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Abstract—Applying control theory to economic problems has
been studied since 1970s. Early stage studies focus on policy
analysis and optimizations. With the development of theory, re-
cent researches touch on more applications such as (1) monetary
policy, (2) fiscal policy, and (3) resource allocation problems using
PID control and optimal control. Even the problems change, the
studies that applied optimal control follow the same idea: finding
a control law to optimize an objective function for a dynamic
system under certain constraints.

In this paper, we focus on french macroeconomic model.
Variables such as Gross Domestic Production, Exportation,
Importation, Household Consumption, Gross Fixed Capital For-
mation and Public expenditure are included in the analysis.
Our objective is to maintain a constant economic growth rate
according to the available resources. We implement a one-of-
a-kind optimal control via Linear-Quadratic regulator (LQR)
to achieve that. Since we aim to maintain a constant growth
rate instead of a constant value, a specific control system is
designed for this purpose. We implement three experiments: (1)
variation on parameter of LQR, (2) constraints on inputs, and
(3) perturbations on outputs. Results show that our designed
control system can guide the output to the desired growth rate.
Varying parameters of LQR can change the convergence speed of
the system. Constraints on specific inputs can delay the system
convergence and stimulate other inputs to compensate for the
constraints. Perturbations on outputs experiment show that our
control law can help the system to recover to the original state-
space.

Index Terms—MIMO, Optimal control, LQR, Macroeconomic
data

I. INTRODUCTION

Control theory is commonly applied to mechanical and
physical systems. But it is a strong tool to solve optimization
problem in various areas [14], [22]–[26]. Applying control
theory for economic problems has been studied since 1970s.
[7] summarizes the development of stochastic control theory
in macroeconomic policy analysis in three periods. The first
is pre-1970 when the major ideas of policy analysis and of
optimization were formed [9]. The second is the early and mid-
dle 1970s when formal stochastic control theory was rapidly
developed for and applied to the study of macroeconomic
policy [6], [11]. The third period, beginning in the late 1970s,
was stimulated by the introduction of the idea of rational
expectations in economic analysis [4].

Recent works focus more on applications. [16] proposes a
general class of PID-based monetary policy rules, the feedback
rules let the model use a control signal (e.g. central bank’s

policy interest rate) responds to movements in a small number
of macroeconomic factors, such as the current amount of
labor market slack and the deviation of the rate of inflation
from its target. Under an optimal control monetary policy
[5], the current and expected future path of the policy is
instead typically calculated with a procedure that minimizes
a cost function subject to certain constraints. For fiscal policy
[19] and resource allocation [8], [17] problems, they follow
the same ideas of optimal control, differences are the cost
function and the constraints. To estimate the asset holdings of
a portfolio, [13] uses algorithms applied to nonlinear dynamic
systems to estimate the state with a discrete-time observer.

In this paper, we will apply control techniques to a French
macroeconomic model using real economic data (available
as time series) starting from 1980s. Our objective would be
to design a meaningful control policy that would allow a
constant growth rate of the Gross Domestic Product. After
choosing the appropriate variables as inputs and outputs, we
will first model this system as Multiple-Input and Multiple-
Output (MIMO) system. After data pre-processing to make
the time series stationary, the orders and parameters of MIMO
system are estimated and validated before transforming it into
a state-space model. The model we estimate in this paper
is an autoregressive model with external inputs. To satisfy
our objective, an optimal control solution: Linear–Quadratic
regulator (LQR) is designed and implemented. By varying
parameters of LQR, we can control the converging speed of
output to state-space. A further simulation result shows that if
we put constraints on the level of one of input signals, we can
observe the compensation effect from other inputs. But even
there is no limitation on the amplitude of inputs variables, the
level of output and its converging speed to state-space is still
slightly worse than the case without constraints. Perturbations
on outputs are also studied, which simulates a scenario of
an economic crisis. The experiments are also developed with
and without constraints on input signals. Results show that
our system can quickly recover from the disturbance, and
constraints on input signals delay the recovery.

II. SYSTEM IDENTIFICATION

In this section, the process of estimating the economic
model is given. After the data preparation (to make is sta-
tionary), a MIMO model is computed. The parameters of the
model are then estimated and validated.



