
HAL Id: hal-03632665
https://hal.science/hal-03632665

Submitted on 6 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theorem Proving as Constraint Solving with Coherent
Logic

Predrag Janičić, Julien Narboux

To cite this version:
Predrag Janičić, Julien Narboux. Theorem Proving as Constraint Solving with Coherent Logic. Jour-
nal of Automated Reasoning, 2022, 66 (4), pp.689-746. �10.1007/s10817-022-09629-z�. �hal-03632665�

https://hal.science/hal-03632665
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Theorem Proving as Constraint Solving
with Coherent Logic

Predrag Janičić · Julien Narboux

Received: date / Accepted: date

Abstract In contrast to common automated theorem proving approaches, in which
the search space is a set of some formulae and what is sought is again a (goal)
formula, we propose an approach based on searching for a proof (of a given length)
as a whole. Namely, a proof of a formula in a fixed logical setting can be encoded
as a sequence of natural numbers meeting some conditions and a suitable con-
straint solver can find such sequence. The sequence can then be decoded giving
a proof in the original theory language. This approach leads to several unique
features, for instance, it can provide shortest proofs. In this paper, we focus on
proofs in coherent logic, an expressive fragment of first-order logic, and on SAT
and SMT solvers for solving sets of constraints, but the approach could be tried
in other contexts as well. We implemented the proposed method and we present its
features, perspectives and performances. One of the features of the implemented
prover is that it can generate human understandable proofs in natural language
and also machine verifiable proofs for the interactive prover Coq.

Keywords Automated theorem proving · interactive theorem proving · constraint
solving · coherent logic · SAT/SMT solving

1 Introduction

The central task of automated theorem proving – proving a conjecture given some
premises – can be pursued in a range of ways, all of which are some form of search.
In almost all of them, the search space is a set of some formulae and what is sought

Predrag Janičić
Department for Computer Science, Faculty of Mathematics, University of Belgrade, Studentski
trg 16, 11000 Belgrade, Serbia
E-mail: janicic@matf.bg.ac.rs
ORCID: 0000-0001-8922-4948

Julien Narboux
UMR 7357 CNRS, University of Strasbourg, Pôle API, Bd Sébastien Brant, BP 10413, 67412
Illkirch, France
E-mail: narboux@unistra.fr
ORCID: 0000-0003-3527-7184

2 Predrag Janičić, Julien Narboux

is again a formula (often a contradiction). There is no assumption on the size of
the proof, and the size of the proof is known only after the target formula has
been found (if it has been found).

We propose a completely different approach: instead of searching for some
formula, we propose searching for a proof as a whole. A (finite, fixed length)
proof can be encoded, represented as a sequence of natural numbers or Boolean
constants meeting some constraints. For given premises and a given conjecture,
that representation yields a set of concrete constraints and solving them gives a
needed proof. Hence, this approach can be called “theorem proving as constraint
solving”. The approach has some unique features, including yielding short and
shortest possible proofs (in terms of the given axioms, without additional lemmas).
It is often the case that we know there is some relatively short proof (or we may
be interested in such proofs only), for instance, in development of mathematical
theories. Then, we can focus on searching for a short proof, while the shortest proof
can be especially appreciated. Another unique feature are hints: it can be easily
required that some specific inference step or some specific axiom must be used
within the proof (all other proving approaches, when they are provided with some
axioms, may use them, but are not obliged to). Hints may be useful, for example,
in the following context: given an informal proof of some theorem or fragments of
a formal proof in some specific representation, we can use that information as hints

for helping our system in reconstructing the concrete proof under consideration.

The approach could be tried for various logics and calculi – if one needs an
automated theorem prover for some theory, he/she needs to specify only the notion
of proof (and the way the proofs are mapped into sequences of natural numbers).
We concentrate on coherent logic (CL), an expressive fragment of first-order logic.
The absence of function symbols in CL allows a trivial encoding of matching of
axiom arguments. CL proofs are easily transformed into formal proofs of interactive
theorem provers. In addition, CL can serve well as a vehicle for readable proofs,
its proofs are simple and natural, which is achieved by combining several natural
deduction rules into one rule. CL proofs can also suitably serve as a basic for
further post-processing so they can be more human-style.

We implemented the proposed approach and here we present that implemen-
tation too. We translate the proof constraints into propositional logic or into some
decidable theories of first-order logic (such as linear arithmetic), and solve them
using SAT and SMT solvers. From the obtained models, we generate proofs that
are machine verifiable or that are given in a natural language form. The approach
and the system we present can be subject to different improvements and optimi-
sations. Hence, we don’t see this paper as a final, but rather as a first step in this
new direction of research.

Overview of the paper: In Section 2 we give some background information on
coherent logic and on a constraint solver URSA. In Section 3 we present key ideas
and techniques within the proposed approach, primarily how is a proof represented
as a sequence of natural numbers. In Section 4 we present our prototype imple-
mentation. In Section 5 we present some evaluation results and some analysis of
performance of our implementation. In Section 6 we discuss some features of the
proposed approach and its implementation and some scenarios of usage. In Section
7 we briefly discuss related work. In Section 8 we discuss some possible directions
for future work and in Section 9 we draw some final conclusions.

Theorem Proving as Constraint Solving with Coherent Logic 3

2 Background

We assume the reader is familiar with basic notions of automated theorem proving
(ATP) and interactive theorem proving (ITP). In particular, we assume some basic
knowledge of SAT and SMT solvers [9], of the interactive provers Coq [68] and
Isabelle [54], and their interconnections [20].

Coherent Logic. A formula of first-order logic is said to be coherent if it has the
following form:

A0(~x) ∧ . . . ∧An−1(~x)⇒ ∃~y(B0(~x, ~y) ∨ . . . ∨ Bm−1(~x, ~y))

where universal closure is assumed, and where 0 ≤ n, 0 ≤ m, ~x denotes a sequence
of variables x0, x2, . . . , xk−1 (0 ≤ k), Ai (for 0 ≤ i ≤ n − 1) denotes an atomic
formula (involving zero or more variables from ~x), ~y denotes a sequence of variables
y0, y2, . . . , yl−1 (0 ≤ l), and Bj (for 0 ≤ j ≤ m − 1) denotes a conjunction of
atomic formulae (involving zero or more of the variables from ~x and ~y). If n =
0, then the left hand side of the implication is assumed to be > . If m = 0,
then the right hand side of the implication is assumed to be ⊥ . There are no
function symbols with arity greater than zero. Coherent formulae do not involve
the negation connectives. A coherent theory is a set of sentences, axiomatised by
coherent formulae, and closed under derivability.1

A number of theories and theorems can be formulated directly and simply in
coherent logic (CL). Several authors independently point to CL (or rules similar to
those of CL) as suitable for expressing (sometimes – also automating) significant
portions of mathematics [4, 29]. In contrast to resolution-based theorem proving,
in forward reasoning for CL, the conjecture being proved is kept unchanged and
proved without using refutation, Skolemization and clausal form. Thanks to this,
CL is suitable for producing readable synthetic proofs [7] with “structure of ordi-
nary mathematical arguments better retained” [26] and also for producing machine
verifiable proofs.

Every first-order theory has a coherent conservative extension [26, 61], i.e.,
any first-order theory can be translated into CL, possibly with additional predi-
cate symbols. This translation process is called “coherentisation” or, sometimes,
“geometrisation” [26]. Translation of FOL formulae into CL involves elimination
of the negation connectives: negations can be kept in place and new predicates
symbols for corresponding sub-formula have to be introduced, or negations can
be pushed down to atomic formulae [61]. In the latter case, for every predicate
symbol R (that appears in negated form), a new symbol R is introduced that
stands for ¬R, and the following axioms are introduced: ∀~x(R(~x) ∧ R(~x) ⇒ ⊥),
∀~x(R(~x) ∨ R(~x)). In order to enable more efficient proving, some advanced trans-
lation techniques are used. Elimination of function symbols, sometimes called anti

Skolemization, is also done by introducing additional predicate symbols [56].

1 A coherent formula is also known as a “special coherent implication”, “geometric for-
mula”, “basic geometric sequent” [26]. A coherent theory is sometimes called a “geometric
theory” [47]. However, much more widely used notion of “geometric formula” allows infinitary
disjuctions (but only over finitely many variables) [72]. Coherent formulae involve only finitary
disjunctions, so coherent logic can be seen as a special case of geometric logic, or as a first-order
fragment of geometric logic.

4 Predrag Janičić, Julien Narboux

If a CL formula can be classically proved from a set of CL formulae, then it
can also be intuitionistically proved from that set (this statement is known as
the first-order Barr’s Theorem [26]). However, translation from FOL to CL is not
necessarily constructive.

The problem of provability in CL is semi-decidable. CL admits a simple proof
system, a sequent-based variant is as follows [65]:

Γ, ax,A0(~a), . . . , An−1(~a), B0(~a,~b) ∨ . . . ∨Bm−1(~a,~b) ` P

Γ, ax,A0(~a), . . . , An−1(~a) ` P MP

Γ,B0(~c) ` P . . . Γ,Bm−1(~c) ` P

Γ,B0(~c) ∨ . . . ∨Bm−1(~c) ` P
QEDcs (case split)

Γ,Bi(~a,~b) ` ∃~y(B0(~a, ~y) ∨ . . . ∨ Bm−1(~a, ~y))
QEDas (assumption)

Γ,⊥ ` P QEDefq (ex falso quodlibet)

In the rules given above, it is assumed: ax is a formula A0(~x)∧ . . .∧An−1(~x)⇒
∃~y(B0(~x, ~y) ∨ . . . ∨ Bm−1(~x, ~y));2 ~a, ~b, ~c denote sequences of constants (possibly
of length zero); in the rule MP (extended modus ponens), ~b are fresh constants; ~x
and ~y denote sequences of variables (possibly of length zero); Ai(~x) (Bi(~x, ~y)) have
no free variables other than from ~x (and ~y); Ai(~a) are ground atomic formulae;
Bi(~a,~b) and Bi(~c) are conjunctions of ground atomic formulae; Φ denotes the list of
conjuncts in Φ if Φ is conjunction, and otherwise Φ itself. In the proving process,
the rules are read from bottom to top, i.e., by a rule application one gets the
contents (new subgoals) above the line.3

For a set of coherent axioms AX and the statement A0(~x) ∧ . . . ∧ An−1(~x) ⇒
∃~y(B0(~x, ~y) ∨ . . . ∨ Bm−1(~x, ~y)) to be proved, within the above proof system one
has to derive the following sequent (where ~a denotes a sequence of new symbols
of constants): AX , A0(~a), . . . , An−1(~a) ` ∃~y(B0(~a, ~y) ∨ . . . ∨ Bm−1(~a, ~y)).

Notice that in the above proof system case split may occur only at the end of a
(sub)proof. However, it is not a substantial restriction: any proof with unrestricted
use of case split can be transformed to a proof in the above system.

Example 1 Consider the following set of axioms:
ax1: ∀x (p(x)⇒ r(x) ∨ q(x))
ax2: ∀x (q(x)⇒ ⊥)

and the following conjecture that can be proved as a CL theorem:

2 Notice the hidden link between the formulae Bi(~a,~b) from the rule MP and the formula

ax: the formulae Bi(~a,~b) from the rule are instances of the formulae Bi(~x, ~y) from ax.
3 The rule ¬Intro:

Γ,R(~x) ` ⊥

Γ ` R(~x)
¬Intro

could be added to the given set of inference rules. In the intuitionistic setting, it can be more
suitable (i.e. weaker) than the axiom ∀~x(R(~x) ∨R(~x)) (for concrete R).

Theorem Proving as Constraint Solving with Coherent Logic 5

∀x (p(x)⇒ r(x))

Using the above rule system, the theorem can be proved as follows:

ax1, ax2, p(a), r(a) ` r(a)
QEDas

ax1, ax2, p(a), q(a),⊥ ` r(a)
QEDefq

ax1, ax2, p(a), q(a) ` r(a)
MP(ax2)

ax1, ax2, p(a), r(a) ∨ q(a) ` r(a)
QEDcs

ax1, ax2, p(a) ` r(a)
MP(ax1)

The same proof can be given in a forward manner, in a natural language form
(this proof was generated by our prover, described in the rest of the paper):

Consider an arbitrary a such that: p(a). It should be proved that r(a).

1. r(a) ∨ q(a) (by MP, from p(a) using axiom ax1; instantiation: X 7→ a)

2. Case r(a):

3. Proved by assumption! (by QEDas)

4. Case q(a):

5. ⊥ (by MP, from q(a) using axiom ax2; instantiation: X 7→ a)

6. Contradiction! (by QEDefq)

7. Proved by case split! (by QEDcs, by r(a), q(a))

The above, forward directed form will be used for modelling proofs in the rest
of the paper.

Constraint programming systems URSA. The constraint solving system URSA4 [36]
is based on reduction to the propositional satisfiability problem (SAT). In URSA,
the problem is specified in a language which is imperative and similar to C, but
at the same time, is declarative, as the user does not have to provide a solving
mechanism for the given problem. URSA allows two types of variables: natural
numbers (with names beginning with n, e.g., nX) and Booleans (with names begin-
ning with b, e.g., bX), with a wide range of C-like operators (arithmetic, relational,
logical, and bitwise). Variables can have concrete (ground) or symbolic values (in
which case, they are represented by vectors of propositional formulae). There is
support for procedures and there are control-flow structures (in the style of C).
Loops must be with known bounds and there is no if-else statement, but only
ite expressions (corresponding to ?: in C). An URSA specification is symbolically
executed and the given constraint corresponds to a propositional formula. It is
then transformed into CNF and passed to one of the underlying SAT solvers. If
this formula is satisfiable, the system can return all its models.

4 https://github.com/janicicpredrag/URSA

https://github.com/janicicpredrag/URSA

6 Predrag Janičić, Julien Narboux

3 Proof Encoding for Coherent Logic and Proof Search

In this section we discuss how a proof in a fragment of CL can be represented as a
sequence of natural numbers. The basic idea of the encoding is to encode individ-
ual proof steps as fixed-size sequences of numbers with appropriate conditions, and
to add conditions constraining the global proof structure. Individual proof steps
are represented, among others, by sequences of numbers that correspond to facts
derived in that step, corresponding inference rules and, possibly, axioms along with
instantiations used. We skip some details, unsubstantial ideas or tricks in order
to have the central ideas clearer. A number of aspects of this representation (i.e.,
of the proof encoding), can be defined in some other way, but we don’t discuss
all alternatives. Also, there are some redundancies in the encoding, introduced for
more convenient representation and proof decoding.

The proposed approach can be applied to the full CL, but it is simpler and
more convenient to apply it to its fragment that we call CL2. This restriction is
not substantial. Indeed, for proving any formula in CL it is sufficient to prove a
corresponding formula in CL2. CL formulae are of the form (universally closed):

A0(~x) ∧ . . . ∧An−1(~x)⇒ ∃~y(B0(~x, ~y) ∨ . . . ∨ Bm−1(~x, ~y))

while CL2 formulae meet the following restrictions:

– m = 1 or m = 2;
– each formula Bi consists of only one conjunct.

3.1 From CL to CL2 and Back

Transformation from CL to CL2 is based on the following steps (universal closure
is assumed for all formulae):5

– An axiom
P ⇒ ∃~y(Q ∨ (C0 ∧ C1 ∧ . . . ∧ Ck−1) ∨R),

if k > 1, is replaced by the following axiom:

P ⇒ ∃~y(Q ∨ C0,1,...,k−1 ∨R),

using a shorthand with a new predicate symbol:

C0,1,...,k−1 ≡ C0 ∧ C1 ∧ . . . ∧ Ck−1

(C0,1,...,k−1 involves all variables that occur in C0, C1, . . ., Ck−1), and re-
quiring additional axioms:

C0,1,...,k−1 ⇒ C0

C0,1,...,k−1 ⇒ C1

. . .

C0,1,...,k−1 ⇒ Ck−1

5 Transformation to CL2 differs for axioms and for conjectures, because they have different
polarity in the proving context: axioms ` conjecture.

Theorem Proving as Constraint Solving with Coherent Logic 7

– An axiom

P ⇒ ∃~y(Q0 ∨Q1 ∨ . . . ∨Qk−1),

if k > 2, and where all Qi are atomic formulae, is replaced by the following
axiom:6

P ⇒ ∃~y(Q0,1,...,k−2 ∨Qk−1)

using shorthands with new predicate symbols:

Q0,1 ≡ Q0 ∨Q1

Q0,1,2 ≡ Q0,1 ∨Q2

. . .

Q0,1,...,k−2 ≡ Q0,1,...,k−3 ∨Qk−2

(Q0,1,...,i involves all variables that occur in Q1,2,...,i−1 and Qi), and requiring
additional axioms:

Q0,1 ⇒ Q0 ∨Q1

Q0,1,2 ⇒ Q0,1 ∨Q2

. . .

Q0,1,...,k−2 ⇒ Q0,1,...,k−3 ∨Qk−2

– If the conjecture is of the form

P ⇒ C0 ∧ C1 ∧ . . . ∧ Ck−1,

then it is replaced by a sequence of conjectures

P ⇒ Ci, for 0 ≤ i ≤ k − 1.

– If the conjecture is of the form:

P ⇒ ∃~y(Q ∨ (C0 ∧ C1 ∧ . . . ∧ Ck−1) ∨R),

if k > 1, it is replaced by the following conjecture:

P ⇒ ∃~y(Q ∨ C0,1,...,k−1 ∨R)

using a shorthand with a new predicate symbol:

C0,1,...,k−1 ≡ C0 ∧ C1 ∧ . . . ∧ Ck−1

(C0,1,...,k−1 involves all variables that occur in C0, C1, . . ., Ck−1), and requiring
additional axioms:

C0 ∧ C1 ∧ . . . ∧ Ck−1 ⇒ C0,1,...,k−1

6 Transformation based on binary cuts of sets of formula would lead to a smaller set of new
short-hands and additional axioms – of size O(log k) instead of O(k). However, the size of
disjunctions in real-world examples is usually not too large, so we keep the simple version and
will experiment with the second one in the future.

8 Predrag Janičić, Julien Narboux

– If the conjecture is of the form

P ⇒ ∃~y(Q0 ∨Q1 ∨ . . . ∨Qk−1),

if k > 2, and where all Qi are atomic formulae, it is replaced by the following
conjecture:

P ⇒ ∃~y(Q0,1,...,k−1)

using shorthands with new predicate symbols:

Q0,1,...,k−1 ≡ Q0 ∨Q1 ∨ . . . ∨Qk−1

(Q0,1,...,k−1 involves all variables that occur in Q0, Q1, . . ., Qk−1), and requir-
ing additional axioms:

Q0 ⇒ Q0,1,...,k−1

Q1 ⇒ Q0,1,...,k−1

. . .

Qk−1 ⇒ Q0,1,...,k−1

The above rules are applied in iterations until all axioms and the conjecture
are in CL2 form. It is obvious that this process terminates.

Example 2 The axiom:
∀x (p(x)⇒ (q(x) ∨ (r(x) ∧ s(x)) ∨ t(x)))
is replaced by the following axioms:
∀x (p(x)⇒ (q or r and s(x) ∨ t(x)))
∀x (q or r and s(x)(x)⇒ (q(x) ∨ r and s(x))
∀x (r and s(x)⇒ r(x))
∀x (r and s(x)⇒ s(x))

The conjecture:
∀x∃y (a(x)⇒ (b(x, y) ∨ (c(y) ∧ d(y)) ∨ e(y)))))
is replaced by the conjecture:
∀x∃y (a(x)⇒ (b or c and d or e(x, y)))
and the following additional axioms:
∀x (c(x) ∧ d(x)⇒ c and d(x))
∀x, y (b(x, y)⇒ b or c and d or e(x, y))
∀x, y (c and d(y)⇒ b or c and d or e(x, y))
∀x, y (e(y)⇒ b or c and d or e(x, y))

A similar transformation could be used to reduce the number of premises in
each axiom to at most two (but we do not use it).

A theory T ′ obtained this way from a CL theory T is its conservative exten-
sion. Given a proof in CL2, it is easy to obtain a corresponding proof in CL: all
introduced predicate symbols have to be eliminated, i.e., defined expressions have
to be replaced by their corresponding definitions in terms of the original signa-
ture. This means, however, that not all assumption steps (in the final proof) will
hold only facts, but possibly also disjunctions or conjunctions.

As said in Section 2, in translation from FOL to CL, for every predicate symbol
R that appears in negated form, a new symbol R is introduced that stands for ¬R.
As a final step in constructing a proof, we can translate R back to ¬R (keeping
the axioms ∀~x(R(~x) ∧ ¬R(~x)⇒ ⊥), and ∀~x(R(~x) ∨ ¬R(~x))).

Theorem Proving as Constraint Solving with Coherent Logic 9

3.2 Intro

As mentioned in Section 2, given the conjecture (the atom B1(~x, ~y) may be
absent): A0(~x) ∧ . . . ∧ An−1(~x) ⇒ ∃~y(B0(~x, ~y) ∨ B1(~x, ~y)), new constants ~a are
introduced and the proving task becomes the task of checking whether it holds
that:

A0(~a), . . . , An−1(~a) ` ∃~y(B0(~a, ~y) ∨B1(~a, ~y))

3.3 Kinds of Proof Steps

Following the definitions of CL and CL2, a class of CL2 proofs can be represented
in the following simple way (there are zero or more assumptions – As, MP is used
zero or more times, QEDcs involves two other objects Proof):

Proof ::= As∗ MP∗
(

QEDcs
(

Proof2
)
| QEDas | QEDefq

)
Therefore, any CL2 proof can be represented as a sequence of steps and each

step is one of the following:

Assumption : This step contains a fact A(~a), introduced by the conjecture formu-
lation or by cases in proofs by cases.

MP : An axiom (universally quantified) A0(~x)∧ . . .∧An−1(~x)⇒ ∃~y(B0(~x, ~y)∨ . . .∨
Bm−1(~x, ~y)) has been applied. It has been instantiated using an instantiation
σ = [~x 7→ ~a, ~y 7→ ~b]. Constants ~b are new, fresh constants (not present in
the original signature), and all the facts A0(~a), . . . An−1(~a) have been proved
previously, on the current proof branch.

FirstCase : There is a preceding MP step with a conclusion B0(~a,~b) ∨ B1(~a,~b).
This step opens the first case consideration (i.e., the first subproof) and it
introduces the assumption B0(~a,~b). Without loss of generality, we impose the
restriction that that MP step is the immediate previous step. It can be easily
proved that this does not harm completeness.

SecondCase : There is a preceding MP step with a conclusion B0(~a,~b)∨B1(~a,~b),
and a corresponding FirstCase completed in the previous proof step. This
step opens the second case consideration (i.e., the second subproof) and it
introduces the assumption B1(~a,~b).

QEDbyCases : There is a preceding MP step with a conclusion B0(~a,~b)∨B1(~a,~b)
and both cases have been completed (in the previous step). This step closes
the proof by cases.

