > 0, if the following property
is satisfied :

∀x ∈ X, ∃ l ∈ L, s.t. d(x, l) ≤ ε.

• A metric space (X, d) is said to be totally bounded if it contains an ε−net for any ε > 0.

• Let (X, d) a metric space. Then (X, d) is compact if and only if (X, d) is totally bounded and
complete.

To prove the first statement of the proposition, let A be a closed subset of (En, d1). We start by
assuming that we may fix ε ∈ (0, 1/n) and w ∈W such that

∀R > 0, ∃x = {x1, ..., xn} ∈ A, max
1≤k≤n

{‖xk − w‖} > R+ nε, (S38)

and we show that A is not a compact set because it does not contain any ε−net. Take L = {l(1), . . . , l(N)}
a finite subset of A and let us define

R0 = max
1≤i≤N

max
1≤k≤n

{‖l(i)k − w‖}.

By (S38) we may define x ∈ A and 1 ≤ j ≤ n such that

‖xj − w‖ = max
1≤k≤n

{‖xk − w‖} > R0 + nε.

This leads for all σ ∈ Sn and 1 ≤ i ≤ N to

‖xj − l(i)σ(j)‖ ≥
∣∣∣‖xj − w‖ − ‖l(i)σ(j) − w‖

∣∣∣ = ‖xj − w‖ − ‖l(i)σ(j) − w‖ > nε

and for any 1 ≤ i ≤ N

d1(x, l(i)) = 1
n

min
σ∈Sn

n∑
k=1

(
‖xk − l

(i)
σ(k)‖ ∧ 1

)
≥ 1
n

min
σ∈Sn

(
‖xj − l(i)σ(j)‖ ∧ 1

)
>
nε

n
= ε.
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Therefore L cannot be an ε−net and A cannot be a compact set.
Let us now prove the converse. Fix w ∈W and assume that there exists a positive R such that for

all x ∈ A,
max

1≤k≤n
{‖xk − w‖} ≤ R.

Under this assumption, A is a subset of

C := {x ∈ En,
1
n

n∑
k=1
‖xk − w‖ ≤ R}.

Let us show that C is a compact set. To this end we define w = (w, . . . , w) ∈ Wn and write
B̄‖.‖n(w, R) for the closed ball of radius R and center w for the norm ‖.‖n on the finite dimen-
sional vector space (Rd)n. The closed set B̄‖.‖n(w, R) ∩ Wn is then a compact set of Wn and by
continuity of the projection πn, we get that πn

(
B̄‖.‖n(w, R) ∩Wn

)
is a compact set of En. Let us

prove that πn
(
B̄‖.‖n(w, R) ∩Wn

)
= C to conclude the proof. First, if x = {x1, . . . , xn} ∈ C then

x̂ = (x1, . . . , xn) ∈ B̄‖.‖n(w, R) ∩Wn and πn(x̂) = x. Second, if x = πn(x̂) with x̂ = (x1, . . . , xn) ∈
B̄‖.‖n(w, R) ∩Wn, then

1
n

n∑
k=1
‖xk − w‖ = ‖x̂−w‖n ≤ R

which proves the claim. The set C is then compact and so is A because it is a closed set.
Let us finally prove the second statement of Proposition 8 by contradiction. Let A be a compact

subset of E and suppose that P = {p ≥ 0, A ∩ Ep 6= ∅} is infinite. Then we can construct a sequence
(yp)p∈P with yp ∈ A ∩ Ep. But A is a compact set so there exists a subsequence (yp′)p′∈P which
converges to some y ∈ E when p′ → ∞. But by Lemma S30, n(yp′) = p′ → n(y) as p′ → ∞ which is
absurd, concluding the proof.

We end this section with two corollaries of Proposition 8.

Corollary S35. If W is a compact set, then (En, d1) is a compact set for any n ≥ 1.

Proof. W is a compact set of Rd so it is bounded, i.e. we may fix a non-negative R such that ‖w‖ ≤ R
for any w ∈W. Let w ∈W and x ∈ En. Then

max
1≤k≤n

{‖xk − w‖} ≤ max
1≤k≤n

‖xk‖+ ‖w‖ ≤ 2R.

En is therefore a compact set by the first statement of Proposition 8.

Corollary S36. If f ∈ C0(E) then for any n ≥ 1, f ◦ πn ∈ C0(Wn).

Proof. Take f ∈ C0(E) and ε > 0. There exists a compact set B ⊂ E such that if x /∈ B then
|f(x)| < ε. In this case Bn := B ∩ En is a compact set because En is closed so by Proposition 8 there
exists w ∈ W and R ≥ 0 such that for any x = {x1, . . . , xn} ∈ Bn, max1≤k≤n ‖xk − w‖ ≤ R. Then for
any z /∈ B̄‖.‖n(w,R/n) we get |f ◦ πn(z)| < ε.

S-4.3 The Hausdorff distance is not appropriate

For systems of particles in Rd, we have equipped E with the distance d1 defined in (7). A common
alternative distance between random sets is the Hausdorff distance defined for x = {x1, . . . , xn(x)} and
y = {y1, . . . , yn(y)} in E by

dH(x, y) = max
{

max
1≤i≤n(x)

min
1≤j≤n(y)

‖xi − yj‖, max
1≤j≤n(y)

min
1≤i≤n(x)

‖xi − yj‖
}
.
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Yet we show in this section that this distance does not make the function n(.) continuous, which has
serious consequences on the structure of Cb(E) with this topology. In particular, we show that a simple
uniform death kernel is not even Feller continuous in this setting.

As a preliminary, for the Hausdorff distance to be a proper distance, we must focus on simple point
configurations only. We therefore consider for any n ≥ 1

W̃n = {(x1, . . . , xn) ∈ Rn, i 6= j =⇒ xi 6= xj} ,

and the state space is
Ẽ =

⋃
n≥0

Ẽn,

where Ẽn = π̃n(W̃n) and π̃n is the same projection function as in Section 2.4 but defined on W̃n. Then
we have

Lemma S37. The Hausdorff distance dH is a proper distance function on Ẽ.

Proof. Symmetry is obvious and triangle inequality is well known for dH . We only prove the identity
of indiscernibles. Let x = {x1, . . . , xn(x)} and y = {y1, . . . , yn(y)} in Ẽ satisfying dH(x, y) = 0. This
implies

min
1≤j≤n(y)

‖xi − yj‖ = 0

for any i ∈ {1, ..., n(x)}, leading for any i ∈ {1, ..., n(x)} to the existence of j ∈ {1, ..., n(y)} such that
xi = yj . Since x and y are simple, we deduce that n(y) ≥ n(x). We obtain similarly n(x) ≥ n(y)
and then n(x) = n(y). We then may define a permutation σ ∈ Sn such that for all i ∈ {1, ..., n(x)},
xi = yσ(i) which means that x = y in Ẽ.

We now verify that n(.) is not continuous for this topology.

Lemma S38. Assume that W̊ 6= ∅. Then the function n(.) is not continuous on (Ẽ, dH).

Proof. Assume without loss of generality that 0 ∈ W̊ . Let k ≥ 1 and y ∈ Rd such that ‖y‖ = 1/k.
Take k large enough so that y ∈ W . Then |n ({0, y})− n({0})| = 1 and dH ({0, y} , {0}) = 1/k → 0 as
k →∞, proving the result.

This result reveals a singularity caused by the distance dH . As a consequence, a simple uniform
death kernel is not even Feller continuous, as proved in the following lemma.

Lemma S39. Assume that W̊ 6= ∅ and consider for f ∈M b(Ẽ) the kernel

Kf(x) = 1
n(x)

n(x)∑
i=1

f(x \xi).