A. Data Preparation

All the data used throughout this paper are obtained from
the INSEE (Institut National de la Statistique et des Études
Économiques) which regroups the official economic French
Data 1. A plethora of data is available, nevertheless for a non-
expert it is hard to decide which makes sense in our case.
After several discussions with experts on these macroeconomic
issues, we decide to study 6 time series namely: Gross
Domestic Production (GDP), Exportation (EXP), Importation
(IMP), Household Consumption (HC), Gross Fixed Capital
Formation (GFCF) and Public Expenditure (PE). In the INSEE
database we find that all this data are quarterly, ranged from
the first quarter of 1980 to the fourth quarter of 2018, 1980T1
to 2018T4, where T1 and T4 denote first and fourth quarter of
the year2. Following a similar analysis as the one performed in
[?] we decide the inputs and outputs of the system. The inputs
of the model would be variables on which the appropriate
governmental structures can act and incite their modification,
namely Household Consumption, Gross Fixed Capital Forma-
tion and Public Expenditure. On the other side, the outputs of
the model are variables on which we suppose that, on a regular
basis, are only measured but the government can not directly
act on: Gross Domestic Production, Exportation, Importation.

The reader should note that the original data from INSEE
are presented on the values of current price and make no
adjustment for inflation. This is problematic as the current
price measure measures for example GDP, inflation or asset
prices using the actual prices we notice in the economy not
the real, deflated, one. Before anything else, we therefore
need to deflate it by using France GDP deflator (base year:
2014) obtained from the World Bank. Deflated time series are
showed in Fig. 1.

Fig. 1: Original data (Unit: Billion Euro).

As we deal with time series having an economic meaning,
we prefer to use natural logarithm to better linearize them.
The intuition behind this choice comes from macroeconomics,
where it is quite common to consider it as it eases the analysis
(see for example [12]). Moreover, as we will use these time

1https://www.insee.fr/fr/accueil
2The reader must note that especially due to the arrival Covid-19 pandemics,

data from 2019 were not taken into account in this study.

TABLE I: ADF test for unit root

Variables ADF Level ADF First Difference

LGDP -1.10548(1) -7.66072(0)***
LEXP -3.28665(2) -6.29252(3)***
LIMP -2.87331(4) -6.20372(3)***
LHC -1.45805(3) -5.59492(2)***
LGFCF -3.60257(2) -4.01801(1)***
LPE -1.92627(1) -5.69958(1)***

Null hypotheses: Variable contains an unit root
Notes: (1) ***, ** and * denote significance at the 1%, 5%,

and 10% levels, respectively.
(2) Figures in parentheses are the number of lags (delays)

used.

series to do linear regression, we must ensure that all these
series are stationary.

Augmented Dickey–Fuller (ADF) test cheung1995lag is a
commonly used statistical unit root test to examine whether a
given time series is stationary or not. In our case, we would
test the stationary for the natural logarithm of our original
time series as well as the first difference of natural logarithm.
Results are shown in Table I where LGDP, LEXP, LIMP, LHC,
LGFCF and LPE denote the natural logarithm of our 6 time
series introduced before: GDP, EXP, IMP, HC, GFCF and
PE. From TableI we can therefore observe that the test, in
the case of the natural logarithm of the original data, cannot
reject the null hypothesis that the variable contains a unit root,
which implies that the original time series are therefore not
stationary. Nevertheless, we can notice that the results for the
first difference of natural logarithm of all the series rejects the
null hypothesis at 99% (i.e., note the ∗∗∗ following the values
as indicator). We can therefore infer that these time series
using the first difference of natural logarithm are stationary.
Moreover, we will use the first difference of natural logarithm
of GDP, EXP, IMP, HC, GFCF and PE in later analysis
(hereinafter referred to as DLGDP - for difference logarithm
GDP, DLEXP, DLIMP, DLHC, DLGFCF and DLPE).

