## **Supporting Information**

## Zn<sup>2+</sup> and Cu<sup>2+</sup> doping of one-dimensional lead free hybrid perovskite ABX<sub>3</sub>: For white light emission and green solar cells applications

Hayet Jellali,<sup>a</sup> Rawia Msalmi,<sup>b</sup> Hichem Smaoui,<sup>a</sup> Slim Elleuch,<sup>c</sup> Anowar Tozri,<sup>d</sup> Thierry Roisnel,<sup>e</sup> Edoardo Mosconi,<sup>f</sup> Numa A. Althubiti <sup>g</sup> and Houcine Naïli <sup>b</sup>\*

<sup>a</sup> Laboratory of materials for energy and environment, and modeling, Faculty of Sciences of Sfax, Sfax University, Tunisia.

<sup>b</sup>Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University, Tunisia.

<sup>c</sup>Laboratory of Applied Physic, Faculty of Sciences of Sfax, Sfax University, Tunisia

<sup>d</sup>Physics Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia.

<sup>e</sup>Uni Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR6226, 35000 Rennes, France.

<sup>f</sup>Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy.

<sup>8</sup>Chemistry department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia

|                                         | DMACdCl <sub>3</sub>                                 | DMACdCl <sub>3</sub> : Zn         | DMACdCl <sub>3</sub> : Cu                             |
|-----------------------------------------|------------------------------------------------------|-----------------------------------|-------------------------------------------------------|
| Empirical                               | (CH <sub>2</sub> ),NH <sub>2</sub> CdCl <sub>2</sub> | (CHa) NHaCda as 7 no as Cla       | (CHa)-NH-Cdaa-Cuaa-Cla                                |
| formula                                 | (CI13)21112CuC13                                     |                                   | (CII3)21VII2Cu <sub>0.97</sub> Cu <sub>0.03</sub> CI3 |
| Formula                                 |                                                      |                                   |                                                       |
| weight (g/mol <sup>-</sup>              | 264.85                                               | 263.9                             | 263.43                                                |
| <sup>1</sup> )                          |                                                      |                                   |                                                       |
| Space group                             | $P 2_1/c$                                            | $P 2_1/c$                         | $P 2_1/c$                                             |
| Crystal system                          | Monoclinic                                           | Monoclinic                        | Monoclinic                                            |
| $\frac{d(A)}{b(A)}$                     | 8.738(2)                                             | 8.739(11)                         | 8.750(10)                                             |
| $D(\mathbf{A})$                         | 13.289(3)                                            | 13.281(18)                        | 13.279(13)<br>6 680(7)                                |
| C(A)                                    | 0.094(3)                                             | 0.094(8)                          | 0.089(7)                                              |
| p(1)                                    | 98.371(10)                                           | 98.307(5)                         | 98.293(4)                                             |
| $V(\mathbf{A}^{*})$                     | //0.91(4)                                            | /68./6(1/)                        | /69.22(15)                                            |
| Call                                    | 4                                                    | 4                                 | 4                                                     |
| measurement<br>temperature              | 296(2)                                               | 296(2)                            | 293(2)                                                |
| (°C)                                    |                                                      |                                   |                                                       |
| Crystal size (mm <sup>3</sup> )         | 0.39 ×<br>0.28×0.017                                 | $0.320 \times 0.270 \times 0.180$ | $0.400 \times 0.240 \times 0.140$                     |
| Crystal color                           |                                                      |                                   |                                                       |
| and shape                               | Colorless stick                                      | Colorless stick                   | Yellow stick                                          |
| $\lambda (Mo\underline{K}\alpha) (Å)$   | 0.71073                                              | 0.71073                           | 0.71073                                               |
| Absorption<br>correction                | Multi-scan                                           | Multi-scan                        | Multi-scan                                            |
| Transmission<br>factors                 | 0.246 , 0.930                                        | 0.129 , 0.293                     | 0.313 , 0.620                                         |
|                                         | $-13 \le h \le 13$                                   | $-11 \le h \le 11$                | -11≤h≤ 11                                             |
| hkl range                               | $-20 \le k \le 20$                                   | $-17 \le k \le 15$                | $-17 \le k \le 17$                                    |
|                                         | $-10 \le l \le 10$                                   | $-8 \le 1 \le 8$                  | $-8 \le l \le 7$                                      |
| Programs<br>system                      | SHELXL-2018                                          | SHELXL-2018                       | SHELXL-2018                                           |
| θ range for<br>data collection<br>(deg) | 3.44 - 37.95                                         | 2.280 - 27.514                    | 3.068 - 27.491                                        |
| Diffractometer                          | D8 VENTURE<br>Bruker AXS                             | D8 VENTURE Bruker<br>AXS          | D8 VENTURE Bruker<br>AXS                              |
| No. of reflection                       | 17697                                                | 7623                              | 6570                                                  |