Then KCb(Ẽ) is not included in Cb(Ẽ), i.e. K is not Feller continuous.

Proof. Consider the function f(x) = max1≤i≤n(x) xi,1 ∧ 1 where xi,1 is the first coordinate of xi ∈ W .
This function is bounded and satisfies for any x, y ∈ Ẽ,

|f(x)− f(y)| ≤
∣∣∣∣∣ max
1≤i≤n(x)

xi,1 − max
1≤j≤n(y)

yj,1

∣∣∣∣∣ , (S39)

for any x, y ∈ Ẽ. Let us show that the latter bound is lower than dH(x, y). Let I0 = argmax1≤i≤n(x)xi,1
and J0 = argmax1≤j≤n(y)yj,1. This follows from the fact that for any i0 ∈ I0 and j0 ∈ J0,

dH(x, y) ≥ max
1≤i≤n(x)

min
1≤j≤n(y)

‖xi − yj‖ ≥ min
1≤j≤n(y)

‖xi0 − yj‖ ≥ min
1≤j≤n(y)

|xi0,1 − yj,1| = |xi0 − yj0 |.

37



So by (S39) |f(x)− f(y)| ≤ dH(x, y), proving that f ∈ Cb(Ẽ).
Assume without loss of generality that 0 ∈ W̊ . Let a ∈ W , a 6= 0, and ak = (1/k, 0, . . . , 0) ∈ Rd

with k large enough to ensure ak ∈ W . Consider the sequence x(k) = {0, a, ak} and let x = {0, a} so
that dH(x(k), x) = 1/k tends to 0 as k →∞. On the one hand,

Kf(x(k)) = 1
3 [f ({0, ak}) + f ({a, ak}) + f ({0, a})] = (1/k) + (1/k) ∨ a1 + a1

3 −→
k→∞

2a1
3 ,

and on the other hand,
Kf(x) = 1

2 (f({0}) + f({a})) = a1
2

whereby Kf /∈ Cb(Ẽ).

S-5 Proof of Proposition 9

First we show that if (Z |nt )t≥0 is a Feller continuous process on Wn for every n ≥ 1 then (Yt)t≥0 is
a Feller continuous process on E. Indeed, let x ∈ E and a sequence (x(p))p≥0 converging to x. By
Proposition 7 we may fix p0 ≥ 1 such that n(x(p)) = n(x) := n for any p ≥ p0 and a sequence of
permutations σp of {1, . . . , n} such that for any 1 ≤ i ≤ n, x(p)

σp(i) → xi as p → ∞. We then obtain
for any f ∈ Cb(E) and p ≥ p0, using the permutation equivariance property of (Z |nt )t≥0 (that allows
us to arbitrarily choose the ordering of its initial value), the continuity of its transition kernel, and
Corollary S33, that

E
(
f(Yt) |Y0 = x(p)

)
= E

(
f(Y |nt ) |Y0 = x(p)

)
= E

(
f ◦ πn(Z |nt ) |Z |n0 = (x(p)

σp(1), . . . , x
(p)
σp(n))

)
−→
p→∞

E
(
f ◦ πn(Z |nt ) |Z |n0 = (x1, . . . , xn)

)
= E (f(Yt) |Y0 = x) .

Second, let us prove that if (Z |nt )t≥0 is a Feller process on Wn for every n ≥ 1 then (Yt)t≥0 is a
Feller process on E. Let f ∈ C0(E). We start by the strong continuity. Take ε > 0. By the second
statement of Proposition 8 there exists n0 ≥ 0 such that n(x) > n0 ⇒ |f(x)| < ε

4 . So for any x ∈ E,∣∣∣QYt f(x)− f(x)
∣∣∣ ≤ ∣∣∣QYt f(x)− f(x)

∣∣∣1n(x)≤n0 + Ex[|f(Yt)|]1n(x)>n0 + f(x)1n(x)>n0

≤
n0∑
n=0

∣∣∣QY |nt f(x)− f(x)
∣∣∣1x∈En + ε

4 + ε

4

≤
n0∑
n=1

∣∣∣E (f(πn(Z |nt )) | Z |n0 = (x1, . . . , xn)
)
− f(πn((x1, . . . , xn)))

∣∣∣1x∈En + ε

2

≤
n0∑
n=1
‖QZ |nt (f ◦ πn)− f ◦ πn‖∞ + ε

2 .

By Corollary S36, for any n = 1, . . . , n0, there exists tn > 0 such that

t ∈ (0, tn) =⇒ ‖QZ |nt (f ◦ πn)− f ◦ πn‖∞ <
ε

2n0
.

So for any t ∈ (0, t(ε)) where t(ε) = min
1≤n≤n0

tn, we get ‖QYt f − f‖∞ < ε, which proves the strong

continuity of QYt at 0.
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It remains to show that QYt C0(E) ⊂ C0(E). Continuity follows from above. Take now f ∈ C0(E)
and fix ε > 0 and B ⊂ E a compact set such that x /∈ B ⇒ |f(x)| < ε

2 . By Proposition 8 there exists
n0 ≥ 0 such that x ∈ B ⇒ n(x) ≤ n0. Also by Corollary S36 we can fix for any n = 1, . . . , n0 a compact
set An of Wn such that z /∈ An ⇒

∣∣∣QZ |nt (f ◦ πn)(z)
∣∣∣ < ε/(2n0). Then, A =

⋃n0
n=1 πn(An) is a compact

set of E and for any x /∈ {Ø} ∪A ∪B

‖QYt f(x)‖ ≤
n0∑
n=1
‖QZ |nt (f ◦ πn)((x1, . . . , xn)‖+ ε

2 ≤ ε.

S-6 Proofs of lemmas relating to the coupling of Appendix A

S-6.1 Proof of Lemma 16

First note that for any x ∈ E, n ≥ 0 and h > 0 one has

P(x,n)(Ť1 ≤ h) = E(x,n)

(
1− e−

∫ h
0 α̌(Y̌u) du

)
≤ E(x,n)

(∫ h

0
α̌(Y̌u) du

)
≤ 2α∗h.

Next take h > 0. Then

ψq(t+ h)− ψq(t) = E(x,n)
[
1E(X ′t+h)1{q}(η′t+h)− 1E(X ′t)1{q}(η′t)

]
= E(x,n)

[
E(x,n)

(
1E(X ′t+h)1{q}(η′t+h)|F̌t

)
− 1E(X ′t)1{q}(η′t)

]
= E(x,n)

[
Q̌h((X ′t, η′t);E × {q})− 1E(X ′t)1{q}(η′t)

]
=
∑
k≥0

E(x,n)
[
(Q̌h((X ′t, η′t);E × {q})− 1E(X ′t)1{q}(η′t))1η′t=k

]
.

=
∑
k≥0

E(x,n)
[
Q̌h((X ′t, k);E × {q})− 1{q}(k)|η′t = k

]
P(x,n)(η′t = k). (S40)

For any k ≥ 0 and y ∈ E∣∣∣Q̌h((y, k), E × {q})− 1{q}(k)
∣∣∣ =

∣∣∣E(y,k)
(
1E(X ′h)1{q}(η′h)

)
− 1{q}(k)

∣∣∣
=
∣∣∣E(y,k)

(
1{q}(η′h)1Ť1>h

)
+ E(y,k)

(
1{q}(η′h)1Ť1≤h

)
− 1{q}(k)

∣∣∣
≤ E(y,k)

∣∣∣(1{q}(η′h)− 1{q}(k))1Ť1≤h

∣∣∣+ E(y,k)

∣∣∣(1{q}(η′h)− 1{q}(k))1Ť1>h

∣∣∣
≤ 2P(x,n)(Ť1 ≤ h) + E(y,k)

∣∣∣(1{q}(k)− 1{q}(k))1Ť1>h

∣∣∣
≤ 4α∗h,

whereby

|ψq(t+ h)− ψq(t)| ≤
∑
k≥0

4α∗hP(x,n)(η′t = k) = 4α∗h −→
h↘0

0.

