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Abstract

A voting rule that permits some voters to favor a candidate by providing only
the initial segment of their sincere rankings is said to be vulnerable to the trunca-
tion paradox. In this paper, we consider four models for counting truncated ballots,
optimistic, pessimistic (the most common), averaged, and round-down. Under the im-
partial anonymous culture assumption, the choice of model generally has a real impact
on truncation-paradox vulnerability, but there are exceptions. When the election is de-
cided by a one-shot scoring rule, the optimistic model is invulnerable to the truncation
paradox, but all other models are vulnerable. We identify new voting rules immune to
the truncation paradox, such as the Modified Borda Count. To obtain a more complete
picture of the impact of processing model, we assess the likelihood of the truncation
paradox in three-candidate elections with large electorates, focusing not only on one-
shot scoring rules but also scoring rules with one-by-one or below-average elimination.
Our assessment confirms that the processing model for truncated ballots may really
matter.
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1 Introduction

Since the pioneering work of Arrow (1963), Gibbard (1973) and Satterthwaite (1975), it has
been known that there is no “best” voting rule. Unless it is dictatorial, any voting rule is
manipulable, i.e. a voter or a group of voters may have a vested interest in changing their
sincere preference for an insincere one in order to get a more favorable outcome. The choice
of a voting rule should therefore not be made in ignorance of the strategic behaviors to which
the rule may be vulnerable. One way to discriminate between voting rules is to look at their
vulnerability, or the frequencies with which they are likely to lead to voting paradoxes.1

Alongside Gibbard-Satterthwaite-style strategic behavior, Brams (1982) and Fishburn
and Brams (1984) described another strategic behavior in which voters try to manipulate
“while maintaining their sincerity”: sincere truncation. Many democratic organizations and
societies have recourse to voting systems in which individuals vote by submitting a ranking
of the options (candidates) offered up for assessment. Since producing a complete ranking on
a large number of candidates is not always obvious or even possible, it is often permitted for
individuals to produce partial (incomplete or truncated) rankings, even on a small number
of candidates. When a voter provides a truncated ranking, one cannot be sure of the real
reasons for this: either he is unable to produce a complete ranking, or he finds the unranked
candidates undesirable, etc. According to Brams (1982) and Fishburn and Brams (1984),
the possibility of producing truncated rankings could be used for strategic purposes: a voter
or a group of voters can favor a preferred outcome by providing only a part of their sincere
rankings on the competing candidates, rather than listing their (entire) sincere preference
rankings on all the competing candidates. This is known as the sincere truncation paradox
or simply, the truncation paradox. The work of Brams (1982), Felsenthal (2012), Fishburn
and Brams (1983, 1984) and Nurmi (1999), among others, shows that almost all well-known
voting rules are vulnerable to the truncation paradox; among these rules are the scoring
rules, the iterative scoring rules and Condorcet consistent rules.2 The few exceptions are the
Plurality rule, Plurality runoff and Approval voting.

In this paper, we want to emphasize that the manipulability of voting rules by sincere
truncation may depend on how incomplete (sincere) preferences are treated. If this turns out
to be the case, states or organizations that, in their collective decision-making process, resort
to voting rules vulnerable to the paradox of truncation should frankly question the “best”
way to deal with incomplete preferences. Throughout the paper, we will assume that voters
are aware, prior to voting, of how the truncated ballots will be processed. This assumption
is consistent with what is done in real life.

Before going further, let us note that when the truncation paradox was introduced by
Brams (1982) and Fishburn and Brams (1984), explicit allusion was made to the fact that
when a voter truncates, only the candidate(s) mentioned on the ballot will receive points

1For an overview of the vast literature devoted to the evaluation of the probabilities of voting paradoxes,
the reader may refer to the recent books by Gehrlein and Lepelley (2011, 2017) and Diss and Merlin (2021).

2A Condorcet consistent rule is a voting system that always elects the Condorcet winner when he exists.
A Condorcet winner is a candidate who defeats each of the other candidates in pairwise comparisons.
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from that voter while the others will receive nothing. This way of managing incomplete
preferences is known in the literature as the pessimistic model (see Baumeister et al., 2012).3

The pessimistic model is used for political elections in Slovenia and in Kiribati where the
voting rule is the Borda rule.4 Although the pessimistic model seems to be the most prevalent
both in the literature and in practice, other ways of dealing with truncated preferences exist,
including the optimistic model (see Baumeister et al., 2012, Saari, 2008), the averaged model
(see Dummett, 1997) and the round-down model (see Narodytska and Walsh, 2014).5 Under
the optimistic model, if out of m candidates in the running, a voter only ranks k of them,
each of the m − k unranked candidates will be awarded the points that would have been
associated with the k + 1th position of the voter’s sincere ranking. The optimistic model is
used for the election of the leader of the Irish Green Party. Under the averaged model, each
non-ranked candidate is awarded a number of points equal to the average of the total points
that all non-ranked candidates would have received if they had been ranked. Under the
round-down model, if a voter ranks k candidates out of m, a candidate ranked jth (j ≤ k)
will receive from this voter a number of points associated with position m− (k−j)−1, while
unranked candidates will receive a number of points associated with position m. Notice
that an instance of the round-down model is the Modified Borda Count (MBC). This rule
is inspired by the Borda rule and was introduced by Emerson (2007, 2013). MBC allows
voters to express strict preferences that may be either complete or incomplete. With MBC,
when m candidates are in contention, if a voter ranks exactly k candidates (1 ≤ k ≤ m), the
candidate ranked qth will receive k − q + 1 points from that voter; the winner will be the
candidate with the highest total number of points. It is obvious that if k = m, we have the
classical Borda rule.

According to Baumeister et al. (2012), the drawback of the pessimistic model is that it
gives incentives for voters to rank only a single candidate, so that the impact of the vote
on the score of this candidate, relative to the scores of other candidates, is greatest; on the
other hand, the optimistic model rewards the voters who rank more candidates: the more
candidates one ranks, the more points (in relative terms) these candidates receive.

When considering the pessimistic model, the vulnerability of most voting rules is clearly
established, as noted above. What do we have with regards to the optimistic, the round-
down and the averaged models? As far as we know, not much. To offer a contribution
in this sense, we focus our attention on the family of one-shot scoring rules and on that
of iterative scoring rules. We will show that: all these voting rules are vulnerable to the
truncation paradox under the averaged model; if the optimistic model is used to deal with
truncated preferences, all the one-round scoring rules are immune to the truncation paradox
while this is not the case for the iterative scoring rules. We will also show that the Modified

3The pessimistic model is called the “round up model” in Narodytska and Walsh (2014).
4With m competing candidates, the Borda rule is the scoring rule which gives m−k points to a candidate

each time he is ranked kth by a voter; the winner is the candidate with the greatest total number of points.
In the Slovenian national elections, this rule is used for the reserved legislative seats for Hungarian and
Italian ethnic minorities.

5For an overview of schemes for dealing with incomplete preferences in collective decision-making, the
reader may refer among others to Baumeister et al. (2012), Kruger and Terzopoulou (2020), Menon and
Larson (2017), Narodytska and Walsh (2014) and Terzopoulou and Endriss (2021, 2019).
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Borda Count, popularized by Emerson (2007, 2013), is among the voting rules immune to
the truncation paradox.

Only a few papers have tried to assess the likelihood of the truncation paradox; they all
consider only the pessimistic model. Using simulations based on the spatial model for three-
candidate voting situations with an electorate size varying from ten to a million, Plassmann
and Tideman (2014) evaluated the likelihood of the strong truncation paradox6 by focusing,
among other things, on certain scoring rules and iterative scoring rules. They found that
the likelihood of the strong truncation paradox tends to decrease as the number of voters
increases. For their part, Kilgour et al. (2019) assessed the significance of ballot truncation
in ranked-choice elections with four, five, and six candidates using intensive simulations on
real data under both spatial and random models of voter preferences. In a more recent
paper, Kamwa and Moyouwou (2021) characterized for three-candidate elections and large
electorates, all the voting situations where the truncation paradox can occur for the whole
family of one-shot scoring rules and scoring runoff rules; for these families of rules, they com-
puted the likelihood of the truncation paradox under the impartial and anonymous culture
assumption (defined later). The present contribution stands out in that our characterization
results are not limited to the pessimistic model as in Kamwa and Moyouwou (2021), Kilgour
et al. (2019), Plassmann and Tideman (2014); we include the other models and our results
are valid regardless of the number of candidates. Moreover, our probabilistic results for
three-candidate elections provide, under each of the models, exact formulas for the limiting
probabilities of the truncation paradox.

Using the tools of computational social choice,7 Baumeister et al. (2012), Menon and
Larson (2017) and Narodytska and Walsh (2014) tried to evaluate the feasibility and the
complexity of manipulation by truncation for certain voting systems included in the family
of scoring rules and scoring runoff rules. They all tend to conclude that the computational
complexity of computing a strategic vote may vary depending on how truncated ballots are
processed. Their framework of analysis is quite different from ours since we are not interested
in the complexity or the computational aspects of truncation.

This paper demonstrates that how truncated ballots are counted may make the trunca-
tion paradox more or less likely. Moreover, we think that using the pessimistic model for
dealing with sincere truncated preferences leaves ample possibilities for strategic behavior.
Therefore, it may come as no surprise that for a given voting rule, the probability of the
truncation paradox is higher with the pessimistic model than with the optimistic, the av-
eraged or the round-down models. But in what proportion? Of what order of magnitude
are these differences in probability? In attempting to provide answers to these questions, we
consider three-candidate elections with large electorates, and for each of the models for deal-
ing with incomplete rankings we provide a characterization of the voting situations where
the truncation paradox can occur; we consider the whole family of scoring rules and the

6The strong truncation paradox occurs if one voter reports only part of his ranking, then a candidate
will win whom the voter ranks higher than the candidate who would win if the voter reported his complete
ranking of the candidates.

