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A REMARK ON THE FIRST EIGENVALUE OF THE LAPLACE OPERATOR ON 1-FORMS FOR COMPACT INNER SYMMETRIC SPACES

We remark that on a compact inner symmetric space G/K, indowed with the Riemmannian metric given by the Killing form of G signedchanged, the first (non-zero) eigenvalue of the Laplace operator on 1-forms is the Casimir eigenvalue of the highest either long or short root of G, according as the highest weight of the isotropy representation is long or short. Some results for the first (non-zero) eigenvalue on functions are derived.

Introduction

It is well-known that symmetric spaces provide examples where the spectrum of Laplace or Dirac operators can be (theoretically) explicitly computed. However this explicit computation is far from being simple in general and only a few examples are known. On the other hand, several classical results in geometry involve the first (non-zero) eigenvalue of those spectra, so it seems interesting to get this eigenvalue without computing all the spectrum. The present paper is a proof of the following remark:

Proposition 1.1. Let G/K be a compact inner symmetric space of "type I", indowed with the Riemmannian metric given by the Killing form of G signed-changed. The first eigenvalue 1 of the Laplace operator acting on 1-forms is given by the Casimir eigenvalue of the highest either long or short root of G (relative to the choice of a common maximal torus T in G and K), according as the highest weight of the isotropy representation is long of short.

Note that, although the result involves the choice of a basis of roots, it does not depend on this particular choice, by the transitivity of the Weyl group W G of G on root bases. Indeed, by the Freudenthal formula, the Casimir eigenvalue of the highest (long of short) root β is given by

β + 2δ G , β ,
where δ G is the half-sum of the positive roots of G, and , the scalar product on the set of weights induced by the Killing form of G signed-changed. Hence, by the W G -invariance of the scalar product, two choices of a basis of roots (relative to the choice of a common maximal torus T in G and K) will lead to the same Casimir eigenvalue. On the other hand, recall that for the symmetric spaces considered Acknowledgements: The author thanks Francis Burstall for having pointed out an incorrect statement in a first version of the present paper, and for the references about spherical representations.

1 by Bochner's vanishing theorem, there are no harmonic 1-forms on the symmetric spaces considered here, since their Ricci curvature is positive.

here, the group G is simple, hence at most two lenghts occur in the sets of roots (cf. for instance [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF]). So, if only one lenght occurs, the Casimir eigenvalue of the highest root has only to be considered.

The study of subgroups of maximal rank in a compact Lie group was initiated by A. Borel and J. De Siebenthal in [START_REF] Borel | Les sous-groupes fermés de rang maximum des groupes de Lie clos[END_REF], with an explicit description for compact simple groups, resulting in the following complete list of irreducible compact simplyconnected Riemannian inner symmetric spaces G/K of type I (cf. J. A. Wolf's book [START_REF] Wolf | Spaces of constant curvature[END_REF]), where the first eigenvalue is given. 

G/K

SU(p+q) S(U(p)×U(q)) , 1 ≤ p ≤ q 1 long 1 SO(2p+2q+1) SO(2p)×SO(2q+1) , p ≥ 1, q ≥ 0 2 short if q = 0 p 2p-1 (G/K = S 2p ) long if q ≥ 1 1 Sp(p+q) Sp(p)×Sp(q) , 1 ≤ p ≤ q 2 short p+q p+q+1 Sp(n) U(n) 2 long 1 SO(2p+2q) SO(2p)×SO(2q) , 1 ≤ p ≤ q 1 long 1 SO(2n) U(n) , n > 2 1 long 1 G2 SO(4) 2 long 1 F4 Sp(3)•Sp(1) 2 long 1 F4 Spin(9) 2 short 2/3 E6 SO(10)•SO(2) 1 long 1 E6 SU(6)•SU(2) 1 long 1 E7 E6•SO(2) 1 long 1 E7 SU(8)/{±I} 1 long 1 E7 SO ′ (12)•SU(2) 1 long 1 E8 SO ′ (16) 1 long 1 E8 E7•SU(2) 1 long 1
(By convention, if all roots have same lenght, they are called long. The notation SO ′ (n) is used to mention that SO(n) acts by means of a spin representation). The (rather puzzling) fact that the eigenvalue is equal to 1 in most of the cases is explained below. Some results for the spectrum on functions may be derived. Indeed, if a function f verifies ∆f = λ f , where λ is the first (nonzero) eigenvalue, then ∆df = λ df , hence λ ≥ µ, where µ is the first eigenvalue on 1-forms. We classify in the following the symmetric spaces for which this inequality is an equality in all the cases considered here.