On the other hand, we obtain with the same calculations for h ∈ [0, t]

ψq(t)− ψq(t− h) = E(x,n)
[
E(x,n)

(
1E(X ′t)1{q}(η′t)|F̌t−h

)
− 1E(X ′t−h)1{q}(η′t−h)

]
= E(x,n)

[
Q̌h((X ′t−h, η′t−h);E × {q})− 1E(X ′t−h)1{q}(η′t−h)

]
=
∑
k≥0

E(x,n)
[
Q̌h((X ′t−h, k);E × {q})− 1{q}(k)|η′t−h = k

]
Q̌t−h((x, n);E × {k})

≤ 4α∗h −→
h↘0

0.

Therefore the function t ∈ R+ 7→ ψq(t) is continuous.
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S-6.2 Proof of Lemma 17

Take h > 0. Recall from (S40) that

1
h

(ψq(t+ h)− ψq(t)) = 1
h

∑
k≥0

E(x,n)
[
Q̌h((X ′t, k);E × {q})− 1{q}(k)|η′t = k

]
Q̌t((x, n);E × {k}).

(S41)

For any y ∈ E and k ≥ 0

Q̌h((y, k), E × {q})− 1{q}(k) = E(y,k)
(
1{q}(η′h)− 1{q}(k)

)
= A1(h) +A2(h) +A3(h), (S42)

where A1(h) = E(y,k)
(
(1{q}(η′h)− 1{q}(k))1Ť1>h

)
, A2(h) = E(y,k)

(
(1{q}(η′h)− 1{q}(k))1Ňh=1

)
and

A3(h) = E(y,k)
(
(1{q}(η′h)− 1{q}(k))1Ť2<h

)
. Let us treat each term separately.

First,

A1(h) = E(y,k)
(
(1{q}(k)− 1{q}(k))1Ť1>h

)
= 0.

Second, A2(h) reads

E(y,k)
(
(1{q}(η′h)− 1{q}(k))1τ̌1≤h1τ̌2>h−τ̌1

)
= E(y,k)

[
E(y,k)

[
(1{q}(η′τ̌1)− 1{q}(k)))1τ̌1≤h1τ̌2>h−τ̌1

∣∣∣F̌τ̌1 , Y̌ (1)
]]

= E(y,k)
[
(1{q}(η′τ̌1)− 1{q}(k))1τ̌1≤hP(y,k)

(
τ̌2 > h− τ̌1

∣∣∣F̌τ̌1 , Y̌ (1)
)]

= E(y,k)

[
(1{q}(η′τ̌1)− 1{q}(k))1τ̌1≤he

−
∫ h−τ̌1

0 α̌

(
Y̌

(1)
u

)
du
]

= E(y,k)

[
1τ̌1≤h(1{q}(η′τ̌1)− 1{q}(k))E(y,k)

[
e
−
∫ h−τ̌1

0 α̌

(
Y̌

(1)
u

)
du ∣∣∣F̌τ̌1

]]

= E(y,k)

[
1τ̌1≤h(1{q}(η′τ̌1)− 1{q}(k))EY̌

Čτ̌1

[
e−
∫ h−τ̌1

0 α̌(Y̌u) du
]]

= E(y,k)

[
1τ̌1≤h(1{q}(η′τ̌1)− 1{q}(k))EY̌

Čτ̌1

[
e−
∫ h−τ̌1

0 α̌(Y̌u) du − 1
]]

+ E(y,k)
[
1τ̌1≤h(1{q}(η′τ̌1)− 1{q}(k))

]
.

For the first term above,

1
h

∣∣∣∣E(y,k)

[
1τ̌1≤h(1{q}(η′τ̌1)− 1{q}(k)))EY̌

Čτ̌1

[
e−
∫ h−τ̌1

0 α̌(Y̌u) du − 1
]]∣∣∣∣ ≤ 4α∗E(y,k)(1τ̌1≤h) ≤ 8(α∗)2h.

For the second term, we have

E(y,k)
[
1τ̌1≤h(1{q}(η′τ̌1)− 1{q}(k))

]
= E(y,k)

[
1τ̌1≤hE(y,k)

[
1{q}(η′τ̌1)− 1{q}(k)

∣∣∣Y̌ (0), τ̌1
]]

= E(y,k)

[
1τ̌1≤h

(∫
z1∈E

Ǩ((Y
′(0)
τ̌1

, k); dz1 × {q})− 1{q}(k)
)]

= E(y,k)
[
1τ̌1≤h

(
Ǩ((Y

′(0)
τ̌1

, k);E × {q})− 1{q}(k)
)]
. (S43)

Following the definition of Ǩ in Section A.1, this formula takes two forms depending on whether y /∈ Ek
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or y ∈ Ek. If y /∈ Ek, then

E(y,k)
[
1τ̌1≤h(1{q}(η′τ̌1)− 1{q}(k))

]
= E(y,k)

1τ̌1≤h

 α
(
Y
′(0)
τ̌1

)
α̌
(
Y
′(0)
τ̌1

, k
) − 1

1{q}(k)

+ E(y,k)

1τ̌1≤h
βk

α̌
(
Y
′(0)
τ̌1

, k
)
1{q−1}(k) + E(y,k)

1τ̌1≤h
δk

α̌
(
Y
′(0)
τ̌1

, k
)
1{q+1}(k),

that is

E(y,k)
[
1τ̌1≤h(1{q}(η′τ̌1)− 1{q}(k))

]
= E(y,k)

1τ̌1≤h
1

α̌
(
Y
′(0)
τ̌1

, k
)
(−αk1{q}(k) + βk1{q−1}(k) + δk1{q+1}(k)

)
. (S44)

Since ∣∣∣∣∣∣1hE(y,k)

1τ̌1≤h
1

α̌
(
Y
′(0)
τ̌1

, k
)
− 1

∣∣∣∣∣∣ =
∣∣∣∣∣1hEY̌(y,k)

[∫ h

0

(
e−
∫ s

0 α̌(Y ′u,k) du − 1
)
ds
]∣∣∣∣∣ ≤ 2α∗h,

we then conclude that

sup
k≥0,y /∈Ek

∣∣∣∣A2(h)
h

+ αk1{q}(k)− βk1{q−1}(k)− δk1{q+1}(k)
∣∣∣∣ −→h↘0

0. (S45)

If now y ∈ Ek, we obtain from (S43)

E(y,k)
[
1τ̌1≤h(1{q}(η′τ̌1)− 1{q}(k))

]
= E(y,k)

1τ̌1≤h
β(Y

′(0)
τ̌1

)

α̌(Y
′(0)
τ̌1

, k)

1{q−1}(k) + E(y,k)

1τ̌1≤h
βk − β(Y

′(0)
τ̌1

)

α̌(Y
′(0)
τ̌1

, k)

1{q−1}(k)

+ E(y,k)

1τ̌1≤h
δk

α̌(Y
′(0)
τ̌1

, k)

1{q+1}(k) + E(y,k)

1τ̌1≤h

δ(Y ′(0)
τ̌1

)− δk
α̌(Y

′(0)
τ̌1

, k)
− 1

1{q}(k),

that is the same expression as (S44). The convergence (S45) then remains true when the supremum is
taken over y ∈ Ek, and so over y ∈ E, i.e.

sup
k≥0,y∈E

∣∣∣∣A2(h)
h

+ αk1{q}(k)− βk1{q−1}(k)− δk1{q+1}(k)
∣∣∣∣ −→h↘0

0.