B. Selection of model order

In order to introduce our economic model, we first define
the input and output vectors as follows:

y =

y1y2
y3

 =

DLGDP
DLEXP
DLIMP

 u =

u1u2
u3

 =

 DLHC
DLGFCF

DLPE

 (1)

where y is the output (endogenous variables) of our model, u
is the input (exogenous variables) of our model. Note that the
selections of y and u are done according to their economic
interpretation and attributes. Input (exogenous) variables are
therefore the factors we could manipulate in an economic
system (e.g., increasing public expenditure for example) while
output (endogenous) variables are the consequences that we
could only observe in our case but not directly interfere with
(e.g., the variation of importations for example).



In the general case, consider an ”m-input-p-output” system
represented by a canonical input-output representation [15],
for i = 1, 2, ...p:

yi(k) =

p∑
j=1

nij∑
q=1

aijqyj(k + q − ni − 1)

+

m∑
j=1

ni∑
q=1

bijquj(k + q − nj − 1) + ei(k) (2)

where p and m is the numbers of outputs and inputs, yi(k)
denotes the value of output yi at time k, aijq and bijq are the
coefficients of yi(k+q+ni−1) and ui(k+q−nj−1), ei(k)
is the white noise at time k. Moreover, ni are the observability
indices and nij are given by:

nij = min{ni, nj}, if i ≤ j (3)

and

nij = min{ni + 1, nj}, if i > j (4)

We apply this method for each output using the technique
of ”instrumental variables” (see for example [18]), and imple-
menting a criterion which penalizes the model complexity as
we want to estimate models of reduced order (see for example
[10], [18] among others). Fig. 2 shows the order selection
process for y1, y2 and y3 while Criteria variable calculates
the average of estimation errors. The Criteria is defined as
J(n̂) as follows:

J(n̂) = min
θ̂

1

N
‖Y (t)−R(n̂)θ̂‖2 (5)

where n̂ is the estimated system order, N is the number of
data, θ̂ is the estimation of parameters. Y (t) is the real value
and R(n̂)θ̂ is the estimated value. S(n̂, N) is the part served
as penalty and defines as follows:

S(n̂, N) =
2n̂log(N)

N
(6)

According to [18], J(n̂) goes towards 0 as the estimated
order approaches the true one. Therefore, as order increases,
we can see from Fig. 2 that criteria decreases to 0. But
S(n̂, N) increases with the increase of the chosen order.

As it can be seen from Fig. 2, the estimated model between
the inputs and each of the three outputs is: 5 for y1, 4 for y2
and 5 for y3. One should notice that these estimated order are
not definitive as we still need to pass the validation process to
decide the final order.

C. Estimation and Validation of parameters

After finding the model order, Least Squares method is used
to estimate the parameters of the 3 equations for y1, y2 and
y3. After each estimation, a whiteness test (autocorrelation
test) will be applied to make sure the residuals from the
estimated equation are white noise, which means the estimated
model have already extracted all the knowledge from training
data (this problem is well studied in both economic [2]

and control [18] domain). The algorithms of calculation vary
through these studies, but the goal remains the same: testing
if values are mutually uncorrelated. In this paper, we choose
to use the implementation of autocorrelation test function in
[3].

Consider T as the total number of data points in the dataset,
we can therefore conclude that all the autocorrelation values
should be in the range (0± 1.96

T 0.5 ). In our case, from 1980T1
to 2018T4 we have 156 data points, so the limit is ±0.157
here. Fig. 3 shows the final autocorrelation test for estimation
residuals of y1, y2 and y3 where the limit of ±0.157 is
manifested by the horizontal blue lines.

Please recall that our objective is to find the minimal model,
which means a model with the lowest order (minimum number
of variables), but still valid. Therefore, once we find a valid
candidate model we would still try to reduce the order by
eliminating the variables whose coefficient is much smaller
than the others by comparing their absolute value. Nevertheless
this can pose problems concerning the validity of the mode
(for example the residual not being a white noise anymore).
Therefore, every time we delete one variable we need to re-
estimate all the parameters then re-do the whiteness test on
residuals in order to check the validity of the new model. We
continue to remove variables until none can be removed from
the equation without compromising the validity of the model.