It can be checked that the values given in the above table agree with already konwn results (mainly on the spectrum of functions): compare with the table given in [START_REF] Nagano | On the Minimum Eigenvalues of the Laplacians in Riemannian Manifolds[END_REF], with the explicit computations of the whole spectrum given in [START_REF] Cahn | Zeta Functions and Their Asymptotic Expansions for Compact Symmetric Spaces of Rank One[END_REF] and [START_REF] Besse | Manifolds all of Those Geodesics are Closed[END_REF] for Compact Rank One Symmetric Spaces: RP n , CP n , HP n , CaP 2 = F 4 /Spin(9), with the partial results (not always very explicit) obtained for the spectrum of Grassmannians ([IT78], [START_REF] Strese | Spektren symmetrischer Räume[END_REF], [START_REF] Tsukamoto | Spectra of Laplace-Beltrami operators on SO(n + 2)/SO(2) × SO(n) and Sp(n + 1)/Sp(1) × Sp(n)[END_REF], [START_REF] Gr | The Spectrum of the Laplace Operator for the Manifold SO(2p + 2q + 1)/SO(2p) × SO(2q + 1)[END_REF], [START_REF] Chami | Spectra of the Laplace Operator on Grassmann Manifolds[END_REF], [START_REF] Halima | Branching rules for unitary groups and spectra of invariant differential operators on complex Grassmannians[END_REF], [START_REF]The Spectrum of the Laplace Operator on the Manifold Sp(n)/Sp(q)×Sp(nq)[END_REF]) and the spectrum of Sp(n)/U(n), ([TK03b], [HC11]) 2 .

Preliminaries for the proof

We consider a compact simply connected irreducible symmetric space G/K of "type I", where G is a simple compact and simply-connected Lie group and K is the connected subgroup formed by the fixed elements of an involution σ of G. This involution induces the Cartan decomposition of the Lie algebra g of G into

g = k ⊕ p ,
where k is the Lie algebra of K and p is the vector space {X ∈ g ; σ * • X = -X}. This space p is canonically identified with the tangent space to G/K at the point o, o being the class of the neutral element of G. We consider here irreducible symmetric spaces, that is, the isotropy representation

ρ : K -→ GL(p) k -→ Ad(k) |p
is irreducible. Hence all G-invariant scalar products on p, and so all G-invariant Riemannian metrics on G/K are proportional. We consider the metric induced by the Killing form of G sign-changed. With this metric, G/K is an Einstein space with scalar curvature Scal = n/2, (cf. for instance Theorem 7.73 in [START_REF]Einstein Manifolds[END_REF]).

As G/K is an homogeneous space, the bundle of p-forms on G/K may be identified with the bundle G × ∧ p ρ ∧ p p. Any p-form ω is then identified with a K-invariant function G → ∧ p p, that is a function verifying ∀g ∈ G , ∀k ∈ K , ω(gk) = ∧ p ρ(k -1 ) ω(g) .

Let L 2 K (G, ∧ p p) be the Hilbert space of L 2 K-equivariant functions G → ∧ p p. The Laplacian operator ∆ p extends to a self-adjoint operator on L 2 K (G, ∧ p p). Since it is an elliptic operator, it has a (real) discrete spectrum. By the Peter-Weyl theorem, the natural unitary representation of G on the Hilbert space L 2 K (G, ∧ p p) decomposes into the Hilbert sum

γ∈ G V γ ⊗ Hom K (V γ , ∧ p p) ,
where G is the set of equivalence classes of irreducible unitary complex representations of G, (ρ γ , V γ ) represents an element γ ∈ G and Hom K (V γ , ∧ p p) is the vector space of K-equivariant homomorphisms V γ → ∧ p p, i.e.

Hom K (V γ , ∧ p p) = {A ∈ Hom(V γ , ∧ p p) s.t. ∀k ∈ K , A • ρ γ (k) = ∧ p ρ(k) • A} . The injection V γ ⊗ Hom K (V γ , ∧ p p) ֒→ L 2 K (G, ∧ p p) is given by v ⊗ A → g → (A • ρ γ (g -1 ) ) • v .
The Laplacian ∆ p respects the above decomposition, and its restriction to the space V γ ⊗ Hom K (V γ , ∧ p p) is nothing else but the Casimir operator C γ of the representation (ρ γ , V γ ), (see [START_REF] Ikeda | Spectra and eigenforms of the Laplacian on S n and P n (C)[END_REF]):

∆(v ⊗ A) = v ⊗ (A • C γ ) .
2 Many references for the explicit computations of spectra may be found in https://mathoverflow.net/questions/219109/explicit-eigenvalues-of-the-laplacian.

But since the representation is irreducible, the Casimir operator is a scalar multiple of identity, C γ = c γ id, where the eigenvalue c γ only depends of γ ∈ G. Hence the spectrum of ∆ p is the set of the c γ for which Hom K (V γ , ∧ p p) is non trivial. Denote by ∧ p ρ = ⊕ N j=1 ρ p j , the decomposition of the representation K → ∧ p p into irreducible components. Note that for p = 0 or 1, the decomposition has only one component, since the representations are respectively the trivial one, and the isotropy representation, which are both irreducible. Now, by the Frobenius reciprocity theorem, one has

dim(Hom K (V γ , ∧ p p) = N j=1 mult(ρ p j , Res G K (ρ γ )) ,
where Res G K (ρ γ ) is the restriction to K of the representation ρ γ . So, finally,

Spec(∆ p ) = {c γ ; γ ∈ G s.t. ∃j s.t. mult(ρ p j , Res G K (ρ γ )) = 0} . In particular Spec(∆ 0 ) = {c γ ; γ ∈ G s.t. mult(triv.repr., Res G K (ρ γ )) = 0} , (1) 
and

Spec(∆ 1 ) = {c γ ; γ ∈ G s.t. mult(ρ, Res G K (ρ γ )) = 0} . (2)
3. Proof of the result 1.1.