Third, for A3(h) in (S42), we have, using (3) and denoting Ň∗h ∼ P(2α∗h),

1
h
|A3(h)| ≤ 2

h
P(y,k)

(
Ňh ≥ 2

)
≤ 2
h
P
(
Ň∗h ≥ 2

)
≤ 2
h

(
1− e−2α∗h − 2α∗he−2α∗h

)
= 4 (α∗)2 h+ o

h↘0
(h).
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Combining the results for A1(h), A2(h) and A3(h) in (S42), we get

sup
(y,k)∈Ě

∣∣∣∣1h
(
Q̌h((y, k);E × {q})− 1{q}(k)

)
+ 1{q}(k)αk − βk1{q−1}(k)− δk1{q+1}(k)

∣∣∣∣ −→h↘0
0.

Finally, coming back to (S41), we obtain by uniform convergence, for any x ∈ E,

1
h

(ψq(t+ h)− ψq(t)) −→
h↘0

∑
k≥0

{
−αk1q(k) + βk1{q−1}(k) + δk1{q+1}(k)

}
Q̌t((x, n);E × {k}),

where the limit reads −αq ψq(t) + βq−1 ψq−1(t) + δq+1 ψq+1(t) using the convention β−1 = 0.

S-6.3 Proof of Corollary 18

For t ≥ 0, define

G(t) =ψq(t)− 1q(n)−
∫ t

0
(−αq ψq(s) + βq−1 ψq−1(s) + δq+1 ψq+1(s)) ds.

Then G is continuous, right-differentiable on R+ by Lemma 17, and ∂+G(t)/∂t = 0. So G is constant.
But G(0) = 0 because s 7→ ψq(s) is bounded on R+ for any q ≥ 0. As a consequence we obtain

ψq(t) = 1q(n) +
∫ t

0
(−αq ψq(s) + βq−1 ψq−1(s) + δq+1 ψq+1(s)) ds.

In particular the integrand is continuous by Lemma 16 so ψq is differentiable.

S-6.4 Proof of Lemma 19

Let us develop qs1{q} as

qs1{q} =
∑
k≥0

qs(k, {q})1{k} =
∑
k≥0

Pk(ηs = q)1{k}. (S46)

Take p > q. Then using (3) by denoting n∗t ∼ P(α∗t)

∞∑
k=p

Pk(ηs = q) ≤
∞∑
k=p

Pk(ns > k − q)

≤
∞∑
k=p

Pk(nt > k − q)

≤
∞∑
k=p

P(n∗t > k − q)

=
∞∑

j=p−q
P(n∗t > j) −→

p→∞
0,

because E(n∗t ) < ∞. Coming back to (S46), we thus have that for any ε > 0, there exists p ≥ 0 such
that any d ≥ p satisfies

sup
s∈[0,t]

∥∥∥∥∥qs1{q} −
d∑

k=0
qs(k, {q})1{k}

∥∥∥∥∥
∞

< ε. (S47)
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Since Q̌t is a continuous linear operator onMb(E × N)

ws = Q̌t−s(1E × qs1{q})

= Q̌t−s

(
1E × lim

p→∞

p∑
k=0

qs(k, {q})1{k}

)

= lim
p→∞

Q̌t−s

(
1E ×

p∑
k=0

qs(k, {q})1{k}

)

= lim
p→∞

p∑
k=0

qs(k, {q})Q̌t−s
(
1E × 1{k}

)
=
∞∑
k=0

qs(k, {q})Q̌t−s
(
1E × 1{k}

)
. (S48)

Let φk(s) = qs(k, {q})Q̌t−s
(
1E × 1{k}

)
. From the Kolmogorov backward equation (6), we deduce that

∂qs(k, {q})/∂s = −αkqs(k, {q}) + βkqs(k + 1, {q}) + δkqs(k − 1, {q}). Using in addition Corollary 18,
we deduce that φk is differentiable and

φ′k(s) = [−αkqs(k, {q}) + βkqs(k + 1, {q}) + δkqs(k − 1, {q})] Q̌t−s
(
1E × 1{k}

)
+ qs(k, {q})

[
αkQ̌t−s

(
1E × 1{k}

)
− βk−1Q̌t−s

(
1E × 1{k−1}

)
− δk+1Q̌t−s

(
1E × 1{k+1}

)]
.

Since
sup
s∈[0,t]

∥∥∥Q̌t−s (1E × 1{k}
)∥∥∥
∞
≤ 1

and

sup
s∈[0,t]

∥∥∥αkQ̌t−s (1E × 1{k}
)
− βk−1Q̌t−s

(
1E × 1{k−1}

)
− δk+1Q̌t−s

(
1E × 1{k+1}

)∥∥∥
∞
≤ 3α∗,

we can show similarly as for (S47) that

sup
s∈[0,t]

∥∥∥∥∥∥
∑
k≥p

φ′k(s)

∥∥∥∥∥∥
∞

−→
p→∞

0.

Since by (S48) ws =
∑
k≥0 φk(s), we deduce that ws is differentiable on [0, t] and

∂

∂s
ws =

∞∑
k=0

φ′k(s)

=
∞∑
k=0

[
βkqs(k + 1, {q})Q̌t−s

(
1E × 1{k}

)
− βk−1qs(k, {q})Q̌t−s

(
1E × 1{k−1}

)]
+
∞∑
k=0

[
δkqs(k − 1, {q})Q̌t−s

(
1E × 1{k}

)
− δk+1qs(k, {q})Q̌t−s

(
1E × 1{k+1}

)]
,

where β−1 = δ0 = 0. The first of these two telescoping series vanishes because β−1 = 0 and∥∥∥βkqs(k + 1, {q})Q̌t−s
(
1E × 1{k}

)∥∥∥
∞
≤ α∗qs(k + 1, {q}) ≤ α∗ P(n∗t > k + 1− q)→ 0.

The second series vanishes by similar arguments and we have ∂ws/∂s ≡ 0.
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S-6.5 Proof of Lemma 20

Let h > 0, then

ψf (t+ h)− ψf (t) = E(x,n)
(
f(X ′t+h)1N(η′t+h)

)
− E(x,n)

(
f(X ′t)1N(η′t)

)
= E(x,n)

[
E(x,n)

(
f(X ′t+h)1N(η′t+h)

∣∣∣F̌t)]− E(x,n)
(
f(X ′t)1N(η′t)

)
= E(x,n)

[
Q̌h(f × 1N)(X ′t, η′t)− f(X ′t)1N(η′t)

]
. (S49)

For any y ∈ E and k ∈ N one has∣∣∣Q̌h(f × 1N)(y, k)− f(y)1N(k)
∣∣∣ =

∣∣∣E(y,k)
(
f(X ′h)

)
− f(y)

∣∣∣
=
∣∣∣E(y,k)

(
f(X ′h)(1Ť1≤h + 1Ť1>h

)
)
− f(y)E(y,k)

(
1Ť1≤h + 1Ť1>h

)∣∣∣
≤ 2‖f‖∞P(y,k)(Ť1 ≤ h) +

∣∣∣E(y,k)
(
(f(Y

′(0)
h )− f(y))(1− 1Ť1≤h)

)∣∣∣
≤ 8α∗‖f‖∞h+

∣∣∣EYy [f(Yh)− f(y)]
∣∣∣

≤ 8α∗‖f‖∞h+
∥∥∥QYh f − f∥∥∥∞ ,

where we have used (22) in the second last step. Coming back to (S49), we deduce that

|ψf (t+ h)− ψf (t)| ≤ 8α∗‖f‖∞h+
∥∥∥QYh f − f∥∥∥∞ .