**Table S1.** Crystal data and refinement parameters of  $DMACdCl_3$ ,  $DMACdCl_3$ : Zn and $DMACdCl_3$ : Cu

| collected                                                |                                                              |                                                              |                                                                      |
|----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|
| No. of<br>independent<br>reflection                      | 2755                                                         | 1766                                                         | 1769                                                                 |
| No. of<br>reflections<br>observed (I<br>>2 $\sigma$ (I)) | 2587                                                         | 1616                                                         | 1610                                                                 |
| No. of parameters                                        | 121                                                          | 68                                                           | 68                                                                   |
| Goodness of fit                                          | 1.085                                                        | 1.14                                                         | 1.133                                                                |
| R indices (I<br>>2σ(I))                                  | $R_1 = 0.0182$<br>$wR_2 = 0.0395$                            | $R_1 = 0.0239$<br>w $R_2 = 0.0566$                           | $\begin{array}{l} R_1 {=}\; 0.0272 \\ wR_2 {=}\; 0.0641 \end{array}$ |
| R indices (all data)                                     | $\begin{array}{c} R_1 = 0.0203 \\ wR_2 = 0.0402 \end{array}$ | $\begin{array}{c} R_1 = 0.0269 \\ wR_2 = 0.0585 \end{array}$ | $\begin{array}{c} R_1 {=}\; 0.0312 \\ wR_2 {=}\; 0.0665 \end{array}$ |

## **Gap energies calculations**

The fundamental band gap energy 'Eg' and the type of transition for crystalline materials are calculated via the absorption coefficient as a function of 'hv' near the fundamental absorption edge using the expression <sup>1</sup>:

$$(\alpha h\nu)^{\frac{1}{m}} = A_1 (h\nu - E_g)$$
<sup>(1)</sup>

"A<sub>1</sub>" and "h" are a constant and the Planck's constant, respectively. "m" is equal to 1/2 for a direct allowed transition type and 2 for an indirect allowed transition. As  $F(R) \propto \alpha$ , eq(3) is expressed as:

$$(F(R) \times h\nu)^{\frac{1}{m}} = A_2(h\nu - E_g)$$
<sup>(2)</sup>

Taking a logarithm onto both sides and differentiating the equation (2) with respect to 'hv', we get the following form:

$$\ln[F(R)h\nu] = \ln(A) + m\ln(h\nu - E_g)$$
(3)

$$\frac{d[\ln(F(R)h\nu)]}{d(h\nu)} = \frac{m}{h\nu - E_g}$$
(4)

The value of Eg is obtained from the fitted plot of  $d[\ln (F(R)h\nu)]/d(h\nu)$  vs hv. The line discontinuity reveals the information about optical transitions. These are indicated at a particular maximum energy value where a particular transition might have taken place corresponding to a specific value of 'm'. The graph between  $[\ln(F(R)h\nu)]$  and  $[Ln(h\nu - Eg)]$  was plotted to obtain the value of 'm' which presents the slope of the linear part.



Figure S1. (a):  $d[\ln (F(R)h\nu)]/d(h\nu)$  vs hv and (b):  $[\ln (F(R)h\nu)]$  vs  $[\ln (h\nu - Eg)]$  of the pure DMACdCl<sub>3</sub>.



**Figure S2.** (a):  $d[\ln (F(R)h\nu)]/d(h\nu)$  vs hv and (b):  $[\ln (F(R)h\nu)]$  vs  $[\ln (h\nu - Eg)]$  of the DMACdCl<sub>3</sub> : Zn.



**Figure S3.** (a):  $d[\ln (F(R)h\nu)]/d(h\nu)$  vs hv and (b):  $[\ln (F(R)h\nu)]$  vs  $[\ln (h\nu - Eg)]$  of the DMACdCl<sub>3</sub> : Cu

## Reference

1 M. Duvenhage, M. Ntwaeaborwa, H. G. Visser, P. J. Swarts, J. C. Swarts and H. C. Swart, *Opt. Mater. (Amst).*, 2015, **42**, 193–198.