7Computational social choice is at the intersection of social choice theory, computer science, and the prob-
lems of multi-agent systems. It analyzes preference aggregation problems from a computational perspective.
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whole family of two types of iterative scoring rules. Then, we compute the likelihood of the
truncation paradox under the impartial and anonymous culture.

The rest of the paper is organized as follows: Section 2 is devoted to basic definitions. In
Section 3, we derive some general results on the behavior of scoring rules and iterative scoring
rules with regard to the sincere truncation under the pessimistic, the round-down and the
averaged models. Section 4 is devoted to specific results for three-candidate elections: given
an infinite number of voters having strict rankings, we characterize all the voting situations
where the truncation paradox can occur; then we provide our computation results on the
likelihood of the truncation paradox for all the scoring rules and iterative scoring rules under
each of the models. Section 5 concludes. The proofs of the propositions and the probability
representations are provided in the online supplementary material.

2 Notation and definitions

2.1 Preferences

Let N be a set of n voters (n ≥ 2) and A = {x, y, . . .} a set of m ≥ 3 candidates. Individual
preferences are linear orders, and these are complete, asymmetric, and transitive binary
relations on A. We assume that voters sincerely know their strict rankings on the candidates
in A. With m candidates, there are exactly m! linear orders P1, P2, . . . , Pm! on A. For

x, y, z ∈ A, we simply write
x
y
z

or xyz to denote the linear order on A according to which x

is strictly preferred to y, y is strictly preferred to z, and by transitivity, x is strictly preferred
to z. A voting situation is an m!-tuple π = (n1, n2, ..., nt, ..., nm!) that indicates the total
number nt of voters casting the complete linear order of type t such that

∑m!
t=1 nt = n.

For the particular case of three-candidate elections, Table 1 describes a voting situation
on A = {x, y, z}.

Table 1: Strict rankings on A = {x, y, z}

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
Nb. of voters → n1 n2 n3 n4 n5 n6

rankings
x x y y z z
y z x z x y
z y z x y x

Given x, y ∈ A and a voting situation π, we denote by nxy(π) (or simply nxy) the total
number of voters who strictly prefer x to y. If nxy > nyx, we say that candidate x majority
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dominates candidate y; or equivalently x beats y in a pairwise majority voting. In such a
case, we will simply write xMy.

2.2 Voting rules

In this paper we focus on the whole family of one-shot scoring rules and on that of scoring
rules with eliminations. Let us define all these rules.

2.2.1 One-shot scoring rules

Scoring rules are voting systems that give points to candidates according to the position they
have in voters’ rankings. For a given scoring rule, the total number of points received by a
candidate defines his score for this rule. The winner is the candidate with the highest score.
In general, with m candidates and complete strict rankings, a scoring vector is an m-tuple
w = (w1, w2, . . . , wm−1, wm) of real numbers such that w1 ≥ w2 ≥ . . . ≥ wm−1 ≥ wm with
w1 > wm. In the sequel, we will assume that wm = 0. Given π and w, each candidate receives
wk each time she is ranked kth (k = 1, 2, . . . ,m) by a voter. The score of a candidate x ∈ A
is the sum S(π,w, x) =

∑m!
t=1 ntwr(t,x) where r(t, x) is the rank of candidate x according to

voters of type t.

In three-candidate elections, one can characterize the whole family of scoring rules by
using the normalized scoring vector wλ = (1, λ, 0) with 0 ≤ λ ≤ 1. For λ = 0, we obtain the
Plurality rule, also called the First-Past-The-Post. For λ = 1, we have the Antiplurality rule
and for λ = 1

2
, we have the Borda rule. For λ = 1

4
, we get the Dowdall rule, a variant of the

Borda rule which is in use in the island nation of Nauru. From now on, we will denote by
S(π, λ, x) or simply S(π, x), the score of candidate x when the scoring vector is wλ = (1, λ, 0)
and the voting situation is π; without loss of generality, Fλ will be used to refer to a one-shot
scoring rule associated with λ in a three-candidate election.

2.2.2 Scoring rules with eliminations

Scoring rules with eliminations proceed via steps in which one or more candidates are elim-
inated at each step. We consider two main families of such rules:

� Scoring runoff rules with one-by-one eliminations: at each step, the alterna-
tive with the lowest score is eliminated. This family includes voting rules such as the
Plurality elimination rule (also called Instant Runoff Voting), Negative plurality elimi-
nation rule and the Borda elimination rule also known as the Baldwin rule (Baldwin,
1926).

� Scoring runoff rules with eliminations according to the average : at each
step, any candidate who obtains (strictly) less than the average of the scores is elimi-
nated.
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There are at least two and at most m − 1 rounds in the elimination process; thus, rules
are needed for the second and subsequent rounds, when the number of not-yet-eliminated
candidates is more than 1 but fewer than m. Sequences of scoring vectors can be used to char-
acterize scoring runoff rules. Let us denote these sequences by W = (w2, w3, . . . , wp−1, wp)
where wp is the scoring vector used when there are p (2 ≤ p ≤ m) candidates in contention;
so, wm = w while w2 = (1, 0) represents a majority duel.

For the specific case of three-candidate elections, runoff systems with one-by-one elim-
inations involve two rounds of voting such that in the first round, the candidate with the
smallest score is eliminated; and in the second round, a majority contest determines who is
the winner. Given wλ = (1, λ, 0), if the runoff system is associated with λ = 0, we get the
Plurality elimination rule; with λ = 1 we have the Negative plurality elimination rule; and
for λ = 1

2
we have the Borda elimination rule. In the sequel, we will use to F ′λ to denote

a scoring runoff rule with one-by-one eliminations associated with λ in a three-candidate
election.

In three-candidate elections, the following scenarios are viable when eliminations proceed
according to the average: (a) the ballot could stop in the first round if a single candidate
has obtained more than the average of the scores; or (b) two candidates score more than the
average and a majority contest in the second round determines the winner. If the iterative
scoring rule in this class is associated with λ = 1, this defines the Kim-Roush voting rule
(Kim and Roush, 1996), while we get the Nanson rule (Nanson, 1883) for λ = 1

2
. We will

use F̃ ′λ to refer to a scoring runoff rule with eliminations according to the average associated
with λ in a three-candidate election.

3 Dealing with truncated preferences and the trunca-

tion paradox

As stated in Section 1, the literature suggests several ways to proceed when voters submit
truncated rankings. These methods include among others the pessimistic model, the opti-
mistic model, the averaged model and the round-down model. Now let us introduce each of
these models in a formal way.

Consider N the set of voters, A = {x, y, . . .} the set of m ≥ 3 candidates and w =
(w1, w2, . . . , wm−1, wm) the scoring vector. Recall that, given w, a candidate receives wj
points each times he is ranked jth by a voter. Assume a voter who only ranks k candidates
out of the m in the running; this truncated ballot will be processed in the following manner
depending on the model considered:

7



Truncation Rule Candidate ranked jth All unranked candidates

Pessimistic wj wm
Optimistic wj wk+1

Averaged wj
1

m−k
∑m

h=k+1wh
Round-Down wm−k+j−1 wm

In this paper we assume that voters are truly engaging in strategic voting behavior by not
revealing their true preferences. It is important to draw the attention that in some voting
situations, voters would not achieve the same outcome by sincerely rating their preferred
candidate higher and strategically rating a competitor to their preferred candidate lower.
More, withholding their complete ranking can be the best strategy to achieve their objective
of manipulation. To illustrate this, let us consider the voting situation in Example 1.

Example 1. Consider the following voting situation with 3 candidates {x, y, z} and 14 vot-
ers. Let the voting rule be the Borda rule and incomplete preferences be treated according to
the pessimistic model.

2 : xyz 2 : xzy 4 : yxz 1 : yzx 2 : zxy 3 : zyx

With this profile where voters have given their full rankings, candidate y is the winner since he
gets 7.5 points while x and z respectively get 7 and 6.5 points. Assume that the voters with the
ranking xyz try to manipulate. To do so, they can change their preference to xzy (lowering
y in their preferences and increasing z): as a result, z (their worst candidate) becomes the
winner; this strategy is therefore not rationally feasible. Any other action (including even
abstention) that would remove x from the top would also be ineffective. However, if these
voters simply choose to truncate, i.e. they just indicate x−−, then candidate x becomes the
winner. Truncation is therefore the best strategy for these voters to manipulate.8

Based on Example 1, there may therefore be voting situations in which the only way
for voters to manipulate effectively is through truncation. Thus, voters are really engaging
in strategic voting behavior by withholding their complete ranking. Assume in Example 1
that we add 3 voters with xyz and that the election involves a runoff. Candidate x wins
the first round election with 10 points while y receives 9 points and z gets 6.5 points. If
the voters with the ranking xyz switch y and z, candidate y drops out after the first round
while candidates x and z contest in the runoff election. In such a scenario where voters are
interested in who their preferred candidate faces in a runoff election, truncation may not be
the best strategy.

As stated before, when the pessimistic model is used, almost all the one-shot scoring
rules (except the Plurality rule) and all the iterative scoring rules (except the Plurality
elimination rule) are vulnerable to the truncation paradox. Our goal in this section is to

8The same conclusion can be reached with similar examples (even with more candidates) for each of our
voting rules and models of truncated preferences. We can provide a Maple spreadsheet to obtain such voting
situations given a voting rule, a number of voters and a model of preference truncation.
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provide a comprehensive overview of the vulnerability of scoring rules and iterative rules to
the truncation paradox. Propositions 1 to 3 give us a picture of what is going on underneath
the other models. The proofs of these propositions are provided in the online supplementary
material.