As a Feller process, (Yt)t≥0 is strongly continuous at 0, whereby ψf (t+ h)→ ψf (t) as h↘ 0.
On the other hand, for h ∈ [0, t],

|ψf (t)− ψf (t− h)| =
∣∣∣E(x,n)

(
f(X ′t)1N(η′t)

)
− E(x,n)

(
f(X ′t−h)1N(η′t−h)

)∣∣∣
=
∣∣∣E(x,n)

[
E(x,n)

(
f(X ′t)1N(η′t)

∣∣∣F̌t−h)]− E(x,n)
(
f(X ′t−h)1N(η′t−h)

)∣∣∣
=
∣∣∣E(x,n)

[
Q̌h(f × 1N)(X ′t−h, η′t−h)− f(X ′t−h)1N(η′t−h)

]∣∣∣
≤ 8α∗‖f‖∞h+

∥∥∥QYh f − f∥∥∥∞ ,
and we conclude similarly that ψf (t− h)→ ψf (t) as h↘ 0.

S-6.6 Proof of Lemma 21

Let h > 0. For any t ≥ 0∣∣∣∣ψf (t+ h)− ψf (t)
h

− ψAf (t)
∣∣∣∣ =

∣∣∣∣∣Q̌t
(
Q̌h(f × 1N)(x, n)− f(x)1N(n)

h
−Af(x)× 1N(n)

)∣∣∣∣∣
≤ sup

(y,k)∈Ě

∣∣∣∣∣Q̌h(f × 1N)(y, k)− f(y)1N(k)
h

−Af(y)× 1N(k)
∣∣∣∣∣ .

The proof thus consists in showing that

sup
(y,k)∈Ě

∣∣∣∣∣Q̌h(f × 1N)(y, k)− f(y)1N(k)
h

−Af(y)× 1N(k)
∣∣∣∣∣ −→h↘0

0.
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For any h > 0, y ∈ E and k ≥ 0

1
h

(
Q̌h(f × 1N)(y, k)− f(y)1N(k)

)
= E(y,k)

[
f(X ′h)− f(y)

h

]
= 1
h

(
E(y,k)

[
f(X ′h)1Ť1>h

]
+ E(y,k)

[
f(X ′h)1Ňh=1

]
+ E(y,k)

[
f(X ′h)1Ť2<h

]
− f(y)

)
.

But
1
h

(
E(y,k)

[
f(X ′h)1Ť1>h

]
− f(y)

)
= 1
h

(
E(y,k)

[
f(Y

′(0)
h )1Ť1>h

]
− f(y)

)
= 1
h

(
E(y,k)

[
f(Y

′(0)
h )P(y,k)

(
Ť1 > h

∣∣∣Y̌ (0)
)]
− f(y)

)
= 1
h

(
E(y,k)

[
f(Y

′(0)
h )e−

∫ h
0 α̌(Y

′(0)
u ,k) du

]
− f(y)

)
= EYy

[
f(Yh)− f(y)

h

]
+ 1
h
EY̌(y,k)

[
f(Y ′h)

(
e−
∫ h

0 α̌(Y ′u,k) du − 1 +
∫ h

0
α̌(Y ′u, k) du

)]

− 1
h
EY̌(y,k)

[∫ h

0
f(Y ′h)α̌(Y ′u, k) du

]
.

Using this result and the expression of Af(y) from Theorem 6, we can write

1
h

(
Q̌h(f × 1N)(y, k)− f(y)1N(k)

)
−Af(y)

= 1
h

(
Q̌h(f × 1N)(y, k)− f(y)1N(k)

)
−AY f(y) + α(y)f(y)− α(y)Kf(y)

= A1(h) +A2(h) +A3(h) +A4(h) +A5(h),

where

A1(h) = EYy
[
f(Yh)− f(y)

h

]
−AY f(y),

A2(h) = α̌(y, k)f(y)− 1
h
EY̌(y,k)

[∫ h

0
f(Y ′h)α̌(Y ′u, k) du

]
,

A3(h) = 1
h
EY̌(y,k)

[
f(Y ′h)

(
e−
∫ h

0 α̌(Y ′u,k) du − 1 +
∫ h

0
α̌(Y ′u, k) du

)]
,

A4(h) = 1
h
E(y,k)

[
f(X ′h)1Ňh=1

]
− α(y)Kf(y) + (α(y)− α̌(y, k))f(y),

A5(h) = 1
h
E(y,k)

[
f(X ′h)1Ť2<h

]
.

The end of the proof consists in proving that each of these five terms tends uniformly to 0 as h↘ 0.
For the first one, note that

EYy
[
f(Yh)− f(y)

h

]
= QYh f(y)− f(y)

h
,

and since f ∈ DYA, by the definition of AY , sup(y,k)∈Ě |A1(h)| tends to 0 as h→ 0.
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To show that sup(y,k)∈Ě |A2(h)| −→
h↘0

0, we consider two cases whether y /∈ Ek or y ∈ Ek. First

suppose that y /∈ Ek. Then α̌(y, k) = α(y) + αk and

A2(h) = 1
h

∫ h

0
EY̌(y,k)

[
α̌(y, k)f(y)− f(Y ′h)α̌(Y ′u, k)

]
du

= αkEYy [f(y)− f(Yh)] + 1
h

∫ h

0
EYy [α(y)f(y)− f(Yh)α(Yu)] du

where the switch from EY̌(y,k) to EYy is a consequence of (22), specifically the bivariate generalization of
it. Therefore,

A2(h) = αk
(
f(y)−QYh f(y)

)
+ 1
h

∫ h

0
EYy

[
EYy [α(y)f(y)− f(Yh)α(Yu) |Yu ]

]
du

= αk
(
f(y)−QYh f(y)

)
+ 1
h

∫ h

0
EYy

[
α(y)f(y)−QYh−uf(Yu)α(Yu)

]
du

= αk
(
f(y)−QYh f(y)

)
+ 1
h

∫ h

0
EYy [α(y)f(y)− f(Yu)α(Yu)] du

+ 1
h

∫ h

0
EYy

[
f(Yu)α(Yu)−QYh−uf(Yu)α(Yu)

]
du

= αk
(
f(y)−QYh f(y)

)
+ 1
h

∫ h

0

(
f × α−QYu (f × α)

)
(y) du+ 1

h

∫ h

0
EYy

[
α(Yu)

(
f −QYh−uf

)
(Yu)

]
du

= αk
(
f(y)−QYh f(y)

)
+
∫ 1

0

(
f × α−QYhv(f × α)

)
(y) dv +

∫ 1

0
EYy

[
α(Yhv)

(
f −QYh(1−v)f

)
(Yhv)

]
dv.

So when y /∈ Ek,

|A2(h)| ≤ α∗‖QYh f − f‖∞ +
∫ 1

0
‖QYhv(f × α)− f × α‖∞ dv + α∗

∫ 1

0
‖QYh(1−v)f − f‖∞ dv, (S50)

that does not depend on (y, k) ∈ Ě and converges to zero when h goes to 0 by the dominated convergence
theorem because f ∈ DYA ⊂ C0(E). When y ∈ Ek, α̌(y, k) = βk + δ(y) and we obtain with the same
computations the same inequality (S50), leading to the same convergence. So sup(y,k)∈Ě |A2(h)| −→

h↘0
0.

