Navigating through the O(N) archipelago - Archive ouverte HAL
Article Dans Une Revue SciPost Physics Année : 2022

Navigating through the O(N) archipelago

Résumé

A novel method for finding allowed regions in the space of CFT-data, coined navigator method, was recently proposed in arXiv:2104.09518. Its efficacy was demonstrated in the simplest example possible, i.e. that of the mixed-correlator study of the 3D Ising Model. In this paper, we would like to show that the navigator method may also be applied to the study of the family of $d$-dimensional $O(N)$ models. We will aim to follow these models in the $(d,N)$ plane. We will see that the "sailing" from island to island can be understood in the context of the navigator as a parametric optimization problem, and we will exploit this fact to implement a simple and effective path-following algorithm. By sailing with the navigator through the $(d,N)$ plane, we will provide estimates of the scaling dimensions $(\Delta_{\phi},\Delta_{s},\Delta_{t})$ in the entire range $(d,N) \in [3,4] \times [1,3]$. We will show that to our level of precision, we cannot see the non-unitary nature of the $O(N)$ models due to the fractional values of $d$ or $N$ in this range. We will also study the limit $N \xrightarrow[]{} 1$, and see that we cannot find any solution to the unitary mixed-correlator crossing equations below $N=1$.
Fichier principal
Vignette du fichier
SciPostPhys_13_4_081.pdf (949.83 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-03632846 , version 1 (23-08-2024)

Licence

Identifiants

Citer

Benoit Sirois. Navigating through the O(N) archipelago. SciPost Physics, 2022, 13 (4), pp.081. ⟨10.21468/SciPostPhys.13.4.081⟩. ⟨hal-03632846⟩
78 Consultations
14 Téléchargements

Altmetric

Partager

More