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Ferromagnetic Ordering in UFe0.40Ge2 Studied by 57Fe Mössbauer Spectroscopy
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Mössbauer spe re (space
group Cmcm) reported
previously for tically at
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ine 57Fe-isotope-enriched sample of UFe0.40Ge2 was investigated by X-ray powder diffraction, magnetiz
ctra measurements. The compound was confirmed to crystallize with the orthorhombic CeNiSi2-type structu
and with the lattice parameters a = 4.0759(2) Å, b = 15.8107(7) Å, and c = 4.0379(2) Å, being close to those
a very similar composition. Magnetic properties measurements showed that UFe0.40Ge2 orders ferromagne

h the effective magnetic moment of 2.57(3) µB and the ordered magnetic moment at 70 kOe of about 0.64(1)
t with the earlier report on physical properties of UFe0.39Ge2. 57Fe Mössbauer spectra measurements perfor
oled and zero-field-cooled regimes rulled out the formation of ferromagnetic cluster-glass or spin-glass s
the ferromagnetism in the studied system is purely long-range in nature. A small contribution of about 0.24

gnetic moment from the iron atoms was observed.

Uranium intermetallics, A. Uranium germanides, D. Ferromagnetic ordering, E. X-ray powder diffraction,
measurements, E. Mössbauer spectroscopy

on

rmanides have attracted much attention from the
munity, following the discovery of unconven-
nductivity in the ferromagnetically ordered com-
1], which crystallizes in the orthorhombic ZrGa2-
(space group Cmmm) [2, 3]. As a result of in-
or other compounds exhibiting the coexistence
tism and superconductivity, which so far were
be mutually exclusive, two ternary uranium ger-
ely URhGe and UCoGe, have been reported to be
ng ferromagnets [4, 5]. They crystallize with the
unit cell of the TiNiSi type (space group Pnma),
on feature with UGe2 is the presence of uranium
within the uranium layers.

r uranium zig-zag chains have also been found in
of uranium germanides, namely the compounds
ere T = Ru, Os, Ni and Fe), which all crystallize

vatives of the same orthorhombic type of crystal
articular, URu0.29Ge2 and UOs0.25Ge2 form with
lly distorted CeNiSi2-type unit cell (space group
while UNi0.45Ge2 and UFe0.39Ge2 crystallize in a
eNiSi2 structure type (space group Cmcm) [8, 9].
ds with Ru, Os and Fe order ferromagnetically at

[7] and 37 K [9], respectively, and only the Ni-
was found to order antiferromagnetically at 47 K

g author
s: a.pikul@intibs.pl (Adam P. Pikul)

The ferromagnetic order in UFe0.39Ge2 at TC =27

curs in the presence of significant crystallographic28

That disorder strongly influences the low-temperature29

properties of the compound (especially its transport pr30

suggesting the formation of a ferromagnetic cluster31

To verify the latter hypothesis, we have investigated t32

pound by measuring its 57Fe Mössbauer spectra at var33

peratures from the magnetically ordered range and in34

ferent cooling regimes. In the following, we present t35

of those experiments along with their analysis for the f36

of glassy states.37

2. Material and Methods38

A polycrystalline sample with a nominal compo39

UFe0.40Ge2 (that is, to the nearest 0.3%, identical to40

vious composition) was prepared by conventional ar41

the elemental components (with purity higher than42

each case) with about 5 at.% iron substitution by the43

tope in purified argon atmosphere. During synthesis,44

was turned over and remelted several times to ensure45

mogeneity. Subsequently, the specimen was annealed46

weeks at 900 K in an evacuated quartz tube to ensure47

mogeneity. The mass loss at the end of the procedure48

ligible.49

Quality of the product was checked by X-ray powde50

tion (XRD) using a PANalytical X’Pert Pro diffra51

equipped with a Cu Kα radiation source. The exp52

XRD pattern was analyzed by the Rietveld method53

Fullprof software [10]. Magnetic properties of the sam54

d to Journal of Magnetism and Magnetic Materials Febru
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r X-ray diffraction pattern of UFe0.40Ge2 (red circles) plot-
ults of the Rietveld refinement of its crystal structure (black
d lower green ticks indicate Bragg positions for the major
the impurity (U9Fe7Ge24) phases, respectively. Blue curve
ce between the experimental and the theoretical patterns.