QEDbyAssumption : The goal statement is present in the assumptions or is de-
rived in the previous step.

QEDbyEFQ : If ⊥ has been derived in the previous step, then the goal statement
has been proved as well.

3.4 Axioms and Conjecture Representation

We assume that all the given axioms are in the fragment CL2. The axioms are
ordered and each is assigned an ordinal number. The same holds for the predicate
symbols and for the symbols of constants (from the original signature and those

10 Predrag Janičić, Julien Narboux

introduced later, as fresh constants). (The symbols ⊥ and > as predicate symbols
of arity 0 may be assigned values 0 and 1).

An axiom A0(~x) ∧ . . . ∧An−1(~x)⇒ ∃~y(B0(~x, ~y) ∨B1(~x, ~y)) (universal closure is
assumed) is represented by the following pieces of information:

– the ordinal number;
– the number of universal quantifiers;
– the number of existential quantifiers;
– the number of premises (i.e., the number n);
– a flag, true if the axiom is branching (i.e., if there is an atom B1), false, oth-

erwise;
– the ordinal numbers of predicates symbols occurring in the axiom (respectively

in the premises and the goal), i.e., the original numbers of dominant symbols
in A0, . . . , An−1, B0, B1;

– a flag saying whether a certain argument in an atomic formulae is a constant
symbol, and if yes, the ordinal number of that constant symbol;

– the mapping between variables within the atomic formulae and the quantifiers.

All of the above values can be represented by natural numbers. We use zero-
based counting (like in C/C++), for a more compact representation.

Example 3 Consider the axiom ax1: ∀x (p(x) ⇒ r(x) ∨ q(x)) from Example 1. Let
us assume that the predicate symbols and their negated versions p, ¬p, r, ¬r, q,
¬q are represented by the numbers 2, 3, 4, 5, 6, 7, and the constant a is represented
by 0. Then, the axiom is represented by the following values:

– the ordinal number is 1;
– the number of universal quantifiers is 1;
– the number of existential quantifiers is 0;
– the number of premises is 1;
– the axiom is branching;
– the ordinal numbers of predicates symbols are 2, 4, 6;
– no argument in the atomic formula is a constant;
– each variable appearing in the atomic formula maps to the first quantified

variable.

3.5 Proof Step Representation

The proof is represented as an ordered list of proof steps. The structure of the proof
is encoded using some nesting information attached to each proof step. Encoding
of proof steps is adjusted to a concrete conjecture to be proved: a maximal number
of premises in the axioms is known, and a maximal arity of predicate symbols is
known, so fixed-size slots are used for encoding each proof step. Each proof step is
represented by the following values (not all are necessarily relevant for each step):

StepKind : one of the possible step kinds (see the list in Section 3.3);
Contents : one or two atoms, represented by their predicate symbols and argument

constants: P0(a0, ..., ak−1) and, possibly, P1(a0, ..., al−1).

Theorem Proving as Constraint Solving with Coherent Logic 11

Nesting : a value that characterises the position of the step in the proof considered
as a tree. The initial value is 1. Each MP step has the same nesting as its
previous step. In a proof by cases, if the cases are introduced by a MP step
with nesting n, then the FirstCase step has nesting 2n, the corresponding
SecondCase step has nesting 2n+ 1, and the corresponding QEDbyCases has
nesting n.

Goal : says whether the contents of the step s matches the goal (this is redundant
information, but convenient for expressing conditions for some proof steps). In
one proof, there may be several steps s for which Goal (s) is true.

The following pieces of information are relevant for MP steps only:

AxiomApplied : the ordinal number of the axiom used;
From values: the ordinal numbers of proof steps justifying premises of the axiom

applied;
Instantiation : the instantiation used (for instance, σ = [~x 7→ ~a, ~y 7→ ~b]). It is

stored as a sequence of ordinal numbers of constants to which the quantified
variables are mapped respectively. For axioms that introduce new constants,
they map to new, unused natural numbers.

Cases : says whether the used axiom is branching or not (this is redundant infor-
mation, but convenient);

Premises : says how many premises the axioms used has (this is redundant infor-
mation, but convenient).

All of the above values can be represented by natural numbers (again, zero-
based counting like in C/C++ is used).

Example 4 Consider again the CL proof shown in Example 1:

Consider an arbitrary a such that: p(a). It should be proved that r(a).

1. r(a) ∨ q(a) (by MP, from p(a) using axiom ax1; instantiation: X 7→ a)

2. Case r(a):

3. Proved by assumption! (by QEDas)

4. Case q(a):

5. ⊥ (by MP, from q(a) using axiom ax2; instantiation: X 7→ a)

6. Contradiction! (by QEDefq)

7. Proved by case split! (by QEDcs, by r(a), q(a))

Its proof steps can be represented by the following numerical values, given that
predicate symbols and their negated versions p, ¬p, r, ¬r, q, ¬q are represented by
the numbers 2, 3, 4, 5, 6, 7, the constant a is represented by 0, and the information
on StepKind and AxiomApplied is packed in one number, as explained in Section
4.2: 7

7 The given content, i.e., a proof represented by numbers, was created automatically by our
prover. The shown proof representation does not include all variables that were considered
during the proving/solving process. Also, some of the given values are redundant (but are still
kept for convenience in this representation).

12 Predrag Janičić, Julien Narboux

0. 1 0 0 2 0 /*** Nesting: 1; Step kind:0 = Assumption;
Branching: no; p2(a) ***/

1. 1 13 1 4 0 6 0 /*** Nesting: 1; Step kind:13 = MP-axiom:13;
Branching: yes; p4(a) or p6(a) ***/

0 /*** From steps: (0) ***/
0 /*** Instantiation ***/

2. 2 2 0 4 0 /*** Nesting: 2; Step kind:2 = First case;
Branching: no; p4(a) ***/

3. 2 10 /*** Nesting: 2; Step kind:10 = QED by assumption; ***/
4. 3 3 0 6 0 /*** Nesting: 3; Step kind:3 = Second case;

Branching: no; p6(a) ***/
5. 3 14 0 0 /*** Nesting: 3; Step kind:14=MP-axiom:14);

Branching: no; p0() ***/
4 /*** From steps: (4) ***/
0 /*** Instantiation ***/

6. 3 11 /*** Nesting: 3; Step kind:11 = QED by EFQ; ***/
7. 1 9 /*** Nesting: 1; Step kind:9 = QED by cases; ***/

3.6 Goal Representation

Let us suppose that the task is to show (the atom B1 may be absent):

A0(~a), . . . , An−1(~a) ` ∃~y(B0(~a, ~y) ∨B1(~a, ~y)).

Then the goal, the formula ∃~y(B0(~a, ~y) ∨ B1(~a, ~y), is used to set constraints on
the last possible proof step, i.e., on the MaxL − 1-th step (recall that zero-based
counting is used), where MaxL is the maximal proof length (a concrete number)
that has to be provided. The goal is described similarly as other proof steps:

– its StepKind is one of QEDbyAssumption , QEDbyCases , QEDbyEFQ ;
– Contents (MaxL − 1)(0) = B0(~a, ~y) (and possibly Contents (MaxL − 1)(1) =
B1(~a, ~y), if B1 is present); the variables ~y as arguments have a special treatment;

– Nesting (MaxL− 1) equals 1;
– Cases (MaxL− 1) is true iff there is the atom B1, i.e., there is a disjunction in

the goal).

A proof to be found may have a length L, less or equal MaxL, as ensured by
constraints presented in Section 3.8.

3.7 Encoding of Proof Steps – Local Constraints

Let us express conditions that have to be met for a proof step of a particular kind.
Let the length of the proof be L. It must hold that L ≤ MaxL, and for each proof
step s (0 ≤ s < L) one of the following groups of conditions holds (i.e., each step
has one of the listed step kinds). Notice that L is a symbolic, not a concrete value,
so a check if 0 ≤ s < L is used as a constraint.

Assumption : Given the initial assumptions A0(~a), . . ., An−1(~a), they constitute
the first n steps of the proof (they do not introduce any unknown), for s < n:
1. StepKind (s) = Assumption ;

Theorem Proving as Constraint Solving with Coherent Logic 13

2. Cases (s) = false;
3. Nesting (s) = 1;
4. Contents (s)(0) = As(~a)

MP : One of the given axioms AX has been applied, i.e., the following conditions
are met for some k, 0 ≤ k < |AX |, where the k-th axiom is: A0(~x) ∧ . . . ∧
An−1(~x)⇒ ∃~y(B0(~x, ~y) ∨ . . . ∨ Bm−1(~x, ~y)) (where m is 1 or 2):
1. StepKind (s) = MP ;
2. AxiomApplied (s) = k;
3. There is a finite mapping Instantiation (s) that maps each quantified vari-

able from ~x to a constant: Instantiation (s)(xi) = ai and also from yi to a
new, fresh constant: Instantiation (s)(yi) = bi (other arguments of atomic
formulae are constants);

4. Cases (s) = false, iff m equals 1;
5. Nesting (s) = Nesting (s− 1), if s > 0, otherwise Nesting (s) = 1;
6. Contents (s)(0) = B0(~a,~b) and, if m = 2, Contents (s)(1) = B1(~a,~b);
7. The mapping From (s)(i) maps each i, 0 ≤ i < n to one of numbers s′,

such that 0 ≤ s′ < s and such that in the s′-th proof step the fact Ai(~a)
was derived. In addition, it must hold that:

– Cases (s′) = false (s′ must not be branching step, it must contain a
single fact, not a disjunction of two);

– the steps s and s′ are on the same proof branch.8

FirstCase :
1. StepKind (s) = FirstCase ;
2. s > 0;
3. StepKind (s− 1) = MP ;
4. Cases (s− 1) = true;
5. Cases (s) = false;
6. Nesting (s) = 2· Nesting (s− 1);
7. Contents (s)(0) = Contents (s− 1)(0).

SecondCase :
1. StepKind (s) = SecondCase ;
2. s > 0;
3. the step s− 1 is one of the QED steps;
4. there is a step s′, 0 ≤ s′ < s− 2 such that;

– StepKind (s′) = MP ;
– Cases (s′) = true;
– Contents (s)(0) = Contents (s′)(1);

5. Cases (s) = false;
6. Nesting (s) =Nesting (s− 1) + 1.

QEDbyCases :
1. StepKind (s) = QEDbyCases ;
2. s > 0;
3. the step s− 1 is one of the QED steps;
4. Goal (s);
5. Nesting (s− 1) is odd;
6. Nesting (s) = (Nesting (s− 1)− 1)/2.

8 The way we represent this condition is described in Section 4.

14 Predrag Janičić, Julien Narboux

QEDbyAssumption :
1. StepKind (s) = QEDbyAssumption ;
2. s > 0;
3. Goal (s− 1);9

4. Goal (s);
5. Nesting (s) = Nesting (s− 1).

QEDbyEFQ :
1. StepKind (s) = QEDbyEFQ ;
2. s > 0;
3. Contents (s− 1)(0) = ⊥;
4. Goal (s);
5. Nesting (s) = Nesting (s− 1).

Let us comment more on the encoding of the step kind FirstCase , for instance.
The given constraints say that such proof step cannot be the very first proof step
(i.e., the 0th step), that the previous step is a branching MP step, the step itself is
not branching, and its contents is the same as the first atom of the previous step,
while the nesting doubles.

Example 5 Consider again a proof from Example 4, and let us illustrate the above
constraints on its two last steps.
One step before the last one (6th step) has a step kind QEDbyEFQ . Indeed, 5 > 0
(recall that internally we use zero-based counting), the contents of its previous step
is ⊥, the contents of this step (not shown in the presented proofs) is r(a), and its
nesting is equal to the nesting of its previous step.
The last step (7th step) has a step kind QEDbyCases . Indeed, 6 > 0, the contents
of its previous step is r(a), the contents of this step (not shown in the presented
proofs) is, again, r(a), the nesting of the previous step equals 3, hence it is odd,
and finally, the nesting of this proof step equals (3-1)/2.

3.8 Encoding of Proof as a Whole – Global Constraints

The global constraints ensure that the global structure (most notably case splits) is
correct and that the goal has been reached at the end of the proof. In the following,
the proof length equals L (L is unknown, there is only a constraint 0 < L ≤ MaxL,
where MaxL is the given, concrete maximal proof length). In all the rules, it must
hold that 0 ≤ s < L:

1. Each proof step s is one of the defined step kinds;
2. If step s− 1 is one of the QED steps, then Nesting (s− 1) 6= Nesting (s);
3. If Cases (s− 1) is true, then StepKind (s) = FirstCase ;
4. If s−1 is one of the QED steps and Nesting (s−1) is even, then StepKind (s) =

SecondCase ;
5. If s−1 is one of the QED steps and Nesting (s−1) is odd, then StepKind (s) =

QEDbyCases ;
6. Nesting (L− 1) = 1;

9 For the very first proof step following the given assumptions, there should be also a
constraint corresponding to a posibility that the goal has been met by some of the given
assumptions.

Theorem Proving as Constraint Solving with Coherent Logic 15

7. The step L− 1 is one of the QED steps;
8. Contents (L− 1) = Contents (MaxL− 1).

Notice that, without uninterpreted functions, a condition like Nesting (L−1) =
1 cannot be expressed directly because L is unknown. Instead, the constraint is
constructed as a disjunction over all possible values of L.

3.9 Proof Search

Given some axioms, a conjecture, and a maximal proof length MaxL, a set of
constraints (in variables ranging over natural numbers) that describe a proof of
the conjecture can be constructed, as explained above. If the set of constraints is
satisfiable, its model can be decoded into a concrete proof.

A proof search can be facilitated in the following way: first, a proof of length
at most a is initially sought, and if there is no such proof, a proof of length at
most a+ b, a+ 2b, a+ 3b etc, is sought (in our implementation, there are default
values for a and b, but also the user can set a and b, see Section 4.4). Such policy
enables faster proof finding for simple theorems and still preserve completeness for
more complex ones (while trying to introduce a small number of constraints). The
search stops if a proof is found, or the maximal proof length has been reached, or
if the available time has been spent.

3.10 Properties

Given a maximal proof length, the presented proving method is trivially terminat-
ing. In addition, even without a given maximal proof length, if the input statement
is provable, and the method is applied for an increasing sequence of maximal proof
lengths, this process is also terminating. Hence, one of the key issues for many
proving paradigms – termination – is trivial for the presented approach. The form
of axioms does not affect this – termination is trivially ensured also in the pres-
ence of axioms that may lead to non-terminating rewrite rules, like commutativity
axioms.

The presented approach is sound: what is generated as a proof of the given
conjecture is indeed its proof. The presented approach is complete in the following
sense: if there is a CL2 proof of length ≤ MaxL of the given conjecture, it will be
eventually found (assuming that the underlying SAT/SMT provers are complete).
Even more, we can systematically increase MaxL (and the maximal nesting, if
needed) and check if there is a proof of length ≤ MaxL. A CL2 formula is a
consequence of the given axioms if and only if there is a MaxL such that there is a
proof of length ≤ MaxL. This gives a semi-decision procedure for validity in CL2,
as a by-product of the proposed approach. It can be extended to full FOL, since
any first-order theory can be translated into CL2.

The above outlined features could be the subject of rigorous proofs and for-
malisation using an interactive prover and a reflexive approach, but at this, first
stage we rather chose to use an approach based on certification of generated proofs
using state-of-the-art ITP, instead of proving correctness and completeness of our
prototype implementation. This approach has several advantages:

16 Predrag Janičić, Julien Narboux

– we can change the prover easily, without changing the proof checker and we
do not need to write a new proof;

– we can use efficient implementations, with optimisations which would be hard
to verify;

– we can choose the implementation language and we could use parallelisation
and native computation (without the layers of abstraction/interpretation in-
volved in a reflexive approach);

– we can use external tools that we do not need to verify (SAT and SMT solvers)
nor use certified versions10.

On the other hand, the drawback is that we cannot be completely sure that the
encoding is correct, so our prover may possibly fail.

The complexity of the proposed approach is difficult to estimate. In terms of the
number of constraints, the largest portion goes to describing MP steps. If there are
A axioms, each of them with maximally p premises, and maximally a arguments,
then the number of these constraints for the l+1-th proof step can be bounded by
A ·a · lp. If MaxL is the maximal proof length, by summation for l = 0, . . . ,MaxL−1,
the number of these constraints belongs to O(A · a ·MaxLp+1). However, it is very
well known that the number of the constraints (in SAT or SMT) is not simply or
directly related to the complexity of the solving phase. Thus, we will stick only to
some experimental evaluation, rather than on theoretical worst-case or average-
case analysis (see Section 5). In practice, the encoding and decoding phases of the
prover take negligible time compared to the SAT/SMT solving phase.

3.11 Extensions

We considered a number of extensions of the basic approach described above. Some
of them were not beneficial, like describing constraints in an incremental manner
(for instance, using conditions for a proof step in conditions for the subsequent
proof step), using integrated support for equality axioms (instead of external, in-
dividual axioms for each predicate symbol), using integrated support for excluded
middle axioms (instead of external, individual axioms for each predicate symbol),
etc. In the following, we describe the extensions that had positive impact on effi-
ciency of the approach.

Symmetry Breaking. As in many other kinds of constraint problems, symmetry
breaking can be exploited in the presented approach. Symmetry breaking can lead
to more concise constraints and to a more efficient solving phase. However, some
care needs to be taken that additional constraints do not disturb the search space,
in our context, that is, do not eliminate some proofs of interests.

One of the additional constraints that we use for symmetry breaking imposes
a partial ordering of proof steps and reduces a number of possible proofs: if two
MP steps s and s′ are such that s+ 1 = s′, Nesting (s) = Nesting (s′), and s′ does
not use s, then it must hold that:

10 Even if there are broadly available SAT and SMT solvers which have been tested on a
large amount of problems by a large amount of users and even some integrated in interactive
proof assistant using either a reflexive approach or one based on checking certificates, we think
it is simpler to use the final reconstructed proof for the original statement as a certificate.

Theorem Proving as Constraint Solving with Coherent Logic 17

Premises (s′) > Premises (s) or
(Premises (s′) = Premises (s) and AxiomApplied (s′) ≥ AxiomApplied (s)).

Axioms Inlining. We call the axioms of the following forms (universally closed, ~x
is a sequence of variables, A(~x) and B(~x) denote atomic formulae):

B(~x)
A(~x)⇒ B(~x)

simple axioms. In one extension of our basic approach, these axioms are not to be
applied through MP steps. Instead, in a MP step with a non-simple axiom applied,
premises of the axiom can be justified not only by previous proof steps, but also
by suitable, “inline” applications of simple axioms. This makes constraints for
MP steps more complex but, on the other hand, enables shorter proofs.

Example 6 Let us consider axioms:
ax1: ∀x q(x)
ax2: ∀x (q(x)⇒ r(x))
ax3: ∀x (p(x) ∧ q(x) ∧ r(x)⇒ s(x))

and a conjecture:
∀x (p(x)⇒ s(x)).

A proof of this theorem, obtained with inlining (and with the derived lemma
∀X r(X))) looks as follows.

Consider an arbitrary a such that: p(a). It should be proved that s(a).

1. s(a) (by MP, from p(a), q(a), r(a) using axiom ax3; instantiation: X 7→ a)

2. Proved by assumption! (by QEDas)

Since simple axioms cannot be applied on their own within MP steps (all ap-
plications of simple axioms are kept implicit within applications of other axioms),
it is necessary to derive all their consequences in the form of simple axioms and
add them to the set of the original axioms (we call this process “saturation”).

This technique contributes to the generation of readable proofs because simple
axioms are often omitted in natural language proofs. For example, in geometry
(which is our main source of applications), the following axioms, where Col is a
predicate to designate colinearity, are simple:
∀ABC (Col(A,B,C)⇒ Col(B,A,C))
∀AB Col(A,A,B)
∀A A = A

A mathematician would hardly feel the need to explicitly state that two iden-
tical points are collinear with a third one, or that a point is equal to itself, even
if these facts are needed for application of some theorems in some special cases.
Readability of generated proofs is further discussed in Section 6.3. Fortunately,
keeping such proof steps implicit also improves the efficiency of the prover.

Memoization. Memoization is a technique for speeding-up computations by storing
results of certain function calls and returning the result when the same inputs
occur again. In our context, instead of concrete values about proof steps we have
only symbolic values. But something like memoization can still be applied. Some

18 Predrag Janičić, Julien Narboux

concrete conditions, for instance “proof steps 3 and 7 are on the same proof branch”
may occur in several constraints. For such conditions, we introduce new variables,
link the variable to the condition by a constraint, and in other constraints use the
variable instead of the full condition. This leads to more concise constraints and
can facilitate the solving process11.

4 Implementation

We implemented the above approach as a prover called Larus,12 a C++ applica-
tion, with a support of several external tools.13 Although our implementation is
fully functional, it is not fully optimised and should still be considered a proto-
type implementation, developed along the way of exploring the new automated
proving approach. The approach is implemented in several variants, in a form of
several proving engines (they have been implemented alongside one proving engine
based on using forward reasoning and the data structures available via the STL
(Standard Template Library) C++ library). We have implemented support for
encoding proofs in SAT (via the constraint solving system URSA) and in several
SMT theories. The solving phase uses SAT and SMT solvers. We implemented
support for filtering by external provers such as Vampire [44] which eliminates un-
necessary axioms (explained in more details in Section 4.1). We also implemented a
simplification procedure that eliminates redundant proofs steps (from proofs that
are not shortest possible). The implementation consists of around 8000 lines of
code (around 7000 lines without the STL-based engine).

The overall proving pipeline in this implementation looks as follows:

1. read the axioms and the conjecture given in the TPTP/fof format;
2. use filtering;
3. transform the axioms and the conjecture from CL to CL2 form;
4. use filtering;
5. encode a proof of the conjecture — on the basis of the given axioms and the

conjecture, generate constraints in terms of dedicated variables and possibly
(for some SMT-based engines) in terms of interpreted (e.g., +) and uninter-
preted functions (e.g., Nesting);

6. invoke a suitable solver and retrieve the model found (assuming it exists);
7. read the values of relevant variables (some are redundant) and reconstruct the

CL2 proof encoded as a sequence of natural numbers;
8. read the CL2 proof encoded as a sequence of natural numbers, decode it and

construct a proof in terms of internal data-structures;
9. simplify the proof (delete redundant proof steps);

10. transform the proof from CL2 to CL form;

11 This optimisation may be useless when the underlying SAT or SMT prover uses a common
sub-expression elimination pre-processing optimisation.
12 Larus is Latin for seagull. A symbolic meaning sometimes attached to seagull is: looking

at the problem at hand from a different angle. That may be appropriate for a prover based on
a new proving paradigm: looking for a proof as a whole.
13 The source code of the system and the benchmarks are publicly available from here:
https://github.com/janicicpredrag/Larus. For running the system, one needs also one of
the tools URSA [36] or z3 [50].

https://github.com/janicicpredrag/Larus

Theorem Proving as Constraint Solving with Coherent Logic 19

11. transform the proof in terms of internal data-structures into one of supported
export formats, such as Coq proofs or natural language LATEX proofs.