We furthermore assume that G and K have same rank and consider a fixed common maximal torus T . Let Φ be the set of non-zero roots of the group G with respect to T . According to a classical terminology, a root θ is called compact if the corresponding root space is contained in k C (that is, θ is a root of K with respect to T ) and noncompact if the root space is contained in p C . Let Φ + G be the set of positive roots of G, with respect to a choice of a basis of simple roots. The half-sum of the positive roots of G is denoted by δ G . The space of weights is endowed with the W G -invariant scalar product < , > induced by the Killing form of G sign-changed. The symmetric spaces considerer here being irreducible, the space p C is irreducible. Let α be the highest weight of this representation. As the group G is simple, there are at most two root lenghts, and all roots of a given lenght are conjugate under the Weyl group W G of G (see [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF], $.10.4, lemma C). So α is conjugate to either the maximal root of G or the highest short root. Denote by β this root, and let w be any element in W G such that w • α = β. We claim that Lemma 3.1. The multiplicity mult(ρ, Res G K (ρ β )) is = 0. As the proof differs if either α is long or short, we first have a glance to symmetric spaces for which α is short.

3.1. Symmetric spaces for which the highest weight of the isotropy representation of K is a short root. First note that if G has only one root-lenght, then the highest weight α of the isotropy representation is necessarily a long root. So we only have to consider symmetric spaces G/K for which G has two rootlenghts. Using for instance the table 2, p. 66 in [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF], we have to look to the following symmetric spaces.

(1) SO(2p+2q+1)/SO(2p)×SO(2q+1). We consider here G = Spin(2p+2q+1).

Identifying R 2p and R 2q+1 with the subspaces spanned respectively by e 1 , . . . , e 2p and e 2p+1 , . . . , e 2p+2q+1 , where (e 1 , . . . , e 2p+2q+1 ) is the canonical basis of R 2p+2q+1 , K is the subgroup of G defined by

Spin(2p) • Spin(2q + 1) = ψ ∈ Spin(2p + 2q + 1) ; ψ = ϕ φ , ϕ ∈ Spin(2p) , φ ∈ Spin(2q + 1) ,
(Note that K = Spin(2p), when q = 0). We consider the common torus of G and K defined by

T = p+q k=1 cos(β k ) + sin(β k ) e 2k-1 • e 2k ; β 1 , . . . , β p+q ∈ R .
The Lie algebra of T is

t = p+q k=1 β k e 2k-1 • e 2k ; (1)β 1 , . . . , β p+q ∈ R .
We denote by (x 1 , . . . , x p+q ) the basis of t * given by

x k • p+q j=1 β j e 2j-1 • e 2j = β k .
We introduce the basis ( x 1 , . . . , x p+q ) of i t * defined by

x k := 2i x k , k = 1, . . . , p + q . A vector µ ∈ i t * such that µ = p+q k=1 µ k x k , is denoted by µ = (µ 1 , µ 2 , . . . , µ p+q ) .
The restriction to t of the Killing form B of G is given by B(e 2k-1 • e 2k , e 2l-1 • e 2l ) = -8(2p + 2q -1) δ kl .

It is easy to verify that the scalar product on i t * induced by the Killing form sign changed is given by

∀µ = (µ 1 , . . . , µ p+q ) ∈ i t * , ∀µ ′ = (µ ′ 1 , . . . , µ ′ p+q ) ∈ i t * , < µ, µ ′ > = 1 2(2p + 2q -1) p+q k=1 µ k µ ′ k . (3) 
Considering the decomposition of the complexified Lie algebra of G under the action of T , it is easy to verify that T is a common maximal torus of G and K, and that the respective roots are given by (see for instance chapter 12.4 in [START_REF] Bourguignon | A spinorial approach to Riemannian and conformal geometry[END_REF] for details),

±( x i + x j ) , ±( x i -x j ) , 1 ≤ i < j ≤ p + q , ± x i , 1 ≤ i ≤ p + q , for G , ±( x i + x j ) , ±( x i -x j ) , 1 ≤ i < j ≤ p , p + 1 ≤ i < j ≤ p + q , ± x i , p + 1 ≤ i ≤ p + q , for K .
We consider as sets of positive roots

Φ + G = { x i + x j , x i -x j , 1 ≤ i < j ≤ p + q , x i , 1 ≤ i ≤ p + q} , and 
Φ + K = x i + x j , x i -x j , 1 ≤ i < j ≤ p , p + 1 ≤ i < j ≤ p + q , x i , p + 1 ≤ i ≤ p + q .
so the set of positive non-compact roots is

Φ + p = x i + x j , x i -x j , 1 ≤ i ≤ p , p + 1 ≤ j ≤ p + q , x i , 1 ≤ i ≤ p .
Note that the sets

∆ G = { x i -x i+1 , 1 ≤ i ≤ p + q -1 , x p+q } and ∆ K = x i -x i+1 , 1 ≤ i ≤ p -1 , x p-1 + x p , x i -x i+1 , p + 1 ≤ i ≤ p + q -1 , x p+q , ,
are basis of G-roots and K-roots respectively. So,

Any µ = (µ 1 , . . . , µ p+q ) ∈ i t * • is a dominant G-weight if and only if µ 1 ≥ µ 2 ≥ • • • ≥ µ p+q ≥ 0 ,
and the µ i are all simultaneously integers or half-integers, • is a dominant K-weight if and only if

µ 1 ≥ µ 2 ≥ • • • ≥ µ p-1 ≥ |µ p | , µ p+1 ≥ µ p+2 ≥ • • • ≥ µ p+q ≥ 0 ,
and the µ i , for 1 ≤ i ≤ p or p + 1 ≤ i ≤ p + q, are all simultaneously integers or half-integers. Hence

• If q = 0, the highest weight of p C is the short root α = x 1 , (which is also the highest shortest root β of G). • If q > 0, the highest weight of p C is the long root α = x 1 + x p+1 .