The minimal model can be written as follows:

y1(k) = a115y1(k − 1) + a114y1(k − 2)

+ a113y1(k − 3) + a112y1(k − 4) + a111y1(k − 5)

+ a124y2(k − 2) + a123y2(k − 3) + a122y2(k − 4)

+ a135y3(k − 1) + a134y3(k − 2) + a133y3(k − 3)

+ b111u1(k − 1) + b131u3(k − 1) + e1(k) (7)

y2(k) = a214y1(k − 1) + a221y2(k − 4)

+ a222y2(k − 3) + a223y2(k − 2) + a224y2(k − 1)

+ a234y3(k − 1) + b211u1(k − 1) + b221u2(k − 1)

+ e2(k) (8)

y3(k) = a314y1(k − 1) + a313y1(k − 2)

+ a324y2(k − 1) + a323y2(k − 2) + a334y3(k − 1)

+ a333y3(k − 2) + a332y3(k − 3) + a331y3(k − 4)

+ b321u2(k − 1) + e3(k) (9)

As we can see, the final orders of the reduced model are 5
for y1, 4 for y2 and 4 for y3. The numerical values of the
parameters are detailed in below

If we define our state vector X as:

X(k) = [y1(k − 1) y1(k − 2) y1(k − 3) y1(k − 4) y1(k − 5)

y2(k − 1) y2(k − 2) y2(k − 3) y2(k − 4)

y3(k − 1) y3(k − 2) y3(k − 3) y3(k − 4)]T

(10)



(a) Result of y1 (DLGDP) (b) Result of y2 (DLEXP) (c) Result of y3 (DLIMP)

Fig. 2: Order Selection

(a) y1 Residuals (b) y2 Residuals (c) y3 Residuals

Fig. 3: Autocorrelation Test for the estimation of residuals

the Eq. (7), (8), (9) can be written as a discrete-time state-
space model in the following form:

X(k+1) = A · X(k) +B · u(k)
Y(k) = C · X(k) +D · u(k) (11)

where k ∈ Z+, output y and control u vectors are given by
equation 1, A ∈ R13×13; B ∈ R13×3; C ∈ R1×13; D ∈ R1×3.
The values of A,B,C,D are showed in equation (12) below,
where Oi×j is the zero matrix of size i× j.

Eigenvalues of the state matrix A are checked and all are
within the unit circle which means the open-loop model is
stable as we expected. Controllability and observability of
the system are also tested, the rank of the observability and
controllability matrices are equal to the number of states,
which suggests that our system is controllable and observable.

III. OPTIMAL CONTROL POLICY

The theory of optimal control is concerned with operating a
dynamic system at minimum cost. The case where the system
dynamics are described by a set of linear differential equations
and the cost is described by a quadratic function is called the
LQ problem [1].

In this section, we will first introduce Linear–Quadratic
Regulator (LQR) and then, according to the physical nature
of our input and output, we develop several modifications of
the method.

First, consider a discrete-time linear system given by:

X(k+1) = A · X(k) +B · u(k)

the cost function of discrete time LQR in finite horizon can
be presented as follows:

J = X(N)TQX(N) +

N−1∑
k=0

(X(k)TQX(k) (13)

+ u(k)TRu(k) + 2x(k)TNu(k)) (14)

where Q, R are the weight matrices for state and input and
the cross term matrix N is set to 0 in our case as the states
and input vectors do not have the same economic meaning in
order to be multiplied together.

The feedback control law that minimizes the cost function
J is:

u(k) = −K ·X(k) (15)

where K is given by:

K = (R+BPTB)T (BTPA+NT ) (16)

and P is the unique positive definite solution to the discrete
time algebraic Riccati equation (DARE):

P = ATPA− (ATPB +N)(R+BTPB)−1(BTPA+NT ) +Q
(17)

More details about the practical implementation of LQR in
our case are given in Sec. IV-A below.

A. Reference Input
As we will focus on controlling GDP, then we need to

implement our designed reference to let output reach the
desirable value. Recall that y1 from Eq. 1 is the first difference
of natural logarithm of GDP, illustrated below:

y1(k) = ln(GDP(k))− ln(GDP(k-1)) = ln(
GDP(k)

GDP(k-1)
)

(18)



A =



0.397 0.06 −0.126 0.193 0.066 0.037 0.05 0 0 0 0 −0.29 −0.038
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0

0.264 0.072 −1.055 0.958 0 0.225 0.331 0.008 −0.223 0.208 −0.185 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0

−1.0538 0.97 −0.6 0 0 0.356 0.399 0 0 0.05 −0.315 0.035 −0.218
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0



B =


0.177 0 0.118
... O4×3 ...