We skip technical steps and discuss only some key design and implementation
details.

4.1 Pre-processing and Filtering

Sledgehammer is a tool (nowadays – rather a methodology) that enables invoking
automated theorem provers from the interactive theorem prover Isabelle [60]. If
external provers prove the given goal, they provide information that are used for
reconstruction of a proof object within the interactive theorem prover. One of the
tasks that external provers (e.g., Vampire) do is filtering relevant axioms/clauses
given. The user can provide hundreds of available axioms/clauses and filtering can,
using different techniques, discard many of them, before an attempt to prove the
theorem. We use a similar approach for pre-processing the axiom set before trying
to prove the conjecture by our prover.

For filtering we use the FOL theorem prover Vampire [44]. In the first filtering
phase, the given conjecture with all given axioms (in CL form) is sent to the
external prover (Vampire). If it proves the conjecture, the list of used axioms is
extracted and forwarded to further proving steps (otherwise, the set of all axioms
is used); The second filtering phase, after the axioms are transformed into CL2
form, goes through several stages:

– the given conjecture with all the axioms in CL2 form is sent to the external
prover. If it proves the conjecture, the list of used axioms is extracted and
forwarded to further proving steps (otherwise, the set of all axioms is used);

– the equality predicate symbol is replaced by a dedicated predicate symbol, and
the axioms and the conjecture are sent to the external prover. The point is in
avoiding using full native support for equality (in both the external and the
presented prover). If the external prover proves the conjecture, it returns only
instances of equality axioms that are really needed and only them will be used
in the next proving steps. Otherwise, if the external prover fails, all instances
of equality axioms will be used.

– the negated predicate symbols are replaced by dedicated predicate symbols,
and the axioms, along with the axioms ∀~x(R(~x)∧R(~x)⇒ ⊥), ∀~x(R(~x)∨R(~x)),
for each predicate symbol R, and the conjecture are sent to the external prover.
The point is in avoiding using the full native support for negation (in both the
external and the presented prover). If the external prover proves the conjecture,
it returns only the above axioms that are really needed. Otherwise, if the
external prover fails, all of them will be used.

Each filtering stage is optional and the proving procedure may go without them.
Note that, if the filtering is used, it is not guaranteed anymore that the obtained
shortest proofs are indeed the shortest over the initial set of axioms (since the
external prover may have reached a proof based on some other axioms).

Apart from the above filtering based on an external prover, we have also imple-
mented filtering based on reachability. We say that a predicate symbols is reachable

if it occurs in the premises of the conjecture, or can be reached by applications of
axioms in which all premises are over reachable predicate symbols. An axiom with
a premise that is not over a reachable predicate symbols can be eliminated.

20 Predrag Janičić, Julien Narboux

4.2 Implementation of the Proof Encoding

The notion of CL2 proof represented as a sequence of natural numbers is common
for all the implemented constraint-based proving engines. Given some axioms and
the conjecture, constraints describing a proof can be expressed in several ways.
We support the following:

– the constraints can be expressed in a high-level representation language offered
by our constraint system URSA;

– the constraints can be expressed in a low-level representation language of SMT-
lib.

Substantially, the constraints are the same but the URSA-based approach leads
to a self-contained, concise proof specification (that includes representations of the
axioms and the conjecture). For instance, constraints saying that a proof step is
FirstCase step are expressed in the following way (the URSA code is generated
by our prover):14

bFirstCaseStep = (nAxiomApplied[nProofStep] == nFirstCase)
&& nProofStep>0
&& bCases[nProofStep-1]
&& !bCases[nProofStep]
&& (nNesting[nProofStep-1] <= nMaxNesting)
&& (nNesting[nProofStep] == (nNesting[nProofStep-1]<<1))
&& (nP[nProofStep][0]==nP[nProofStep-1][0]);

for (nInd = 0; nInd < nMaxArg; nInd++)
bFirstCaseStep &&= (nA[nProofStep][nInd]==nA[nProofStep-1][nInd]);

In the URSA-based approach, representations of different theorems differ only
in the encoding of axioms and the conjecture itself, while the encoding of the notion
of proof is common. It consists of only around 300 lines of URSA code. Therefore,
development of an automated theorem prover for CL is reduced to a relatively
small human effort of making this 300-lines specification, plus encoding of specific
axioms and goals. The difficulty in our work was, however, the road from the
initial general idea to the fully functional system requiring a number of peripheral
modules, and also exploring a number of variations of encodings and looking for
one that leads to efficient solving by SAT provers. We have experimented with
different variations, but we think there is still room for improvements. With the
experience gained and the infrastructure developed, we believe that a support for
another logic, contained in another few hundreds lines, would take significantly
less time.

In the SMT-based approach, the specification of the notion of proof is spread
through C++ code which is later translated to SMT constraints. This specifica-
tion is less readable than URSA specification, but leads to more efficient theorem
proving.

14 There are some small differences between the description of proof step FirstCase (Section
3.7) and the implementation. It can be shown that the condition StepKind (s − 1) = MP , is
redundant (since the previous step has to be branching), so it was omitted in the implementa-
tion. The constraint nNesting[nProofStep-1] <= nMaxNesting is not given in the description
of proof step FirstCase . Indeed, this constraint is optional. Limiting the maximal nesting
simplifies the problem and cuts-off some parts of the search space. If there are no branching
axioms, by using this constraint it can be easily stated that there are no nesting at all.

Theorem Proving as Constraint Solving with Coherent Logic 21

URSA constraints expressed in the above way are processed by URSA, bit-
blasted into SAT instance and sent to a SAT solver. On the other hand, in SMT-
based engines, the constraints are right away expressed in terms of the low-level
SMT representation. The following C++ code generates constraints saying that
a proof step is a FirstCase step in SMT-lib form (for the case nProofStep > 0,
sbFirstCaseStep is trivially false otherwise):

sbFirstCaseStep = "(and " +
appeq(app("nAxiomApplied", nProofStep), eFirstCase)
app("bCases", nProofStep-1) +
"(not " + app("bCases", nProofStep) + ") " +
smt_less(app("nNesting",nProofStep-1),

mParams.max_nesting_depth+1) +
appeq(app("nNesting", nProofStep),

smt_prod(app("nNesting", nProofStep-1),2)) +
appeq(app("nP", nProofStep, 0),

app("nP", nProofStep-1, 0));
for (unsigned nInd = 0; nInd < mnMaxArity; nInd++)

sbFirstCaseStep += appeq(app("nArg", nProofStep, nInd),
app("nArg", nProofStep-1, nInd));

sbFirstCaseStep += ")";

If the equality symbol occurs in the conjecture, the equality axioms are added
to the axiom set. If inlining is to be used and if there is equality in the axioms,
then, in addition to simple axioms, equality substitution axioms are also inlined.

Arithmetic constraints can be represented in linear arithmetic or in bitvector
arithmetic. Constraints involving functions can be represented in terms of uninter-
preted functions (such as Nesting) or Ackermanization can be used. So, there are
four SMT-based encodings: LIA (linear integer arithmetic), BV (bit-vector arith-
metic), UFLIA (linear integer arithmetic with uninterpreted functions), UFBV
(bit-vector arithmetic with uninterpreted functions).

A proof is encoded as a finite object: there is a maximal number of proof steps,
a maximal number of premises of the axioms, a maximal nesting , a maximal
number of new constants introduced in each step, etc. Zero-based counting (like
in C/C++) of proof steps, atomic formulae within steps, etc. is used, for a more
compact representation.

The maximal number of premises of the axioms and maximal arity in predicate
symbols can be computed based on the axioms. Concerning the maximal number
of proof steps, we preserve completeness by an iterative increase of this constant
(as discussed in 3.9). For ensuring completeness, the same should be done for the
maximal nesting.

The logical constants ⊥ and > are accepted as possible atoms in CL formulae,
and they need a special treatment, since their truth values are fixed. Hence, such
treatment augments the description of MP steps and constraints describing the
goal.

In order to make the encoding simpler, there is the same number of slots for
arguments in constraints for all atomic formulae (that number is determined based
on the theory signature such that it can accommodate arguments for all predicate
symbols). That brings some constraints/memory overhead, but it also enables
simpler encoding. In the same spirit, new constants are represented by new natural

22 Predrag Janičić, Julien Narboux

numbers: w · s + i, i = 0, . . . , w − 1, where s is the number of the proof step, and
w is the maximal number of existential quantifiers in the axioms.

The encoding depends on the number of binary digits in URSA, BV, UFBV-
based approaches. The default value is 12.

As a kind of optimisation, the information of StepKind and AxiomApplied for
one proof step are stored in one number representing that step: the possible values
are firstly possible step kinds (except MP), and then axioms (with the ordinal
numbers starting from the last possible step kind). Based on the value in the
model, it is then trivial to decode StepKind and, if relevant – AxiomApplied .

In all proving engines, two proof steps s and s′, while s precedes s′ are on
the same proof branch if, considering the binary representation of these numbers,
some prefix of the nesting of s equals the nesting of s′: PREFIX(Nesting (s)) =
Nesting (s′). This condition can be represented in all encodings by listing several
possible cases (i.e., cases for all possible prefixes).

We find the URSA-based approach more flexible and better suited for debug-
ging. However, the SMT-based approach with BV gives a better performance and
most of the performance results given below are obtained using this encoding.

Generated SAT and SMT formulae are usually large, even for simple problems.
For instance, for the conjecture from Example 10, the search for a proof of length
14 (via URSA) generates a SAT formula with 40817 variables and 249212 clauses.
The SMT file with the corresponding problem description for the theory of bit-
vectors has 558 variables and the size of 815 Kb.

4.3 Implementation of Proof Decoding and Export

Generated constraints are passed to underlying solvers: clasp [30] for URSA-based
engine, and z3 [50] for SMT-based engines (although other solvers can be used as
well). If the set of constraints is satisfiable, the solver returns a model. The values
of relevant variables are read and a proof outline is generated (an example is shown
in Section 3.5). This outline is read and a proof in internal (C++) representation
is constructed.

Example 7 Let us again consider the proof given as a sequence of numbers in
Section 3.5. The sequence
1. 1 13 1 4 0 6 0

is decoded as follows:

– the nesting equals 1;
– the axioms are numbered from 13, hence, the step kind is MP and the axiom

applied is the 0th axiom (i.e., ax1),
– the derived formula is branching;
– in the derived formula, in the first disjunct, the dominant predicate symbol

is the 4th predicate symbol (i.e. r), and in the second disjunct, the dominant
predicate symbol is the 6th symbol (i.e. q). In both, the argument is the 0th
constant (i.e. a).

The two branches in the proof have nesting 2 and 3 (10 and 11 in binary represen-
tation) and, according to the given criterion, they are not on a same proof branch,
as expected.

Theorem Proving as Constraint Solving with Coherent Logic 23

The internal proof representation is simply exported to a needed output
format. Currently, there is support for the Coq format, and for an informal, natural
language proof format (an example is shown in Section 3.5)

For Coq proofs, we preserve the forward chaining and declarative style of the
proof by using the standard assert tactic of Coq and some user defined tactics
to keep the small granularity in the proofs as in the natural language output. For
example, we introduce a tactic by cases on, allowing to perform case distinction on
previously proved logical disjunctions by referring to the actual statement rather
than the name of the hypothesis. Contrary to other CL provers (such as the one
of Bezem [7]), the export to Coq is expressed at the tactic level rather than as a
lambda term. The export as a sequence of Coq tactics has several advantages:

– It allows the use of Coq’s automation to both reduce the size of the proof and
ease the checking of the proof by rebuilding some pieces of information at the
checking time.

– It preserves the readability and maintainability of the proof.

The tactic conclude solves the remaining goal if it is a previously proven state-
ment, or a disjunction containing a previously proven statement instantiating the
potential existential variables. Conjunctions are split by the tactics implicitly at
each proof step. As an example, we provide the Coq proof for Example 1:

24 Predrag Janičić, Julien Narboux

Require Import src.general_tactics.

Require Import Classical.

Section Sec.

Parameter MyT : Type.

Parameter p : MyT -> Prop.

Parameter r : MyT -> Prop.

Parameter q : MyT -> Prop.

Hypothesis ax1 : forall X : MyT, p X -> r X \/ q X.

Hypothesis ax2 : forall X : MyT, q X -> False.

Theorem example_with_false : forall X : MyT, p X -> r X.

Proof.

intros a.

intros.

assert (r a \/ q a) by applying (ax1 a).

by cases on ((r a) \/ (q a)).

- {

conclude.

}

- {

assert (False) by applying (ax2 a).

contradict.

}

Qed.

End Sec.

For support of simple lemma inlining, we first prove the lemma obtained by
saturation in sequence using automation. Those lemmas are put in a so-called “hint
base”. The lemmas are then used implicitly in the main proof. For each proof step
which requires a given premise, the premise can be obtained by assumption or by
using the inlined lemmas.

4.4 Configuring

The provers can be configured using several parameters, including the following
ones: an input format, an initial (maximal) proof length, a final (maximal) proof
length, a maximal nesting, a flag whether a shortest proof should be found, a flag
whether proof simplification is to be used, a flag whether axiom inlining is to be
used, a flag whether excluded middle axioms (for existing predicates) are to be
used, a flag whether negation elimination axioms (for existing predicates) are to be
used, a flag whether filtering is to be used, a flad saying if an interactive theorem
prover should verify generated proofs, and a time limit.

Theorem Proving as Constraint Solving with Coherent Logic 25

5 Performances and Evaluation

For evaluation, we cannot use the standard TPTP benchmarks because the bench-
marks are not in coherent logic form. Despite the fact that these benchmarks could
be translated to CL by some procedure [26], we want to test our implementation
on goals which are naturally in coherent form. We ran our implementation on
several corpora listed below.

We compared performance of our prover to performance of several state-of-
the-art, award-wining FOL provers (Vampire, E, Iprover), provers with a small
implementation (leanCoP, nanoCoP), one prover based on coherent logic (Geo),
a prover generating Coq proofs (Zenon), some Coq tactics (first-order and Coq
Hammer) and a prover using a technique related to ours (ChewTPTP). We did
not test other CL based provers because they do not accept TPTP syntax (but
the prover we tested (Geo) was the most efficient prover among several CL provers
in one previous study [34]). The list of provers/versions is the following:

– Vampire15 4.4 using CASC mode [44], a superposition-based theorem prover;
– E16 2.2 in auto mode, a superposition-based theorem prover;
– Iprover17 3.1e [43], an instantiation-based theorem prover for first-order logic;
– leanCoP18 2.1 [58], a prover based on the connection (tableau) calculus;
– nanoCoP19 1.1 [57], a prover based on the non-clausal connection calculus for

classical logic;
– Geo20 2007f, a prover based on geometric resolution;
– ChewTPTP21 1.0.0 [15], which proves rigid first-order theorems by encoding

the existence of a first-order connection tableau in SAT;
– Zenon22 0.8.4 [16], a prover based on the tableau method and capable of pro-

ducing Coq proofs;
– Standard first-order tactic of Coq, a reflexive implementation of a first-order

prover [21];
– Coq Hammer Tactics23 v1.3 [22].
– Isabelle Hammer in TPTP mode without proof reconstruction24 [59].

For converting problems from TPTP to Coq, we used tptp2coq25. For convert-
ing problems from TPTP/fof to the clausal form required by Geo and ChewTPTP,
we used Vampire. The evaluation was performed on a PC working under Linux,
with Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz, 20GiB SDRAM.

15 https://vprover.github.io/
16 https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
17 http://www.cs.man.ac.uk/~korovink/iprover/
18 http://www.leancop.de/
19 http://leancop.de/nanocop/
20 http://www.ii.uni.wroc.pl/~nivelle/software/geo/index.html
21 https://github.com/erimcg/ChewTPTP
22 http://zenon.inria.fr/
23 https://github.com/lukaszcz/coqhammer
24 https://isabelle.in.tum.de/
25 https://github.com/lukaszcz/tptp2coq

https://vprover.github.io/
https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
http://www.cs.man.ac.uk/~korovink/iprover/
http://www.leancop.de/
http://leancop.de/nanocop/
http://www.ii.uni.wroc.pl/~nivelle/software/geo/index.html
https://github.com/erimcg/ChewTPTP
http://zenon.inria.fr/
https://github.com/lukaszcz/coqhammer
https://isabelle.in.tum.de/
https://github.com/lukaszcz/tptp2coq

26 Predrag Janičić, Julien Narboux

5.1 Elements corpus

This corpus is the set of 234 lemmas and propositions coming from the formal-
isation of the first book of Euclid’s Elements [5]. The proofs of these theorems,
constructed by humans, have already been checked by both Coq and HOL-Light
interactive provers. All lemmas and propositions are naturally expressed in CL or
can be very simply modified to belong to this fragment. This is a rich, real-world
corpus, with instances ranging from trivial to very complex. But we agree with
Avigad that this kind of benchmarks are not fully realistic for testing effective
usability of automation in an ITP context in practice [3]. For example, within
100s, Vampire can prove 25 and Larus can prove 13 of the 73 statements corre-
sponding to the propositions from the first book of Euclid’s Elements, but the
reader should not interpret these results as “ATP can solve automatically around
a third of Euclid’s propositions.” Namely, the corpus contains all lemmas and
axioms that are necessary for proving Euclid’s propositions, and those have been
discovered in the first place only by building the proofs manually using a proof
assistant.

The formal proofs constructed manually allow us to compare them to the proofs
generated automatically by our prover, but also to evaluate the difficulty of the
theorems by measuring the size of the handcrafted formal proofs.

100 101 102

time in seconds

50

100

150

200

nu
m

be
r o

f p
ro

bl
em

 so
lv

ed

0
1
2 3
4

number of benchmarks = 234

0: Larusursa
1: Larusstl
2: Larus-i
3: Laruslia
4: Larusbase

Fig. 1 Comparing different parameters for Larus

Theorem Proving as Constraint Solving with Coherent Logic 27

Comparison between different prover configurations. On this corpus, we compared
the performance of different configurations of the Larus prover. For the base con-
figuration, we used the SMT-BV based engine and the solver z3, with an initial
proof size of size 8, using lemma inlining, and without filtering. We also used (all
without filtering):

Larusstl: based on a pure forward chaining saturation algorithm (using simple
STL C++ structures);

Laruslia: based on the SMT-LIA based encoding and the solver z3;
Larusursa: based on the encoding of the problem into SAT, using the system

URSA and the underlying SAT solver clasp;
Larus-i: based on the SMT-BV encoding and the solver z3, but without lemma

inlining.

The experimental results, shown in Figure 1, show that the best configuration
(among considered ones) is the base configuration. The simple forward-chaining
engine showed a typical behaviour: what can be proved is what can be proved
in a short time, and then providing more time does not improve that much the
results. In further experiments and comparisons to other provers, we consider only
the base, SMT-BV-based configuration of Larus (Larusbase), with fixed, suitable
parameters for specific corpora.

100 101 102

time in seconds

50

100

150

200

nu
m

be
r o

f p
ro

bl
em

 so
lv

ed

0
1

2

3 4

5 6

7

8

9
10

11

number of benchmarks = 2340: Vampire
1: Eprover
2: Iprover
3: Nanocop
4: Leancop
5: Zenon
6: Chewtptp
7: Geo
8: Larus
9: Coq-sauto
10: Coq-firstorder
11: Isabelle

Fig. 2 Experimental results for Euclid’s Elements benchmarks

28 Predrag Janičić, Julien Narboux

1-10 11-20 21-50 51-100 101-500
size intervals

0

20

40

60

80

100

pe
rc

en
ta

ge
 p

ro
ve

d

1

2
3

45

6

7

8

9

10

1: Vampire
2: Eprover
3: Iprover
4: Nanocop
5: Leancop
6: Zenon
7: Chewtptp
8: Geo
9: Larus
10: Isabelle

Fig. 3 Percentage of lemmas proved within 100s compared to the length of the handcrafted
formal proof.

Comparison with other provers. Comparing to other provers (Figure 2), Larus’ per-
formance is similar to some provers that have small implementations, but are still
very efficient, such as Leancop. State-of-the-art general FOL provers give a signif-
icantly higher success rate. Overall, the best performance was by Vampire. Larus
outperforms other provers producing Coq proofs such as Zenon, or Coq tactics.

We have verified experimentally that the size of the formal proof built inter-
actively is a good measure of the difficulty of the theorem for ATP, as shown in
Figure 3. For all the provers, the percentage of theorem proved against the size of
the human-crafted proofs is more-or-less strictly monotonically decreasing. All the
provers except ChewTPTP and Zenon can prove almost 100% of theorems with
short proofs. Larus meets this patterns too for short proofs, but Larus cannot find
large proofs with more than 50 steps. However, as Larus proceeds by increasing
progressively the size of potential proof, along the way, Larus also confirms the
absence of proofs of shorter sizes. On all our benchmarks, Larus’ results are better
than those of ChewTPTP, which is a similar approach based on SMT solvers, and
this shows that encoding within CL gives better results. The results for Isabelle
have the shape with steps because Isabelle first tries some tactics that cannot solve
the goals, and later calls state-of-the-art provers such as Vampire that can solve
some of these goals instantly.

Theorem Proving as Constraint Solving with Coherent Logic 29

5.2 Coherent corpus

This corpus is the set of 64 benchmarks used in previous research26 about au-
tomatic theorem proving in CL [34]. These benchmarks contain both simple and
difficult examples. Some originate from the formalisation of Hessenberg’s theo-
rem [8].

Some theorems, if considered in the CL setting, require proofs with no less than
100 or 200 steps, which was too difficult for our prover (for some of these, there is
a small search space for the forward chaining approach, hence they can be easily
proved by the engine Larusstl). On these benchmarks, the Geo prover competes
well with state-of-the-art provers (Figure 4). Again on these benchmarks, Larus
cannot compete with state-of-the-art FOL provers, but outperforms ChewTPTP,
Zenon and the Coq tactics.