Proposition 1. If there are at least three candidates and two voters, then under optimistic
truncation all one-shot scoring rules are immune to the truncation paradox, whereas all
iterative scoring rules except Plurality elimination are vulnerable.

Proposition 2. If there are at least three candidates and two voters, then under aver-
aged truncation all one-shot scoring rules (except the Plurality rule) and all iterative scoring
rules(except the Plurality elimination) are vulnerable to the truncation paradox.

Proposition 3. Consider a voting situation with at least three candidates and two voters.
Given the scoring vector w = (w1, w2, . . . , wm−1, wm), assume that some voters who rank
the winner at position l (2 ≤ l ≤ m − 1) in their sincere ranking truncate and now report
only k candidates (1 ≤ k ≤ l − 1) in order to favor a more preferred candidate ranked jth
(1 ≤ j ≤ k). When the round-down model is used, it is always possible to find a profile
such that this manipulation is successful under all the iterative scoring rules; under one-shot
scoring rules, the manipulation is possible only if wj − wm−k+j−1 < wl.

Since the Plurality rule and the Plurality elimination rule only take into account the first
places, it is obvious that they are not manipulable under the round-down model. In Section
1, we noticed that the Modified Borda Count (MBC) is an instance of the round-down model.
Proposition 4 comes as a corollary of Proposition 3 as it tells us that MBC can be added to
the short list of voting rules not manipulable by sincere truncation.

Proposition 4. For all voting situation with at least three candidates and two voters, the
Modified Borda Count is immune to the sincere truncation paradox.

It comes from Propositions 1 to 4 that depending on voting rules, the choice of how to
deal with incomplete preferences can be crucial. Thus, this choice should not be neglected.
To support our argument, let us now extend the analysis to the calculation of the frequencies
of appearance of the truncation paradox. To do so, we will focus, in Section 4, on the specific
case of elections with three candidates.

4 Specific results for three-candidate elections

In our setting, voters sincerely provide complete strict rankings on the competing candidates.
With three candidates, when a voter of a given type truncates, he just states his top-ranked
candidate and erases the others who are assumed to be less preferred. Then, the normalized
vector wλ = (1, λ, 0) has to be modified for truncated rankings according to the four models.
Assume that a voter with the ranking xyz truncates and submits x−−.
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� with the pessimistic model, candidate x will receive 1 point in the new voting situation
while y and z both receive zero points. Thus, for three-candidate elections, the scoring
vector applied to truncated rankings is w′λ = (1, 0, 0).

� with the optimistic model, candidate x will still receive 1 point while y and z both
will receive λ points. Here, the scoring vector applied to truncated rankings is w′λ =
(1, λ, λ).

� with the averaged model, candidate x will still receive 1 point while y and z will both
receive λ

2
points. So, the scoring vector applied to truncated rankings is w′λ = (1, λ

2
, λ

2
).

� with the round-down model, candidate x will receive λ points while y and z will both
receive no points. So, the scoring vector applied to truncated rankings is w′λ = (λ, 0, 0).

Remark 1. With three candidates, it can easily been seen that if λ = 1, the vector w′1 is the
same under both the pessimistic and the round-down models; so, for λ = 1, these two models
are equivalent. Also, the pessimistic, the averaged and the optimistic models are equivalent
when λ = 0. If λ = 1

2
, under the optimistic model, we get w′1

2

= (1, 1
2
, 1

2
) which is equivalent

to (1
2
, 0, 0): thus, for λ = 1

2
, the optimistic and the round-down models are equivalent. The

averaged and the round-down models are equivalent when λ = 2
3
.

Notice that in three-candidate elections, when some voters truncate, (i) under the pes-
simistic model: only the scores of candidates ranked second by some of these voters are
affected and diminish; (ii) under the optimistic model: only the scores of candidates ranked
last by some of these voters are affected and increase; (iii) under the averaged model: the
scores of candidates ranked second by some of these voters diminish while those of candidates
ranked last by some of these voters increase; (iv) under the round-down model: only the last
ranked candidate is not affected while the two other candidates record a decrease in their
scores.

In our framework, we assume that truncation is only possible at the first round of runoff
systems. Given π, we will denote by π ([xyz]) the voting situation obtained from π when all
voters of type 1 with the ranking xyz truncate their preferences.

4.1 Characterization results

Throughout this section, we will stipulate our results by considering a voting situation π =
(n1, n2, n3, n4, n5, n6) on A = {x, y, z} and the scoring vector wλ = (1, λ, 0). The proof of
each of the coming propositions is given in the online supplementary material.

For one-shot scoring rules, Proposition 5 identifies all the voting situations in which the
truncation paradox is possible under each of the models.

Proposition 5. Given the one-shot scoring rule associated with 0 < λ ≤ 1 and a pair {x, y}
of candidates with A \ {x, y} = {z},
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i) if x is the winner at π, the truncation paradox can occur at π in favor of y under the
pessimistic model or the averaged model if and only if y is the winner at π ([yxz, yzx]).9

ii) all the one-shot scoring rules are immune to sincere truncation when the optimistic
model is used.

iii) under the round-down model, all the one-shot scoring rules such that λ ∈ [0 1
2
] are

immune to the truncation paradox while they are not for λ ∈]1
2

1].

Given a scoring runoff rule with one-by-one eliminations associated with the scoring
vector wλ = (1, λ, 0), Propositions 6.A to 6.D characterize the voting situations where the
truncation paradox can occur. In these propositions, it is assumed on A = {x, y, z} at π
that z is eliminated in the first round and x wins against y in the second round.

Proposition 6.A. Under the pessimistic model and the averaged model, the truncation para-
dox can occur at π in favor of y if and only if at π ([yxz]), x is eliminated in the first round
and y wins the majority duel against z.

Proposition 6.B. Under the pessimistic model and the averaged model, the truncation para-
dox can occur at π in favor of z if and only if he wins the majority duel against y and x
is the first-round loser at π ([zxy]); or, if z wins the majority duel against x and y is the
first-round loser at π ([zyx]).

Proposition 6.C. Under the optimistic model, the truncation paradox can occur at π only
in favor of y if and only if y wins the majority duel against z and x is the first-round loser
at π ([yxz]). Nonetheless, the truncation paradox cannot occur at π in favor of z.

Proposition 6.D. Under the round-down model, the truncation paradox can occur at π in
favor of y if and only if y wins the majority duel against z and x is the first-round loser at
π ([yxz]). It can occur at π in favor of z if and only if λ > 1

2
and x is the first-round loser

at π ([zxy]) or y is the first-round loser at π ([zyx]).

Propositions 7.A to 7.F provide the characterization for scoring runoff rules with elimi-
nations below the average.

Proposition 7.A. Assume that x wins in the first round ( i.e., only x’s score is above the
average), the truncation paradox cannot occur under both the optimistic and the averaged
models.

Proposition 7.B. Assume that x wins in the first round ( i.e., only x’s score is above the
average), under the pessimistic model, the truncation paradox can occur in favor of one of
the losers, let us say y: if at π ([yxz]), only y now scores above the average, or if y wins the
second round against x or z.

Proposition 7.C. Assume that x wins in the first round ( i.e., only x’s score is above the
average), under the round-down model, the truncation paradox may occur in favor of one of
the losers, let us say y: if only if λ > 2

3
and that at π ([yxz]), y is now the only one to score

above the average or he wins the second round against x or z.
9This result is in line with the one obtained by Kamwa and Moyouwou (2021) for the pessimistic model.
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Proposition 7.D. Assume that x wins in the second round against y ( i.e., only z’s score is
below the average). Under both the optimistic and the averaged models, the truncation para-
dox is never possible in favor of z; it is possible at π ([yxz]) in favor of y if after truncation,
he is the only one to score above the average or if he wins the second round against z.

Proposition 7.E. Assume that x wins in the second round against y ( i.e., only z’s score is
below the average). Under the pessimistic model, the truncation paradox can occur in favor
of y if and only if at π ([yxz]), only y scores above the average or if he wins the second round
against z; it may occur in favor of z if and only if at π ([zxy]), z wins the second round
against y.

Proposition 7.F. Assume that x wins in the second round against y ( i.e., only z’s score is
below the average). Under the round-down model, the truncation paradox may occur in favor
of y if and only if λ > 1

3
and that at π ([yxz]), only y scores above the average; or, if he wins

the second round against z; it may occur in favor of z if and only if λ > 1
3

and that he wins
the second round against x at π ([zxy]) or against y at π ([zyx]).

With these characterization results, we can now turn to the evaluation of the probability
of occurrence of the truncation paradox according to the processing model.

4.2 Computation results

The impartial and anonymous culture (IAC) assumption introduced by Kuga and Hiroaki
(1974) and Gehrlein and Fishburn (1976) is one of the most widely used assumptions in
social choice theory literature when computing the likelihood of voting events. Under IAC,
the likelihood of a given event is calculated with respect to the ratio between the number
of voting situations in which the event is likely over the total number of possible voting
situations. It is known that the total number of possible voting situations in three-candidate
elections is given by the following five-degree polynomial in n: Cn

n+3!−1 = (n+5)!
n!5!