a Quantum Design MPMS-XL SQUID magne-
temperature range 1.8 – 300 K and in applied

up to 70 kOe.
össbauer spectra of the powdered UFe0.40Ge2
easured in transmission geometry (TMS) with a
onstant-acceleration spectrometer, using a 57Co-
d source with a full width at half maximum
.22 mm/s. The temperature in the range of 4.3 –
trolled using a variable-temperature insert in an

ments Spectromag cryostat. The obtained TMS
analyzed using a least-squares fitting procedure
he parameters of the hyperfine interactions, such
tic hyperfine field Bhf , the isomer shift IS , the
litting QS , the quadrupole shift for the mag-
the absorption spectral areas C, and the spectral

The IS values presented in this paper refer to the
at room temperature.

d Discussion

tructure

ental XRD pattern of the 57Fe-isotope-enriched
mple (Fig. 1) was readily indexed within the Fe-
rhombic CeNiSi2-type structure, already solved

anide [9], with a small addition of the tetrag-
netic U9Fe7Ge24 phase [11]. (The presence of

phase was deliberately allowed, as discussed in
Rietveld refinement of those two crystal struc-

ed using the crystallographic data reported in
[11], gave relative amounts of the two phases of
5 wt.%, respectively, indicating good quality of
ample. The elevated background due to iron flu-
ld hide Bragg reflections from other secondary
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Figure 2: Temperature dependence of inverse magnetic susceptib
UFe0.40Ge2; solid line is a fit of the modified Curie-Weiss law to
mental data (for details see the text). Upper inset: low temperatu
of mass magnetization σ measured in field-cooling regime; an a
the ferromagnetic ordering temperature TC. Lower inset: σ as a
increasing (open symbols) and decreasing (closed symbols) applie
field H.

phases (if present at all), but their amount would sti86

than 1 – 2 wt%.87

The refined cell parameters for UFe0.40G88

a = 4.0759(2) Å, b = 15.8107(7) Å, and c = 4.0379(2)89

values are somewhat closer to those reported by H90

et al. for a similar chemical composition (a = 4.091

b = 15.805(5) Å, and c = 4.030(5) Å[12]) than our92

results reported for a polycrystalline sample with t93

composition ’UFe0.45Ge2’ (a = 4.0886(1) Å, b = 15.8394

and c = 4.0505(1) Å), suggesting the existence of95

homogeneity domain for the studied phase. Nev96

the results show that the sample synthesized for t97

described in this paper is essentially identical to the98

sample described in Ref. [9].99

3.2. Magnetic properties100

Fig. 2 shows results of the magnetic properties
ments carried out for UFe0.40Ge2. As can be seen, abo
130 K the inverse magnetic susceptibility exhibits fe
and slightly curvilinear behavior characteristic of para
The experimental data can be easily described by the
Curie-Weiss law:

χ(T ) =
1
8
µ2

eff

T − θp + χ0,

where µeff is the effective magnetic moment, θp stand101

Curie-Weiss temperature, and χ0 denotes temperature102

dent Pauli-like contribution to the total magnetic susc103

The least-squares fitting of Eq. (1) to the experimenta104

sulted in the parameter values: µeff = 2.57(3) µB, θp =105

and χ0 = 8.6(5)×10−4 emu/mol, being fully consis106

those obtained previously for UFe0.39Ge2 (µeff =107

θp = 30 K, and χ0 = 1× 10−4 [9]). The so-estimated108

2
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elocalization of 5f electrons, magnetocrystalline

crystal field effects. The large and positive value
the presence of predominantly ferromagnetic in-
een the magnetic moments.

nced Brillouin-like-shaped anomaly that is vis-
perature variation of the magnetization, σ(T ),
(see the upper inset to Fig.2) manifests ferro-

ring of UFe0.40Ge2, being in full agreement with
nding [9]. The field dependence of the magne-