100 101 102

time in seconds

10

20

30

40

50

60

nu
m

be
r o

f p
ro

bl
em

 so
lv

ed

0
1 2

34

5 6

7

8

9
10

11

number of benchmarks = 64

0: Vampire
1: Eprover
2: Iprover
3: Nanocop
4: Leancop
5: Zenon
6: Chewtptp
7: Geo
8: Larus
9: Coq-sauto
10: Coq-firstorder
11: Isabelle

Fig. 4 Experimental results for coherent logic benchmarks

5.3 col-trans corpus

This corpus is a set of 1361 sub-goals used in the formalization of geometry con-
cerning some properties about pseudo transitivity of collinearity which are easy to
solve using an ad-hoc procedure [18], but are more challenging for some general

26 https://code.google.com/archive/p/clp/source

https://code.google.com/archive/p/clp/source

30 Predrag Janičić, Julien Narboux

100 101 102

time in seconds

200

400

600

800

1000

1200

1400

nu
m

be
r o

f p
ro

bl
em

 so
lv

ed

012
3 4

5

6

78

9

10

11number of benchmakrs = 1361

0: Vampire
1: Eprover
2: Iprover
3: Nanocop
4: Leancop
5: Zenon
6: Chewtptp
7: Geo
8: Larus
9: Coq-sauto
10: Coq-firstorder
11: Isabelle

Fig. 5 Number of problem solved in less than some given time on the col-trans corpus

purpose ATPs. This corpus originates from a concrete application: we would like
to export the large Coq library of geometry proofs GeoCoq27 to Logipedia [25].
However, in the Coq formalisation, these sub-goals are currently solved by a re-
flexive Coq tactic (called ColR), the result of which cannot currently be checked
by Dedukti. We do not include the ColR tactic in the benchmarks because it is
not a general purpose prover. This corpus is a challenge for hammers such as Coq
Hammers, because the set of axioms needed is already known and is small. Hence,
calling a state-of-the-art prover does not help to reduce the difficulty of the proof
search within the proof assistant. The results for Isabelle do not include proof
reconstruction. Isabelle hammer is running several state-of-the-art provers sequen-
tially: if the first tactics fails, then Vampire is called and can solve the goal. For
this corpus, Larus is used with options: no case splits, start by looking for a
proof of at most 8 steps, and check the generated proof using Coq .28

5.4 Crafted corpus

We consider the following schema of conjectures (parametrised by n):
ax1: dom(a1) ∧ dom(a2) ∧ . . . ∧ dom(an)
ax2: ∀x1 ∀x2 . . .∀xn(dom(x1) ∧ dom(x2) ∧ . . . ∧ dom(xn)⇒ p(x1, x2, . . . , xn))

27 https://geocoq.github.io/GeoCoq/
28 Note that in the Coq files generated from TPTP files, the statements are not curryfied.

We noticed that this reduces the efficiency of the Coq tactics.

https://geocoq.github.io/GeoCoq/

Theorem Proving as Constraint Solving with Coherent Logic 31

100 101 102

time in seconds

20

40

60

80

100

nu
m

be
r o

f p
ro

bl
em

 so
lv

ed

01

2

345

6

7

89

10

11number of benchmakrs = 100

0: Vampire
1: Eprover
2: Iprover
3: Nanocop
4: Leancop
5: Zenon
6: Chewtptp
7: Geo
8: Larus
9: Coq-sauto
10: Coq-firstorder
11: Isabelle

Fig. 6 Number of problem solved in less than some given time on the crafted corpus

ax3: p(an, an−1, . . . , a1)⇒ goal

and the following conjecture: goal.
We generated instances of the above schema for n equal 1 to 100. This crafted

set serves to explore behaviour of our prover in situations where there is a very
short proof, but it is hard to be found by procedures based on instantiations
and model finding/evolution. Indeed, Larus performed very well on this corpus29,
and outperformed by far Iprover and Geo which had poor performance. Larus’
performance was also much better then that of ChewTPTP. On the other hand,
all provers based on the resolution method or some related methods had excellent
results. These results suggest that automated theorem proving in CL (like in other
logics) can benefit from having available different proving techniques (as discussed
in Section 8.3).

5.5 Summary of Experimental Results

On the considered corpora, the provers Vampire and Eprover showed best per-
formance and Larus’ performance was generally worse than performance of these
state-of-the-art FOL provers. On most corpora, Larus outperformed provers that
generate verifiable proofs such as Zenon, and also the prover ChewTPTP, the

29 For this corpus, Larus is used with options: no case splits, start by looking for a proof
of at most 2 steps, do not use negation elimination . Proof verification using Coq is not used
for this corpus (only for this corpus the time needed for proof verification is not negligible).

32 Predrag Janičić, Julien Narboux

prover that is most closely related to Larus among the considered provers in terms
of the proving approach. Concerning the main target domain, the most closely re-
lated prover is Geo, and it outperformed Larus on most of the corpora, but not on
the crafted corpus. On this corpus Larus also significantly outperformed Iprover.

Overall, the experimental results suggest that Larus shows reasonable perfor-
mance and that it can be practically usable in some situations, primarily when a
verifiable and/or readable proof is needed.

6 Features and Perspectives

The presented approach provides a suitable basis for various applications and
upgrades. In this section, we discuss some of them, like generation of shortest,
readable, or machine verifiable proofs.

6.1 Short Proofs, Shortest Proofs, All Proofs

Shorter proofs are often preferred: for their beauty or for more practical reasons
such as saving space in a printed article or in a computer formalisation. The quests
for short, simple or simplest proofs are among the oldest quests in mathematics,
as argued by Wos [75]:

The search for elegant proofs has continuously played a key role in math-
ematics and in logic. Such a search can lead to the discovery of new, im-
portant relationships, and it can also lead to the formulation of significant
concepts. In addition to the aesthetic aspects of elegance of concern to
mathematics and logic, practical aspects also exist, easily illustrated when
the focus is on proof length. Indeed, the methodology here may also serve
well in the context of constructing more efficient circuits synthesizing more
effective algorithms, and the like.

The challenge of finding simplest proofs was even an item (a lost one!) on the
famed Hilbert’s list of the most significant mathematical problems [69]:

The twenty-fourth problem in my Paris lecture was to be: Criteria of sim-
plicity, or proof of the greatest simplicity of certain proofs.

There are several ways to define what the simplest proof of a theorem is, but
the most common one is based on proof length – the number of inference steps
applied [41]. There are just a few concrete results for practical finding of short
or shortest proofs automatically, although there are several possible approaches
for this task, usually based on some form of exhaustive search and resolution
method [41, 71, 75]. Shortest proofs could be obtained also using simple breadth-
first search. There are also theoretical considerations on computability of functions
that compute shortest proofs.

The approach presented in this paper provides a general method for finding
shortest proofs in CL, but could be used for other underlying logics. We do not
claim that it can outperform other possible approaches and a deeper study in this
direction is needed (for instance, the examples from literature involve function

Theorem Proving as Constraint Solving with Coherent Logic 33

symbols, which would require reformulation into CL). Still, we addressed this
problem to some extent and we analysed the set of proofs crafted by a human,
using some automation and then formalized within Coq [5]. Our prover found
several proofs shorter than the originals and with unsubstantial differences, but
also some substantially different proofs (see Section 6.3).

In the context of proof length and short proofs, it is interesting to address
monotonicity for proof lengths. We can formulate monotonicity as follows: for a
given conjecture, if there is a proof of size L, then for each L′, such that L′ > L,
there is a proof of size L′. If monotonicity holds, then a simple binary search
guarantees finding shortest proofs. However, monotonicity does not hold for our
CL proofs. This is illustrated by the following example.

Example 8 Consider the axiom r(a)∨ r(b) and the conjecture r(b)∨ r(a). It has the
following proof of length 6:

It should be proved that r(b) ∨ r(a).

1. r(a) ∨ r(b) (by MP, using axiom ax1)

2. Case r(a):

3. Proved by assumption! (by QEDas)

4. Case r(b):

5. Proved by assumption! (by QEDas)

6. Proved by case split! (by QEDcs, by r(a), r(b))

However, there is no proof of length 8. Indeed, one cannot apply anything more
with respect to the given proof. One could apply excluded middle, but then more
steps will be needed.

All proofs. In some contexts it can be interesting to have all proofs of length less
than n for a given conjecture. In the proposed approach, it is trivial to obtain all
such proofs (or all proofs that meet some criterion) – it is just that all models of the
generated constraints should be found. Having available all proofs of a theorem
(within some logical framework) can be useful, for instance, in the context of
education: “intelligent tutor systems” for mathematics education should be able
to know all possible ways to solve a problem so they can help the students by
anticipating their next steps (one such system, developed by Font et. al, based
on a form of exhaustive search and implemented in Prolog, generates all proofs of
geometry theorems using a custom set of axioms [28]).

In some cases, it can be also interesting just to count the number of proofs
of length ≤ MaxL (for instance, in the educational context, the number of proofs
could measure appropriateness or difficulty of an exercise). If SAT is the target
problem, there are efficient techniques for counting all models [45].

6.2 Proof Hints

The hints within the presented approach are its unique feature: many other provers
can accepts hints or axioms that may be used (possibly with a higher priority),

34 Predrag Janičić, Julien Narboux

while, on the other hand, a hint for our prover means that it must be used. This
feature reminds of GPS navigation: with GPS navigation, the user can ask for a
road from a point A to a point B, but he/she can also ask for a road that goes via
certain waypoints. It is similar with proving: other provers can be asked for a proof
for some goal from some given premises, but (only) the presented approach can be
also given some waypoints, some concrete steps that the proof must contain. Many
kinds of waypoints can be given as simple additional constraints (over the set of
already introduced unknowns). These waypoints may be useful, for instance, in
full reconstruction of proofs given only an outline (like proofs in textbooks). This
could be a step towards a target discussed by Gowers and Hales [33]:

One dream was to develop an automated assistant that would function at
the level of a helpful graduate student. The senior mathematician would
suggest the main lines of the proof, and the automated grad student would
fill in the details.

A waypoint step that is provided can, of course, be totally irrelevant and
superficial in the generated proof. However, if it is relevant and if, in addition,
one asks for a shortest such proof, the proof is likely to heavily use the given
steps/waypoints. Note that this approach is much more general than just splitting
the problem into sub-problems: find a road from A to B and then a road from B to
C. In our context, the waypoints do not have to be ordered (one can ask for a proof
using X and Y in no particular order), the waypoints can be vague, imposed only
by partial constraints (e.g., “find a road going through some city” or “find a road
going through some region”, “find a road of length between d1 and d2” or, in our
terms: “find a proof that uses some predicate symbol”, or “find a proof using some
lemma”, without the way it is instantiated, etc). In a similar spirit, some axioms
or the goal can be given imprecisely and the system could reconstruct them, along
with a proof. Of course, one has to be careful and avoid trivial reconstructions
(like an inconsistent set of axioms).

Our hints are different from “proof sketches” used in resolution based provers [41,
71], where “hints” are “important clauses, notable milestones toward a proof, be-
cause they already occurred in another proof of a stronger theory” and they provide
patterns for giving higher priority to some sets of clauses. Using our analogy, proof
hints in resolution provers are cities, such that if the algorithm happen to find a
route through one of such cities, it will give a preference to this city in further
search. Our hints could be a first step toward implementing a proof assistant al-
lowing “proof sketches” in the sense of Wiedijk, i.e., partial information about the
proof looking like an informal proof and whose gaps could be filled by the use of
automation [74].

We have implemented support for the hints (for the URSA-based proving en-
gine only). The implementation should be considered experimental. We slightly
extended the language TPTP/fof to allow the specification of proof hints using
a simple but still quite expressible semantics. Some features of this support and
some kinds of hints (not all) are illustrated in the next example.

Example 9 Consider the following simple conjecture given in the TPTP/fof format.

fof(ax1, axiom, (! [A,B] : (p(A,B) => r(B,A)))).

fof(ax2, axiom, (! [A,B] : (p(A,B) => q(B,A)))).

fof(ax3, axiom, (! [A,B] : (r(A,B) => r(B,A)))).

Theorem Proving as Constraint Solving with Coherent Logic 35

fof(ax4, axiom, (! [A,B] : (r(A,B) => p(B,A)))).

fof(ax5, axiom, (! [A,B] : (q(A,B) => q(B,A)))).

fof(ax6, axiom, (! [A,B] : (q(A,B) => p(B,A)))).

fof(ch, conjecture,(! [A,B] : (p(A,B) => p(B,A)))).

fof(hintname0, hint, r(?,?), _ , _).

One hint is given above as an additional, last line that brings the above specifi-
cation out of the TPTP/fof format . In addition to the first two slots (in the style of
the TPTP/fof format), there are three more slots: the first one provides a pattern
for the atom that should appear in the proof, the second one specifies the ordinal
number of the proof step constrained, and the third one provides a pattern for
the (instantiated) axiom used. Each of them may be non-specified or partly non-
specified. For instance, fof(hintname0, hint, r(?,?), _, _) imposes that a fact
r(?,?) will be present in some step of the proof, while fof(hintname0, hint, q(2,1),

5, _) imposes that a fact q(2,1) will be present in the step 5 of the proof and
the arguments will be the second and the first constant introduced. As another in-
stance, fof(hintname0, hint, _, 3, ax2(A,A)) imposes that the axiom ax2 must
be used in the step 3, in such a way that the first and the second universal variable
are instantiated by the same constant.

The above conjecture can be proved either by using the predicate symbol r

(and the axioms ax1, ax3, ax4), or the predicate symbol q (and the axioms ax2,
ax5, ax6). We will illustrate how different hints can bring us to different proofs.
The given hint imposes using the predicate symbol r while it does not impose any
condition on its argument, or about the proof step where r is to be used. The
generated shortest possible proof (without inlining) is as follows:

Consider arbitrary a, b such that: p(a, b). It should be proved that p(b, a).

1. r(b, a) (by MP, from p(a, b) using axiom ax1; instantiation: A 7→ a, B 7→ b)

2. r(a, b) (by MP, from r(b, a) using axiom ax3; instantiation: A 7→ b, B 7→ a)

3. p(b, a) (by MP, from r(a, b) using axiom ax4; instantiation: A 7→ a, B 7→ b)

4. Proved by assumption! (by QEDas)

If, for instance, the following hint was given instead:

fof(hintname0, hint, _, _, ax2(?,?)).

it imposes using the axiom ax2, and the generated shortest possible proof is as
follows:

Consider arbitrary a, b such that: p(a, b). It should be proved that p(b, a).

1. q(b, a) (by MP, from p(a, b) using axiom ax2; instantiation: A 7→ a, B 7→ b)

2. q(a, b) (by MP, from q(b, a) using axiom ax5; instantiation: A 7→ b, B 7→ a)

3. p(b, a) (by MP, from q(a, b) using axiom ax6; instantiation: A 7→ a, B 7→ b)

4. Proved by assumption! (by QEDas)

Finally, if the following hints were given:

36 Predrag Janičić, Julien Narboux

fof(hintname0, hint, r(?,?), 1, _).

fof(hintname1, hint, q(?,?), 3, _).

they impose using a fact r(?,?) in the step 1, and a fact q(?,?) in the step 3 of
the proof (the assumption is the step 0). The generated shortest possible proof is
as follows:

Consider arbitrary a, b such that: p(a, b). It should be proved that p(b, a).

1. r(b, a) (by MP, from p(a, b) using axiom ax1; instantiation: A 7→ a, B 7→ b)

2. q(b, a) (by MP, from p(a, b) using axiom ax2; instantiation: A 7→ a, B 7→ b)

3. q(a, b) (by MP, from q(b, a) using axiom ax5; instantiation: A 7→ b, B 7→ a)

4. p(b, a) (by MP, from q(a, b) using axiom ax6; instantiation: A 7→ a, B 7→ b)

5. Proved by assumption! (by QEDas)

Obviously, in the latest proof, the step 1 is useless, but it is there since it was
imposed by the hint. For this proof, the simplification procedure was turned off.
If it was used, as normal, the first step would be eliminated as redundant.

6.3 Readable Proofs

There is a long history of rigorous proof systems that allow readable, natural
proofs. Natural deduction, developed in 1920’s, is one of the first and still most
notable such systems [31]. Gentzen said: “I wanted to set up a formalism that comes
as close as possible to actual reasoning”. One of the key issues in readability of
proofs are intuitive basic inference steps. But there is more in readability in proofs
written by humans – readability is also a global property of the proof text. For
example, human-style proofs or comprehensible proofs may omit many details but
keep a substantial insight about why the theorem is valid. Recent approaches and
challenges for automatically creating human readable proofs in geometry have
been surveyed by Jiang et. al. [39] or by Nguyen [51].

Comprehensible proofs can be difficult to verify by a machine, but still can
be understood by humans. Constructing but also verifying such proofs is an in-
teresting research topic on its own (there is a recent overview of candidates for
controlled natural languages for the communication of mathematics [33]), but it
is not in the focus of this work. Still, we address a closely related task: generating
rigorous proofs expressed in a strict formalism of CL with granularity similar to
the granularity of natural language proofs. The CL proof system combines several
natural deduction rules into one rule, thanks to which CL proofs often tend to be
simpler and more natural than natural deduction proofs. Therefore, CL can serve
well as a vehicle for readable proofs, and CL proofs can also suitably serve as a
basis for further post-processing so they can be made even more human-style. In
addition, the notion of a CL proof may be slightly modified into this direction, as
discussed further.

Proofs expressed within CL can still be hard to read because the reader may
be overwhelmed by uninteresting details. For example, in a natural language proof
in a research level publication, no mathematician would state explicitly that:
a) “ABCD is a rectangle because ABCD is square” or

Theorem Proving as Constraint Solving with Coherent Logic 37

b) “ABCD is a parallelogram because BCDA is a parallelogram”,
because such details would hide the important steps of the proofs. Keeping some
inference steps implicit is hence crucial for the readability of the proofs. What
should be implicit or not is difficult to say in general and depends on the context.
For instance, at the primary school level, pupils may be encouraged or asked to
state explicitly claims like a), but not claims like b). Having implicit proof steps
but also mechanical proof checking of such proof steps, is useful. In geometry for
example, there is a long history of incorrect proofs of Euclid’s fifth postulate, that
relied on an implicit assumption equivalent to the fifth postulate. For example, if
one defines a parallelogram as a non-crossed quadrilateral such that two sides are
parallel and of the same length, then the property b) stated above is equivalent
to Euclid’s fifth postulate (see [17] for more details about these issues).

As an extension of our basic approach, we use a variant of CL proofs, where
proof steps allow implicit application of “simple” lemmas as described in Sec-
tion 3.11. We have chosen to inline lemmas with at most one premise, but in
natural language proofs sometimes proof steps involving several premises are also
implicit, for example in geometry the transitivity of parallelism will usually not be
stated explicitly. For Proposition 5 of Book I of Euclid’s Elements, inlining leads
to a quite readable proof, very similar to Pappus’ proof, given in the following
example (see appendix A for a full comparison of the proof of this proposition as
generated by several provers).

Example 10 Euclid Book I, Proposition 5: In isosceles triangles the angles at the
base equal one another. Or, in formal terms:

∀ A,B,C (isosceles(A,B,C)⇒ congA(A,B,C,A,C,B))

Pappus’ proof is as follows:30

The two triangles BAC and CAB have two sides equal to two sides,
namely side BA of the first triangle equals side CA of the second
triangle, and side AC of the first triangle equal to side AB of the sec-
ond, and the contained angles are equal, namely angle BAC of the
first triangle equals angle CAB of the second, therefore, by propo-
sition I.4, the corresponding parts of the two triangles are equal, in
particular, the angle B in the first triangle equals the angle C of the
second.

Proposition I.4, mentioned in the above proof, corresponds to the Side-Angle-
Side theorem stating: if two triangles have two sides equal to two sides respectively,
and have the angles contained by the equal sides equal, then they also have the
base equal to the base, the triangle equals the triangle, and the remaining angles
equal the remaining angles respectively.

The above, Pappus’ proof assumes that the triangle is not degenerated, but
the following (shortest) proof generated by Larus distinguishes the case of the de-
generated triangle , showing that it is impossible (using implicitly a simple lemma
that vertices of isosceles triangle are not colinear and the axiom nnncolNegElim:
∀X,Y, Z col(X,Y, Z) ∧ ¬col(X,Y, Z) ⇒ ⊥). Larus’ proof does not give details

30 https://mathcs.clarku.edu/~djoyce/java/elements/bookI/propI5.html

https://mathcs.clarku.edu/~djoyce/java/elements/bookI/propI5.html

38 Predrag Janičić, Julien Narboux

A

B

D

C

I

E

F

G

H

Fig. 7 Euclid’s Proposition 43: the areas of the two shaded parallelograms are equal.

about the fact that angle BAC is congruent to angle CAB, because it is a lemma
that is considered simple enough to be inlined. The premise stating that abc is
isosceles appears twice at step 6 because it corresponds to the two triangles (BAC
and CAB) that appear in proposition I.4 (Side-Angle-Side theorem, named here
proposition 04).

Consider arbitrary a, b, c such that: isosceles(a, b, c). It should be proved
that congA(a, b, c, a, c, b).

1. col(c, a, b) ∨ ¬col(c, a, b) (by MP, using axiom cn col1b; instantiation: A 7→ c, B 7→
a, C 7→ b)

2. Case col(c, a, b):

3. ⊥ (by MP, from col(c, a, b), isosceles(a, b, c) using axiom nnncolNegElim; instan-

tiation: A 7→ a, B 7→ b, C 7→ c)

4. Contradiction! (by QEDefq)

5. Case ¬col(c, a, b):
6. congA(a, b, c, a, c, b) (by MP, from isosceles(a, b, c), isosceles(a, b, c),

¬col(c, a, b) using axiom proposition 04; instantiation: A 7→ a, B 7→ c, C 7→ b, Xa

7→ a, Xb 7→ b, Xc 7→ c)

7. Proved by assumption! (by QEDas)

8. Proved by case split! (by QEDcs, by col(c, a, b),¬col(c, a, b))

Note that the quantity of information which should be kept implicit is difficult
to control, as illustrated on Euclid’s Proposition 43 in the next example.

Theorem Proving as Constraint Solving with Coherent Logic 39

A

B

D

C

I

E

F

G

H

The triangles AEI and AHI
have equal areas because they are
congruent, because AHIE is a
parallelogram (implicit step).

A

B

D

C

I

E

F

G

H

The triangles ABC and ADC
have equal areas because they are
congruent, because ADCB is a
parallelogram (implicit step).

A

B

D

C

I

E

F

G

H

The quadrilateral HDCI and
EICB have equal areas which
can be deduced from the two pre-
vious implicit steps using the ax-
iom cutoff1.

A

B

D

C

I

E

F

G

H

The triangles IGC and IFC have
equal areas because they are con-
gruent, because GIFC is a par-
allelogram (implicit step).

A

B

D

C

I

E

F

G

H

The conclusion can be deduced
from the previous steps using the
axiom cutoff2.

Fig. 8 Euclid’s Proposition 43: details of the proofs steps, three proof steps are implicit in
the proof generated by Larus.