. The number
of voting situations associated with a given event can be reduced to the solutions of a
finite system of linear constraints with rational coefficients. As recently pointed out, the
appropriate mathematical tools to find these solutions are the Ehrhart polynomials (Gehrlein
and Lepelley, 2011, 2017, Lepelley et al., 2008, Pritchard and Wilson, 2007). This technique
has been widely used in numerous studies analyzing the probability of electoral events in
three-candidate elections under the IAC assumption. As we only deal with large electorates,
we follow a procedure that was developed in Cervone et al. (2005). This technique which
is based on the computation of polytope volumes has recently been used in many research
papers; see among others Diss and Gehrlein (2015, 2012), Diss et al. (2020, 2018, 2012), El
Ouafdi et al. (2020), Gehrlein et al. (2015), Kamwa (2019), Kamwa and Moyouwou (2021),
Kamwa and Valognes (2017), Moyouwou and Tchantcho (2015). In the online supplementary
material we report Propositions 8 to 10 which give the probability representations that we
obtain from this technique. Thus, in this section, we focus only on general comments about
our probabilities.
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In what follows, we will denote by Pθ (V (λ)) the limiting probability (with an infinite
number of voters) of the truncation paradox given a voting rule V (λ) (0 ≤ λ ≤ 1) when θ is
the model used for dealing with truncated ballots.

4.2.1 The case of one-shot scoring rules

From Proposition 5, we derive a system of linear inequalities which we solve by using the
same technique as in Cervone et al. (2005). From the solutions of this system of inequal-
ities, we reach Proposition 8 (see the online supplementary material) which provides the
representation forms PPe (Fλ) for the pessimistic model, PAv (Fλ) for the averaged model,
and PRd (Fλ) for the round-down model. For space constraints, we choose to skip the com-
putation details for Proposition 8, but these are available upon request. Figure 1 gives a
complete overview of the behavior of our probabilities given λ. In Table 2, we report some
numerical evaluations.

Figure 1: Vulnerability of one-shot scoring rules to the truncation paradox

Table 2: Likelihood of the truncation paradox for one-shot scoring rules

λ
Models 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pessimistic 0 0.0632 0.1315 0.2052 0.2839 0.3664 0.4497 0.5302 0.6042 0.6689 0.7222
Averaged 0 0.0315 0.0652 0.1011 0.1390 0.1778 0.2163 0.2537 0.2883 0.3180 0.3403

Round-down 0 0 0 0 0 0 0.1395 0.2937 0.4495 0.5947 0.7222
Optimistic 0 0 0 0 0 0 0 0 0 0 0
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We notice that as the number of voters tends to infinity, the limiting probability of
the truncation paradox for a one-shot scoring rule Fλ increases as λ increases from 0 (the
Plurality rule) to 1 (the Antiplurality rule). It grows from 0 to 72.22% under both the
pessimistic and the round-down model and from 0 to 34.03% under the averaged model. We
also notice that for any λ ∈]0 1], while the paradox does not occur under the optimistic
scoring model, the pessimistic model is the most likely to lead to the paradox. For λ ∈]0 2

3
[,

the round-down model is less likely to lead to the paradox than the averaged model and we
have the opposite for λ ∈]2

3
1[. For λ = 1

2
, λ = 2

3
and λ = 1, our probabilities are well in

accord with Remark 1.

The lesson that can be drawn therefore is that, for one-shot scoring rules, any manip-
ulation by truncation is futile if we resort to the optimistic model; while the widespread
pessimistic model can open up significant possibilities for electoral manipulation. Thus,
adopting the optimistic model would be an effective way to discourage strategic truncation
behavior in an electoral system where voters have to rank candidates in order to elect a
winner.

4.2.2 The case of iterative scoring rules with one-by-one eliminations

The conditions in Propositions 6.A to 6.D completely describe all the scenarios that support
possible occurrences of the truncation paradox. From these conditions, we draw some sets of
linear constraints in order to characterize all possible occurrences of the truncation paradox
under F ′λ given θ. By solving the systems with the same technique as in Cervone et al. (2005),
we obtain the representation forms provided in Proposition 9 (see the online supplementary
material).10

In Table 3, we report some numerical evaluations of PPe (F ′λ), POp (F ′λ), PAv (F ′λ), and
PRd (F ′λ), while Figure 2 gives an overview of their behavior.

10For space constraints, we omit the calculation details of Proposition 9, but they are available upon
request.
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Figure 2: Vulnerability of scoring runoff rules (with one-by-one eliminations) to the trunca-
tion paradox

Table 3: Likelihood of the truncation paradox for scoring runoff rules with one-by-one elim-
inations

λ
Models 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pessimistic 0 0.0157 0.0296 0.0414 0.0513 0.0683 0.0715 0.0882 0.1094 0.1337 0.1597
Averaged 0 0.01185 0.0229 0.0329 0.0415 0.0485 0.0548 0.0637 0.0759 0.0924 0.1100

Round-down 0 0.00072 0.0019 0.0044 0.0095 0.0208 0.0445 0.0686 0.0959 0.1265 0.1597
Optimistic 0 0.0076 0.0147 0.0202 0.0219 0.0208 0.0232 0.0279 0.0341 0.0411 0.0486

It comes out that probabilities tend to increase with λ and they are highest under each
model when λ = 1 (Antiplurality runoff). The configuration here is less clear-cut than in the
case of one-shot scoring rules. For λ ∈]0 1], the pessimistic model is the most likely to lead
to the truncation paradox; for λ ∈]0 1

2
[, the round-down model is least likely to lead to the

paradox than the optimistic model which does better than the averaged model; for λ ∈]1
2

1],
the optimistic model is the less likely to lead to the truncation paradox; for λ ∈]1

2
2
3
], the

round-down model does better than the averaged model and we get the opposite for λ ∈]2
3

1].
Hence, our probabilities are well in accord with Remark 1 when λ = 1

2
, λ = 2

3
or λ = 1.

Our results tell us that the model under which we operate does indeed have a significant
impact on the probability of the truncation paradox for scoring runoff rules with one-by-one
eliminations. The choice of a model to minimize strategic truncation depends closely on λ,
the voting rule.
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4.2.3 The case of iterative scoring rules with eliminations below the average

Using the sets of linear constraints derived from the conditions in Propositions 7.A to 7.F,
we were able to compute the likelihood of the truncation paradox for each of the four models
as displayed in Proposition 10 (see the online supplementary material).11 Figure 3 provides
a complete overview of the evolution of these probabilities for λ ∈ [0 1]. In Table 4 we report

some numerical values for PPe

(
F̃ ′λ

)
, POp

(
F̃ ′λ

)
, PRd

(
F̃ ′λ

)
, and PAv

(
F̃ ′λ

)
.

Figure 3: Vulnerability of scoring runoff rules (with eliminations below the average) to the
truncation paradox

Table 4: Likelihood of the truncation paradox for scoring runoff rules with eliminations below
the average

λ
Models 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pessimistic 0 0.0243 0.0481 0.0709 0.0945 0.1247 0.1726 0.2336 0.2986 0.3627 0.4236
Averaged 0 0.0123 0.0234 0.0331 0.0427 0.0532 0.0664 0.0841 0.1041 0.1248 0.1453

Round-down 0 0 0 0 0.0035 0.0156 0.0459 0.1075 0.2053 0.3131 0.4236
Optimistic 0 0.0076 0.0126 0.0148 0.0145 0.0156 0.0218 0.0308 0.0409 0.0513 0.0614

The configuration here is quite similar to the one we had with the scoring runoff rules
with one-by-one eliminations. The probabilities tend to increase with λ and they are highest

11Computation details are available upon request.
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under each model when λ = 1 (Kim-Roush rule). For λ ∈]0 1], the pessimistic model appears
to be the most likely to lead to the truncation paradox; for λ ∈]0 1

2
[, the round-down model

is less likely to lead to the paradox than the optimistic model which does better than the
averaged model; for λ ∈]1

2
1], the optimistic model is the less likely to lead to the truncation

paradox; for λ ∈]1
2

2
3
], the round-down model does better than the averaged model and we

get the opposite for λ ∈]2
3

1]. Our probabilities are well in accord with Remark 1 when
λ = 1

2
, λ = 2

3
and λ = 1.

It has been established that the average-elimination rules behave rather well in the face
of voting paradoxes compared to scoring rules with one-to-one eliminations and one-shot
scoring rules (Favardin and Lepelley, 2006, Kamwa, 2019, Kim and Roush, 1996, Lepelley
and Valognes, 2003). A comparison of the figures in Tables 3 and 4 shows that apart from the
optimistic model, the scoring runoff rules with eliminations below the average tend to exhibit
the truncation paradox more than scoring rules with one-to-one eliminations. However, they
do better than one-shot rules. It comes out that, to our knowledge, the truncation paradox
is one of the rare voting events where the runoff rules with eliminations according to the
average perform less well than scoring runoff rules with one-by-one eliminations.

In Table 5, we report, in summary, the probabilities for some well-known voting rules
included in our framework.