Regarding A3(h), its uniform convergence towards 0 is easily obtained from

|A3(h)| ≤ ‖f‖∞2h EY̌(y,k)

(∫ h

0
α̌(Y ′u, k) du

)2
 ≤ ‖f‖∞ (2α∗h)2

2h = 2h‖f‖∞(α∗)2.
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Let us now prove that sup(y,k)∈Ě |A4(h)| −→
h↘0

0. We compute

1
h
E(y,k)

[
f(X ′h)1Ňt=1

]
= 1
h
E(y,k)

[
f(X ′h)1τ̌1≤h1τ̌2>h−τ̌1

]
= 1
h
E(y,k)

[
E(y,k)

[
f(X ′h)1τ̌1≤h1τ̌2>h−τ̌1

∣∣∣F̌τ̌1 , Y̌ (1)
]]

= 1
h
E(y,k)

[
f(Y

′(1)
h−τ̌1)1τ̌1≤hP(y,k)

(
τ̌2 > h− τ̌1

∣∣∣F̌τ̌1 , Y̌ (1)
)]

= 1
h
E(y,k)

[
f(Y

′(1)
h−τ̌1)1τ̌1≤he

−
∫ h−τ̌1

0 α̌

(
Y̌

(1)
u

)
du
]

= 1
h
E(y,k)

[
1τ̌1≤hE(y,k)

[
f(Y

′(1)
h−τ̌1)e

−
∫ h−τ̌1

0 α̌

(
Y̌

(1)
u

)
du ∣∣∣F̌τ̌1

]]

= 1
h
E(y,k)

[
1τ̌1≤hEY̌Čτ̌1

[
f(Y ′h−τ̌1)e−

∫ h−τ̌1
0 α̌(Y̌u) du

]]
= 1
h
E(y,k)

[
1τ̌1≤hEY̌Čτ̌1

[
f(Y ′h−τ̌1)

]]
+ 1
h
E(y,k)

[
1τ̌1≤hEY̌Čτ̌1

[
f(Y ′h−τ̌1)

(
e−
∫ h−τ̌1

0 α̌(Y̌u) du − 1
)]]

.

The second term converges uniformly to 0 because its norm is bounded by

E(y,k)

[
1τ̌1≤h ‖f‖∞

h
EY̌
Čτ̌1

∣∣∣∣∣
∫ h−τ̌1

0
α̌(Y̌u) du

∣∣∣∣∣
]
≤ 2hα∗‖f‖∞

h
P(y,k)(τ̌1 ≤ h) ≤ 4h(α∗)2‖f‖∞.

Let us prove that the first term converges uniformly to α(y)Kf(y)− (α(y)− α̌(y, k))f(y), proving that
sup(y,k)∈Ě |A4(h)| −→

h↘0
0. We have

1
h
E(y,k)

[
1τ̌1≤hEY̌Čτ̌1

[
f(Y ′h−τ̌1)

]]
= 1
h
E(y,k)

[
1τ̌1≤hE(y,k)

[
EY̌
Čτ̌1

[
f(Y ′h−τ̌1)

] ∣∣∣Y̌ (0), τ̌1

]]

= 1
h
E(y,k)

1τ̌1≤h
∫
z1∈E

∑
q≥0

EY̌(z1,q)
[
f(Y ′h−τ̌1)

]
Ǩ
(
(Y
′(0)
τ̌1

, k); dz1 × {q}
) .

We separate as before the cases y /∈ Ek and y ∈ Ek. If y /∈ Ek, we obtain

1
h
E(y,k)

[
1τ̌1≤hEY̌Čτ̌1

[
f(Y ′h−τ̌1)

]]
= 1
h
E(y,k)

1τ̌1≤h
α
(
Y
′(0)
τ̌1

)
α̌
(
Y
′(0)
τ̌1

, k
) ∫

E
EY̌(z1,k)

[
f(Y ′h−τ̌1)

]
K(Y

′(0)
τ̌1

, dz1)


+ 1
h
E(y,k)

1τ̌1≤h
βk

α̌
(
Y
′(0)
τ̌1

, k
)EY̌

(Y
′(0)
τ̌1

,k+1)

[
f(Y ′h−τ̌1)

]
+ 1
h
E(y,k)

1τ̌1≤h
δk

α̌
(
Y
′(0)
τ̌1

, k
)EY̌

(Y
′(0)
τ̌1

,k−1)

[
f(Y ′h−τ̌1)

] . (S51)
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Let us show that the first term in (S51) converges to α(y)Kf(y):

1
h
E(y,k)

1τ̌1≤h
α
(
Y
′(0)
τ̌1

)
α̌
(
Y
′(0)
τ̌1

, k
) ∫

E
EY̌(z1,k)

[
f(Y ′h−τ̌1)

]
K(Y

′(0)
τ̌1

, dz1)

− α(y)Kf(y)

= 1
h
E(y,k)

1τ̌1≤h
α
(
Y
′(0)
τ̌1

)
α̌
(
Y
′(0)
τ̌1

, k
) ∫

E
QY̌h−τ̌1(f × 1N)(z1, k)K(Y

′(0)
τ̌1

,dz1)

− α(y)Kf(y)

= 1
h
E(y,k)

E(y,k)

1τ̌1≤h
α
(
Y
′(0)
τ̌1

)
α̌
(
Y
′(0)
τ̌1

, k
) ∫

E
QY̌h−τ̌1(f × 1N)(z1, k)K(Y

′(0)
τ̌1

,dz1)
∣∣∣Y̌ (0)

− α(y)Kf(y)

= 1
h
EY̌(y,k)

[∫ h

0
α
(
Y
′
s

) ∫
E
QYh−sf(z1)K(Y ′s ,dz1)e−

∫ s
0 α̌(Y ′u,k) duds

]
− α(y)Kf(y)

= EY̌(y,k)

[∫ 1

0
α
(
Y ′hv

) ∫
E
QYh(1−v)f(z1)K(Y ′hv,dz1)e−

∫ hv
0 α̌(Y ′u,k) dudv

]
− α(y)Kf(y)

= EY̌(y,k)

[∫ 1

0
α
(
Y ′hv

) ∫
E
QYh(1−v)f(z1)K(Y ′hv,dz1)dv

]
− α(y)Kf(y)

+ EY̌(y,k)

[∫ 1

0
α
(
Y ′hv

) ∫
E
QYh(1−v)f(z1)K(Y ′hv,dz1)

(
e−
∫ hv

0 α̌(Y ′u,k) du − 1
)
dv
]

But for the last term,∣∣∣EY̌(y,k)

[ ∫ 1

0
α
(
Y ′hv

) ∫
E
QYh(1−v)f(z1)K(Y ′hv,dz1)

(
e−
∫ hv

0 α̌(Y ′u,k) du − 1
)
dv
]∣∣∣

≤ α∗‖f‖∞EY̌(y,k)

[∫ 1

0

∫ hv

0
α̌(Y ′u, k) dudv

]
≤ 2h(α∗)2‖f‖∞

and from (the bivariate version of) (22), we can replace EY̌(y,k) by EYy in the other term to get
∣∣∣∣EYy [∫ 1

0
α(Yhv)

∫
E
QYh(1−v)f(z1)K(Yhv,dz1)dv

]
− α(y)Kf(y)