40 Predrag Janičić, Julien Narboux

Example 11 Euclid Book I, Proposition 43: In any parallelogram the complements
of the parallelograms about the diameter equal one another (Fig. 7). Formally:31

∀ A,B,C,D,E, F,G,H, I
(pG(A,B,C,D) ∧ betS(A,H,D) ∧ betS(A,E,B)∧
betS(D,F,C) ∧ betS(B,G,C) ∧ betS(A, I, C)∧
pG(E,A,H, I) ∧ pG(G, I, F, C)⇒ eF (I,G,B,E,D, F, I,H))

The ratio between the size of a formal proof and size of the natural language
proof, called the De Bruijn factor, is rarely below 1. With Larus, for this theorem,
we get a surprising result: the (shortest) formal proof generated using inlined
lemmas (if we omit the proofs of the inline lemmas) is shorter than both the
original natural language proof and the original formal proof (30 steps).32 The
idea of the proof is depicted on Figure 8. The formal proof generated by Larus is
just a two line proof, given here in the natural-language:

Consider arbitrary a, b, c, d, e, f , g, h, i such that: pG(a, b, c, d), betS(a, h, d),
betS(a, e, b), betS(d, f, c), betS(b, g, c), betS(a, i, c), pG(e, a, h, i), pG(g, i, f, c).
It should be proved that eF (i, g, b, e, d, f, i, h).

1. eF (c, i, h, d, b, e, i, c) (by MP, from betS(a, i, c), betS(a, e, b), betS(a, h, d),

betS(a, i, c), pG(e, a, h, i), pG(a, b, c, d) using axiom axiom cutoff1; instantiation: A

7→ c, B 7→ i, C 7→ a, D 7→ h, E 7→ d, Ca 7→ b, Cb 7→ e, Cc 7→ a, Cd 7→ i, Ce 7→ c)

2. eF (h, d, f, i, e, b, g, i) (by MP, from betS(d, f, c), betS(b, g, c), pG(g, i, f, c),

eF (c, i, h, d, b, e, i, c) using axiom axiom cutoff2; instantiation: A 7→ h, B 7→ d, C 7→ f , D

7→ c, E 7→ i, Ca 7→ e, Cb 7→ b, Cc 7→ g, Cd 7→ c, Ce 7→ i)

3. Proved by assumption! (by QEDas)

The axiom cutoff1 says that if we cut triangles of equal areas, with one end
of the cut at a vertex and the other two on the adjacent sides, from triangles with
equal areas, the resulting quadrilaterals have equal areas. The axiom cutoff2 says
that if we cut triangles with equal areas off of quadrilaterals with equal areas, with
one end of the cut at a vertex and the other on a non-adjacent side, the results
are quadrilaterals with equal areas.

In this case, the mechanism that generates inline lemmas by saturation of
simple axioms, has gone quite far, maybe too far, because it generated about
400 lemmas, and then most of the proof is implicit! It means that the proof of
Proposition 43 is mainly a composition of lemmas with a single premise.

In the first step of the proof, the fact that the triangles AEI and AHI have
equal areas is deduced implicitly from the fact that EAHI is a parallelogram using
Euclid’s Proposition 34 (which states that the diagonal of parallelogram divides it
into two congruent triangles) and a lemma stating that congruent triangles have
equal areas and many technical lemmas about preservation of equality of area by

31 pG(A,B,C,D) stands for “ABCD is a parallelogram”, betS(A,B,C) stands for “B is
between A and C”, and eF (I,G,B,E,D, F, I,H) stands for “IGBE and DFIH are figures
with equal areas”.
32 https://github.com/GeoCoq/GeoCoq/blob/master/Elements/OriginalProofs/
proposition_43.v

https://github.com/GeoCoq/GeoCoq/blob/master/Elements/OriginalProofs/proposition_43.v
https://github.com/GeoCoq/GeoCoq/blob/master/Elements/OriginalProofs/proposition_43.v

Theorem Proving as Constraint Solving with Coherent Logic 41

permutation of the points. Similarly it is implicitly proved that the triangles ABC
and ADC have equal areas.

We can further modify the look of our computer generated proofs so they
are more like human-created proofs. For example, we can replace case splits by
reductio ad absurdum in some cases, we can replace predicate symbols and logical
connectives by some natural language wording, generate nicer looking names, etc.
We leave this for future work, as in this paper we focus on the granularity of the
proofs steps and the structure of the proof.

6.4 Reconstruction of Proofs within ITP Systems

Integration of automatic theorem provers within interactive provers and exchange
of proofs is crucial for development of interactive theorem proving but it poses
several difficulties. The main ones come from differences between the underlying
logical frameworks of the ITP and the ATPs systems (higher-order logics vs first-
order logic) and the absence of standards for representing proofs in both worlds.
There are several lines of research trying to address these problems. The TSTP
format allows to represent proofs as a list of steps, and the language does not
specify what are the acceptable proof steps [67]. The Logipedia project provides
automatic transformations between different logical frameworks [25]. Tools called
“hammers” have been developed for Isabelle/HOL [10, 11, 13, 14], HOL4 [70],
Mizar [40] and Coq [22, 23]. In many hammer systems, the ATP is used only to
find relevant lemmas/axioms and the actual proof argument by the ATP system
is rarely used. Instead, an automatic theorem prover integrated in the ITP system
is ran, using lemmas/axioms filtered out, for constructing an acceptable formal
proof. Therefore, for examples where the list of relevant lemmas/axioms is already
known, the hammer approach using state-of-the-art FOL provers will not provide
any useful information and will not be more efficient than solely automatic tactics
integrated inside ITPs. In some hammer systems, external solvers are used to
produce certificates based on which the proof objects are constructed within the
ITP.

If one wants to obtain a readable proof within an ITP system, then the difficulty
of reconstructing a proof from an ATP argument is even higher, because state-of-
the-art ATPs usually rely on clausification, Skolemization and proof by refutation.
Blanchette has proposed an algorithm to reconstruct a forward chaining Isar proof
from the resolution proof [12]. The approach presented here has the advantage
of allowing the trivial generation of machine verifiable proofs which are fairly
readable: they do not rely on clausification nor proof by refutation, they are in the
forward reasoning style and the proof steps are higher-level than natural deduction
proofs. With the support of proof hints as described in Section 6.2, by extracting
automatically hints from formal or informal proofs, this approach could also serve
as a base for translators from one proof language to another.

6.5 Classical vs. Intuitionistic Logic

While, for instance, in the resolution method, classical logic and reasoning are
deeply built-in, in the presented approach and when using the prover, one can

42 Predrag Janičić, Julien Narboux

easily choose whether to use excluded middle or not (and, hence, choose between
classical and intuitionistic setting), it is just a matter of adding axioms. Also, as
said in Section 2, the additional ¬Intro rule could be supported. On the other
hand, this feature (of flexible control of fundamental axioms) increases costs and
influences efficiency of the presented approach.

6.6 Proof complexity

The central problems in proof complexity are: what is the size of the smallest proof
of a theorem F in some logical system and how difficult is it to construct such a
smallest proof [2, 49]. These problems are relevant for the work presented in this
paper, but not of a concrete, practical value for implementing the prover. Namely,
answers to the given questions are typically given in terms of bounds too loose to
be useful for limiting and guiding our proof-searching process.

7 Related Work

In the previous sections, we mentioned some related research, for instance, in the
context of short or readable or machine verifiable proofs. In this section we discuss
research and systems most closely related to the one presented, especially in terms
of proof encoding and of using SAT/SMT in automated theorem proving.

Coherent Logic provers. There are several automated theorem provers for CL [6,
7, 8, 37, 66]. Some of them use advanced methods for efficient rule-matching [34]
or back-jumping and lemma-learning inspired by CDCL SAT solving [52, 55, 56].
They all use some form of forward chaining, in contrast to the prover presented
here. Only some of them produce machine verifiable proofs [7] or both machine
verifiable and human readable proofs [52, 66].

Automated provers using SAT/SMT solvers. There are approaches in which SAT
and SMT are used in first-order theorem proving. For instance, in showing in-
consistency of clause sets, Schultz uses saturation and SAT solving — ground
facts are represented by propositional variables and there is a periodic check of
propositional consistency [63]. In Vampire, the AVATAR architecture also tightly
integrates SAT/SMT solvers [73]. These approaches are completely different
from ours as SAT formulae are used for modelling the object level (formulae of
underlying theory), while in ours, SAT/SMT formulae model the meta level, the
level of proofs.

SAT solving is used also in higher-order theorem proving. For instance, there
are complete theorem proving procedures, implemented in a prover Satallax, for
higher-order logic based on a complete, cut-free, ground refutation calculus that
delegates different tasks to a SAT solver [19]. Like in the case of first-order logic,
SAT formulae do not model proofs, but again formulae, in contrast to our ap-
proach.

Theorem Proving as Constraint Solving with Coherent Logic 43

Proof encoding. The idea of encoding a proof by numbers dates back at least to
Gödel’s enumeration of proofs by which (in the context of his famous theorems) he
demonstrated that deduction operations can be described in terms of numbers and
arithmetical operations [64]. However, apart from such theoretical usage, there are
hardly any practical applications of proof encoding in automated or interactive
theorem proving . We are aware only of the following ones and they are the most
closely related work.

There is a work on encoding propositional resolution proofs in propositional
logic [62]. This is done trying to show that local search methods (suitable for
solving satisfiable SAT instances) can be applied to unsatisfiable SAT instances.
Our approach is also an alternative way of transforming unsatisfiability checking
(using refutation) into satisfiability checking (i.e., checking existence of a proof).

Rigid tableau proofs (a rigid tableau is a tableau in which multiple instances of
a clause appearing in the tableau are identical copies of the clause appearing in the
given formula) can be encoded as a SAT problem, as in a system ChewTPTP-SAT
[24]. There are some problem instances that can be proved using this approach,
and not by other provers, but the conclusion is that this approach is still not com-
petitive to leading FOL provers. That work extends to encoding of the existence of
a rigid first-order connection tableau to SMT (datatypes and arithmetic) [15, 48].
It was shown that SMT-based encoding is more efficient than SAT-based encoding,
but there is no experimental comparison to other kinds of provers. Machine veri-
fiable or readable proofs are not considered. The prover ChewTPTP-SMT based
on this approach was used for our experimental comparison given in Section 5.

Alrabbaa et.al. addressed the problem of finding small proofs in description
logic (DL) [1]. They encode DL proofs as labelled, directed hypergraphs, where
each hyper-edge corresponds to a single derivation step, and they study the com-
plexity of the problem of finding the smallest DAG-shaped and tree shaped DL
proofs.

8 Future Work

We are planning to implement export of proofs to Isabelle and other interactive
theorem provers.

The first implementation of the presented approach shows proving performance
below the state-of-the-art provers such as Vampire. We think there is a room for
improvements of efficiency in the following directions:

– improving the encoding used (e.g., by using some form of incremental encod-
ing);

– improving the solving process (e.g., by using some other SAT/SMT solvers, or
by instructing SAT/SMT solvers to take into account some specifics of input
instances);

– improving the communication between the prover and the external solvers.

Apart from the above (still rather vague directions), we consider several ways for
improving the prover, discussed in the rest of this section.

44 Predrag Janičić, Julien Narboux

8.1 Normalization of CL Proofs and Application to Automated Theorem Proving

Normalisation of proofs has been present for decades as one of central topics in
proof theory. For instance, permutability of inference rules has been studied from
a theoretical point of view since a long time, by Kleene in the 50’s [42] and more
recently by Dyckhoff et. al. [27], Guenot [32], Lutovac and Harland [46], etc. How-
ever, to our knowledge, it has been hardly used in automated theorem provers
during the search process. Namely, the provers do not look for a proof, but for
a formula and they usually introduce many superficial formulae along the way.
During that process, it is not known which of them are really needed and how
to use some normalisation criterion over them on the fly. In our approach, how-
ever, we can impose restrictions on a sought proof directly (no superficial facts)
and we can also impose some normalisation criterion as an additional constraint.
Actually, in the current version of the system, we already use some normalisation
criteria: a case split can occur only at the end of a proof, the first case step occurs
immediately after the disjunction has been derived, etc. By imposing restrictions
on the form of a proof, some parts of the search space can be eliminated early
which could facilitate the process. But, on the other hand, the number of possi-
ble models (i.e., proofs) will be smaller which could make search harder. We are
planning to explore these ideas further and we hope that our approach could lead
to new practical applications of normalisation results coming from proof theory.

8.2 Paralellisation

Let us assume one wants to prove a theorem for which a shortest proof has k steps,
the number not known in advance. When searching for a proof of the theorem,
one must provide a concrete, maximal proof length. If the chosen length is small,
the chances are good for a quick response, but if it is lower than k, the proof will
not be found (also, proving that there is no proof of some given length sometimes
takes more time than finding a proof of a larger length). On the other hand, if the
chosen length is big, it could be likely that there is a proof of smaller length, but
the proving process can be slow and maybe over the given time limit. Therefore, it
can be beneficial if different maximal proof lengths are considered in parallel. Some
parts of the encoding can be shared, but the proving process can be completely
independent and can be simply performed in parallel. We will work on this simple
paralellisation and look for other potentially beneficial forms of paralellisation.

8.3 Using Other Kinds of Provers

We observed there are theorems that the presented approach cannot prove in
some reasonably short time, while they can be proved by our simple forward-
chaining based prover in a negligible time. The explanation is, we believe, that
these theorems admit proofs in which in many steps one can proceed in just a very
few ways – many steps are almost uniquely determined. For such theorems there
are relatively long proofs (e.g., more than 200 proof steps), but substantially very
easy for the forward-chaining approach. This observation leads to the following
possible directions for future work:

Theorem Proving as Constraint Solving with Coherent Logic 45

– One can combine the presented approach with other kinds of provers, as they
can be best performing on different sets of theorems. Combining different
provers can be done in a well-developed portfolio approach [53, 76]. An addi-
tional challenge (probably well-suited to machine learning) would be to detect
which provers are better suited for which theorems. Actually, within a portfo-
lio, one can use not only different provers, but also different configurations of
Larus (given by its parameters).

– One can use the forward-chaining approach along the proving process for shap-
ing additional constraints that could help the prover based on constraint solv-
ing.

– One can try to help the SAT/SMT solvers in solving the constraint corre-
sponding to a proof. Choosing decision variables is one of critical operations in
SAT/SMT solving. In some situations, the solver may choose a decision variable
between one corresponding to the axiom applied in some proof step and one
corresponding to the instantiation. We expect that often it would be beneficial
to choose the former. Such guiding information could be possibly also gathered
by a controlled application of forward-chaining. This would require modifying
both the communication between the CL prover and SAT/SMT solvers, and
the SAT/SMT solvers themselves.

8.4 Applications in other domains

We are planning to use the presented approach to some other logics (not only CL),
especially those without good available decision or semi-decision procedures. Also,
we will try to apply the presented approach to complex symbolic computations
that can be presented in a similar manner to proofs, such as computing Gröbner
bases or solving the Rubik’s cube.

9 Conclusions

We presented an approach for automated theorem proving and for automated
construction of proof objects based on constraint solving (i.e., a new paradigm that
we can call “theorem proving as constraint solving”). That idea is not surprising
or completely unexpected (especially given many other kinds of problems tackled
by constraint solving), but still it has almost no mentions in the literature. One
may only speculate why it is so. Maybe it was expected that this approach would
be unfeasible and without practical usability.

Our work shows that, for an interesting and expressible fragment of FOL, the
approach is feasible and, moreover, that it has some unique merits and features
such as: producing all proofs; producing shortest proofs; producing natural-looking
proofs expressed in a forward reasoning manner – both in a natural language form
and in a form verifiable by interactive provers and readable at the same time;
producing even more compact proofs using inlining, using hints about a proof to
be found, etc.

We find that the proposed approach and the presented prover can be useful
especially in the context of formalisation of mathematical theories and as a support
in interactive theorem proving. Our prototype implementation gives reasonable

46 Predrag Janičić, Julien Narboux

performance especially when compared to provers producing proofs verifiable by
a proof assistant.

In the area of automated theorem proving without construction of verifiable
proofs, the presented approach faces a strong competition in FOL provers. They
have been evolving for more than half a century, they often combine several un-
derlying strategies or provers using portfolio approach and it is hard to beat their
performances . However, beating performance of the leading FOL provers is not
one of the targets of our approach – it is rather complementary with the FOL
provers and has different main merits. In addition, there is a number of other
logical frameworks where solvers and reasoners are not so well developed and the
approach presented here could easily lead to practically usable automated theorem
provers – one needs only a precise notion of proof or a solution (which could take
only a few hundreds lines, as shown for CL) and encoding to a sequence of natural
numbers. An ultimate target would be a generic framework that automatically
prove theorems, given only a precise notion of a proof in the underlying logic and
theory. The approach could be applied to virtually any underlying logic and theory
with a precise syntactical notion of proof. However, although it would be possible,
it would be challenging to encode proof steps involving non-trivial features such
as unification, or Fourier/Motzkin elimination [35], or elimination steps used in
the area method [38]. And not only the encoding, but also the efficiency of such
proving procedure would be also questionable. On the other hand, the approach
is very suitable for syntactically simple theories and proofs, such are propositional
calculi and coherent logic. Indeed, the current version of the presented approach,
applied here to coherent logic, enjoys a suitable simplicity: it does not support
function symbols. The presented encoding has to be significantly extended to make
function symbols usable. Alternatively, problems involving function symbols could
be encoded using predicate symbols only, but that would make generated proofs
longer and less readable.

In summary, we believe that “theorem proving as constraint solving” work
presented in this paper is a first encouraging attempt, leaving room for further
improvements and a range of applications.

Acknowledgements We are grateful to the anonymous reviewers who gave us a very useful
feedback and number of suggestions that significant improved the earlier version of this paper.

References

1. Christian Alrabbaa, Franz Baader, Stefan Borgwardt, Patrick Koopmann, and
Alisa Kovtunova. Finding Small Proofs for Description Logic Entailments:
Theory and Practice. In LPAR23. LPAR-23: 23rd International Conference on

Logic for Programming, Artificial Intelligence and Reasoning, pages 32–5, 2020.
2. Albert Atserias and Moritz Müller. Automating Resolution is NP-Hard. In

David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Com-

puter Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019,
pages 498–509. IEEE Computer Society, 2019.

3. Jeremy Avigad. Automated reasoning for the working mathematician. In
Frontiers of Combining Systems (FroCoS), London, 2019. Invited Talk.

Theorem Proving as Constraint Solving with Coherent Logic 47

4. Jeremy Avigad, Edward Dean, and John Mumma. A Formal System for Eu-
clid’s Elements. The Review of Symbolic Logic, 2:700–768, 2009.

5. Michael Beeson, Julien Narboux, and Freek Wiedijk. Proof-checking Euclid.
Annals of Mathematics and Artificial Intelligence, 85(2-4):213–257, 2019. Pub-
lisher: Springer.

6. Marc Bezem and Thierry Coquand. Newman’s Lemma – a Case Study in
Proof Automation and Geometric Logic. Current trends in Theoretical Computer

Science, 2:267–282, 2004.
7. Marc Bezem and Thierry Coquand. Automating Coherent Logic. In Geoff

Sutcliffe and Andrei Voronkov, editors, 12th International Conference on Logic

for Programming, Artificial Intelligence, and Reasoning — LPAR 2005, volume
3835 of Lecture Notes in Computer Science, pages 246–260. Springer-Verlag,
2005.

8. Marc Bezem and Dimitri Hendriks. On the Mechanization of the Proof of
Hessenberg’s Theorem in Coherent Logic. Journal of Automated Reasoning,
40(1):61–85, 2008.

9. Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Hand-

book of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Appli-

cations. IOS Press, 2009.
10. Jasmin C. Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Ur-

ban. Hammering towards QED. Journal of Formalized Reasoning, Vol 9:101–
148 Pages, January 2016. Artwork Size: 101-148 Pages Publisher: Alma Mater
Studiorum - University of Bologna.

11. Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nipkow. Automatic
Proof and Disproof in Isabelle/HOL. In Cesare Tinelli and Viorica Sofronie-
Stokkermans, editors, Frontiers of Combining Systems, 8th International Sym-

posium, Proceedings, volume 6989 of Lecture Notes in Computer Science, pages
12–27. Springer, 2011.

12. Jasmin Christian Blanchette, Sascha Böhme, Mathias Fleury, Steffen Juilf
Smolka, and Albert Steckermeier. Semi-intelligible Isar Proofs from Machine-
Generated Proofs. Journal of Automated Reasoning, 56(2):155–200, February
2016.

13. Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Ex-
tending Sledgehammer with SMT Solvers. Journal of Automated Reasoning,
51(1):109–128, 2013.

14. Jasmin Christian Blanchette, Andrei Popescu, Daniel Wand, and Christoph
Weidenbach. More SPASS with Isabelle. In International Conference on Inter-

active Theorem Proving, pages 345–360. Springer, 2012.
15. Jeremy Bongio, Cyrus Katrak, Hai Lin, Christopher Lynch, and Ralph Eric

McGregor. Encoding First Order Proofs in SMT. Electron. Notes Theor. Com-

put. Sci., 198(2):71–84, 2008.
16. Richard Bonichon, David Delahaye, and Damien Doligez. Zenon: An Exten-

sible Automated Theorem Prover Producing Checkable Proofs. In Nachum
Dershowitz and Andrei Voronkov, editors, Logic for Programming, Artificial

Intelligence, and Reasoning, volume 4790, pages 151–165. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2007. Series Title: Lecture Notes in Computer
Science.

17. Pierre Boutry, Charly Gries, Julien Narboux, and Pascal Schreck. Parallel
postulates and continuity axioms: a mechanized study in intuitionistic logic

48 Predrag Janičić, Julien Narboux

using Coq. Journal of Automated Reasoning, page 68, 2017.
18. Pierre Boutry, Julien Narboux, and Pascal Schreck. A reflexive tactic for

automated generation of proofs of incidence to an affine variety. October
2015.

19. Chad E. Brown. Reducing Higher-Order Theorem Proving to a Sequence of
SAT Problems. Journal of Automated Reasoning, 51(1):57–77, June 2013.

20. Sascha Böhme and Tjark Weber. Fast LCF-Style Proof Reconstruction for
Z3. In Matt Kaufmann and Lawrence C. Paulson, editors, Interactive Theorem

Proving, First International Conference, ITP 2010, Edinburgh, UK, July 11-14,

2010. Proceedings, volume 6172 of Lecture Notes in Computer Science, pages
179–194. Springer, 2010.

21. Evelyne Contejean and Pierre Corbineau. Reflecting Proofs in First-Order
Logic with Equality. In David Hutchison, Takeo Kanade, Josef Kittler,
Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Os-
car Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri
Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum, and Robert
Nieuwenhuis, editors, Automated Deduction – CADE-20, volume 3632, pages 7–
22. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. Series Title: Lecture
Notes in Computer Science.

22. Lukasz Czajka. Practical Proof Search for Coq by Type Inhabitation. In
Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, IJCAR 2020, Auto-

mated Reasoning, volume 12167, pages 28–57. Springer International Publish-
ing, Cham, 2020. Series Title: Lecture Notes in Computer Science.

23. Lukasz Czajka and Cezary Kaliszyk. Hammer for Coq: Automation for De-
pendent Type Theory. Journal of Automated Reasoning, 61(1-4):423–453, June
2018.

24. Todd Deshane, Wenjin Hu, Patty Jablonski, Hai Lin, Christopher Lynch, and
Ralph Eric McGregor. Encoding First Order Proofs in SAT. In Frank Pfen-
ning, editor, Automated Deduction - CADE-21, 21st International Conference on

Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings, volume
4603 of Lecture Notes in Computer Science, pages 476–491. Springer, 2007.