(2) Sp(p + q)/Sp(p) × Sp(q). The space H p+q is viewed as a right vector space on H in such a way that G may be identified with the group

A ∈ M p+q (H) ; t AA = I p+q ,
acting on the left on H p+q in the usual way. The group K is identified with the subgroup of G defined by

A ∈ M p+q (H) ; A = B 0 0 C , t BB = I p , t CC = I q .
Let T be the common torus of G and K (4)

T :=         e iβ1 . . . e iβp+q    , β 1 , . . . , β p+q ∈ R      ,
where ∀β ∈ R , e iβ := cos(β) + sin(β) i , (1, i, j, k) being the standard basis of H.

The Lie algebra of T is

t =         iβ 1 . . . iβ p+q    ; β 1 , β 2 , , . . . , β p+q ∈ R      .
We denote by(1) (x 1 , . . . , x p+q ) the basis of t * given by

x k •    iβ 1 . . . iβ p+q    = β k . A vector µ ∈ i t * such that µ = p+q k=1 µ k x k , in the basis ( x k ≡ i x k ) k=1,...,p+q , is denoted by µ = (µ 1 , µ 2 , . . . , µ p+q ) .
The restriction to t of the Killing form B of G is given by

∀X ∈ t , ∀Y ∈ t , B(X, Y ) = 4 (p + q + 1) ℜ tr(X Y ) .
It is easy to verify that the scalar product on i t * induced by the Killing form sign changed is given by

∀µ = (µ 1 , . . . , µ p+q ) ∈ i t * , ∀µ ′ = (µ ′ 1 , . . . , µ ′ p+q ) ∈ i t * , < µ, µ ′ > = 1 4(p + q + 1) p+q k=1 µ k µ ′ k . (5) 
Now, considering the decomposition of the complexified Lie algebra of G under the action of T , it is easy to verify that T is a common maximal torus of G and K, and that the respective roots are given by

     ±( x i + x j ) , ±( x i -x i ) , 1 ≤ i < j ≤ p + q , ± 2 x i , 1 ≤ i ≤ p + q for G ,          ±( x i + x j ) , ±( x i -x j ) , 1 ≤ i < j ≤ p , p + 1 ≤ i < j ≤ p + q , ± 2 x i , 1 ≤ i ≤ p + q for K ,
We consider as sets of positive roots

Φ + G = { x i + x j , x i -x i , 1 ≤ i < j ≤ p + q , 2 x i , 1 ≤ i ≤ p + q} and Φ + K = x i + x j x i -x j , 1 ≤ i < j ≤ p p + 1 ≤ i < j ≤ p + q , 2 x i , 1 ≤ i ≤ p + q ,
so the set of positive non-compact roots is

Φ + p = { x i + x j , x i -x i , 1 ≤ i ≤ p , p + 1 ≤ j ≤ p + q} . Note that the sets ∆ G = { x i -x i+1 , 1 ≤ i ≤ p + q -1 , 2 x p+q } , and ∆ K = x i -x i+1 , 1 ≤ i ≤ p -1 , 2 x p , x i -x i+1 , p + 1 ≤ i ≤ p + q -1 , 2 x p+q ,
are basis of G-roots and K-roots respectively. So, Any µ = (µ 1 , . . . , µ p+q ) ∈ i t *

• is a dominant G-weight if and only if

µ 1 ≥ µ 2 ≥ • • • ≥ µ p+q ≥ 0 ,
and the µ i are all integers, • is a dominant K-weight if and only if

µ 1 ≥ µ 2 ≥ • • • ≥ µ p ≥ 0 , µ p+1 ≥ µ p+2 ≥ • • • ≥ µ p+q ≥ 0
and the µ i are all integers. Hence the highest weight of p C is the short root α = x 1 + x p+1 .

(3) Sp(n)/U(n). With the same notations as above, we consider the subgroup K of G = Sp(n):

K = {A = (a ij ) ∈ Sp(n) ; a ij ∈ R + i R} ≃ U(n) .
Note that K is the set of fixed points of the inner involution:

σ : Sp(n) → Sp(n) , A → IAI -1 ,
where

I = i I n . The subspace p = {A ∈ sp(n) ; σ * (A) = -A} is then the set p = {A = (a ij ) ∈ sp(n) ; a ij = j R + k R} .
The torus T introduced above (4) is a common torus of G and K. Considering the decomposition of the complexified Lie algebra of G under the action of T , it is easy to verify that T is a common maximal torus of G and K, and that the respective roots are given by

{±( x i -x j ) , 1 ≤ i < j ≤ n , ±( x i + x j ) , 1 ≤ i ≤ j ≤ n} for G , {±( x i -x j ) , 1 ≤ i < j ≤ n} for K ,
We consider as sets of positive roots