Table 5: Summary results for well-known voting rules

Voting rules

Models Plurality Antiplurality Borda Dowdall
Plurality

runoff
Antiplurality

runoff
Baldwin Nanson Kim-Roush

Pessimistic 0 0.7222 0.3664 0.1677 0 0.1597 0.0683 0.1247 0.4236
Averaged 0 0.3403 0.1778 0.0829 0 0.1100 0.0485 0.0532 0.1453

Round-down 0 0.7222 0 0 0 0.1597 0.0208 0.0156 0.4236
Optimistic 0 0 0 0 0 0.0486 0.0208 0.0156 0.0614

5 Concluding remarks

The first objective of this paper was to draw the attention of policy-makers to the fact that
the choice of how to deal with truncated preferences in elections should not be overlooked;
we have shown that this choice can encourage strategic behaviors as well as discourage them.
The other objective of this paper was to contribute to the small pool of works on the evalua-
tion of the probability of occurrence of the truncation paradox. First, we have characterized,
for any number of candidates and for one-shot scoring rules and scoring runoff rules, all
the voting situations under each of the models for dealing with incomplete preferences: the
pessimistic, the optimistic, the averaged and the round-down models. It comes out from our
analysis that the vulnerability of a voting rule to the truncation paradox depends funda-
mentally on how one deals with truncated ballots. From our general results, we also derived
that the Modified Borda Count is also a voting rule immune to the truncation paradox.
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To corroborate our result that the vulnerability of voting rules to the truncation paradox
would depend on the way truncated preferences are treated, we paid particular attention to
three-candidate elections. First, we have characterized all the voting situations under which
the truncation paradox is likely to occur. Then, we computed the limiting probability of
the truncation paradox for each of the models. From our characterization and computation
results, it comes out that the occurrence of the truncation paradox is highly dependent on
the model that is applied to truncated ballot: the pessimistic model is the model most likely
to give way to the truncation paradox compared to the other models. So, the widespread
pessimistic model is less to be recommended. Since it leaves the door open for a considerable
degree of manipulation, organizations and countries like Slovenia and Kiribati that use the
pessimistic model should abandon this model in favor of one that leaves little room for
manipulation.

The conclusions that we obtained for the case of elections with three candidates are only
a first step in a work that we plan to extend to situations with more than three candidates.
Even if this proves to be a greater challenge from a computational point of view, one way to
do it would be to follow the same methodology as Kilgour et al. (2019) or Plassmann and
Tideman (2014), based on numerical simulations from real or merely simulated data.
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6 Appendices

6.1 Proofs of Propositions 1 to 4

6.1.1 Proof of Proposition 1

Consider a voting situation π where n ≥ 2 voters have sincere strict rankings on m ≥ 3
candidates of a set A. Assume for a given scoring rule that candidate x is the winner; this
means that for all y ∈ A \ {x}, we have S(π,w, x) > S(π,w, y). Let consider a group of n̄
voters who rank candidate x at position p > 1 and who want to favor by sincere truncation
a more preferred candidate, say y, ranked at one of the positions k < p. If they truncate
after position l (k ≤ l < p) and that the optimistic model is in effect, this implies that the
score of all the candidates they rank from the top to position l+1 are not affected (including
that of the candidate they wish to favor) while the new score of candidate x is equal to
S(π,w, x) + (−wp + wl+1)n̄. Since by definition wl+1 ≥ wp, candidate x records an increase
of his score and he is still get more than y. Thus, when the optimistic model is used to deal
with truncated preferences, no one-shot scoring rule is manipulable by sincere truncation.

Now, let us assume the following profile on a the set A = {x, y, z} with 6r − 3 voters
(r ∈ N and r > 4).

r + 1 r − 2 r − 1 r r r − 1
x x y y z z
y z x z x y
z y z x y x

Consider iterative scoring rules with one-by-one eliminations (∀λ ∈]0 1]). One can check
that z is eliminated at the first round and x wins the majority duel against y. Now, assume
that the r − 1 voters with the ranking yxz truncate. If the optimistic model is used to
deal with the truncated ballot, we note that x is now rushed out at the first round and y
wins the majority duel against z. So, it always possible to build a voting situation where
the truncation paradox occurs for a given iterative scoring rule with one-by-one eliminations
under the optimistic model. Instead, if we consider all the iterative rules with eliminations
on the average (∀λ ∈]0 1]), x and y are qualified for the second round since they score above
the average and x wins this round. When the r − 1 voters with the ranking yxz truncate,
if the optimistic model is assumed, x is now the only one scoring below the average and
y defeats z in the last round. Thus, all iterative rules with eliminations according to the
average are vulnerable to the truncation paradox when the optimistic model is assumed.

6.1.2 Proof of Proposition 2

Let us assume the following profile on a the set A = {x, y, z} with 6r − 3 voters (r ∈ N and
r > 2).
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r + 1 r − 2 r r − 1 r r − 1
x x y y z z
y z x z x y
z y z x y x

With this profile, one can easily check that when the r voters with the ranking yxz truncate,
the truncation paradox occurs for all the one-shot scoring rules (∀λ ∈]0 1]) and for all the
iterative rules with eliminations according to the average both under the pessimistic model
and the averaged model. The profile provided in the proof of Proposition 1 can be used to
show that all the runoff rules with one-by-one eliminations are vulnerable to the truncation
paradox when the averaged model is used to deal with truncated ballots.

6.1.3 Proof of Proposition 3

Given a voting situation π and a scoring vector w = (w1, w2, . . . , wm−1, wm), assume a one-
shot scoring rule such that candidate x is the winner and that nt voters who rank the x
at position l (2 ≤ l ≤ m − 1) in their sincere ranking truncate and now report only k
candidates (1 ≤ k ≤ l − 1) in order to favor a more preferred candidate ranked in their
sincere ranking. After truncation, if the round-down model is assumed, the new scores of
the candidates in the truncated voting situation π′ are as follows: for a candidate y sincerely
ranked jth (1 ≤ j ≤ k) by these voters, we get S(π′, w, y) = S(π,w, y)− (wj −wm−k+j−1)nt
and S(π′, w, z) = S(π,w, z) − wjnt for all candidate z ranked pth (k + 1 ≤ p ≤ m). The
truncation paradox occurs if a candidate between the top and the position l−1 of the sincere
ranking wins.

Given the new scores, if a candidate y ranked jth such that k+ 1 ≤ j ≤ l−1) now scores
better than x, this means that

S(π′, w, x) < S(π′, w, y) ⇒ S(π,w, x)− wlnt < S(π,w, y)− wjnt
⇒ −wlnt + wjnt < S(π,w, y)− S(π,w, x)

⇒ −wlnt + wjnt < 0 since S(π,w, y) < S(π,w, x)

⇒ wj < wl

This last inequality contradicts that y is better ranked than x; so, after truncation, a can-
didate y ranked jth with k + 1 ≤ j ≤ l − 1 cannot be favored. Let us now assume that a
candidate y ranked jth (j ≤ k) scores better than x; this means that

S(π′, w, x) < S(π′, w, y) ⇒ S(π,w, x)− wlnt < S(π,w, y)− (wj − wm−k+j−1)nt

⇒ −wlnt + (wj − wm−k+j−1)nt < S(π,w, y)− S(π,w, x)

⇒ −wlnt + (wj − wm−k+j−1)nt < 0 since S(π,w, y) < S(π,w, x)

⇒ wj − wm−k+j−1 < wl

Thus, following this last inequality, a candidate may be favoured under a one-shot scoring rule
if wj −wm−k+j−1 < wl. Assuming wj −wm−k+j−1 > wl, one can easily reach a contradiction
with S(π′, w, x) < S(π′, w, y). So, the manipulation is possible only if wj − wm−k+j−1 < wl.
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In order to show that the truncation paradox can affect scoring runoff rules with elimi-
nations, let us just exhibit a profile showing that this can be the case.

Consider the following profile on a the set A = {x, y, z} with 4r − 5 voters (r ∈ N and
r > 4).

r − 1 r − 3 r r − 1
x y y z
y x z x
z z x y

Assume that the voting rule is a scoring runoff rule with one-by-one eliminations with the
normalized scoring vector (1, λ, 0). For all 0 < λ ≤ 1, the winner in this profile is candidate
x who defeats candidate y in the second round since the scores at the first round are as
follow: S(π, x) = r − 1 + λ(2r − 4), S(π, y) = 2r − 3 + λ(r − 1) and S(π, z) = r − 1 + λr.
Assume that all the voters with the ranking yxz truncate and that the round-down model
is assumed; the new scores are now r− 1 + λ(r− 1) for x, r+ λ(2r− 4) for y while that of z
remains unchanged. It follows that ∀λ ∈]0 1], x now gets the lowest score and is rushed out
and y wins the majority contest against z. So, it is always possible to find a profile where
the truncation paradox is possible when the round-down model is assumed.

So, when the round-down model is assumed, it is always possible to find a profile such that
this manipulation is successful under the scoring runoff rules with one-by-one eliminations
or with eliminations according to the average.

6.1.4 Proof of Proposition 4

Under MBC as under the Borda rule, the scoring vector w = (w1, w2, . . . , wm−1, wm) is such
that for two candidates ranked pth and p + 1th, we get wp − wp+1 = 1 (1 ≤ p ≤ m) and
wp = w1 − p with w1 = m. Assume that the truncation paradox is possible; so, it follows
from Proposition 3 that

wj − wm−k+j−1 < wl ⇒ w1 − j − (w1 − (m− k + j − 1)) < w1 − l
⇒ w1 − j − w1 +m− k + j − 1 < w1 − l
⇒ m− j −m+m− k + j − 1 < m− l
⇒ −k − 1 < −l
⇒ k + 1 > l

This last inequality contradicts that 1 ≤ k ≤ l − 1. The proof is completed.
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6.2 Proofs of Propositions 5 to 7.F

6.2.1 Proof of Proposition 5

The proof for the pessimistic model can been drawn from Kamwa and Moyouwou (2021).
The proof for the average model follows the same scheme as that of the pessimistic model;
so, we skip it.12 The proof of (iii) directly comes from Prop. 1. When the round-down model
is assumed, we derive from the condition in Proposition 3 (with j = 1, k = 1 and l = 2) that
the truncation paradox occurs only if 1− λ < λ which implies that λ > 1

2
.