25. Gilles Dowek and François Thiré. Logipedia: a multi-system encyclopedia of
formal proofs. In Workshop on Large Mathematical Libraries, Prague, 2019.

26. Roy Dyckhoff and Sara Negri. Geometrization of first-order logic. The Bulletin

of Symbolic Logic, 21:123–163, 2015.
27. Roy Dyckhoff and Lúıs Pinto. Permutability of proofs in intuitionistic sequent

calculi. Theoretical Computer Science, 212(1-2):141–155, February 1999.
28. Ludovic Font, Sébastien Cyr, Philippe R. Richard, and Michel Gagnon. Au-

tomating the Generation of High School Geometry Proofs using Prolog in
an Educational Context. In Proceedings 8th International Workshop on Theo-

rem Proving Components for Educational Software, ThEdu@CADE, Natal, Brazil,
2019.

29. M. Ganesalingam and W. T. Gowers. A fully automatic problem solver with
human-style output. CoRR, abs/1309.4501, 2013.

30. Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
clasp : A Conflict-Driven Answer Set Solver. In Chitta Baral, Gerhard Brewka,
and John S. Schlipf, editors, Logic Programming and Nonmonotonic Reasoning,

9th International Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007,

Proceedings, volume 4483 of Lecture Notes in Computer Science, pages 260–265.

Theorem Proving as Constraint Solving with Coherent Logic 49

Springer, 2007.
31. Gerhard Gentzen. Untersuchungen über das logische Schliessen, I, II. Math-

ematische Zeitschrift, 39:176–210, 405–431, 1935. English translation in ”The
Collected Papers of Gerhard Gentzen”, North-Holland Publ.Co, 1969.

32. Nicolas Guenot. Concurrency and Permutability in the Sequent Calculus. In
M. Parigot and L. Straßburger, editors, Structures and Deduction (ESSLLI’09

workshop), pages 39–52, 2009.
33. Thomas Hales. An argument for controlled natural languages in mathematics,

2019.
34. Bjarne Holen, D. Hovland, and M. Giese. Efficient Rule-Matching for Auto-

mated Coherent Logic. In NIK-2013 proceedings, 2012.
35. Jean-Louis Imbert. Fourier’s Elimination: Which to Choose? In Principles and

Practice of Constraint Programming, pages 117–129, 1993.
36. Predrag Janičić. URSA: A System for Uniform Reduction to SAT. Logical

Methods in Computer Science, 8(3):30, September 2012.
37. Predrag Janičić and Stevan Kordić. EUCLID — the Geometry Theorem

Prover. FILOMAT, 9(3):723–732, 1995.
38. Predrag Janičić, Julien Narboux, and Pedro Quaresma. The Area Method : a

Recapitulation. Journal of Automated Reasoning, 48(4):489–532, 2012.
39. Jianguo Jiang and Jingzhong Zhang. A review and prospect of readable ma-

chine proofs for geometry theorems. Journal of Systems Science and Complexity,
25(4):802–820, 2012.

40. Cezary Kaliszyk and Josef Urban. HOL (y) Hammer: Online ATP service
for HOL Light. Mathematics in Computer Science, 9(1):5–22, 2015. Publisher:
Springer.

41. Michael Kinyon. Proof simplification and automated theorem proving. Philo-

sophical Transactions of the Royal Society A: Mathematical, Physical and Engi-

neering Sciences, 377(2140):20180034, March 2019.
42. Stephen Cole Kleene. Permutability of inferences in Gentzen’s calculi LK and

LJ. Memoirs of the American Mathematical Society, 10:1–26, 1952.
43. Konstantin Korovin. iProver – An Instantiation-Based Theorem Prover for

First-Order Logic (System Description). In Alessandro Armando, Peter Baum-
gartner, and Gilles Dowek, editors, Automated Reasoning, volume 5195, pages
292–298. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISSN: 0302-
9743, 1611-3349 Series Title: Lecture Notes in Computer Science.

44. Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vam-
pire. In Natasha Sharygina and Helmut Veith, editors, Computer Aided Verifi-

cation - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July

13-19, 2013. Proceedings, volume 8044 of Lecture Notes in Computer Science,
pages 1–35. Springer, 2013.

45. Jean-Marie Lagniez and Pierre Marquis. On Preprocessing Techniques and
Their Impact on Propositional Model Counting. Journal of Automated Reason-

ing, 58(4):413–481, April 2017.
46. Tatjana Lutovac and James Harland. A contribution to automated-oriented

reasoning about permutability of sequent calculi rules. Computer Science and

Information Systems, 10(3):1185–1210, 2013.
47. Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: a first

introduction to topos theory. Springer-Verlag, 1992.

50 Predrag Janičić, Julien Narboux

48. Ralph Eric McGregor. Automated Theorem Proving Using SAT. PhD Thesis,
Clarkson University, 2011. Publication Title: Electron. Notes Theor. Comput.
Sci.

49. Ian Mertz, Toniann Pitassi, and Yuanhao Wei. Short Proofs Are Hard to
Find. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Ste-
fano Leonardi, editors, 46th International Colloquium on Automata, Languages,

and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of
LIPIcs, pages 84:1–84:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

50. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT
Solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algo-

rithms for the Construction and Analysis of Systems, 14th International Confer-

ence, TACAS 2008, Held as Part of the Joint European Conferences on Theory and

Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.

Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 337–340.
Springer, 2008.

51. H. D. Nguyen, Diem Nguyen, and V. T. Pham. Design an intelligent problem
solver in solid geometry based on knowledge model about relations. In 2016

Eighth International Conference on Knowledge and Systems Engineering (KSE),
pages 150–155, 2016.

52. Mladen Nikolić and Predrag Janičić. CDCL-Based Abstract State Transition
System for Coherent Logic. In Johan Jeuring, John A. Campbell, Jacques
Carette, Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and Volker Sorge,
editors, Intelligent Computer Mathematics - 11th International Conference, AISC

2012, 19th Symposium, Calculemus 2012, 5th International Workshop, DML 2012,

11th International Conference, MKM 2012, Systems and Projects, Held as Part of

CICM 2012, Bremen, Germany, July 8-13, 2012. Proceedings, volume 7362 of
Lecture Notes in Computer Science, pages 264–279. Springer, 2012.

53. Mladen Nikolić, Filip Marić, and Predrag Janičić. Simple algorithm portfolio
for SAT. Artificial Intelligence Review, 2012. to appear.

54. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle HOL: a

Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Com-

puter Science. Springer, 2002.
55. Hans de Nivelle. Subsumption Algorithms for Three-Valued Geometric Res-

olution. In Nicola Olivetti and Ashish Tiwari, editors, Automated Reasoning

- 8th International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27

- July 2, 2016, Proceedings, volume 9706 of Lecture Notes in Computer Science,
pages 257–272. Springer, 2016.

56. Hans de Nivelle and Jia Meng. Geometric Resolution: A Proof Procedure
Based on Finite Model Search. In Ulrich Furbach and Natarajan Shankar, ed-
itors, Automated Reasoning, Third International Joint Conference, IJCAR 2006,

Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4130 of Lecture Notes

in Computer Science, pages 303–317. Springer, 2006.
57. Jens Otten. nanoCoP: Natural Non-clausal Theorem Proving. In Proceedings of

the Twenty-Sixth International Joint Conference on Artificial Intelligence, pages
4924–4928, Melbourne, Australia, August 2017. International Joint Confer-
ences on Artificial Intelligence Organization.

58. Jens Otten and Wolfgang Bibel. leanCoP: lean connection-based theorem
proving. Journal of Symbolic Computation, 36(1-2):139–161, July 2003.

Theorem Proving as Constraint Solving with Coherent Logic 51

59. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture

Notes in Computer Science. Springer-Verlag, 1994.
60. Lawrence C. Paulson. Three Years of Experience with Sledgehammer, a Prac-

tical Link between Automatic and Interactive Theorem Provers. In Renate A.
Schmidt, Stephan Schulz, and Boris Konev, editors, Proceedings of the 2nd

Workshop on Practical Aspects of Automated Reasoning, PAAR-2010, Edinburgh,

Scotland, UK, July 14, 2010, volume 9 of EPiC Series in Computing, pages 1–10.
EasyChair, 2010.

61. Andrew Polonsky. Proofs, Types and Lambda Calculus. PhD thesis, University
of Bergen, 2011.

62. Steven David Prestwich and Inês Lynce. Local Search for Unsatisfiability. In
Armin Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiabil-

ity Testing - SAT 2006, 9th International Conference, Seattle, WA, USA, August

12-15, 2006, Proceedings, volume 4121 of Lecture Notes in Computer Science,
pages 283–296. Springer, 2006.

63. Stephan Schulz. Light-weight integration of SAT solving into first-order rea-
soners–first experiments. Vampire 2017 - Proceedings of the 4th Vampire Work-

shop, 53:9–19, 2017.
64. Peter Smith. An Introduction to Gödel’s Theorems. Cambridge University Press,

2013.
65. Sana Stojanović, Julien Narboux, Marc Bezem, and Predrag Janičić. A Ver-

nacular for Coherent Logic. In StephenM. Watt, JamesH. Davenport, AlanP.
Sexton, Petr Sojka, and Josef Urban, editors, Intelligent Computer Mathemat-

ics, volume 8543 of Lecture Notes in Computer Science, pages 388–403. Springer
International Publishing, 2014.

66. Sana Stojanović, Vesna Pavlović, and Predrag Janičić. A Coherent Logic
Based Geometry Theorem Prover Capable of Producing Formal and Readable
Proofs. In Automated Deduction in Geometry, volume 6877 of Lecture Notes in

Computer Science, pages 201–220. Springer, 2011.
67. Geoff Sutcliffe. The TPTP World - Infrastructure for Automated Reasoning.

In Edmund M. Clarke and Andrei Voronkov, editors, 16th International Confer-

ence on Logic for Programming, Artificial Intelligence, and Reasoning – LPAR-16,
volume 6355 of Lecture Notes in Computer Science, pages 1–12. Springer, 2010.

68. The Coq development team. The Coq proof assistant. 2020.
69. Ruediger Thiele and Larry Wos. Hilbert’s Twenty-Fourth Problem. Journal

of Automated Reasoning, 29(1):67–89, 2002.
70. Josef Urban, Piotr Rudnicki, and Geoff Sutcliffe. ATP and presentation service

for Mizar formalizations. Journal of Automated Reasoning, 50(2):229–241, 2013.
Publisher: Springer.

71. Robert Veroff. Finding Shortest Proofs: An Application of Linked Inference
Rules. Journal of Automated Reasoning, 27(2):123–139, 2001.

72. Steven Vickers. Geometric Logic in Computer Science. In Theory and Formal

Methods, Workshops in Computing, pages 37–54. Springer, 1993.
73. Andrei Voronkov. AVATAR: The Architecture for First-Order Theorem

Provers. In Computer Aided Verification, pages 696–710. Springer, Cham, July
2014.

74. Freek Wiedijk. Formal proof sketches. In International Workshop on Types for

Proofs and Programs, pages 378–393. Springer, 2003.

52 Predrag Janičić, Julien Narboux

75. Larry Wos. Automating the Search for Elegant Proofs. Journal of Automated

Reasoning, 21(2):135–175, 1998.
76. Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla:

Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intelligence

Research, 32:565–606, 2008.

Theorem Proving as Constraint Solving with Coherent Logic 53

A Example proofs of Proposition 5

In this section, we list the proofs of Euclid Book 1, Proposition 5, generated by different
theorem provers.

A.1 Leancop

−−
Explanat ions f o r the proo f presented below :
− to so l v e u n s a t i s f i a b l e problems they are negated
− equa l i t y axioms are added i f r equ i r ed
− terms and va r i a b l e s are repre sented by Prolog terms

and Prolog var i ab l e s , negat ion i s r epre sented by −
− I ˆ [t1 , . . , tn] r ep r e s en t s the atom P I (t1 , . . , tn)

or the Skolem term f I (t1 , t2 , . . , tn) introduced
during the c l a u s a l form t r an s l a t i o n

− the sub s t i t u t i on [[X1 , . . , Xn] , [t1 , . . , tn]] r ep r e s en t s
the ass ignments X1:=t1 , . . , Xn:=tn

Proof :
−−−−−−

Trans lat ion in to (d i s j u n c t i v e) c l a u s a l form :
(1) [−(i s o s c e l e s (1 ˆ [] , 2 ˆ [] , 3 ˆ []))]
(2) [congA(1 ˆ [] , 2 ˆ [] , 3 ˆ [] , 1 ˆ [] , 3 ˆ [] , 2 ˆ [])]
(3) [i s o s c e l e s (4916 , 4976 , 5035) , −(t r i a n g l e (4916 , 4976 , 5035))]
(4) [i s o s c e l e s (4916 , 4976 , 5035) , −(cong (4916 , 4976 , 4916 , 5035))]
(5) [−(i s o s c e l e s (5481 , 5541 , 5600)) , t r i a n g l e (5481 , 5541 , 5600) , cong

(5481 , 5541 , 5481 , 5600)]
(6) [cong (6105 , 6163 , 6046 , 6220) , −(cong (6046 , 6220 , 6105 , 6163))]
(7) [t r i a n g l e (6597 , 6651 , 6704) , c o l (6597 , 6651 , 6704)]
(8) [−(c o l (7006 , 7060 , 7113)) , −(t r i a n g l e (7006 , 7060 , 7113))]
(9) [c o l (7415 , 7495 , 7574) , −(c o l (7495 , 7415 , 7574))]
(10) [c o l (7415 , 7495 , 7574) , −(c o l (7495 , 7574 , 7415))]
(11) [c o l (7415 , 7495 , 7574) , −(c o l (7574 , 7415 , 7495))]
(12) [c o l (7415 , 7495 , 7574) , −(c o l (7415 , 7574 , 7495))]
(13) [c o l (7415 , 7495 , 7574) , −(c o l (7574 , 7495 , 7415))]
(14) [−(c o l (8342 , 8399 , 8455)) , −(congA(8342 , 8399 , 8455 , 8455 ,

8399 , 8342))]
(15) [−(cong (8987 , 9093 , 9302 , 9405)) , cong (8880 , 8987 , 9198 , 9302)

, cong (8880 , 9093 , 9198 , 9405) , congA(8987 , 8880 , 9093 , 9302 ,
9198 , 9405)]

(16) [−(congA(8880 , 8987 , 9093 , 9198 , 9302 , 9405)) , cong (8880 , 8987
, 9198 , 9302) , cong (8880 , 9093 , 9198 , 9405) , congA(8987 , 8880 ,
9093 , 9302 , 9198 , 9405)]

(17) [−(congA(8880 , 9093 , 8987 , 9198 , 9405 , 9302)) , cong (8880 , 8987
, 9198 , 9302) , cong (8880 , 9093 , 9198 , 9405) , congA(8987 , 8880 ,
9093 , 9302 , 9198 , 9405)]

We prove that the given c l au s e s are va l id , i . e . f o r
a given sub s t i t u t i on they eva luate to true f o r a l l
i n t e r p r e t a t i o n s . The proo f i s by con t r ad i c t i on :
Assume there i s an i n t e r p r e t a t i o n so that the given
c l au s e s eva luate to f a l s e . Then in each c l au s e there
has to be at l e a s t one l i t e r a l that i s f a l s e .

Then c l au s e (7) under the sub s t i t u t i on [[6704 , 6651 , 6597] , [3 ˆ [] , 2 ˆ
[] , 1 ˆ []]]

i s f a l s e i f at l e a s t one o f the f o l l ow ing i s f a l s e :
[t r i a n g l e (1 ˆ [] , 2 ˆ [] , 3 ˆ []) , c o l (1 ˆ [] , 2 ˆ [] , 3 ˆ [])]

1 Assume t r i a n g l e (1 ˆ [] , 2 ˆ [] , 3 ˆ []) i s f a l s e .
Then c l au s e (3) under the sub s t i t u t i on [[5035 , 4976 , 4916] , [3 ˆ [] , 2 ˆ

[] , 1 ˆ []]]
i s f a l s e i f at l e a s t one o f the f o l l ow ing i s f a l s e :
[i s o s c e l e s (1 ˆ [] , 2 ˆ [] , 3 ˆ [])]

1 .1 Assume i s o s c e l e s (1 ˆ [] , 2 ˆ [] , 3 ˆ []) i s f a l s e .
Then c l au s e (1) i s t rue .

2 Assume co l (1 ˆ [] , 2 ˆ [] , 3 ˆ []) i s f a l s e .
Then c l au s e (9) under the sub s t i t u t i on [[7574 , 7415 , 7495] , [3 ˆ [] , 2 ˆ

[] , 1 ˆ []]]
i s f a l s e i f at l e a s t one o f the f o l l ow ing i s f a l s e :
[c o l (2 ˆ [] , 1 ˆ [] , 3 ˆ [])]

2 .1 Assume co l (2 ˆ [] , 1 ˆ [] , 3 ˆ []) i s f a l s e .
Then c l au s e (14) under the sub s t i t u t i on [[8455 , 8399 , 8342] , [3 ˆ [] ,

1 ˆ [] , 2 ˆ []]]
i s f a l s e i f at l e a s t one o f the f o l l ow ing i s f a l s e :
[−(congA(2 ˆ [] , 1 ˆ [] , 3 ˆ [] , 3 ˆ [] , 1 ˆ [] , 2 ˆ []))]

2 . 1 . 1 Assume −(congA(2 ˆ [] , 1 ˆ [] , 3 ˆ [] , 3 ˆ [] , 1 ˆ [] , 2 ˆ [])) i s
f a l s e .
Then c l au s e (16) under the sub s t i t u t i on [[9405 , 9198 , 9302 , 9093 ,

8880 , 8987] , [2 ˆ [] , 1 ˆ [] , 3 ˆ [] , 3 ˆ [] , 1 ˆ [] , 2 ˆ []]]
i s f a l s e i f at l e a s t one o f the f o l l ow ing i s f a l s e :

54 Predrag Janičić, Julien Narboux

[−(congA(1 ˆ [] , 2 ˆ [] , 3 ˆ [] , 1 ˆ [] , 3 ˆ [] , 2 ˆ [])) , cong (1 ˆ [] ,
2 ˆ [] , 1 ˆ [] , 3 ˆ []) , cong (1 ˆ [] , 3 ˆ [] , 1 ˆ [] , 2 ˆ [])]

2 . 1 . 1 . 1 Assume −(congA(1 ˆ [] , 2 ˆ [] , 3 ˆ [] , 1 ˆ [] , 3 ˆ [] , 2 ˆ [])) i s
f a l s e .

Then c l au s e (2) i s t rue .
2 . 1 . 1 . 2 Assume cong (1 ˆ [] , 2 ˆ [] , 1 ˆ [] , 3 ˆ []) i s f a l s e .

Then c l au s e (4) under the sub s t i t u t i on [[5035 , 4976 , 4916] , [3 ˆ
[] , 2 ˆ [] , 1 ˆ []]]

i s f a l s e i f at l e a s t one o f the f o l l ow ing i s f a l s e :
[i s o s c e l e s (1 ˆ [] , 2 ˆ [] , 3 ˆ [])]

2 . 1 . 1 . 2 . 1 Assume i s o s c e l e s (1 ˆ [] , 2 ˆ [] , 3 ˆ []) i s f a l s e .
Then c l au s e (1) i s t rue .

2 . 1 . 1 . 3 Assume cong (1 ˆ [] , 3 ˆ [] , 1 ˆ [] , 2 ˆ []) i s f a l s e .
Then c l au s e (6) under the sub s t i t u t i on [[6163 , 6105 , 6220 , 6046] ,

[2 ˆ [] , 1 ˆ [] , 3 ˆ [] , 1 ˆ []]]
i s f a l s e i f at l e a s t one o f the f o l l ow ing i s f a l s e :
[cong (1 ˆ [] , 2 ˆ [] , 1 ˆ [] , 3 ˆ [])]

2 . 1 . 1 . 3 . 1 Assume cong (1 ˆ [] , 2 ˆ [] , 1 ˆ [] , 3 ˆ []) i s f a l s e .
This assumption has been re fu t ed in 2 . 1 . 1 . 2 .

There fore there i s no i n t e r p r e t a t i o n that makes a l l
g iven c l au s e s s imul taneous ly f a l s e . Hence the given
c l au s e s are va l i d .

q . e . d .