0.342 0 0.364
... O3×3 ...
0 0.869 0.765
... O3×3 ...

 ;C =
[
1 0 0 0 0 1 0 0 0 1 0 0 0

]
;D =

[
0 0 0

]
(12)

If we want our GDP to have constant p percent (%) increasing,
we have:

GDP(k)
GDP(k-1)

= 1 +
p

100

and then the quarterly GDP increasing ratio p can be inter-
preted as:

p = (ey1(k) − 1)× 100 (19)

where e is the base of the natural logarithm. One can remark
that as we want a constant increasing ratio, i.e. p constant, y1
needs to be constant.

B. Overall control system

In the state-space, the state and input vectors are constant. If
we can define the optimal state-space Xr, the corresponding
input vector as ur and the desired output as Yr, at equilib-
rium all these variables are satisfying the following equations
according to Eq. (11):

Xr(k) = A ·Xr(k) +B · ur(k)

Yr(k) = C ·Xr(k) +D · ur(k) (20)

We see from Fig. 4 that, different from general control
method (e.g. PID), the Reference in LQR does not directly
apply feedback from the output but reacts on feedback control
law u = −K · X . Nevertheless, as our state vector contains
only the previous values of the output we do not need an
observer before implementing our control law. To drive the
error between X(k) and Xr(k) to 0, we make a change on
Eq. (11), namely:

X(k)−Xr(k) = A ·X(k) +B · u(k)−Xr(k)

= A ·X(k) +B · u(k)−A ·Xr(k)−B · ur(k)

= A · (X(k)−Xr(k)) +B · (u(k)− ur(k))
(21)

Fig. 4: Modified LQR Control problem

if we define ∆X(k) = X(k)−Xr(k) and ∆u(k) = u(k)−
ur(k), then we have a new linear system:

∆X(k) = A · (∆X(k)) +B · (∆u(k)) (22)

and re-write the cost function of LQR (13) as:

Jr =

N−1∑
k=0

((∆X(k))TQ(∆X(k)) + (∆u(k))TR(∆u(k))

+2(∆X(k))TN(∆u(k))) + (∆X(N))TQ(∆X(N))
(23)

the feedback control law that minimizes Jr can be written as:

∆u(k) = −K ·∆X(k) (24)

where K = (R+BPTB)T (BTPA+NT ) is independent of
state and input vectors. We can notice therefore that the K in
(15) and (24) does not change.

The control law (24) can also be written as:

u(k) = −K · (X(k)−Xr(k)) + ur(k) (25)



According to Eq. (25)we can not directly apply designed
output into the feedback, we will need a pre-processing
function to transfer the desired output Yr to the desired state
vector Xr and input vector ur when the system reaches the
state-space. One thing to notice that there will not be only
one pair of Xr and ur to satisfy the pre-processing function
condition, it will be a range for both value, we will let experts
to choose the values which make more sense in real world.

Recall the cost function of LQR (13).where N is set to 0.
In this case, we set the weight matrix Q = CTQ′C, since
Y (k) = C · X(k), and the auxiliary matrix Q′ weights the
plant output [21]. We find therefore the usual conclusions:
when R >> CTQ′C, the cost function is dominated by the
control effort u, and so the controller minimizes the control
action itself, this control strategy is used when the control
signal is constrained; when R << CTQ′C, the cost function
is dominated by the output Y , and there is less penalty for
using large u.

IV. SYSTEM EVALUATION

A. Setting-up the evaluation

According to the reality, a yearly GDP growth ratio of 3.2%
is interesting to study3. To reach this level, the quarterly GDP
increasing ratio p is around 0.8% (i.e. (1.008)4 ≈ 1.032).

From (19) we know:

y1r = ln(1 +
p

100
) = ln(1.008) = 0.007968 ≈ 0.008

Following the same calculation process as above, we set y2r =
0.0175 and y3r = 0.0086. In the end, Yr = [y1r y2r y3r] is
the reference.