, measured at the lowest temperature studied, i.e.
lower inset to Fig.2) confirms the ferromagnetic
e ordering. In the highest field σ reaches a value
, which corresponds to the ordered magnetic mo-
t 0.64 µB. It is close to the value reported for
] and is within the range of values observed for
etallics.
ndings show that the magnetic properties of the

in the present study are well defined, and the
stem under study exhibits reproducible magnetic

lts

S spectra measured for the UFe0.40Ge2 sample
in Figs. 3 and 4. As can be seen, the spectra mea-
5 K (Fig. 3), corresponding approximately to the
region of the studied compound, can be described
magnetic components. The major one, with the

ity of about 95%, is a well-resolved symmetric
n the XRD results described in Sec.3.1 as well
this component can be ascribed to the compound
which Fe atoms occupy a single crystallographic
etry lower than cubic. Deep in the magnetically
(Fig. 4), i.e. at T ⩽ 30 K, this component can no
ribed by the doublet, and it must be described by
xtet with a small hyperfine field Bhf = 2.10(3) T,
3.55(2) T for the spectra measured at 30 K, 10 K
ectively.
, minor component of the deconvoluted TMS

relative intensity being close to 5%, can
by a single line component (a singlet) with
m/s at 300 K. As can be seen in Figs. 3 and 4,

nt remains a singlet at every other temperature
showing the absence of a magnetic phase tran-
own to 4.3 K. It can be attributed to the presence

y phase U9Fe7Ge24 (see Sec. 3.1 and Ref. [11]),
s iron atoms and is known to remain paramag-
the lowest measured temperature. It should be

at since the hyperfine parameters for the com-
e24 are not available in the literature, the assign-

nglet to the impurity phase is based on the XRD
.1)) and the fact that TMS measurements per-

me other U-Fe-Ge ternaries revealed similar IS
K. In particular, IS at 300 K for U2Fe3Ge and
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Figure 3: TMS spectra of UFe0.40Ge2 measured at several temper
the range 35 – 300 K and in zero applied magnetic field, fitted by a
curve) of one doublet and one singlet component (blue and red lin
tively). For details of the fits see the text.

U34Fe4−xGe33 is -0.03 mm/s [13] and 0.13 mm/s [14164

tively.165

The TMS spectra shown in Figs. 3 and 4 can alte166

be described by only one component: an asymmetri167

at T ⩾ 35 K or a Zeeman sextet below 35 K. It shoul168

phasized, however, that if one excludes the possibili169

components in the measured spectra, then the asyme170

quadrupole doublet should be related to the preferre171

orientation of the sample or to the presence of the Go172

Karyagin effect [15, 16]. The first possibility is very173

since the TMS measurements were made on a powde174

crystalline sample. The second possibility (the Go175

Karyagin effect) is related to vibrational anistropy in176

ied crystal. This effect is temperature dependent, so177

tral asymmetry should decrease with decreasing tem178

which is not the case. In Fig. 3 it is clearly seen that th179

of the spectra measured at 300 K and 35 K are almo180

cal, so the Goldanskii-Karyagin effect cannot be respo181

the observed asymmetry of the quadrupole doublet. T182

above into account, it is more likely that the spectra183

Fig. 3 consist of two components rather than one dou184

an asymmetry of unknown origin.185

The IS (T ) dependence obtained from the above fi
TMS spectra of UFe0.40Ge2 are shown in Fig. 5(a). In

3
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ft is dependent on the s-electrons density and is
lation [15]:

4π
5

Ze2R2
(
δR
R

) [
|ΨA(0)|2 − |ΨS(0)|2

]
, (2)

nuclear charge of the Mössbauer absorber, e is
charge, R is the radius of the probe nucleus, δR is

between the radii in the ground and excited states,
nd |ΨA(0)|2 are the s-electrons densities at the
the source and absorber, respectively. At 300 K,

ter determined for the UFe0.40Ge2 compound is
(4) mm/s. This value lies between that reported
Fe2Ge7 (0.21(2) mm/s) [17] and that found for
7(2) mm/s) [18], indicating a very similar elec-
the iron nuclei in these three systems.