Φ + G = { x i -x j , 1 ≤ i < j ≤ n , x i + x j , 1 ≤ i ≤ j ≤ n} and Φ + K = { x i -x j ) , 1 ≤ i < j ≤ n} , so the set of positive non-compact roots is Φ + p = { x i + x j , 1 ≤ i ≤ j ≤ n} . Note that the sets ∆ G = { x i -x i+1 , 1 ≤ i ≤ n -1 , 2 x n } , and ∆ K = { x i -x i+1 , 1 ≤ i ≤ n -1} ,
are basis of G-roots and K-roots respectively (there are only n -1 simple K-roots as K is not semi-simple). So, Any µ = (µ 1 , . . . , µ n ) ∈ i t * is(1)

• a dominant G-weight if and only if

µ 1 ≥ µ 2 ≥ • • • ≥ µ n ≥ 0 ,
and the µ i are all integers, • a dominant K-weight if and only if

µ i -µ i+1 ∈ N , 1 ≤ i ≤ n -1 .
Hence there are two dominant K-weights in the representation p C : 2 x 1 and x 1 + x 2 , but the highest weight is 2 x 1 since x 1 + x 2 ≺ 2 x 1 . Hence the highest weight of p C is the long root α = 2 x 1 . (4) G 2 /SO(4). We use here the results given in [START_REF] Cahen | Spin Structures on Compact Simply Connected Riemannian Symmetric Spaces[END_REF] (see page 226), which follow from a general result of Borel-de Siebenthal, [START_REF] Borel | Les sous-groupes fermés de rang maximum des groupes de Lie clos[END_REF]. A set of Groots Φ G is given by the elements x ∈ R 3 , whose coordinates are integers verifying 3 i=1

x i = 0 and x 2 = 2 or 6 , hence Φ G = {±(e 1 -e 2 ) , ±(e 2 -e 3 ) , ±(e 3 -e 1 ) , ±(2 e 1 -e 2 -e 3 ) , ±(2 e 2 -e 1 -e 3 ), ±(2 e 3 -e 1 -e 2 )} .

The following system of positive G-roots is choosen:

Φ + G = {e 1 -e 2 , e
3 -e 2 , e 3 -e 1 , -2 e 1 + e 2 + e 3 , -2 e 2 + e 3 + e 1 , 2 e 3 -e 1 -e 2 } . It can be checked that a basis of G-roots is given by ∆ G = {e 1 -e 2 , -2 e 1 + e 2 + e 3 } .

A system of positive K-roots (which appears to be also a basis of K-roots) is then given by Φ + K = {e 1 -e 2 , -e 1 -e 2 + 2 e 3 } . The set of positive non-compact roots is Φ + p = {e 3 -e 2 , e 3 -e 1 , -2 e 1 + e 2 + e 3 , -2 e 2 + e 3 + e 1 } . There are two dominant weights in p C : -2 e 2 + e 3 + e 1 and e 3 -e 2 , but the highest weight is -2 e 2 + e 3 + e 1 since e 3 -e 2 ≺ -2 e 2 + e 3 + e 1 . Hence the highest weight of p C is the long root α = -2 e 2 + e 3 + e 1 .

(5) F 4 /Sp(3) • Sp(1). We use here also results given in [START_REF] Cahen | Spin Structures on Compact Simply Connected Riemannian Symmetric Spaces[END_REF] (see page 227).

A set Φ G of G-roots is given by the elements x ∈ R 4 whose coordinates are integers or half-integers satisfying x 2 = 1 or 2, [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF], hence

Φ G = ±e i , 1 ≤ i ≤ 4 , ±e i ± e j , 1 ≤ i < j ≤ 4 , 1 2 (±e 1 ± e 2 ± e 3 ± e 4 ) .
We consider the system of positive roots

Φ + G = e i , 1 ≤ i ≤ 4 , e i ± e j , 1 ≤ i < j ≤ 4 , 1 2 (e 1 ± e 2 ± e 3 ± e 4 ) .
It can be check that a basis of G-roots is given by ∆ G = {α 1 := e 2 -e 3 , α 2 := e 3 -e 4 , α 3 := e 4 , α 4 := 1 2 (e 1 -e 2 -e 3 -e 4 )} .

A system of positive K-roots is then given by There are two dominant weights in p C : e 1 and e 1 + e 3 , but the highest weight is e 1 + e 3 since e 1 ≺ e 1 + e 3 . Hence the highest weight of p C is the long root α = e 1 + e 3 . (6) F 4 /Spin(9). In that case, a system of positive K-roots is

Φ + K = e 3 ,
Φ + K = {e i , 1 ≤ i ≤ 4 , e i ± e j , 1 ≤ i < j ≤ 4} .
A basis of simple K-roots is given by ∆ K = {e 1 -e 2 , e 2 -e 3 , e 3 -e 4 , e 4 } .

(1) The set of positive non-compact roots is

Φ + p = 1 2 (e 1 ± e 2 ± e 3 ± e 4 ) ,
hence the highest weight of the representation p C is the only dominant weight: the short root α = 1 2 (e 1 + e 2 + e 3 + e 4 ).

Proof of the lemma 3.1.