Recall the relations between Yr, Xr and ur in (20), in our
experiment, since the output is identical to the first entry of
the state vector, the matrix D will be 0 in our case. These
equations can be re-written as:

Xr(k) = (I −A)−1 ·B · ur(k)

Yr(k) = C ·Xr(k) (26)

where I is the identity matrix of suitable dimensions. As we
explained in the end of Sec. III-B, there is not only one pair of
Xr and ur that satisfy (26). After our selection, one reasonable
pair of Xr and ur is:

Xr(k) = [0.008, 0.008, 0.008, 0.008, 0.008, 0.0173, 0.0173,

0.0173, 0.0173, 0.0086, 0.0086, 0.0086, 0.0086]T

ur(k) = [0.024, 0.003, 0.003]T

3Actually, the recent 10 years (2010-2019) average GDP growth ratio of
France is 1.38%, but if we look back 25 years ago, the highest GDP growth
ratio are showing during 1998-2001, which the average ratio is around 3.2%.
Therefore, we want to study what measurements should be implemented to
sustain this growth ratio.

TABLE II: Output behavior. Please note that the state-space
error is always 0 due to the type of the controller we consider.

ρ time to state-space (unit in quarter) output variation range

ρ = 1 18 (0.001, 0.008)
ρ = 10 32 (-0.001, 0.008)
ρ = 100 37 (-0.002, 0.008)
ρ = 1 and constraint on input 20 (0.001, 0.008)

Knowing about the constraint of u, diagonal weights [20]
of Q and R are used.

Q =

q1 . . .
qnq

 ;R = ρ

r1 . . .
rnr

 (27)

where nq = rank(A) = 13, nr = rank(B) = 3. For the sake of
simplicity, we will let qi = 1 for all i ∈ [1, 13], and rj = 1 for
all j ∈ [1, 3], we will use ρ to adjust the input/state balance.
We choose ρ ∈ {1, 10, 100} to implement the experiments to
compare the converging speech and observe the input signal
range.

B. Experimental Evaluation

For the evaluation of the proposed control strategy, we
implement the system detailed in Fig. 4.

The initial state vector X0 of the state-space model is set
by a linear regression over the real data only from 1980T1 to
1981T1. The resulting values are given below:

X0 = [0.001, 0.012,−0.008,−0.004,−0.004, 0.036,

0.032, 0.013,−0.03, 0.007, 0.017, 0.006,−0.002]T

Moreover, due to the meaning of our variables we have the
following constraints regarding the three inputs: u1 ∈ [0, 0.3],
u2 ≤ [0, 0.008], u3 ≤ [0, 0.008]. Details about these limits
are given below.

For the sake of better presenting our results, throughout all
the evaluation procedure we will consider the same simulation
time, namely 50 time points (i.e. quarters).

1) Variation of ρ without Constraints on Input Signals:
Let us first discard the limitations on the control signal in
order to observe the behavior of the control system as well as
it’s limitations for different values of ρ. The output (i.e. y1)
is illustrated in Fig. 5a for ρ ∈ {1, 10, 100}. A more detailed
result is showed in Tab. II where the settling time as well as the
variation range of the output are given. For the time being, the
reader can just ignore the result of ”1 with constraint” which
will be detailed later on. From these results, we can clearly
conclude that increasing the ρ value will also increase the
convergence time to the state-space. Nevertheless, this comes
with a significant impact on the inputs.

As we expected, the benefits of decreasing ρ come with cost,
translated by the fact that the input exceeds the maximum
allowed limits. Fig. 6a, 6b and 6c show the input signals
evolution during the control. From the figures and table, we
can see that when ρ = 1, the input signal ranges are much
larger than the other two comparisons, and the maximum
values are also always higher.