∣∣∣∣
≤
∫ 1

0

∣∣∣EYy [α(Yhv)KQYh(1−v)f(Yhv)− α(Yhv)Kf(Yhv)
]∣∣∣ dv +

∫ 1

0

∣∣∣EYy [α(Yhv)Kf(Yhv)− α(y)Kf(y)]
∣∣∣ dv

≤ α∗
∫ 1

0
‖KQYh(1−v)f −Kf‖∞ dv +

∫ 1

0

∣∣∣QYhv(α×Kf)(y)− (α×Kf)(y)
∣∣∣ dv

≤ α∗
∫ 1

0
‖QYh(1−v)f − f‖∞ dv +

∫ 1

0
‖QYhv(α×Kf)− (α×Kf)‖∞ dv,

converges to 0 when h goes to 0 by the dominated convergence theorem, using the fact that f ∈
DYA ⊂ C0(E) and KC0(E) ⊂ C0(E). This proves the convergence to α(y)Kf(y) of the first term
in (S51). Concerning the second and third terms in (S51), their sum converges to (βk + δk)f(y) =
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(α̌(y, k)− α(y))f(y). Indeed for any q,

1
h

∣∣∣∣∣∣E(y,k)

1τ̌1≤h
1

α̌
(
Y
′(0)
τ̌1

, k
)EY̌

(Y
′(0)
τ̌1

,q)

[
f(Y ′h−τ̌1)

]− f(y)

∣∣∣∣∣∣
= 1
h

∣∣∣∣∣
∫ h

0
EY̌(y,k)

[
EY
Y ′s

[f(Yh−s)] e−
∫ s

0 α̌(Y ′u,k) du
]
ds− f(y)

∣∣∣∣∣
=
∣∣∣∣∫ 1

0
EY̌(y,k)

[
EY
Y
′
hv

[
f(Yh(1−v))

]
e−
∫ hv

0 α̌(Y ′u,k) du
]
dv − f(y)

∣∣∣∣
≤
∣∣∣∣∫ 1

0
EY̌(y,k)

[
EY
Y
′
hv

[
f(Yh(1−v))

] (
e−
∫ hv

0 α̌(Y ′u,k) du − 1
)]

dv
∣∣∣∣+ ∣∣∣∣∫ 1

0
EYy

[
EYYhv

[
f(Yh(1−v))

]]
dv − f(y)

∣∣∣∣
≤
∫ 1

0
‖f‖∞EY̌(y,k)

[∣∣∣∣∣
∫ hv

0
α̌(Y ′u, k) du

∣∣∣∣∣
]
dv +

∫ 1

0

∣∣∣EYy [QYh(1−v)f(Yhv)
]
− f(y)

∣∣∣ dv
≤ α∗‖f‖∞h+

∫ 1

0

∣∣∣QYh f(y)− f(y)
∣∣∣ dv

≤ α∗‖f‖∞h+ ‖QYh f − f‖∞,

that converges to 0 when h goes to 0 by the dominated convergence theorem because f ∈ DYA ⊂ C0(E).
This completes the proof of the claimed convergence of A4(h) when y /∈ Ek.

Suppose now that y ∈ Ek. The development made in (S51) becomes in this case

1
h
E(y,k)

[
1τ̌1≤hEY̌Čτ̌1

[f(Yh−τ̌1)]
]

= 1
h
E(y,k)

1τ̌1≤h
β(Y

′(0)
τ̌1

)

α̌(Y
′(0)
τ̌1

, k)

∫
E
EY̌(z1,k+1)

[
f(Y ′h−τ̌1)

]
Kβ

(
Y
′(0)
τ̌1

,dz1
)

+ 1
h
E(y,k)

1τ̌1≤h
βk − β(Y

′(0)
τ̌1

)

α̌(Y
′(0)
τ̌1

, k)
EY̌

(Y
′(0)
τ̌1

,k+1)

[
f(Y ′h−τ̌1)

]
+ 1
h
E(y,k)

1τ̌1≤h
δk

α̌(Y
′(0)
τ̌1

, k)

∫
E
EY̌

(Y
′(0)
τ̌1

,k−1)

[
f(Y ′h−τ̌1)

]
Kδ

(
Y
′(0)
τ̌1

,dz1
)

+ 1
h
E(y,k)

1τ̌1≤h
δ(Y

′(0)
τ̌1

)− δk
α̌(Y

′(0)
τ̌1

, k)

∫
E
EY̌

(Y
′(0)
τ̌1

,k)

[
f(Y ′h−τ̌1)

]
Kδ

(
Y
′(0)
τ̌1

,dz1
) . (S52)

The first, third and fourth terms above can be treated exactly as the first term in (S51) to prove that
they converge uniformly towards β(y)Kβf(y), δkKδf(y) and (δ(y) − δk)Kδf(y), respectively, the sum
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of which is α(y)Kf(y). For the second term, we compute∣∣∣∣∣1hE(y,k)

[
1τ̌1≤h

β(Y
′(0)
τ̌1

)

α̌(Y
′(0)
τ̌1

, k)
EY̌

(Y
′(0)
τ̌1

,k+1)

[
f(Y ′h−τ̌1)

]]
− β(y)f(y)

∣∣∣∣∣
=

∣∣∣∣∣∣1hE(y,k)

E(y,k)

1τ̌1≤h
β(Y

′(0)
τ̌1

)

α̌(Y
′(0)
τ̌1

, k)
EY̌

(Y
′(0)
τ̌1

,k+1)

[
f(Y ′h−τ̌1)

] ∣∣∣Y̌ (0)

− β(y)f(y)

∣∣∣∣∣∣
=
∣∣∣∣∣1h
∫ h

0
EY̌(y,k)

[
β(Y ′s )EY

Y ′s
[f(Yh−s)] e−

∫ s
0 α̌(Y ′u,k+1) du

]
ds− β(y)f(y)

∣∣∣∣∣
=
∣∣∣∣∫ 1

0
EY̌(y,k)

[
β(Y ′hv)EYY ′

hv

[
f(Yh(1−v))

]
e−
∫ hv

0 α̌(Y ′u,k+1) du
]
dv − β(y)f(y)

∣∣∣∣
≤
∣∣∣∣∫ 1

0
EY̌(y,k)

[
β(Y ′hv)EYY ′

hv

[
f(Yh(1−v))

] (
e−
∫ hv

0 α̌(Y ′u,k+1) du − 1
)]

dv
∣∣∣∣

+
∣∣∣∣∫ 1

0
EYy

[
β(Yhv)EYYhv

[
f(Yh(1−v))

]]
dv − β(y)f(y)

∣∣∣∣
≤ α∗‖f‖∞

∫ 1

0

∫ hv

0
EYy [α̌(Yu, k + 1)] dudv +

∣∣∣∣∫ 1

0
EYy

[
β(Yhv)QYh(1−v)f(Yhv)

]
dv − β(y)f(y)

∣∣∣∣
≤ (α∗)2‖f‖∞h+

∣∣∣∣∫ 1

0
EYy

[
β(Yhv)QYh(1−v)f(Yhv)− β(Yhv)f(Yhv)

]
dv
∣∣∣∣

+
∣∣∣∣∫ 1

0
EYy [β(Yhv)f(Yhv)] dv − β(y)f(y)

∣∣∣∣
≤ (α∗)2‖f‖∞h+ α∗

∫ 1

0
‖QYh(1−v)f − f‖∞ dv +

∫ 1

0
‖QYhv(β × f)− (β × f)‖∞ dv,

that converges to 0 when h goes to 0 by the dominated convergence theorem because f ∈ DYA ⊂ C0(E).
Given this result and the convergence already proven for the second term in (S51), we deduce that the
second term in (S52) converges uniformly in (y, k) to (βk − β(y))f(y) = (α̌(y, k)− α(y))f(y).

The study for y /∈ Ek and y ∈ Ek yields to the same convergence results, so in conclusion

sup
(y,k)∈E×N

∣∣∣E(y,k)
(
f(X ′h)1Ňt=1

)
+ (α(y)− α̌(y, k))f(y)− α(y)Kf(y)

∣∣∣ −→
h↘0

0,

that is sup(y,k)∈Ě |A4(h)| −→
h↘0

0.