Proof. The proof is very simple if there is only one root lenght, or if α is a long root. In that case, β is necessarily the maximal root, hence the highest weight of the adjoint representation of the simple group G in its complexified Lie algebra g C . But the decomposition of g C = k C ⊕ p C into K-invariant subspaces implies at once that ρ is contained in the restriction of ρ β to K.

The proof is a little more involved when two roots lenghts occur and α is a short root. As we saw it just before, there are only three cases to be considered here: SO(2p + 1)/SO(2p), Sp(p + q)/Sp(p) × Sp(q), and F 4 /Spin(9).

Let v β be the maximal vector (unique up to a scalar multiple) of the representation V β and let g ∈ G be some representant of w -1 ∈ W G . First ρ β (g) • v β is a weightvector for the weight α since forall X ∈ t,

ρ β * (X) • (ρ β (g) • v β ) = d dt |t=0 (ρ β (exp(t X)g) • v β ) = d dt |t=0 ρ β (gg -1 exp(t X)g) • v β = ρ β (g) • ρ β * (Ad(g -1 ) • X) • v β = ρ β (g) • β(w • X) v β = w -1 (β)(X) ρ β (g) • v β = α(X) ρ β (g) • v β .
Now, we claim that there exists w ∈ W G such that β = w • α, and the weight-vector ρ β (g) • v β , where g is a representative of w -1 , is a maximal vector for the action of K. We may consider only the action of a basis of simple K-roots {θ 1 , . . . , θ r }. First note that if θ is a positive K-root, and E θ a root-vector associated to it, then Ad(g -1 ) • E θ is a root-vector for the root w • θ, since forall X ∈ t,

[X, Ad(g -1 ) • E θ ] = Ad(g -1 ) • [Ad(g) • X, E θ ] = Ad(g -1 ) • [w -1 • X, E θ ] = θ(w -1 • X) Ad(g -1 ) • E θ = (w • θ)(X) Ad(g -1 ) • E θ .
Now, if w • θ is a positive root, then, since v β is a maximal vector killed by any root-vector associated to a positive root,

ρ β * (E θ ) • (ρ β (g) • v β ) = d dt |t=0 ρ β (gg -1 exp(t E θ )g) • v β = ρ β (g) • ρ β * (Ad(g -1 ) • E θ ) • v β = ρ β (g) • 0 = 0 .
So ρ β (g) • v β is killed by the action of any positive K-root θ such that w • θ is a positive root. Hence we may conclude by proving that, for each symmetric space under consideration, there exists w ∈ W G such that w •α = β, and w •θ i is a positive G-root, for any simple K-root θ i .

(1) SO(2p + 1)/SO(2p). We saw above that the highest weight of the representation p C is the short root α = x 1 , which is also the highest shortest root β of G. We may choose w = id, and as all the K-simple roots in ∆ K are G-positive roots, the claim is verified in that case. (2) Sp(p + q)/Sp(p) × Sp(q). We saw above that the highest weight of the representation p C is the short root α = x 1 + x p+1 . Now the highest short G-root is β = x 1 + x 2 . Let w be the element of the Weyl group W G given by the p-cycle permutation (2 3 • • • p + 1). One has w • α = β, and it is easily verified that w • θ i is a positive G-root for any simple K-root θ i , hence the claim is also proved in that case. (3) F 4 /Spin(9). We saw above that the highest weight of the representation p C is the short root α = 1 2 (e 1 + e 2 + e 3 + e 4 ). Now, the highest short G-root is β = e 1 , and the reflection σ α4 across the hyperplane α ⊥ 4 verifies σ α4 • α = β.

It is easily verified that σ α4 • θ i is a positive G-root for any simple K-root θ i since σ α4 : e 1 -e 2 → e 3 + e 4 , e 2 -e 3 → e 2 -e 3 , e 3 -e 4 → e 3 -e 4 , e 4 → 1 2 (e 1 -e 2 -e 3 + e 4 ) .

Hence the claim is also proved in that case.

3.3. First eigenvalue of the Laplace operator acting on 1-forms. In order to conclude, we have to verify that the Casimir eigenvalue c β is the lowest eigenvalue of the Laplacian.

Lemma 3.2. Let (ρ γ , V γ ) be an irreducible G representation such that the multi- plicity mult(ρ, Res G K (ρ γ )) = 0. Then c β ≤ c γ .
Proof. Recall that the highest weight of ρ is α, hence if mult(ρ, Res G K (ρ γ )) = 0, then α and β = w • α are actually weights of the representation ρ γ . But then, as γ is the highest weight,

β + δ G , β + δ G ≤ γ + δ G , γ + δ G , cf. Lemma C, p.71 in [Hum72], hence c β = β + δ G 2 -δ G 2 ≤ γ + δ G 2 -δ G 2 = c γ .
Remark 3.3. The fact that c β = 1 when β is the highest long root may seem to be rather puzzling. This is indeed a consequence of Freudenthal's formula (cf. 48.2 in [START_REF] Freudenthal | Linear Lie Groups[END_REF] or p. 123 in [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF]): for any G-weight µ of the representation (ρ β , V β ) = (Ad, g C ) , the multiplicity mult(µ) of µ is given recursively by the formula

( β + δ G , β + δ G -µ + δ G , µ + δ G ) mult(µ) = 2 θ≻0 ∞ i=1 mult(µ + iθ) µ + iθ, θ .
Applying this formula to the weight µ = 0, one obtains since • mult(0) = dim(t), as T is a maximal common torus,

• for any integer i ≥ 1, mult(iθ) = 0 ⇔ i = 1, and mult(θ) = 1, by properties of roots, since the only multiple of a root θ which is itself a root is ±θ,

( β + δ G 2 -δ G 2 ) dim(t) = 2 θ≻0 θ 2 .
But Gordon Brown's formula [START_REF] Brown | A remark on semi-simple Lie algebras[END_REF] or 21.5 in [START_REF] Freudenthal | Linear Lie Groups[END_REF]) states that

2 θ≻0 θ 2 = dim(t) , hence c β = 1 .