A.2 Nanocop

tptp−problems/ euc l id−native−eq /015 p r opo s i t i on 05 . p i s a Theorem
Start o f proo f f o r tptp−problems/ euc l id−native−eq /015 p r opo s i t i on 05 . p
[(26 ˆ 0) ˆ [83 ˆ [] , 82 ˆ [] , 81 ˆ []] : [t r i a n g l e (81 ˆ [] , 82 ˆ [] , 83 ˆ

[]) ,
c o l (81 ˆ [] , 82 ˆ [] , 83 ˆ [])] , [(2 ˆ 1) ˆ [83 ˆ [] , 82 ˆ [] , 81 ˆ []] :
[−(t r i a n g l e (81 ˆ [] , 82 ˆ [] , 83 ˆ [])) , 5 ˆ 1 : [(6 ˆ 1) ˆ [] : []] ,
i s o s c e l e s (81 ˆ [] , 82 ˆ [] , 83 ˆ [])] , [(8 5 ˆ 2) ˆ [] : [−(i s o s c e l e s (81 ˆ [] ,

82 ˆ [] , 83 ˆ []))]]] ,
[(3 8 ˆ 1) ˆ [83 ˆ [] , 81 ˆ [] , 82 ˆ []] : [−(c o l (81 ˆ [] , 82 ˆ [] , 83 ˆ [])) ,

41 ˆ 1 :
[(4 2 ˆ 1) ˆ [] : []] , c o l (82 ˆ [] , 81 ˆ [] , 83 ˆ [])] , [(5 2 ˆ 2) ˆ [83 ˆ [] ,

81 ˆ [] ,
82 ˆ []] : [−(c o l (82 ˆ [] , 81 ˆ [] , 83 ˆ [])) , −(congA(82 ˆ [] , 81 ˆ [] , 83 ˆ

[] , 83 ˆ
[] , 81 ˆ [] , 82 ˆ []))] , [(5 8 ˆ 3) ˆ [82 ˆ [] , 83 ˆ [] , 81 ˆ [] , 83 ˆ [] , 82

ˆ [] ,
81 ˆ []] : [congA(82 ˆ [] , 81 ˆ [] , 83 ˆ [] , 83 ˆ [] , 81 ˆ [] , 82 ˆ []) , 69 ˆ

3 :
[(7 0 ˆ 3) ˆ [] : [−(cong (82 ˆ [] , 83 ˆ [] , 83 ˆ [] , 82 ˆ []))] , (72 ˆ 3) ˆ []

:
[−(congA(81 ˆ [] , 82 ˆ [] , 83 ˆ [] , 81 ˆ [] , 83 ˆ [] , 82 ˆ []))] , (74 ˆ 3) ˆ
[] : [−(congA(81 ˆ [] , 83 ˆ [] , 82 ˆ [] , 81 ˆ [] , 82 ˆ [] , 83 ˆ []))]] , cong

(81 ˆ [] ,
82 ˆ [] , 81 ˆ [] , 83 ˆ []) , cong (81 ˆ [] , 83 ˆ [] , 81 ˆ [] , 82 ˆ [])] , [(8 7 ˆ

6) ˆ []
: [congA(81 ˆ [] , 82 ˆ [] , 83 ˆ [] , 81 ˆ [] , 83 ˆ [] , 82 ˆ [])]] , [(2 ˆ 4) ˆ

[83 ˆ [] ,
82 ˆ [] , 81 ˆ []] : [−(cong (81 ˆ [] , 82 ˆ [] , 81 ˆ [] , 83 ˆ [])) , 5 ˆ 4 : [(8

ˆ 4) ˆ []
: []] , i s o s c e l e s (81 ˆ [] , 82 ˆ [] , 83 ˆ [])] , [(8 5 ˆ 5) ˆ [] : [−(i s o s c e l e s

(81 ˆ [] ,
82 ˆ [] , 83 ˆ []))]]] , [(2 0 ˆ 4) ˆ [83 ˆ [] , 82 ˆ [] , 81 ˆ [] , 81 ˆ []] :
[−(cong (81 ˆ [] , 83 ˆ [] , 81 ˆ [] , 82 ˆ [])) , cong (81 ˆ [] , 82 ˆ [] , 81 ˆ [] ,

83 ˆ [])] ,
[16585 ˆ 16586 : [−(cong (81 ˆ [] , 82 ˆ [] , 81 ˆ [] , 83 ˆ []))]]]]]]]
End o f proo f f o r tptp−problems/ euc l id−native−eq /015 p r opo s i t i on 05 . p

Theorem Proving as Constraint Solving with Coherent Logic 55
A

.3
V

a
m

p
ir

e

[1
4
9
,

2
7
→

1
5
1
,
s
u
b
s
u
m

p
t
io

n
r
e
s
o
lu

t
io

n
]

co
n
g
A

(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
,
σ

0
(
a

0
)
,
σ

2
(
a

0
)
,
σ

1
(
a

0
)
)

¬
co

n
g
A

(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
,
σ

0
(
a

0
)
,
σ

2
(
a

0
)
,
σ

1
(
a

0
)
)

�

[2
5
→

2
7
,
c
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

is
o
sc
e
le
s
(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
)
∧
¬
co

n
g
A

(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
,
σ

0
(
a

0
)
,
σ

2
(
a

0
)
,
σ

1
(
a

0
)
)

¬
co

n
g
A

(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
,
σ

0
(
a

0
)
,
σ

2
(
a

0
)
,
σ

1
(
a

0
)
)

[1
4
8
,

2
6
→

1
4
9
,
r
e
s
o
lu

t
io

n
]

¬
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
∨

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)

is
o
sc
e
le
s
(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
)

co
n
g
A

(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
,
σ

0
(
a

0
)
,
σ

2
(
a

0
)
,
σ

1
(
a

0
)
)

[2
5
→

2
6
,
c
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

is
o
sc
e
le
s
(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
)
∧
¬
co

n
g
A

(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
,
σ

0
(
a

0
)
,
σ

2
(
a

0
)
,
σ

1
(
a

0
)
)

is
o
sc
e
le
s
(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
)

[1
4
5
,

5
0
→

1
4
8
,
s
u
b
s
u
m

p
t
io

n
r
e
s
o
lu

t
io

n
]

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
∨

co
l(
x

1
,
x

0
,
x

2
)
∨
¬
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)

¬
is
o
sc
e
le
s
(
x

1
,
x

0
,
x

2
)
∨
¬
co

l(
x

0
,
x

1
,
x

2
)

¬
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
∨

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)

[4
5
,

3
1
→

5
0
,
r
e
s
o
lu

t
io

n
]

¬
tr
ia
n
g
le

(
x

1
,
x

0
,
x

2
)
∨
¬
co

l(
x

0
,
x

1
,
x

2
)

tr
ia
n
g
le

(
x

0
,
x

1
,
x

2
)
∨
¬
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)

¬
is
o
sc
e
le
s
(
x

1
,
x

0
,
x

2
)
∨
¬
co

l(
x

0
,
x

1
,
x

2
)

[1
6
→

3
1
,
c
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
¬
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
∨

(
tr
ia
n
g
le

(
x

0
,
x

1
,
x

2
)
∧

co
n
g
(
x

0
,
x

1
,
x

0
,
x

2
)
)
)

tr
ia
n
g
le

(
x

0
,
x

1
,
x

2
)
∨
¬
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)

[3
4
,

3
3
→

4
5
,
r
e
s
o
lu

t
io

n
]

co
l(
x

1
,
x

0
,
x

2
)
∨
¬
co

l(
x

0
,
x

1
,
x

2
)

¬
co

l(
x

0
,
x

1
,
x

2
)
∨
¬
tr
ia
n
g
le

(
x

0
,
x

1
,
x

2
)

¬
tr
ia
n
g
le

(
x

1
,
x

0
,
x

2
)
∨
¬
co

l(
x

0
,
x

1
,
x

2
)

[1
7
→

3
3
,
c
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
¬
tr
ia
n
g
le

(
x

0
,
x

1
,
x

2
)
∨
¬
co

l(
x

0
,
x

1
,
x

2
)
)

¬
co

l(
x

0
,
x

1
,
x

2
)
∨
¬
tr
ia
n
g
le

(
x

0
,
x

1
,
x

2
)

[1
8
→

3
4
,
c
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
¬
co

l(
x

0
,
x

1
,
x

2
)
∨

(
co

l(
x

1
,
x

0
,
x

2
)
∧

co
l(
x

1
,
x

2
,
x

0
)
∧

co
l(
x

2
,
x

0
,
x

1
)
∧

co
l(
x

0
,
x

2
,
x

1
)
∧

co
l(
x

2
,
x

1
,
x

0
)
)
)

co
l(
x

1
,
x

0
,
x

2
)
∨
¬
co

l(
x

0
,
x

1
,
x

2
)

[1
4
4
,

3
2
→

1
4
5
,
r
e
s
o
lu

t
io

n
]

¬
co

n
g
(
x

0
,
x

1
,
x

0
,
x

2
)
∨

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
∨

co
l(
x

1
,
x

0
,
x

2
)

co
n
g
(
x

0
,
x

1
,
x

0
,
x

2
)
∨
¬
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
∨

co
l(
x

1
,
x

0
,
x

2
)
∨
¬
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)

[1
6
→

3
2
,
c
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
¬
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
∨

(
tr
ia
n
g
le

(
x

0
,
x

1
,
x

2
)
∧

co
n
g
(
x

0
,
x

1
,
x

0
,
x

2
)
)
)

co
n
g
(
x

0
,
x

1
,
x

0
,
x

2
)
∨
¬
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)

[1
4
3
,

4
0
→

1
4
4
,
s
u
b
s
u
m

p
t
io

n
r
e
s
o
lu

t
io

n
]

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
∨
¬
co

n
g
(
x

0
,
x

2
,
x

0
,
x

1
)
∨
¬
co

n
g
(
x

0
,
x

1
,
x

0
,
x

2
)
∨

co
l(
x

1
,
x

0
,
x

2
)

co
n
g
(
x

0
,
x

3
,
x

1
,
x

2
)
∨
¬
co

n
g
(
x

1
,
x

2
,
x

0
,
x

3
)

¬
co

n
g
(
x

0
,
x

1
,
x

0
,
x

2
)
∨

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
∨

co
l(
x

1
,
x

0
,
x

2
)

[2
1
→

4
0
,
c
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

(
∀
x

0
∀
x

1
∀
x

2
∀
x

3
)
(
¬
co

n
g
(
x

1
,
x

2
,
x

0
,
x

3
)
∨

co
n
g
(
x

0
,
x

3
,
x

1
,
x

2
)
)

co
n
g
(
x

0
,
x

3
,
x

1
,
x

2
)
∨
¬
co

n
g
(
x

1
,
x

2
,
x

0
,
x

3
)

56 Predrag Janičić, Julien Narboux

[4
2
,

3
0
→

1
4
3
,
r
e
s
o
lu

t
io

n
]

¬
co

n
g
A

(
x

1
,
x

0
,
x

2
,
x

4
,
x

3
,
x

5
)
∨

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

3
,
x

4
,
x

5
)
∨
¬
co

n
g
(
x

0
,
x

2
,
x

3
,
x

5
)
∨
¬
co

n
g
(
x

0
,
x

1
,
x

3
,
x

4
)

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

2
,
x

1
,
x

0
)
∨

co
l(
x

0
,
x

1
,
x

2
)

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
∨
¬
co

n
g
(
x

0
,
x

2
,
x

0
,
x

1
)
∨
¬
co

n
g
(
x

0
,
x

1
,
x

0
,
x

2
)
∨

co
l(
x

1
,
x

0
,
x

2
)

[1
5
→

3
0
,
c
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
co

l(
x

0
,
x

1
,
x

2
)
∨

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

2
,
x

1
,
x

0
)
)

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

2
,
x

1
,
x

0
)
∨

co
l(
x

0
,
x

1
,
x

2
)

[2
3
→

4
2
,
c
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

(
∀
x

0
∀
x

1
∀
x

2
∀
x

3
∀
x

4
∀
x

5
)
(
¬
co

n
g
(
x

0
,
x

1
,
x

3
,
x

4
)
∨
¬
co

n
g
(
x

0
,
x

2
,
x

3
,
x

5
)
∨
¬
co

n
g
A

(
x

1
,
x

0
,
x

2
,
x

4
,
x

3
,
x

5
)
∨

(
co

n
g
(
x

1
,
x

2
,
x

4
,
x

5
)
∧

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

3
,
x

4
,
x

5
)
∧

co
n
g
A

(
x

0
,
x

2
,
x

1
,
x

3
,
x

5
,
x

4
)
)
)

¬
co

n
g
A

(
x

1
,
x

0
,
x

2
,
x

4
,
x

3
,
x

5
)
∨

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

3
,
x

4
,
x

5
)
∨
¬
co

n
g
(
x

0
,
x

2
,
x

3
,
x

5
)
∨
¬
co

n
g
(
x

0
,
x

1
,
x

3
,
x

4
)

[2
2
→

2
3
,
fl
a
t
t
e
n
in

g
]

(
∀
x

0
∀
x

1
∀
x

2
∀
x

3
∀
x

4
∀
x

5
)
(
(
¬
co

n
g
(
x

0
,
x

1
,
x

3
,
x

4
)
∨
¬
co

n
g
(
x

0
,
x

2
,
x

3
,
x

5
)
∨
¬
co

n
g
A

(
x

1
,
x

0
,
x

2
,
x

4
,
x

3
,
x

5
)
)
∨

(
co

n
g
(
x

1
,
x

2
,
x

4
,
x

5
)
∧

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

3
,
x

4
,
x

5
)
∧

co
n
g
A

(
x

0
,
x

2
,
x

1
,
x

3
,
x

5
,
x

4
)
)
)

(
∀
x

0
∀
x

1
∀
x

2
∀
x

3
∀
x

4
∀
x

5
)
(
¬
co

n
g
(
x

0
,
x

1
,
x

3
,
x

4
)
∨
¬
co

n
g
(
x

0
,
x

2
,
x

3
,
x

5
)
∨
¬
co

n
g
A

(
x

1
,
x

0
,
x

2
,
x

4
,
x

3
,
x

5
)
∨

(
co

n
g
(
x

1
,
x

2
,
x

4
,
x

5
)
∧

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

3
,
x

4
,
x

5
)
∧

co
n
g
A

(
x

0
,
x

2
,
x

1
,
x

3
,
x

5
,
x

4
)
)
)

[1
2
→

2
2
,
e
n
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

(
∀
x

0
∀
x

1
∀
x

2
∀
x

3
∀
x

4
∀
x

5
)
(
(
co

n
g
(
x

0
,
x

1
,
x

3
,
x

4
)
∧

co
n
g
(
x

0
,
x

2
,
x

3
,
x

5
)
∧

co
n
g
A

(
x

1
,
x

0
,
x

2
,
x

4
,
x

3
,
x

5
)
)
→

(
co

n
g
(
x

1
,
x

2
,
x

4
,
x

5
)
∧

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

3
,
x

4
,
x

5
)
∧

co
n
g
A

(
x

0
,
x

2
,
x

1
,
x

3
,
x

5
,
x

4
)
)
)

(
∀
x

0
∀
x

1
∀
x

2
∀
x

3
∀
x

4
∀
x

5
)
(
(
¬
co

n
g
(
x

0
,
x

1
,
x

3
,
x

4
)
∨
¬
co

n
g
(
x

0
,
x

2
,
x

3
,
x

5
)
∨
¬
co

n
g
A

(
x

1
,
x

0
,
x

2
,
x

4
,
x

3
,
x

5
)
)
∨

(
co

n
g
(
x

1
,
x

2
,
x

4
,
x

5
)
∧

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

3
,
x

4
,
x

5
)
∧

co
n
g
A

(
x

0
,
x

2
,
x

1
,
x

3
,
x

5
,
x

4
)
)
)

[8
→

1
2
,
r
e
c
t
if
y
]

(
∀
x

0
∀
x

1
∀
x

2
∀
x

4
∀
x

5
∀
x

6
)
(
(
co

n
g
(
x

0
,
x

1
,
x

4
,
x

5
)
∧

co
n
g
(
x

0
,
x

2
,
x

4
,
x

6
)
∧

co
n
g
A

(
x

1
,
x

0
,
x

2
,
x

5
,
x

4
,
x

6
)
)
→

(
co

n
g
(
x

1
,
x

2
,
x

5
,
x

6
)
∧

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

4
,
x

5
,
x

6
)
∧

co
n
g
A

(
x

0
,
x

2
,
x

1
,
x

4
,
x

6
,
x

5
)
)
)

(
∀
x

0
∀
x

1
∀
x

2
∀
x

3
∀
x

4
∀
x

5
)
(
(
co

n
g
(
x

0
,
x

1
,
x

3
,
x

4
)
∧

co
n
g
(
x

0
,
x

2
,
x

3
,
x

5
)
∧

co
n
g
A

(
x

1
,
x

0
,
x

2
,
x

4
,
x

3
,
x

5
)
)
→

(
co

n
g
(
x

1
,
x

2
,
x

4
,
x

5
)
∧

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

3
,
x

4
,
x

5
)
∧

co
n
g
A

(
x

0
,
x

2
,
x

1
,
x

3
,
x

5
,
x

4
)
)
)

[8
,
in

p
u
t
]

(
∀
x

0
∀
x

1
∀
x

2
∀
x

4
∀
x

5
∀
x

6
)
(
(
co

n
g
(
x

0
,
x

1
,
x

4
,
x

5
)
∧

co
n
g
(
x

0
,
x

2
,
x

4
,
x

6
)
∧

co
n
g
A

(
x

1
,
x

0
,
x

2
,
x

5
,
x

4
,
x

6
)
)
→

(
co

n
g
(
x

1
,
x

2
,
x

5
,
x

6
)
∧

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

4
,
x

5
,
x

6
)
∧

co
n
g
A

(
x

0
,
x

2
,
x

1
,
x

4
,
x

6
,
x

5
)
)
)

[7
→

1
5
,
e
n
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
¬
co

l(
x

0
,
x

1
,
x

2
)
→

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

2
,
x

1
,
x

0
)
)

(
∀
x

0
∀
x

1
∀
x

2
)
(
co

l(
x

0
,
x

1
,
x

2
)
∨

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

2
,
x

1
,
x

0
)
)

[7
,
in

p
u
t
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
¬
co

l(
x

0
,
x

1
,
x

2
)
→

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

2
,
x

1
,
x

0
)
)

[3
→

2
1
,
e
n
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

(
∀
x

0
∀
x

1
∀
x

2
∀
x

3
)
(
co

n
g
(
x

1
,
x

2
,
x

0
,
x

3
)
→

co
n
g
(
x

0
,
x

3
,
x

1
,
x

2
)
)

(
∀
x

0
∀
x

1
∀
x

2
∀
x

3
)
(
¬
co

n
g
(
x

1
,
x

2
,
x

0
,
x

3
)
∨

co
n
g
(
x

0
,
x

3
,
x

1
,
x

2
)
)

[3
,
in

p
u
t
]

(
∀
x

0
∀
x

1
∀
x

2
∀
x

3
)
(
co

n
g
(
x

1
,
x

2
,
x

0
,
x

3
)
→

co
n
g
(
x

0
,
x

3
,
x

1
,
x

2
)
)

[6
→

1
8
,
e
n
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
co

l(
x

0
,
x

1
,
x

2
)
→

(
co

l(
x

1
,
x

0
,
x

2
)
∧

co
l(
x

1
,
x

2
,
x

0
)
∧

co
l(
x

2
,
x

0
,
x

1
)
∧

co
l(
x

0
,
x

2
,
x

1
)
∧

co
l(
x

2
,
x

1
,
x

0
)
)
)

(
∀
x

0
∀
x

1
∀
x

2
)
(
¬
co

l(
x

0
,
x

1
,
x

2
)
∨

(
co

l(
x

1
,
x

0
,
x

2
)
∧

co
l(
x

1
,
x

2
,
x

0
)
∧

co
l(
x

2
,
x

0
,
x

1
)
∧

co
l(
x

0
,
x

2
,
x

1
)
∧

co
l(
x

2
,
x

1
,
x

0
)
)
)

[6
,
in

p
u
t
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
co

l(
x

0
,
x

1
,
x

2
)
→

(
co

l(
x

1
,
x

0
,
x

2
)
∧

co
l(
x

1
,
x

2
,
x

0
)
∧

co
l(
x

2
,
x

0
,
x

1
)
∧

co
l(
x

0
,
x

2
,
x

1
)
∧

co
l(
x

2
,
x

1
,
x

0
)
)
)

[4
→

1
7
,
e
n
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
tr
ia
n
g
le

(
x

0
,
x

1
,
x

2
)
→
¬
co

l(
x

0
,
x

1
,
x

2
)
)

(
∀
x

0
∀
x

1
∀
x

2
)
(
¬
tr
ia
n
g
le

(
x

0
,
x

1
,
x

2
)
∨
¬
co

l(
x

0
,
x

1
,
x

2
)
)

[4
,
in

p
u
t
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
tr
ia
n
g
le

(
x

0
,
x

1
,
x

2
)
→
¬
co

l(
x

0
,
x

1
,
x

2
)
)

[1
→

1
6
,
e
n
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
→

(
tr
ia
n
g
le

(
x

0
,
x

1
,
x

2
)
∧

co
n
g
(
x

0
,
x

1
,
x

0
,
x

2
)
)
)

(
∀
x

0
∀
x

1
∀
x

2
)
(
¬
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
∨

(
tr
ia
n
g
le

(
x

0
,
x

1
,
x

2
)
∧

co
n
g
(
x

0
,
x

1
,
x

0
,
x

2
)
)
)

[1
,
in

p
u
t
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
→

(
tr
ia
n
g
le

(
x

0
,
x

1
,
x

2
)
∧

co
n
g
(
x

0
,
x

1
,
x

0
,
x

2
)
)
)

[1
3
,

2
4
→

2
5
,
s
k
o
le

m
is
a
t
io

n
]

(
∃
x

0
∃
x

1
∃
x

2
)
(
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
∧
¬
co

n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
)

(
∃
x

0
∃
x

1
∃
x

2
)
(
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
∧
¬
co

n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
)
→

(
is
o
sc
e
le
s
(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
)
∧
¬
co

n
g
A

(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
,
σ

0
(
a

0
)
,
σ

2
(
a

0
)
,
σ

1
(
a

0
)
)
)

is
o
sc
e
le
s
(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
)
∧
¬
co

n
g
A

(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
,
σ

0
(
a

0
)
,
σ

2
(
a

0
)
,
σ

1
(
a

0
)
)

[2
4
,
c
h
o
ic

e
a
x
io

m
]

(
∃
x

0
∃
x

1
∃
x

2
)
(
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
∧
¬
co

n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
)
→

(
is
o
sc
e
le
s
(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
)
∧
¬
co

n
g
A

(
σ

0
(
a

0
)
,
σ

1
(
a

0
)
,
σ

2
(
a

0
)
,
σ

0
(
a

0
)
,
σ

2
(
a

0
)
,
σ

1
(
a

0
)
)
)

Theorem Proving as Constraint Solving with Coherent Logic 57

[1
1
→

1
3
,
e
n
n
f
t
r
a
n
s
fo

r
m

a
t
io

n
]

¬
(
∀
x

0
∀
x

1
∀
x

2
)
(
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
→

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
)

(
∃
x

0
∃
x

1
∃
x

2
)
(
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
∧
¬
co

n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
)

[1
0
→

1
1
,
n
e
g
a
t
e
d

c
o
n
je

c
t
u
r
e
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
→

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
)

¬
(
∀
x

0
∀
x

1
∀
x

2
)
(
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
→

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
)

[1
0
,
in

p
u
t
]

(
∀
x

0
∀
x

1
∀
x

2
)
(
is
o
sc
e
le
s
(
x

0
,
x

1
,
x

2
)
→

co
n
g
A

(
x

0
,
x

1
,
x

2
,
x

0
,
x

2
,
x

1
)
)

58 Predrag Janičić, Julien Narboux

A.4 iProver

% SZS output s t a r t CNFRefutation f o r 015 p r opo s i t i on 05 . p

cnf (c 1 , p la in ,
(˜ congA(X0 ,X1 ,X2 ,X3 ,X4 ,X5)
| congA(X1 ,X2 ,X0 ,X4 ,X5 ,X3)
| ˜ cong (X1 ,X2 ,X4 ,X5)
| ˜ cong (X1 ,X0 ,X4 ,X3)) ,
f i l e (’ c l a u s i f i e r ’ , c 0 40)) .

cnf (c 7 , p la in ,
(cong (X0 ,X1 ,X0 ,X2) | ˜ i s o s c e l e s (X0 ,X1 ,X2)) ,
f i l e (’ c l a u s i f i e r ’ , c 0 46)) .

cnf (c 16 , negated con jec ture ,
(i s o s c e l e s (esk1 0 , esk2 0 , esk3 0)) ,
f i l e (’ c l a u s i f i e r ’ , c 0 55)) .

cnf (c 206 , p la in ,
(cong (esk1 0 , esk2 0 , esk1 0 , esk3 0)) ,
i n f e r e n c e (r e s o lu t i on , [s t a tu s (thm)] , [c 7 , c 16])) .