6.2.2 Proof of Proposition 6.A to 6.D

We choose to skip the proof for the averaged model as it follows the same scheme as that
of the pessimistic model that one can find in appendix C of Kamwa and Moyouwou (2021).
So, we only need to focus on the proofs for the optimistic and the round-down models.
Consider a voting situation π = (n1, n2, n3, n4, n5, n6) on A and a runoff rule associated with
0 < λ ≤ 1, where x is the winner, y is the challenger, and z is the first-round loser.

� Let us assume the optimistic model.

By truncating their true preferences, voters who strictly prefer y to x (those with the ranking
yxz) increase the score of z while those of x and y remain unchanged in such a way that x is
ruled out in the first round at π ([yxz]) and y wins the second round against z. Hence, the
truncation paradox occurs in favor of y. This is not possible if voters with the ranking yzx
wanted to favor y since in the first round of π ([yzx]), the score of x increases while those of
y and z remain unchanged and x still defeats y in the second round.

Assume that voters who strictly prefer z to x want to engage in manipulation. If those
with the ranking zxy truncate, this increases the score of y while those of x and z are
unchanged: z is ruled out in the first round at π ([zxy]). If those with the ranking zyx
truncate, it does not affect the scores of y and z while that of x increases: z is ruled out in
the first round at π ([zyx]). Thus, there is no way to favor candidate z.

� Let us now assume the round-down model.

In order to favor y, if voters the ranking yxz truncate, the scores of x and y decrease while
that of z remains unchanged. If the number of strategic voters is sufficient in such a way
that x is ruled out in the first round at π ([yxz]) then y wins the second round against z.
Hence, the truncation paradox occurs in favor of y. This is not possible when voters with
the ranking yzx truncate since the score of x will remain unchanged.

12Nonetheless, this is still available upon request.
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If after truncation, z wins this means that he wins the majority duel either against x
or against y. He wins against x if when voters with zyx truncates his score which is still
lower than that of x, is now greater than that y; then, in the first round at π ([zyx]), we get
S(π, z) − (1 − λ)n6 > S(π, y) − λ)n6 which leads to S(π, z) − S(π, y) > (1 − λ)n6 − λ)n6;
since S(π, y) > S(π, z) at π, it follows that (1− λ)n6 − λ)n6 < 0 which implies that λ > 1

2
.

In a similar way, z wins against y if when voters with zxy truncates his score which is still
lower than that of y, is now greater than that x: S(π, z)− (1− λ)n5 > S(π, x)− λ)n5 which
also leads to λ > 1

2
. So, it is only possible to favor z if λ > 1

2
.

6.2.3 Proof of Proposition 7.A to 7.F

Here, we only focus on the proof of the first part of the proposition; that of the second part fol-
lows an almost similar approach. Let us consider a voting situation π = (n1, n2, n3, n4, n5, n6)
on A = {x, y, z} and a scoring rule F̃ ′λ associated with the scoring vector wλ = (1, λ, 0).

Assume that x wins at the first round. By definition, we get: S(π, λ, x) ≥ T (π),

S(π, λ, y) < T (π) and S(π, λ, z) < T (π) with T (π) = S(π,λ,x)+S(π,λ,y)+S(π,λ,z)
3

.

Assume that voters with the ranking yxz truncate in order to favor y; if the the optimistic
model is assumed, it follows that the scores of x and y are still unchanged while that of z
increases by λn3. The average of the scores at π ([yxz]) is now equal to T (π) + λ

3
n3. Since

S(π, λ, y) < T (π) it follows that S(π, λ, y) < T (π) + λ
3
n3: candidate y is certainly rushed

out at the first run. Also in order to favor candidate y, if voters with yzx truncates, it is
easy to see that this is unfruitful at π ([yzx]). We reach the same conclusion if one to favor
candidate z at π ([zxy]) or π ([zyx]). So, the truncation paradox is not liable under the
optimistic model.

If the averaged model is assumed when voters with the ranking yxz (resp. yzx) truncate,
it follows at π ([yxz]) (resp. at π ([yzx])) that the score of y is still unchanged while that of
z increases (resp. decreases) by λ

2
n3 (resp. by λ

2
n4) and that of x decreases (resp. increases)

by λ
2
n3 (resp. by λ

2
n4). The average of the scores at π ([yxz]) (resp. at π ([yzx])) remains the

same as at π: in fact, x remains the winner. We get the same conclusion if one tries to favor
z at π ([zxy]) or at π ([zxy]). So, the truncation paradox is not liable under the averaged
model.

Let us assume the pessimistic model and that voters with the ranking yxz truncate. At
π ([yxz]), it follows that one the score of x decreases by λn3 and the new average of the
scores is T ′ such that T ′ = T (π)− λn3

3
. If the set of voters who truncate is enough, candidate

y wins at π ([yxz]) if he scores above T ′ : either he is the only one in this case or he wins
the majority duel against one of his competitors meeting this condition. At π ([zxy]), we get
the same conclusion in favor of z.

Under the round-down model, if the voters with the ranking yxz truncate in order to
favor y, it follows at π ([yxz]) that the new score of x is S(π, λ, x) − λn3, that of y is
S(π, λ, y) − (1 − λ)n3 while the score of z remains unchanged. So, the new average of the
scores is T ′ = T (π) − n3

3
. The truncation favors b if he is the only one to score above
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T ′ or he beats x or z in the second round. In all the case, it requires b to score above
T ′ at π ([yxz]); this means that S(π, λ, a) − (1 − λ)n3 > T (π) − n3

3
which is equivalent to

S(π, λ, y) − T (π) > (1 − λ)n3 − n3

3
. Since at π we get T (π) > S(π, λ, y), this implies that

0 > (1− λ)n3 − n3

3
; we then derive that λ > 2

3
. At π ([zxy]), we get the same conclusion in

favor of z.

6.3 Probability representations

Proposition 8. For three-candidate elections and the IAC assumption, the likelihood of the
truncation paradox for a given scoring rule Fλ (λ ∈ [0 1]) under respectively the optimistic,
the average, and the pessimistic models is given by:

POp (Fλ) = 0, if 0 ≤ λ ≤ 1.

PAv (Fλ) =




84λ12 − 265λ11 − 591λ10 − 11351λ9 + 126949λ8

−517521λ7 + 1185665λ6 − 1720474λ5

+1636446λ4 − 999044λ3 + 356664λ2 − 56592λ


9(4−3λ)(−6+7λ)(−7λ+5λ2+6)(−3+2λ)(−6+λ)(λ−1)2(λ−2)(λ−4) , if 0 < λ ≤ 1

2 ;


24λ12 + 106λ11 − 2836λ10 + 16430λ9 − 56040λ8

+136282λ7 − 245600λ6 + 322203λ5 − 297754λ4

+184484λ3 − 69752λ2 + 13632λ− 1152


18λ2(λ−1)(6−λ)(−4+3λ)(λ−2)(−7λ+5λ2+6)(−3+2λ)(λ−4) , if 1

2 ≤ λ ≤ 2−
√

2;

 12λ10 − 298λ9 + 3214λ8 − 15754λ7 − 3196λ+ 336
40654λ6 − 62044λ5 + 59581λ4 − 36013λ3 + 13312λ2


18λ2(λ−5)(4−3λ)(−7λ+5λ2+6)(−3+λ)(λ−2) , if 2−

√
2 ≤ λ ≤ 1.

PPe (Fλ) =



 4153λ4 − 1234λ5 − 200λ6 + 260λ7 − 50λ8

−10λ9 − 1179λ− 5995λ3 + 4243λ2 + 4λ10


18 (3+λ)(−3+2λ)(3−2λ+λ2)(−1+λ)2(−2+λ)2

, if 0 < λ ≤ 1
2 ;

 −1733λ4 + 806λ5 − 62λ6 − 106λ7 + 34λ8

+2λ9 + 1598λ3 − 12 + 128λ− 551λ2


18λ2(−2+λ)2(3+λ)(3−2λ+λ2)

, if 1
2 < λ ≤ 1.
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PRd (Fλ) =



0 if 0 < λ ≤ 1
2 ;


(−1 + 2λ) (90λ15 − 3006λ14 + 7754λ13 + 4282λ12 − 33018λ11

+32929λ10 + 3710λ9 − 17631λ8 − 6216λ7 + 25986λ6

−20610λ5 + 5972λ4 + 586λ3 − 780λ2 + 184λ− 16)


9 (λ−1)2(−2+5λ)(λ+1)2(2−3λ+4λ2)λ2(−4+λ2)(9λ2−1) , if 1

2 < λ ≤ −1+
√
5

2 ;


360λ16 − 10944λ15 + 434λ14 + 100375λ13

−124879λ12 − 71483λ11 + 112454λ10 + 52918λ9

−143388λ8 + 61488λ7 + 35388λ6 − 40675λ5

+10489λ4 + 1745λ3 − 1334λ2 + 212λ− 8


 9 (λ+ 1)

2 (
3λ− 1 + λ2

) (
2− 3λ+ 4λ2

)
(−2 + 5λ) (−2 + λ)λ2 (1 + 2λ)

(
9λ2 − 1

)  if −1+
√
5

2 < λ ≤ 1.