d from the second-order Doppler (SOD) effect,
obtained for UFe0.40Ge2 increase concavely with
perature. Since the second-order Doppler shift

e lattice vibrations of the Fe atoms, the IS (T )
n be expressed in terms of the Debye approxi-

lattice vibrations as [15]:

= IS (0) + IS SOD(T ) =

= IS (0) − 9
2

kBT
Mc

(
T
ΘD

)3 ∫ ΘD/T

0

x3dx
ex − 1

,
(3)

enotes the temperature-independent isomer shift,
s of the nuclei of the absorber (here: 57Fe), kB
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Figure 5: Temperature variations of the IS (a) and QS (b) parame
from the TMS spectra of UFe0.40Ge2. Black curves are fits of Eqs
to the experimental data shown in panels (a) and (b), respectively
see the text).
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is the Boltzmann constant and c is the speed of ligh198

uum. Fitting of Eq. 3 to the experimental IS (T ) va199

IS (0)= 0.357(2) mm/s and ΘD = 434(23) K. Here, it s200

noted that ΘD determined from the TMS data is highe201

corresponding value of ΘD = 257(5) K obtained from202

pacity measurements [9]. This discrepancy can be exp203

the fact that the Mössbauer spectroscopy is only sensit204

immediate neighbourhood of the Mössbauer probe ato205

and for this reason the estimatedΘD values from the T206

tra should be treated as the local Debye temperature o207

sublattice.208

The QS (T ) dependence obtained from the TMS s209

UFe0.40Ge2 are shown in Fig. 5(b). The observed qu210

splitting fully identify the presence of the electric211

dient (EFG) which is mainly proportional to the as212

charge distribution around the 57Fe nucleus. The QS213

eter at 300 K is equal to 0.342(2) mm/s, which is co214

to QS = 0.32(2) mm/s reported previously for U3Fe2215
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Fe nuclei in the U3Fe2Ge7 system should indeed
hat observed in UFe0.40Ge2.
rmetallic systems, the QS (T ) dependence can be

he empirical formula [19, 20]:

QS (T ) = QS (0)(1 − AT 3/2), (4)

is the value of QS at 0 K and A is a
itting Eq. 4 to the experimental data yields
(2) mm/s and A= 6(1)×10−6 K−3/2. The deter-
parameters can be treated as material constants,
sical meaning is not clearly defined.
o the results of our magnetic properties measure-
c. 3.2 and Ref. [9]), the observed magnetic prop-
Fe0.40Ge2 compound can be ascribed mainly to
ns. However, the appearance of the Zeeman sex-
S spectra measured at T⩽ 30 K may suggest that
ice establishes long-range magnetic correlations
is behavior is similar to that observed in other

ferromagnets, e.g. UFe2 [21], U2Fe3Ge [22] and
]. In all of them, the Mössbauer spectra collected
agnetic ordering temperatures indicate the pres-
hyperfine field (Bhf < 5 T) at the 57Fe nuclei.
r hand, the magnetic 57Fe spectra observed be-
be due to the hyperfine magnetic field trans-

e ferromagnetically ordered uranium sites. To
ht on this problem, we measured the TMS spec-
.40Ge2 at 40 K, which is slightly above TC, and
agnetic field Bext = 3 T, applied parallel to the
f the γ radiation beam. As can be seen in
lected spectrum reveals the presence of two Zee-
nts that consist of four lines, since in such a
the observed line intensity ratio for the sextet
:1:1:0:3 [16]. The first component, with a rel-
of 7(2)%, IS = 0.13(2) mm/s and effective hy-

tic field Beff = 2.8(2) T, can be attributed to the
e. The second, major component corresponds

and can be described by the Zeeman sextet
8(2) T, IS = 0.333(7) mm/s and ϵ = 0.01(4) mm/s.
Bhf + Bext, the determined Beff = 3.78(2) T con-
iron atoms in UFe0.40Ge2 have a small magnetic
uming that the hyperfine coupling constant for
ompounds is in the range from 10 T/µB to 15