cn f (c 398 , p la in ,
(˜ congA(X0 , esk1 0 , esk2 0 ,X1 , esk1 0 , esk3 0)
| congA(esk1 0 , esk2 0 ,X0 , esk1 0 , esk3 0 ,X1)
| ˜ cong (esk1 0 ,X0 , esk1 0 ,X1)) ,
i n f e r e n c e (r e s o lu t i on , [s t a tu s (thm)] , [c 1 , c 206])) .

cn f (c 5 , p la in ,
(˜ cong (X0 ,X1 ,X2 ,X3) | cong (X2 ,X3 ,X0 ,X1)) ,
f i l e (’ c l a u s i f i e r ’ , c 0 44)) .

cnf (c 394 , p la in ,
(cong (esk1 0 , esk3 0 , esk1 0 , esk2 0)) ,
i n f e r e n c e (r e s o lu t i on , [s t a tu s (thm)] , [c 5 , c 206])) .

cn f (c 461 , p la in ,
(˜ congA(esk3 0 , esk1 0 , esk2 0 , esk2 0 , esk1 0 , esk3 0)
| congA(esk1 0 , esk2 0 , esk3 0 , esk1 0 , esk3 0 , esk2 0)) ,
i n f e r e n c e (r e s o lu t i on , [s t a tu s (thm)] , [c 398 , c 394])) .

cn f (c 11 , p la in ,
(˜ co l (X0 ,X1 ,X2) | co l (X1 ,X2 ,X0)) ,
f i l e (’ c l a u s i f i e r ’ , c 0 50)) .

cnf (c 138 , p la in ,
(˜ t r i a n g l e (X0 ,X1 ,X2) | t r i a n g l e (X2 ,X0 ,X1)) ,
i n f e r e n c e (def merge , [s t a tu s (esa)] , [c 11])) .

cn f (c 14 , p la in ,
(t r i a n g l e (X0 ,X1 ,X2) | ˜ i s o s c e l e s (X0 ,X1 ,X2)) ,
f i l e (’ c l a u s i f i e r ’ , c 0 53)) .

cnf (c 200 , p la in ,
(t r i a n g l e (esk1 0 , esk2 0 , esk3 0)) ,
i n f e r e n c e (r e s o lu t i on , [s t a tu s (thm)] , [c 14 , c 16])) .

cn f (c 412 , p la in ,
(t r i a n g l e (esk3 0 , esk1 0 , esk2 0)) ,
i n f e r e n c e (r e s o lu t i on , [s t a tu s (thm)] , [c 138 , c 200])) .

cn f (c 4 , p la in ,
(congA(X0 ,X1 ,X2 ,X2 ,X1 ,X0) | co l (X0 ,X1 ,X2)) ,
f i l e (’ c l a u s i f i e r ’ , c 0 43)) .

cnf (c 134 , p la in ,
(congA(X0 ,X1 ,X2 ,X2 ,X1 ,X0) | ˜ t r i a n g l e (X0 ,X1 ,X2)) ,
i n f e r e n c e (def merge , [s t a tu s (esa)] , [c 4])) .

cn f (c 435 , p la in ,
(congA(esk3 0 , esk1 0 , esk2 0 , esk2 0 , esk1 0 , esk3 0)) ,
i n f e r e n c e (r e s o lu t i on , [s t a tu s (thm)] , [c 412 , c 134])) .

cn f (c 3 , negated con jec ture ,
(˜ congA(esk1 0 , esk2 0 , esk3 0 , esk1 0 , esk3 0 , esk2 0)) ,
f i l e (’ c l a u s i f i e r ’ , c 0 42)) .

cnf (cont rad i c t i on , p la in ,
($ f a l s e) ,
i n f e r e n c e (minisat , [s t a tu s (thm)] , [c 461 , c 435 , c 3])) .

% SZS output end CNFRefutation f o r 015 p r opo s i t i o n 05 . p

Theorem Proving as Constraint Solving with Coherent Logic 59

A.5 Zenon

Theorem propo s i t i on 05 : (f o r a l l A : zenon U , (f o r a l l B : zenon U , (f o r a l l C
: zenon U ,

((i s o s c e l e s A B C)−>(congA A B C A C B))))) .
Proof .
a s s e r t (zenon L1 : f o r a l l (zenon TC n : zenon U) (zenon TB o : zenon U) (

zenon TA p : zenon U) ,
(f o r a l l B : zenon U , (f o r a l l C : zenon U , ((i s o s c e l e s zenon TA p B C)−>
((t r i a n g l e zenon TA p B C) /\(cong zenon TA p B zenon TA p C))))) −>
(˜(cong zenon TA p zenon TB o zenon TA p zenon TC n)) −> (i s o s c e l e s

zenon TA p zenon TB o zenon TC n) −> False) .
do 3 i n t r o . i n t r o s zenon Ha zenon Hb zenon Hc .
g e n e r a l i z e (zenon Ha zenon TB o) . z enon in t ro zenon H10 .
g e n e r a l i z e (zenon H10 zenon TC n) . z enon in t ro zenon H11 .
apply (zenon imply s zenon H11) ; [z enon in t ro zenon H13 | zenon in t ro

zenon H12] .
exact (zenon H13 zenon Hc) .
apply (zenon and s zenon H12) . z enon in t ro zenon H15 . z enon in t ro

zenon H14 .
exact (zenon Hb zenon H14) .
(* end o f lemma zenon L1 *)
a s s e r t (zenon L2 : f o r a l l (zenon TC n : zenon U) (zenon TB o : zenon U) (

zenon TA p : zenon U) ,
(i s o s c e l e s zenon TA p zenon TB o zenon TC n) −> (˜(cong zenon TA p zenon TB o

zenon TA p zenon TC n)) −> False) .
do 3 i n t r o . i n t r o s zenon Hc zenon Hb .
g en e r a l i z e (d e f i s o s c e l e s zenon TA p) . z enon in t ro zenon Ha .
apply (zenon L1 zenon TC n zenon TB o zenon TA p) ; t r i v i a l .
(* end o f lemma zenon L2 *)
a s s e r t (zenon L3 : f o r a l l (zenon TC n : zenon U) (zenon TB o : zenon U) (

zenon TA p : zenon U) ,
(i s o s c e l e s zenon TA p zenon TB o zenon TC n) −> (˜(cong zenon TA p zenon TC n

zenon TA p zenon TB o)) −> False) .
do 3 i n t r o . i n t r o s zenon Hc zenon H16 .
g e n e r a l i z e (lemma congruencesymmetric zenon TA p) . z enon in t ro zenon H17 .
g e n e r a l i z e (d e f i s o s c e l e s zenon TA p) . z enon in t ro zenon Ha .
g e n e r a l i z e (zenon H17 zenon TA p) . z enon in t ro zenon H18 .
g e n e r a l i z e (zenon H18 zenon TB o) . z enon in t ro zenon H19 .
g e n e r a l i z e (zenon H19 zenon TC n) . z enon in t ro zenon H1a .
apply (zenon imply s zenon H1a) ; [z enon in t ro zenon Hb | zenon in t ro

zenon H1b] .
apply (zenon L1 zenon TC n zenon TB o zenon TA p) ; t r i v i a l .
exact (zenon H16 zenon H1b) .
(* end o f lemma zenon L3 *)
apply NNPP. i n t r o zenon G .
apply (z enon no t a l l e x s (fun A : zenon U => (f o r a l l B : zenon U , (f o r a l l C :

zenon U ,
((i s o s c e l e s A B C)−>(congA A B C A C B))))) zenon G) ; [z enon in t ro zenon H1c

; id tac] .
e l im zenon H1c . z enon in t ro zenon TA p . zenon in t ro zenon H1d .
apply (z enon no t a l l e x s (fun B : zenon U => (f o r a l l C : zenon U , ((i s o s c e l e s

zenon TA p B C)−>
(congA zenon TA p B C zenon TA p C B)))) zenon H1d) ; [z enon in t ro zenon H1e ;

id tac] .
e l im zenon H1e . z enon in t ro zenon TB o . zenon in t ro zenon H1f .
apply (z enon no t a l l e x s (fun C : zenon U => ((i s o s c e l e s zenon TA p zenon TB o

C)−>
(congA zenon TA p zenon TB o C zenon TA p C zenon TB o))) zenon H1f) ; [

z enon in t ro zenon H20 ; id tac] .
e l im zenon H20 . z enon in t ro zenon TC n . zenon in t ro zenon H21 .
apply (zenon not imply s zenon H21) . z enon in t ro zenon Hc . z enon in t ro

zenon H22 .
g e n e r a l i z e (lemma ABCequalsCBA zenon TB o) . z enon in t ro zenon H23 .
g e n e r a l i z e (p ropo s i t i on 04 zenon TA p) . z enon in t ro zenon H24 .
g e n e r a l i z e (zenon H24 zenon TB o) . z enon in t ro zenon H25 .
g e n e r a l i z e (zenon H25 zenon TC n) . z enon in t ro zenon H26 .
g e n e r a l i z e (zenon H26 zenon TA p) . z enon in t ro zenon H27 .
g e n e r a l i z e (zenon H27 zenon TC n) . z enon in t ro zenon H28 .
g e n e r a l i z e (zenon H28 zenon TB o) . z enon in t ro zenon H29 .
apply (zenon imply s zenon H29) ; [z enon in t ro zenon H2b | zenon in t ro

zenon H2a] .
apply (zenon notand s zenon H2b) ; [z enon in t ro zenon Hb | zenon in t ro

zenon H2c] .
apply (zenon L2 zenon TC n zenon TB o zenon TA p) ; t r i v i a l .
apply (zenon notand s zenon H2c) ; [z enon in t ro zenon H16 | zenon in t ro

zenon H2d] .
apply (zenon L3 zenon TC n zenon TB o zenon TA p) ; t r i v i a l .
g e n e r a l i z e (zenon H23 zenon TA p) . z enon in t ro zenon H2e .
g e n e r a l i z e (zenon H2e zenon TC n) . z enon in t ro zenon H2f .
apply (zenon imply s zenon H2f) ; [z enon in t ro zenon H31 | zenon in t ro

zenon H30] .
apply zenon H31 . z enon in t ro zenon H32 .
g e n e r a l i z e (l emma co l l inea ro rde r zenon TC n) . z enon in t ro zenon H33 .
g e n e r a l i z e (zenon H33 zenon TB o) . z enon in t ro zenon H34 .
g e n e r a l i z e (l emma co l l inea ro rde r zenon TB o) . z enon in t ro zenon H35 .
g e n e r a l i z e (l emma co l l inea ro rde r zenon TA p) . z enon in t ro zenon H36 .
g e n e r a l i z e (zenon H36 zenon TC n) . z enon in t ro zenon H37 .

60 Predrag Janičić, Julien Narboux

g en e r a l i z e (zenon H34 zenon TA p) . z enon in t ro zenon H38 .
apply (zenon imply s zenon H38) ; [z enon in t ro zenon H3a | zenon in t ro

zenon H39] .
g e n e r a l i z e (zenon H35 zenon TA p) . z enon in t ro zenon H3b .
g e n e r a l i z e (zenon H37 zenon TB o) . z enon in t ro zenon H3c .
apply (zenon imply s zenon H3c) ; [z enon in t ro zenon H3e | zenon in t ro

zenon H3d] .
g e n e r a l i z e (zenon H3b zenon TC n) . z enon in t ro zenon H3f .
apply (zenon imply s zenon H3f) ; [z enon in t ro zenon H41 | zenon in t ro

zenon H40] .
exact (zenon H41 zenon H32) .
apply (zenon and s zenon H40) . z enon in t ro zenon H43 . z enon in t ro

zenon H42 .
apply (zenon and s zenon H42) . z enon in t ro zenon H45 . z enon in t ro

zenon H44 .
exact (zenon H3e zenon H45) .
apply (zenon and s zenon H3d) . z enon in t ro zenon H47 . z enon in t ro

zenon H46 .
apply (zenon and s zenon H46) . z enon in t ro zenon H49 . z enon in t ro

zenon H48 .
exact (zenon H3a zenon H49) .
apply (zenon and s zenon H39) . z enon in t ro zenon H4b . z enon in t ro

zenon H4a .
apply (zenon and s zenon H4a) . z enon in t ro zenon H32 . z enon in t ro

zenon H4c .
apply (zenon and s zenon H4c) . z enon in t ro zenon H45 . z enon in t ro

zenon H4d .
apply (zenon and s zenon H4d) . z enon in t ro zenon H47 . z enon in t ro

zenon H43 .
g e n e r a l i z e (d e f t r i a n g l e zenon TA p) . z enon in t ro zenon H4e .
g e n e r a l i z e (zenon H4e zenon TB o) . z enon in t ro zenon H4f .
g e n e r a l i z e (zenon H4f zenon TC n) . z enon in t ro zenon H50 .
apply (zenon imply s zenon H50) ; [z enon in t ro zenon H52 | zenon in t ro

zenon H51] .
g e n e r a l i z e (d e f i s o s c e l e s zenon TA p) . z enon in t ro zenon Ha .
g e n e r a l i z e (zenon Ha zenon TB o) . z enon in t ro zenon H10 .
g e n e r a l i z e (zenon H10 zenon TC n) . z enon in t ro zenon H11 .
apply (zenon imply s zenon H11) ; [z enon in t ro zenon H13 | zenon in t ro

zenon H12] .
exact (zenon H13 zenon Hc) .
apply (zenon and s zenon H12) . z enon in t ro zenon H15 . z enon in t ro

zenon H14 .
exact (zenon H52 zenon H15) .
exact (zenon H51 zenon H43) .
exact (zenon H2d zenon H30) .
apply (zenon and s zenon H2a) . z enon in t ro zenon H54 . z enon in t ro

zenon H53 .
apply (zenon and s zenon H53) . z enon in t ro zenon H56 . z enon in t ro

zenon H55 .
exact (zenon H22 zenon H56) .
Qed .

A.6 Larus

Not minimal proof:

Theorem propo s i t i on 05 : f o r a l l A B C : MyT, i s o s c e l e s A B C −> congA A B C A
C B.

Proof .
i n t r o s ca cb cc .
i n t r o s .
a s s e r t (c o l ca cb cc \/ ˜ co l ca cb cc) by applying (cn co l1b ca cb cc) .
by case s on ((co l ca cb cc) \/ (˜ co l ca cb cc)) .
− {

a s s e r t (t r i a n g l e ca cb cc) by applying (d e f i s o s c e l e s ca cb cc) .
a s s e r t (˜ co l ca cb cc) by applying (d e f t r i a n g l e ca cb cc) .
a s s e r t (c o l ca ca ca \/ ˜ co l ca ca ca) by applying (cn co l1b ca ca ca) .
by case s on ((co l ca ca ca) \/ (˜ co l ca ca ca)) .
− {

a s s e r t (False) by con t rad i c t i on on (co l ca cb cc) .
c on t rad i c t .
}

− {
a s s e r t (˜ co l ca cb cc) by applying (d e f t r i a n g l e ca cb cc) .
a s s e r t (False) by con t rad i c t i on on (co l ca cb cc) .
c on t rad i c t .
}

}
− {

a s s e r t (co l cc ca cb \/ ˜ co l cc ca cb) by applying (cn co l1b cc ca cb) .
by case s on ((co l cc ca cb) \/ (˜ co l cc ca cb)) .

Theorem Proving as Constraint Solving with Coherent Logic 61

− {
a s s e r t (co l ca cc cb) by applying (l emma co l l i nea ro rde r cc ca cb) .
a s s e r t (c o l ca cb cc) by applying (l emma co l l i nea ro rde r ca cc cb) .
a s s e r t (False) by con t rad i c t i on on (co l ca cb cc) .
c on t rad i c t .
}

− {
a s s e r t (cong ca cb ca cc) by applying (d e f i s o s c e l e s ca cb cc) .
a s s e r t (t r i a n g l e ca cb cc) by applying (d e f i s o s c e l e s ca cb cc) .
a s s e r t (cong ca cc ca cb) by applying (lemma congruencesymmetric ca ca

cb cc) .
a s s e r t (i s o s c e l e s ca cb cc) by applying (d e f i s o s c e l e s 2 ca cb cc) .
a s s e r t (congA cc ca cb cb ca cc) by applying (lemma ABCequalsCBA cc ca

cb) .
a s s e r t (congA ca cb cc ca cc cb) by applying (p ropo s i t i on 04 ca cc cb

ca cb cc) .
conclude .
}

}
Qed .

Minimal CL proof found:

Theorem propo s i t i on 05 : f o r a l l A B C : MyT, i s o s c e l e s A B C −> congA A B C A
C B.

Proof .
i n t r o s a b c .
i n t r o s .
a s s e r t (cong a b a c) by applying (d e f i s o s c e l e s a b c) .
a s s e r t (t r i a n g l e a b c) by applying (d e f i s o s c e l e s a b c) .
a s s e r t (c o l b a c \/ ˜ co l b a c) by applying (cn co l1b b a c) .
by case s on ((co l b a c) \/ (˜ co l b a c)) .
− {

a s s e r t (˜ co l a b c) by applying (d e f t r i a n g l e a b c) .
a s s e r t (c o l a b c) by applying (l emma co l l i nea ro rde r b a c) .
a s s e r t (False) by con t rad i c t i on on (co l a b c) .
c on t rad i c t .
}

− {
a s s e r t (cong a c a b) by applying (lemma congruencesymmetric a a b c) .
a s s e r t (congA b a c c a b) by applying (lemma ABCequalsCBA b a c) .
a s s e r t (congA a b c a c b) by applying (p ropo s i t i on 04 a b c a c b) .
conclude .
}

Qed .

Proof with inline lemmas:

Lemma def i sosce l e sAuxConjConc l2sat0 : f o r a l l A B C, i s o s c e l e s A B C −>
cong A C A B.

Proof .
i n l i n e l emma so l v e r .
Qed .

Hint Resolve de f i sosce l e sAuxConjConc l2sat0 : Sym.

Lemma de f i sosce l e sAuxConjConc l0sat1 : f o r a l l A B C, i s o s c e l e s A B C −> ˜
co l A B C.

Proof .
i n l i n e l emma so l v e r .
Qed .

Hint Resolve de f i sosce l e sAuxConjConc l0sat1 : Sym.

Lemma d e f t r i a n g l e s a t 2 : f o r a l l A B C, t r i a n g l e A B C −> congA A B C C B A
.

Proof .
i n l i n e l emma so l v e r .
Qed .

Hint Resolve d e f t r i a n g l e s a t 2 : Sym.

Lemma de f i so sce l e sAuxConjConc l0 sat1sat3 : f o r a l l A B C, i s o s c e l e s A B C
−> congA A B C C B A.

Proof .
i n l i n e l emma so l v e r .
Qed .

Hint Resolve de f i so sce l e sAuxConjConc l0 sat1sat3 : Sym.

62 Predrag Janičić, Julien Narboux

Theorem propo s i t i on 05 : f o r a l l A B C : MyT, i s o s c e l e s A B C −> congA A B C A
C B.

Proof .
i n t r o s a b c .
i n t r o s .
a s s e r t (i s o s c e l e s a b c) by applying (d e f i s o s c e l e s 2 a b c) .
a s s e r t (c o l b a c \/ ˜ co l b a c) by (de s t ruc t (c l a s s i c (c o l b a c)) ; auto) .
by case s on ((co l b a c) \/ (˜ co l b a c)) .
− {

a s s e r t (False) by con t rad i c t i on on (co l a b c) .
c on t rad i c t .
}

− {
a s s e r t (congA a b c a c b) by applying (p ropo s i t i on 04 a b c a c b) .
conclude .
}

Qed .

A.7 Isabelle

Isabelle 2016 generated several proof using Sledgehammer. The first proof is the most infor-
mative but we can still feel that the proof has been converted from resolution proof. Moreover,
the generated proof is not accepted by Isabelle. The second proof is accepted by not very
informative. The third proof is a one-liner calling the meeson tactic.

lemma propo s i t i on 05 :
”∀ A B C. i s o s c e l e s A B C → congA A B C A C B”

by (meson d e f i s o s c e l e s d e f t r i a n g l e lemma ABCequalsCBA
lemma co l l inea ro rde r lemma congruencesymmetric p ropo s i t i on 04)

lemma propo s i t i on 05 :
”∀ A B C. i s o s c e l e s A B C → congA A B C A C B”

proof −
have ” co l v2 0 v0 2 v1 1 ∨ congA v2 0 v0 2 v1 1 v1 1 v0 2 v2 0 ”

us ing lemma ABCequalsCBA by b l a s t
then have f1 : ”¬ i s o s c e l e s v0 2 v1 1 v2 0 ∨ congA v0 2 v1 1 v2 0 v0 2 v2 0

v1 1 ”
us ing d e f i s o s c e l e s d e f t r i a n g l e l emma co l l i nea ro rde r

lemma congruencesymmetric p ropo s i t i on 04 by b l a s t
obtain mm : : MyT and mma : : MyT and mmb : : MyT where

”(∃v0 v1 v2 . i s o s c e l e s v0 v1 v2 ∧ ¬ congA v0 v1 v2 v0 v2 v1) =
(i s o s c e l e s mm mma mmb ∧ ¬ congA mm mma mmb mm mmb mma)”

by b l a s t
then show ? t h e s i s

us ing f1 by b l a s t
qed

lemma propo s i t i on 05 :
”∀ A B C. i s o s c e l e s A B C → congA A B C A C B”

proof −
{ f i x mm : : MyT and mma : : MyT and mmb : : MyT

have ”¬ i s o s c e l e s mm mma mmb ∨ congA mm mma mmb mm mmb mma”
by (metis (no types) d e f i s o s c e l e s d e f t r i a n g l e lemma ABCequalsCBA
lemma co l l inea ro rde r lemma congruencesymmetric p ropo s i t i on 04) }

then show ? t h e s i s
by b l a s t

qed

A.8 Manual formal proof in Coq

For comparison, we provide the original Coq proof:

Theorem Proving as Constraint Solving with Coherent Logic 63

Lemma propo s i t i on 05 :
f o r a l l A B C,
i s o s c e l e s A B C −>
CongA A B C A C B.

Proof .
i n t r o s .
a s s e r t ((Tr iang le A B C /\ Cong A B A C)) by (conc lude de f i s o s c e l e s) .
a s s e r t (Cong A C A B) by (conclude lemma congruencesymmetric) .
a s s e r t (nCol A B C) by (conc lude de f Tr iang le) .
a s s e r t (˜ Col C A B) .
{
i n t r o .
a s s e r t (Col A B C) by (forward us ing l emma co l l inea ro rde r) .
c on t rad i c t .
}

a s s e r t (CongA C A B B A C) by (conclude lemma ABCequalsCBA) .
a s s e r t ((Cong C B B C /\ CongA A C B A B C /\ CongA A B C A C B))

by (conclude p ropo s i t i on 04) .
c l o s e .
Qed .

	Introduction
	Background
	Proof Encoding for Coherent Logic and Proof Search
	Implementation
	Performances and Evaluation
	Features and Perspectives
	Related Work
	Future Work
	Conclusions
	Example proofs of Proposition 5