To finish the proof, it remains to handle A5(h) using (3) where Ň∗h ∼ P(2α∗h)

|A5(h)| ≤ ‖f‖∞
h

P(y,k)
(
Ňh ≥ 2

)
≤ ‖f‖∞

h
P
(
Ň∗h ≥ 2

)
≤ ‖f‖∞

h

(
1− e−2α∗h − 2α∗he−2α∗h

)
= ‖f‖∞

h

(
(2α∗h)2

2 + o
h↘0

(h2)
)

= 2‖f‖∞ (α∗)2 h+ o
h↘0

(h),

that converges uniformly to 0 when h goes to 0.
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S-6.7 Proof of Corollary 22

Let

G(t) =ψf (t)− f(x)−
∫ t

0
ψAf (s) ds.

This function is continuous, right-differentiable on R+ from Lemmas 20 and 21, and ∂+G(t)/∂t = 0.
So G is constant. But G(0) = 0 because s ≥ 0 7→ ψAf (s) is bounded. As a consequence, we obtain
(23). Moreover Af ∈ C0(E) so by Lemma 20 the function s ≥ 0 7→ ψAf (s) is continuous, and by (23)
we deduce that ψf is differentiable.

S-7 Proof of Theorem 11
We recall and complete notations introduced in Appendix A regarding the coupling between X and η.
The coupled process is Č = (X ′, η′), where from Theorem 10, X ′ and η′ have the same distributions
as X and η. We denote by Tj and tj the jump times of X and η. Similarly we denote by T ′j and
t′j the jump times of X ′ and η′. To prove Theorem 11, we start with the following lemma where
s0 := inf{t ≥ t1, ηt = 0} is the time of the first return of η in the state 0 and SØ := inf{t ≥ T1, Xt = Ø}
is the time of the first return of (Xt)t≥0 in the state Ø.

Lemma S40. Suppose that 0 is an ergodic state for the simple process η, that is E0(s0) < ∞.
Then lim

t→∞
Qt(Ø, A) exists for all A ∈ E . Suppose moreover that for all n ≥ 0, En(s0) < ∞. Then,

lim
t→∞

Qt(x,A) exists for all x ∈ E, A ∈ E, and is independent of x.

Proof. Let š0 := inf{t ≥ t′1, Čt ∈ E × {0}}. Using the first statement of Theorem 10, we can prove
that P(Ø,0)(š0 > t) = P0(s0 > t). Similarly, by the second statement of this theorem, P(Ø,0)(ŠØ > t) =
PØ(SØ > t) where ŠØ := inf{t ≥ T ′1, Čt ∈ {Ø} × N}. We thus have

PØ(SØ > t) = P(Ø,0)(ŠØ > t) ≤ P(Ø,0)(š0 > t) = P0(s0 > t),

where the inequality comes from the third statement of Theorem 10.
By the assumptions of Lemma S40, this implies that SØ <∞ PØ − a.s. and that

EØ(SØ) =
∫ ∞

0
PØ(SØ > t) dt ≤

∫ ∞
0

P0(s0 > t) dt <∞,

proving that Ø is an ergodic state for the process (Xt)t≥0. Note moreover that SØ has a density with
respect to the Lebesgue measure, that we denote by µØ. This comes from the fact that τj has a density
for any j, so does Tj , whereby given a Lebesgue null set I ∈ B(R), PØ(SØ ∈ I) ≤

∑∞
j=1 PØ(Tj ∈ I) = 0.

We have the following equation

Qt(Ø, A) = PØ(Xt ∈ A,SØ > t) +
∫ t

0
PØ(Xt ∈ A,SØ ∈ ds)

= PØ(Xt ∈ A,SØ > t) +
∫ t

0
PØ(Xt ∈ A|SØ = s)µØ(s) ds

= PØ(Xt ∈ A,SØ > t) +
∫ t

0
Qt−s(Ø, A)µØ(s) ds.

This is a renewal equation and we may apply the renewal theorem given in (Feller, 1971, Chapter XI).
To this end, denote by Z(t) = Qt(Ø, A), ξ(t) = PØ(Xt ∈ A,SØ > t) and F{I} = PØ(SØ ∈ I). Remark
that Z is bounded, ξ is non-negative, bounded by 1 and directly Riemann integrable on R+ because it
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is dominated by the monotone integrable function t 7→ PØ(SØ > t). Moreover, 0 < EØ(SØ) < ∞ and
since SØ has a density, F is not arithmetic. Then, by the renewal theorem, we obtain:

Qt(Ø, A) = Z(t) −→
t→∞

1
EØ(SØ)

∫ ∞
0

ξ(u) du = 1
EØ(SØ)

∫ ∞
0

PØ(Xu ∈ A,SØ > u) du (S53)

which proves the first statement of Lemma S40.
Let now turn to the second part of Lemma S40. Let x ∈ En. By the arguments as in the beginning

of the proof, we get that SØ <∞, Px − a.s. and that Ex(SØ) ≤ En(s0) <∞. We have

Qt(x,A) = Px(Xt ∈ A)

= Px(Xt ∈ A,SØ > t) +
∫ t

0
Px(Xt ∈ A|SØ = s)µØ(s) ds

= Px(Xt ∈ A,SØ > t) +
∫ t

0
PØ(Xt−s ∈ A)µØ(s) ds

= Px(Xt ∈ A,SØ > t) +
∫ t

0
Qt−s(Ø, A)µØ(s) ds.

The first term tends to 0 as t → ∞ because it is dominated by Px(SØ > t) and we know that
Px(SØ <∞) = 1. For the second term, for all s ≥ 0, we have by (S53)

Qt−s(Ø, A)1[0,t](s) −→
t→∞

1
EØ(SØ)

∫ ∞
0

PØ(Xu ∈ A,SØ > u) du.

Moreover |Qt−s(Ø, A)1[0,t](s)µØ(s)| ≤ µØ(s) which is integrable. So by the dominated convergence
theorem,

Qt(x,A) −→
t→∞

1
EØ(SØ)

∫ ∞
0

PØ(Xu ∈ A,SØ > u) du

which is independent of x.

We are now in position to prove Theorem 11. The conditions (15) or (16) of Karlin and McGregor
(1957) imply the assumptions made in Lemma S40. We then deduce that µ(A) := limt→∞Qt(x,A)
exists for all x ∈ E and A ∈ E , and is independent of x. It is a probability measure because for any
t ≥ 0 and x ∈ E, Qt(x, .) is a probability measure.

Let us prove that µ is an invariant measure. The previous convergence reads∫
E
f(y)Qs(x, dy) −→

s→∞

∫
E
f(y)µ(dy). (S54)

where f = 1A with A ∈ E . It is not difficult to extend it to any step function and by limiting arguments
to any f ∈M+

b (E). By the Markov property, for all t, s ≥, x ∈ E and A ∈ E ,

Qt+s(x,A) =
∫
E
Qt(y,A)Qs(x, dy).

Letting s tend to∞, we obtain that the left hand side converges to µ(A), while for the right hand side,
we may apply (S54) to f = Qt(., A) ∈M+

b (E) to finally obtain

µ(A) =
∫
E
Qt(y,A)µ(dy).

Finally, if ν is a probability measure on E, such that for any A ∈ E

ν(A) =
∫
E
Qt(y,A)ν(dy),

then as Qt(x,A) ≤ 1, taking t→∞, we get by the dominated convergence theorem

ν(A) =
∫
E
µ(A)ν(dy) = µ(A).

Hence µ is the unique invariant probability measure.
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