23], the hyperfine magnetic field Bhf = 0.78(2) T,
the TMS spectrum measured for UFe0.40Ge2 at

ext = 3 T, corresponds to the magnetic moment of
out 0.05 – 0.08 µB. This estimated value of µFe
with µFe ≈ 0.2 µB inferred from the Mössbauer

rements carried out for U3Fe2Ge7 [17], and is
ed to the effective magnetic moment found for

hus, it does not change our conclusions about
agnetism in the latter compound (see Sec. 3.2

of the QS and ϵ parameters obtained for the para-
magnetically ordered states of UFe0.40Ge2, re-
be used to determine the angle φ between Bhf

ϵ =
1
2

QS (3cos2φ − 1),

and taking QS = 0.353 mm/s and ϵ = 0.08 mm/s, t271

φ= 45.3◦ was obtained.272

Finally, the TMS technique can be used to confirm273

out the formation of a ferromagnetic cluster-glass sta274

UFe0.40Ge2 system [9]. For this purpose, we mea275

Mössbauer spectra of the compound at 4.3 K, that is276

the magnetically ordered region, and in two different277

The first measurement (denoted as ZFC in Fig. 4) wa278

out in zero applied magnetic field and after cooling279

ple in zero external magnetic field. The second one280

as FC in Fig. 4) was also performed in zero magnetic281

after cooling the sample in the external field of 3 T, i282

nearly-saturated magnetization range.283

For the ZFC spectrum, the sextet attributed to U284

could be described by IS = 0.353(4) mm/s, ϵ = 0.08285

and Bhf = 3.55(2) T while for FC, the hyperfine pa286

are IS = 0.349(2) mm/s, ϵ = 0.08(1) mm/s and Bhf = 3287

Comparing these two sets of values, it can be seen tha288

spectra are virtually identical. Moreover, the line int289

tio estimated for both Zeeman sextets is close to 3:2290

This means that the magnetic domains in the sample291

both the ZFC and FC regimes are randomly oriented,292

expected for the TMS measurements performed on293

talline or powdered samples in the absence of an exter294

netic field [16].295

Let us now consider the expected response from t296

thetical cluster-glass formation. In the FC regime,297

ple was cooled down to 4.3 K in magnetic field app298

allel to the γ-ray beam propagation. Again, in this c299

tion, the observed line intensity ratio for the sextet s300

3:0:1:1:0:3 [16]. If we assume that below Trmc a ferro301

cluster-glass state really forms, then in the FC regime302

netic moments should be frozen at 4.3 K and aligned303

to the applied field. And then also the line intensity304

the magnetic sextet in the FC spectrum should be clo305

3:0:1:1:0:3 mentioned above, not 3:2:1:1:2:3 as infer306

the experimental spectrum. This means that the magn307

ments are already magnetically ordered within rando308

ented domains, so the external magnetic field does n309

their local arrangement. Thus, it can be concluded310

behavior indicating the freezing of the magnetic mom311

should be the case in cluster glass or spin glass) is o312

and the compound UFe0.40Ge2 orders purely ferromag313

at TC.314

4. Conclusions315

We have measured the transmission Mössbauer s316

a polycrystalline, 57Fe-isotope-enriched sample of UF317

which has been positively verified for the crystal stru318
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magnetic properties described previously for UFe0.39Ge2. Anal-319

ysis of the collected TMS spectra have confirmed that the com-320

pound orders f321

they have sho322

tion of magne323

graphic disord324

port propertie325

state. Further326

crystalline sam327
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UFe0.40Ge2 has been confired to oidei feiioragnetcaaaybeaowTC = 37 K.
The corpound has been studied by Mössbauei spectioscopy.
The expeiirents have confired that the feiioragnetsr in UFe0.40Ge2 is puieay
aong-iange in natuie.
The hypothesis of a feiioragnetc caustei gaass beaow TC has been discaided.
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