Proposition 9. Consider the scoring runoff rule F ′λ associated with the scoring vector
wλ = (1, λ, 0) with 0 < λ ≤ 1. As the total number n of voters tends to infinity, the
limiting probability P· (F

′
λ) of observing a voting situation in which the truncation paradox

may occur is given by :

PPe (F ′λ) =



−



996 096λ20 − 25 010 368λ19 + 286 101 152λ18 − 2000 804 220λ17

+9664 972 152λ16 − 34 453 144 125λ15 + 94 322 255 778λ14

−203 353 434 975λ13 + 350 716 379 871λ12 − 488 312 722 095λ11

+551 142 449 552λ10 − 504 159 008 281λ9 + 372 136 194 567λ8

−219 653 377 992λ7 + 102 140 474 607λ6 − 36 558 733 185λ5

+9711 109 602λ4 − 1801 641 852λ3 + 208 222 083λ2 − 11 278 359λ


 96 (λ− 1)

2
(λ− 2)

2
(2λ− 3)

2
(4λ− 3)

2
(5λ− 3)

2 (−2λ+ λ2 + 3
)(

−5λ+ λ2 + 3
)2 (−4λ+ 2λ2 + 3

) (
−7λ+ 3λ2 + 3

)  if 0 ≤ λ ≤ 1
2


132λ+ 9346λ2 − 55 961λ3 + 161 587λ4 − 283 660λ5

+330 502λ6 − 265 921λ7 + 149 437λ8 − 57 766λ9

+14 560λ10 − 2112λ11 + 128λ12 − 180


288λ3(λ−2)2(3−2λ)(−2λ+λ2+3)(−4λ+2λ2+3)

if 1
2 ≤ λ ≤ 1

PRd (F ′λ) =



 2266λ7 − 3843λ6 + 4142λ5 − 2947λ4 − 764λ8

+1368λ3 − 386λ2 + 108λ9 + 52λ


(

576 (2− λ (λ− 1))
3 (

3λ2 + 2− 4λ
) (

5λ2 − 5λ+ 2
)

(−2 + 3λ)
) if 0 ≤ λ ≤ 1

2

 576λ12 − 4176λ11 + 11624λ10 − 14085λ9 + 1243λ8 + 18200λ7

−24797λ6 + 16760λ5 − 6554λ4 + 1472λ3 − 188λ2 + 19λ− 2


144 (−8λ2+3λ3−2+8λ)(3λ−1)λ3(2−λ)(λ+1) if 1

2 ≤ λ ≤ 1
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POp (F ′λ) =




−10611λ+ 550072λ6 + 668616λ4 − 785172λ5

−213643λ7 + 36244λ8 + 92682λ2 − 337434λ3

−3170λ9 + 3296λ10 − 896λ11


864 (2λ2−4λ+3)(λ−1)3(−3+4λ)(−3+7λ)(−3+λ)(−2+λ)

if 0 ≤ λ ≤ 1
3

 54 + 32322λ4 − 17544λ3 − 35958λ5 + 25142λ6 − 11246λ7

+3188λ8 − 460λ9 − 80λ10 + 32λ11 + 5391λ2 − 837λ


864 (λ−1)3(2λ2−4λ+3)(3−λ)(−2+λ)λ2 if 1

3 ≤ λ ≤
1
2

 −1173λ− 1024λ5 − 11745λ3 − 3120λ8 + 224λ9

+126 + 5048λ2 + 12236λ7 − 15400λ6 + 13484λ4


1728 (2−λ)(λ+1)λ3(−3+7λ)(−3+λ) if 1

2 ≤ λ ≤ 1
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PAv (F ′λ) =





33216569100λ28 − 578325461985λ27

+9304334549790λ26 − 108047886220115λ25

+764944151235819λ24 − 3274064370679568λ23

+7376416701981204λ22 + 3478879519154483λ21

−99656142723761351λ20 + 449206760805885263λ19

−1299296723118306018λ18 + 2820724443926997914λ17

−4863903300584438368λ16 + 6849485494037368872λ15

−8000357606231143984λ14 + 7819248718632596480λ13

−6423381226780596592λ12 + 4440315222181111920λ11

−2578541106422978592λ10 + 1252158152437843488λ9

−504536511000085632λ8 + 166715248881851136λ7

−44409266486558208λ6 + 9300309071357952λ5

−1474068154705920λ4 + 166182281994240λ3

−11872009617408λ2 + 403914055680λ




864
(
13λ2 − 18λ+ 6

)
(−3 + 5λ)

(
λ2 + 3λ− 2

)
(−2 + 3λ)

2 (−10λ+ 5λ2 + 6
)

(3λ− 4)
(−3 + 4λ)

(
9λ2 − 16λ+ 6

) (
6− 11λ+ λ2

)
(−6 + 11λ)

2
(λ− 1)

3
(−2 + λ)(

λ2 − 4λ+ 2
) (
λ2 − 2λ+ 2

)
(5λ− 6)

2



if 0 ≤ λ ≤ 1
2


960λ12 − 15683λ11 + 97885λ10 − 336844λ9

+734471λ8 − 1075974λ7 + 1076390λ6 − 721992λ5

+302272λ4 − 61008λ3 − 4912λ2 + 5216λ− 768


864 (−10λ+5λ2+6)(3λ−4)λ3(λ2−2λ+2)(2−λ)(λ−1) if 1

2 ≤ λ ≤
2
3



153435744000λ22 − 1080861013100λ21

−5207821958625λ20 + 70974670832542λ19

−269023597095227λ18 + 355035781965385λ17

+793163784390930λ16 − 4915171010844029λ15

+12479613659707154λ14 − 20862380675468342λ13

+25549374150267504λ12 − 23940244324060448λ11

+17531522545688352λ10 − 10137854810435680λ9

+4647403823436288λ8 − 1688760012632192λ7

+485435977494528λ6 − 110225975092224λ5

+19800884477952λ4 − 2817139378176λ3

+310563569664λ2 − 23999348736λ
+955514880




1728 (λ+ 6)
2

(5λ− 4) (−3 + 5λ) (5λ− 1) (9λ− 5)

(7λ− 4)
(
37λ2 − 42λ+ 12

)
(17λ− 10) (−6 + 11λ)

2

(−1 + 2λ)λ3 (1− λ) (−2 + λ)
(
λ2 − 2λ+ 2

)


if 2
3 ≤ λ ≤ −1 +

√
3



15343574400λ21 − 11373633920λ20 − 1050657135517λ19

+2490627167603λ18 + 12639372321284λ17 − 47275784649312λ16

+11356839708139λ15 + 190308912327531λ14 − 426342123649578λ13

+415729617310034λ12 − 110189736092600λ11 − 225675759314224λ10

+351934483916640λ9 − 278570652123472λ8 + 149018782047360λ7

−58376289741312λ6 + 17394914835072λ5 − 4029648632064λ4

+727429800960λ3 − 98372413440λ2 + 8843986944λ− 388177920




1728 (λ+ 6)
2 (

37λ2 − 42λ+ 12
)

(3− 5λ)

(17λ− 10)
(
λ2 + 3λ− 2

)
(λ+ 1) (−6 + 11λ)

2(
λ2 − 4λ+ 2

)
λ3 (7λ− 4) (9λ− 5) (5λ− 1)


if − 1 +

√
3 ≤ λ ≤ 1
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Proposition 10. Consider the scoring runoff rule associated with the scoring vector wλ =
(1, λ, 0) with 0 < λ ≤ 1 and where eliminations proceed according to the average. As the total
number n of voters tends to infinity, the limiting probability of observing a voting situation
in which the truncation paradox may occur is given by :

PAv

(
F̃ ′λ

)
=




(2880λ12 − 16512λ11 + 35217λ10 − 164910λ9

+980311λ8 − 3247752λ7 + 6419912λ6 − 8127852λ5

+6766612λ4 − 3684952λ3 + 1263440λ2 − 247520λ+ 21120)λ


5184(−3λ+2)(λ2+2−2λ)(λ2−4λ+2)(λ−2)(−1+λ)4(5λ−2) if 0 ≤ λ ≤ 2

7


192λ11 − 512λ10 − 4165λ9

+24304λ8 − 59575λ7 + 85782λ6 − 79784λ5

+50732λ4 − 22860λ3 + 7040λ2 − 1216λ+ 64


5184λ(λ−1)4(−λ2+4λ−2)(λ2+2−2λ) if 2

7 ≤ λ ≤
1
2


640λ12 − 3616λ11 + 3664λ10 + 12871λ9

−44588λ8 + 62770λ7 − 52659λ6 + 36661λ5

−27394λ4 + 17106λ3 − 6780λ2 + 1456λ− 128


5184(−5λ+2)(λ2+2−2λ)(−1+λ)2λ4 if 1

2 ≤ λ ≤
2
3


384λ13 − 4064λ12 + 13552λ11 − 9903λ10

−36474λ9 + 91171λ8 − 55009λ7 − 75181λ6

+160347λ5 − 129347λ4 + 56934λ3 − 14114λ2

+1780λ− 80


5184λ3(λ−1)2(1−3λ)(λ2−2λ+2)(λ2−5λ+2) if 2

3 ≤ λ ≤ −1 +
√

3


384λ12 − 4064λ11 + 11632λ10 + 5044λ9

−56144λ8 + 35238λ7 + 47947λ6 − 74683λ5

+42124λ4 − 12446λ3 + 2244λ2 − 320λ+ 32


5184(λ2−4λ+2)(−3λ+1)(−5λ+λ2+2)λ4 if − 1 +

√
3 ≤ λ ≤ 1
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POp

(
F̃ ′λ

)
=





(2007040λ16 − 31567968λ15 + 254487636λ14

−1673042594λ13 + 7891593436λ12 − 25242771985λ11

+56041630779λ10 − 89218569797λ9 + 104324126150λ8

−90845074086λ7 + 59183341011λ6 − 28718089245λ5

+10225905993λ4 − 2593961334λ3 + 443687625λ2

−45867951λ+ 2165130)λ


 432

(
−7λ+ 3 + λ2

)
(7λ− 3)