(a) Output y1 under different ρ values

(b) Output y1 under different ρ values

Fig. 5: Output y1 under different ρ values

2) Constraints on Input Signals: In our first experiments,
we do not impose constraints on input signals, but in reality,
there are some levels that input signals cannot reach. There-
fore, in this experiment, we set ρ = 1 as well as a maximum
limit 0.03 on signal u1: u1 ≤ 0.03 (which is strictly lower
than the maximum value of u1 in the non-constrained case).
Input signals results of ”ρ = 1 with constraint on u1” are
showed in Fig. 6a, 6b and 6c and Tab. III. Comparing to only
ρ = 1 result, we can see for signal u1, the minimum value of
the range is still 0.009, but the maximum value of the range
becomes 0.03 (which is the limit) instead of 0.038. For u2
and u3, the maximum value increases s they are being used
to compensate for the insufficiency of u1. The reader should
also note that for the sake of readability, all the input behavior
is also detailed in Table III.

From Fig. 5a, 6a, 6b and 6c, we can observe that even u2
and u3 react to compensate limitation of u1, at 1st and 4th

quarter, new results are slightly lower than the result without
constraint. As for the converging speed, from Tab. II, we can
also notice that experiment with constraint converges slower
than the experiment without constraint. But still better than
the results of ρ = 10 or 100.

Moreover, one thing to note is that the curves of ”ρ = 1 with
perturbation” and ”ρ = 1 with perturbation and constraint”
are overlapped during the quarter from 0 to 25. And the curves
of ρ = 1, 10, 100 and ”ρ = 1 with constraint” are overlapped
during the quarter from 25 to 50. The signal ranges are showed

TABLE III: Summary of Input variation

ρ input signal signal variation range

1 u1 (0.0163, 0.0375)
10 u1 (0.0218, 0.0274)
100 u1 (0.0237, 0.0245)
1 with constraint u1 (0.0163, 0.03)
1 with perturbation u1 (0.0146, 0.0375)
1 with perturbation and constraint u1 (0.0153, 0.03)

1 u2 (-0.0095, 0.003)
10 u2 (-0.0047, 0.0034)
100 u2 (0.0017, 0.0032)
1 with constraint u2 (-0.0095, 0.0031)
1 with perturbation u2 (-0.0095, 0.0087)
1 with perturbation and constraint u2 (0.0, 0.0085)

1 u3 (-0.0196, 0.0068)
10 u3 (-0.0065, 0.0051)
100 u3 (0.0014, 0.0034)
1 with constraint u3 (-0.0196, 0.008)
1 with perturbation u3 (-0.0196, 0.0103)
1 with perturbation and constraint u3 (0.0, 0.0099)

in Tab. III.
3) Perturbation on Output Signals: In this experiment, we

still keep ρ = 1, and we add perturbation on output signals
to simulate economic crisis, to see how the system will react.
From the reference signals setting in Sec. IV-A, we know that
when the system is stable, y1, y2, y3 should equal to 0.008,
0.0173 and 0.0086. And u1, u2, u3 should equal 0.024, 0.003
and 0.003.

From Fig. 5b, 6a, 6b and 6c, we can see that at 24th quarter,
the system has converged to a stable state. Then we add a
negative perturbation pulse signal -0.16 on y1, y2 and y3 at
25th quarter. The ”ρ = 1 with perturbation and constraint on
ui” curves are the scenario where we not only implement the
perturbation, but also implement constraints on all the input
signals, for u1 limited between 0 and 0.03, u2, u3 are limited
between 0 and 0.008: u1 ∈ [0, 0.3], u2 ≤ [0, 0.008], u3 ≤
[0, 0.008]. ”ρ = 1 with perturbation” experiment implements
the perturbation, but has no constraints on input signals.

Fig. 5b shows that after about 20 quarters after 25th
quarter, the two systems totally recover from the perturbation,
apparently the curve without constraint recovers faster than
the other. From Fig. 6a 6b and 6c, we can observe that the
amplitude of all inputs for the experiment of ”ρ = 1 with
perturbation” is higher than ”ρ = 1 with perturbation and
constraint on ui” (for each input). The input signal ranges
shown in Tab. III also confirm that. One interesting point in
Fig. 6b and 6c reveal that if we do not impose constraint on
input signals, inputs u2 and u3 can be negative, recall that
u2 represents the first difference of logarithm of Gross Fixed
Capital Formation (also called investment). A negative signal
means instead of investing during the crisis, we should sell
our assets. As u3 represents the first difference of logarithm
of Public Expenditure, negative means we need to reduce
government spending. Nevertheless, all these conclusions,
although correct from the engineering point of view, need to
be coordinated with expert’s advice.