The first non-zero eigenvalue of the Laplace operator on functions

As it was noticed in the introduction, any (non-zero) eigenvalue λ of the Laplace operator on functions is greater or equal to the first eigenvalue of the Laplace operator on 1-forms. We now examine in which case this inequality is an equality.

Proposition 4.1. Let λ be the first non-zero eigenvalue of the Laplace operator on functions, and let µ be the first eigenvalue of the Laplace operator on 1-forms.

If G/K is a Hermitian symmetric space:

SU(p + q)/S(U(p) × U(q)) , SO(p + 2)/SO(n) × SO(2) , Sp(n)/U(n) , SO(2n)/U(n) , E 6 /SO(10) • SO(2) , E 7 /E 6 • SO(2) ,
or if G/K is one of the symmetric spaces for which the highest weight of the isotropy representation is a short root:

SO(2p + 1)/SO(2p) , Sp(p + q)/Sp(p) × Sp(q) or F 4 /Sp(3) • Sp(1) , then λ = µ.
In all the other cases, λ > µ.

Proof. By (1), the spectrum of the Laplace operator on functions is given by considering the irreducible representations γ ∈ G such that mult(triv.repr., Res G K (ρ γ )) = 0, or equivalently, such that there exists a non-zero weight-vector trivially acted by the group K. Such representations are called spherical representations [START_REF] Sugiura | Representations of Compact Groups Realized by Spherical Functions on Symmetric Spaces[END_REF], [START_REF] Takeuchi | Modern Spherical Functions, Translations of Mathematical Monographs[END_REF]. Hence, to prove the equality λ = µ, we have to verify that mult(triv.repr., Res G K (ρ β )) = 0, where β is the highest long or short root. Indeed, if that is verified, then c β ≥ λ, as c β belongs to the spectrum. But, as it was remarked in the introduction, λ ≥ c β , since λ has to be greater or equal to the first eigenvalue of Laplace operator on 1-forms. Let us first examine the case when β is the highest long root. In that case, ρ β is the adjoint representation of the simple group G on its complexified algebra g C , hence a non-zero root-vector is trivially acted by the subgroup K if and only if it belongs to the center of K. But this is only possible if and only if G/K is hermitian, see for instance [START_REF] Wolf | Spaces of constant curvature[END_REF]. Let us consider now the three symmetric spaces where two root lengths occur and β is the highest short root: SO(2p + 1)/SO(2p), Sp(p + q)/Sp(p) × Sp(q), and and F 4 /Spin(9). Going back to the case-by-case study of those three symmetric spaces above, one gets:

(1) SO(2p + 1)/SO(2p). The highest short root is β = x 1 , which is the highest weight of the fundamental standard representation of the group Spin(2p+1) (or SO(2p+1)) in the space C 2p+1 , see for instance chapter 12 in [START_REF] Bourguignon | A spinorial approach to Riemannian and conformal geometry[END_REF]. Now, the group K acts trivially on the last vector e 2p+1 of the canonical basis (e 1 , . . . , e 2p+1 ) of C 2p+1 since the inclusion K ⊂ G is induced by the natural inclusion

A ∈ SO(2p) -→ A 0 0 1 ∈ SO(2p + 1) .
Hence mult(triv.repr., Res G K (ρ β )) = 0.

(2) Sp(p + q)/Sp(p) × Sp(q). The highest short root is β = x 1 + x 2 , which is the highest weight of the fundamental representation of the group Sp(p + q) in the space ∧ 2 0 (C 2(p+q) ). To be more explicit, H p+q is identified with C 2(p+q) here, such that Sp(p + q) ≃ SU(2(p + q)) ∩ Sp(2(p + q), C), and the representation of Sp(p + q) in the space ∧ 2 (C 2(p+q) ) decomposes into two irreducible pieces:

(6) ∧ 2 (C 2(p+q) ) = ∧ 2 0 (C 2(p+q) ) ⊕ C • ω p+q ,
where the first piece is the fundamental representation with highest weight x 1 + x 2 , and the second one the trivial representation on the space generated by the symplectic 2-form:

ω p+q := e 1 ∧ e -1 + e 2 ∧ e -2 + • • • + e p+q ∧ e -(p+q) ,
where (e 1 , e 2 , . . . , e p+q , e -1 , e -2 , . . . , e -(p+q) ) is the canonical basis of C 2(p+q) , see for instance chapter 12 in [START_REF] Bourguignon | A spinorial approach to Riemannian and conformal geometry[END_REF]. Note then that the 2-form

e 1 ∧ e -1 + e 2 ∧ e -2 + • • • + e p ∧ e -p , is K = Sp(p) × Sp(q)-invariant, so its (non-zero) component in ∧ 2 0 (C 2(p+q)
) under the decomposition (6) is also an invariant of the group K, hence mult(triv.repr., Res G K (ρ β )) = 0. (3) F 4 /Spin(9). The highest short root is β = e 1 . The function "branch" in the LiE Program, [START_REF] Van Leeuwen | A Package for Lie Group Computations[END_REF],

branch([0, 0, 0, 1], B4, res mat(B4, (F 4)), (F 4)) , returns that the dominant weights in the decomposition of Res G K (ρ β ) (expressed in the basis of fundamental weights) are [0, 0, 0, 0] , [0, 0, 0, 1] and [1, 0, 0, 0] , hence mult(triv.repr., Res G K (ρ β )) = 1 = 0. The result may be also verified with the help of the Satake diagram of F 4 /Spin(9) (see [START_REF] Sugiura | Representations of Compact Groups Realized by Spherical Functions on Symmetric Spaces[END_REF]). Consider now all the remaining symmetric spaces. The highest weight of their isotropy representation is long. Let γ ∈ G be such that c γ = λ and mult(triv.repr., Res G K (ρ γ ) = 0. The irreducible representation γ is not the adjoint representation of group G on its complexified algebra g C , since otherwise G/K should be hermitian. Let v be a weight-vector trivially acted by the group K. This vector v is not killed by the action of at least one root-vector associated to a simple (non-compact) root, since otherwise γ should not be irreducible. The corresponding positive non-compact root belongs then to the set of weights. We claim that such a root is long. This is obviously true if there is only one root-lenght. But this is also true if there are two root-lenghts: going back to the symmetric spaces considered in section 3.1, it can be checked that in all the cases under consideration, any short simple root of G is always also a simple root of K. Now, since all roots of a given lenght are conjugate under the Weyl group (see for instance Lemma C, p. 71 in [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF]), one can deduce that the highest long root β belongs to the set of weights of γ. As β is not the highest weight of γ, since otherwise G/K should be hermitian, one can conclude using Lemma C, p.71 in [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF] that c γ > c β = 1, hence λ > µ.

Francis Burstall has pointed out to us that the three cases : λ < 1, λ = 1 and λ > 1 exactly amount the three possibilities for the second homotopy group of G/K : λ < 1 if π 2 (G/K) is trivial, λ = 1 if π 2 (G/K) = Z, and λ > 1 if π 2 (G/K) = Z/Z 2 , see chapter 3 in [START_REF] Burnstall | Twistor theory for Riemannian symmetric spaces[END_REF].

To conclude, we have to compute the Casimir eigenvalue c β for the three symmetric spaces for which the highest weight of the isotropy representation is a short root.

(1) SO(2p + 1)/SO(2p). Here β = x 1 . The half-sum of the positive G-roots is

δ G = p - 1 2 , p - 3 2 , . . . , 3 2 , 1 2 .
Using (3), one gets

c β = β + 2 δ G , β = 2 p 2 (2p -1) = p 2p -1 .
(2) Sp(p + q)/Sp(p) × Sp(q). Here β = x 1 + x 2 . The half-sum of the positive roots is δ G = (p + q, p + q -1, . . . , 2, 1) . Using (5), one gets c β = β + 2 δ G , β = 4 (p + q) 4 (p + q + 1) = p + q p + q + 1 .

(3) F 4 /Spin(9). Here β = e 1 . The half-sum of the positive roots is

δ G = 1 2
(11 e 1 + 5 e 2 + 3 e 3 + e 4 ) .

We considered above the scalar product on weights induced by the usual scalar product on R 4 . In order to compare it with the scalar product induced by the Killing form sign-changed, we use the "strange formula" of Freudenthal and de Vries (see 47-11 in [START_REF] Freudenthal | Linear Lie Groups[END_REF]). For the scalar product ( , ) induced by the usual scalar product on R 4 :

(δ G , δ G ) = 39 , whereas for the scalar product , induced by Killing form sign-changed:

δ G , δ G = dim(G) 24 = 13 6 .

Hence, as the two Ad G -invariant scalar products have to be proportional since G is simple, 

  e 4 , e 1 + e 2 , e 1 -e 2 , e 3 + e 4 , e 3 -e 4 , -e 2 + e 3 + e 4 ) . can be check that a basis of K-roots is given by∆ K = e 1 + e 2 ,e 4 , e 3 -e 4 , 1 2 (e 1 -e 2 -e 3 -e 4 ) . , e 2 , e 1 + e 3 , e 1 + e 4 , e 2 + e 3 , e 2 + e 4 , e 1 -e 3 , e 1 -e 4 , e 2 -e 3 , e 2 -e 4 ,

					1 2	(e 1 -e 2 -e 3 -e 4 ) ,
	1 2 (e 1 It The set of positive non-compact roots is (e 1 -e 2 -e 3 + e 4 ) , 1 2 (e 1 -e 2 + e 3 -e 4 ) , 1 2
	Φ + p = e 1 1 2	(e 1 + e 2 + e 3 + e 4 ) ,	1 2	(e 1 + e 2 + e 3 -e 4 ) ,
	1 2	(e 1 + e 2 -e 3 + e 4 ) ,	1 2	(e

1 + e 2 -e 3 -e 4 ) .