(a) u1 (DLHC) under different ρ values (b) u2 (DLGFCF) under different ρ values (c) u3 (DLPE) under different ρ values

Fig. 6: Input traces under different ρ values

V. CONCLUSION

Applying control theory to economic problems has been
successfully studied in many cases, resource allocation is one
of the well-established problems in this area. It demands
dynamically choosing available resources with constraints over
time to maximize or minimize an objective function.

In this paper, to apply optimal control, French macroeco-
nomic quarterly data from 1980T1 to 2018T4 are used. It
consists of 6 variables: GDP (Gross Domestic Production),
EXP (Exportation), IMP (Importation), HC (Household Con-
sumption), GFCF (Gross Fixed Capital Formation) and PE
(public expenditure). Three canonical input-output models are
estimated, which first difference of natural logarithm of GDP,
EXP and IMP are endogenous variables (outputs), and first
difference of natural logarithm of HC, GFCF and PE are
exogenous variables (inputs). We first estimate the order of
each equation, then the parameters. Once the residuals of
models pass the whiteness test, we transfer the models to a
state-space model.

After estimating the model, an optimal control solution:
(Linear–Quadratic regulator) LQR is designed for our problem
which is to maintain a constant GDP increasing ratio at a
certain level. The algorithm is developed on Simulink. The
experiments with or without constraints on input signals are
both implemented: 1) The results without constraints on input
signals show that a lower parameter ρ in LQR will lead to
a faster convergence to state-space; 2) For experiment with
constraints on inputs, we impose a limitation on the maximum
value that first difference of natural logarithm of HC can reach.
The result shows that when one input cannot reach the level it
used to reach, other inputs will compensate for this absence.
This action will force other input signals to reach an even
higher level, and the final result of output is still slightly worse
than the experiment without constraint as we expected.

Perturbations on outputs are also studied, and the experi-
ments are also developed with and without constraints on input
signals. Results show that our system can quickly recover from
the disturbance. And constraints on input signals can delay the
recovery.

The control structure designed in this paper has good
applicability and extensibility in economics. This work can be

further extended with more variables, the constraints are also
not limited to only the range of input signals, it can impose the
constraints on inputs and outputs subject to a specific model
of the dynamics of the macro-economy.
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[19] D. Léonard and N. V. Long. Optimal Control Theory and Static
Optimization in Economics, page 117–126. Cambridge University Press,
1992.

[20] R. M. Murray. Control and dynamical systems. http://www.cds.caltech.
edu/∼murray/courses/cds110/wi06/lqr.pdf, 2006.

[21] M. Triantafyllou. Maneuvering and control of surface and underwater
vehicles. https://ocw.mit.edu/courses/mechanical-engineering/, 2004.

[22] T. Younesian, Z. Zhao, A. Ghiassi, R. Birke, and L. Y. Chen. Qactor:
On-line active learning for noisy labeled stream data. arXiv preprint
arXiv:2001.10399, 2020.

[23] Z. Zhao, R. Birke, R. Han, B. Robu, S. Bouchenak, S. B. Mokhtar, and
L. Y. Chen. Enhancing robustness of on-line learning models on highly
noisy data. IEEE Transactions on Dependable and Secure Computing,
18(5):2177–2192, 2021.

[24] Z. Zhao, S. Cerf, R. Birke, B. Robu, S. Bouchenak, S. B. Mokhtar,
and L. Y. Chen. Robust anomaly detection on unreliable data. In 49th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2019, Portland, OR, USA, pages 630–637, 2019.

[25] Z. Zhao, S. Cerf, B. Robu, and N. Marchand. Feedback control for
online training of neural networks. In IEEE Conference on Control
Technology and Applications, pages 136–141, Hong Kong, SAR, China,
2019.

[26] Z. Zhao, S. Cerf, B. Robu, and N. Marchand. Event-based control
for online training of neural networks. IEEE Control Systems Letters,
4:773–778, 2020.