2
(8λ− 3) (−1 + λ)

4

(−3 + λ)
(
3 + 2λ2 − 4λ

)
(2λ− 3) (4λ− 3)

2
(−3 + 5λ)

 if 0 ≤ λ ≤ 1
4


25088λ15 + 209394λ14 − 6426216λ13 + 40984961λ12

−135428896λ11 + 282711391λ10 − 405851583λ9 + 418674743λ8

−317925857λ7 + 179789199λ6 − 75771612λ5 + 23495913λ4

−5184162λ3 + 759618λ2 − 64152λ+ 2187


 432λ

(
−7λ+ 3 + λ2

)
(7λ− 3)

2
(−1 + λ)

4(
3 + 2λ2 − 4λ

)
(−3 + λ) (4λ− 3)

2

 if 1
4 ≤ λ ≤

1
3


32λ12 − 552λ11 + 3636λ10 − 13918λ9

+33134λ8 − 51899λ7 + 55638λ6 − 42130λ5

+23152λ4 − 9234λ3 + 2520λ2 − 405λ+ 27


432(−7λ+3+λ2)(−3+λ)(3+2λ2−4λ)λ2(−1+λ)4

if 1
3 ≤ λ ≤ −1 +

√
2


64λ12 − 606λ11 + 2412λ10 − 5345λ9

+7132λ8 − 5470λ7 + 1662λ6 + 664λ5

−538λ4 − 138λ3 + 234λ2 − 81λ+ 9


432(1+2λ)(−3+λ)(3+2λ2−4λ)λ3(−1+λ)4

if − 1 +
√

2 ≤ λ ≤ 1
2


301056λ16 − 3833088λ15 + 13750656λ14 − 6734912λ13

−32548680λ12 + 4100776λ11 + 77490304λ10 − 39137456λ9

−54511130λ8 + 47314071λ7 + 7194988λ6 − 20050104λ5

+6805017λ4 + 521721λ3 − 819072λ2 + 184680λ− 13851


 31104

(
−7λ+ 3 + λ2

)
(7λ− 3)

2
(8λ− 3)

(1 + 2λ) (3− λ)λ4
(
−1 + λ2

)  if 1
2 ≤ λ ≤

3
5


1505280λ15 − 9230592λ14 + 7289472λ13 + 36742208λ12

−45946536λ11 − 19131136λ10 + 37859624λ9 − 4031512λ8

+1437614λ7 − 15432807λ6 + 10976459λ5 − 956646λ4

−1752966λ3 + 804843λ2 − 142155λ+ 9234


 31104 (1 + 2λ) (5λ− 2) (8λ− 3)

(7λ− 3)
2

(3− λ)λ4
(
−1 + λ2

)  if 3
5 ≤ λ ≤

3
4


1505280λ16 − 13558272λ15 + 31075584λ14 + 23913152λ13

−107966000λ12 − 66112144λ11 + 241896312λ10 − 86654760λ9

−115938132λ8 + 116580298λ7 − 34211530λ6 − 7077125λ5

+10409724λ4 − 4974300λ3 + 1430676λ2 − 236925λ+ 17010


 31104 (4λ− 1) (5λ− 2) (1 + 2λ) (7λ− 3)

2(
−8λ+ 3 + 2λ2

)
(3− λ) (1 + λ)λ4

 if 3
4 ≤ λ ≤ 1
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PRd

(
F̃ ′λ

)
=



0 if 0 ≤ λ ≤ 1
3


(1728λ11 − 11808λ10 + 37239λ9 − 71792λ8

+94302λ7 − 88938λ6 + 61735λ5 − 31733λ4

+11936λ3 − 3165λ2 + 541λ− 46) (3λ− 1)


−432 (6λ2−5λ+2)(2−4λ+3λ2)(3λ−2)2(λ−1)4 if 1

3 ≤ λ ≤
1
2


606528λ15 − 2068416λ14 + 1369872λ13 + 2481408λ12 − 4290615λ11

+1741803λ10 + 1309122λ9 − 2209356λ8 + 1802404λ7 − 1199730λ6

+653374λ5 − 254468λ4 + 63391λ3 − 9125λ2 + 660λ− 20


−3888λ3(6λ2−5λ+2)(3λ2+λ−1)(3λ−2)(3λ−1)(λ2−1) if 1

2 ≤ λ ≤
5
9


1819584λ15 − 7822656λ14 + 11040624λ13 − 2001024λ12 − 10285173λ11

+8806665λ10 + 4695795λ9 − 14405958λ8 + 13332827λ7 − 7148232λ6

+2404127λ5 − 479830λ4 + 40934λ3 + 2855λ2 − 750λ+ 20


−3888λ3(9λ2−8λ+2)(6λ2−5λ+2)(3λ−1)2(λ2−1) if 5

9 ≤ λ ≤
2
3



245643840λ21 − 649539000λ20 − 402399252λ19 + 2752929990λ18

−1899488232λ17 − 3692770641λ16 + 6966396981λ15 − 2123626086λ14

−5490784557λ13 + 7663459545λ12 − 4380347997λ11 + 783081786λ10

+538407255λ9 − 420896863λ8 + 120550128λ7 − 5104996λ6

−8231734λ5 + 3381167λ4 − 750364λ3 + 102906λ2 − 7012λ+ 48


 −11664

(
3λ2 − 4λ+ 3

) (
−4λ+ 6λ2 + 1

) (
3λ− 2 + 3λ2

)
(5λ− 2)λ4 (3λ+ 1)

2
(3λ− 1)

2 (
λ2 − 1

)  if 2
3 ≤ λ ≤

5
6



1228219200λ21 − 3436651800λ20 + 59915052λ19 + 8331354630λ18

−7425083700λ17 − 6659800641λ16 + 13401783315λ15 + 113558922λ14

−17064597591λ13 + 18914133177λ12 − 9318096090λ11 + 979704618λ10

+1559208630λ9 − 1040317061λ8 + 293239879λ7 − 13617760λ6

−21825567λ5 + 9839845λ4 − 2330476λ3 + 322646λ2 − 21132λ+ 144


 −11664 (λ+ 1)

(
3λ2 − 4λ+ 3

)
(−3 + 5λ)

(
−4λ+ 6λ2 + 1

)(
3λ− 2 + 3λ2

)
(5λ− 2)λ4 (3λ+ 1)

2
(3λ− 1)

2

 if 5
6 ≤ λ ≤ 1
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PPe

(
F̃ ′
λ

)
=





182784λ22 − 7413888λ21 + 99868080λ20 − 703368340λ19

+3058365062λ18 − 8892589638λ17 + 18279260681λ16

−30012537373λ15 + 55534171593λ14 − 143651776680λ13

+374612620377λ12 − 781360184994λ11 + 1250819876673λ10

−1545441575841λ9 + 1484488185678λ8 − 1108937998494λ7

+638860202676λ6 − 278530036749λ5 + 88854888168λ4

−19553977935λ3 + 2650355316λ2 − 166518180λ


(

3888
(
−9 + λ2

)
(−3 + 2λ)2

(
3− 2λ+ λ2

)
(λ− 1)4

(
−5λ+ 3λ2 + 3

)(
2λ2 − 3λ+ 3

) (
2λ2 − 6λ+ 3

) (
3 + λ2 − 5λ

)
(4λ− 3) (−3 + 7λ)

) if 0 ≤ λ ≤ 1
3



531441− 9034497λ− 13742370009λ9 + 8895112200λ8

−5952314889λ7 + 3386845791λ6 − 1632035628λ5

+694868949λ4 − 246313062λ3 + 62001450λ2

−51440504634λ11 + 26349425253λ10 + 81371993442λ12

−96382478184λ13 + 10247568λ23 − 93984692λ22

+530222012λ21 − 1972391674λ20 + 4914002198λ19

−7592752426λ18 + 3746081246λ17 + 14820695230λ16

−48580336425λ15 + 82863073740λ14 − 595152λ24 + 13056λ25


(

3888
(
−9 + λ2

)
(−3 + 2λ)2

(
3− 2λ+ λ2

)
(λ− 1)4 λ2

(
−7λ+ 3 + λ2

)(
2λ2 − 3λ+ 3

) (
2λ2 − 6λ+ 3

) (
3 + λ2 − 5λ

)
(1 + 2λ)

(
−5λ+ 3λ2 + 3

) ) if 1
3
≤ λ ≤ 1−

√
10
5



−1594323 + 38263752λ− 588606151086λ9 + 3181533876λ8

+146651512095λ7 − 108880376742λ6 + 47802094434λ5

−14368806513λ4 + 3017758194λ3 − 430998651λ2 − 3336632295732λ11

+1758731414013λ10 − 1837680λ26 + 39168λ27 + 4787900328618λ12

−5495430514569λ13 + 1849248554λ23 − 6918294320λ22

+15209372665λ21 − 5929711070λ20 − 97174000058λ19

+448443199831λ18 − 1227439450120λ17 + 2482849588620λ16

−3968650335033λ15 + 5155072480809λ14 − 315369348λ24 + 32898312λ25




3888 (−3 + 2λ)2 (λ− 1)4 (−4 + 3λ)λ3
(
−5λ+ 3λ2 + 3

)(
2λ2 − 3λ+ 3

) (
−7λ+ 3 + λ2

)
(1 + 2λ)

(
3 + λ2 − 5λ

)(
2λ2 − 6λ+ 3

) (
3− 2λ+ λ2

) (
−9 + λ2

)


if 1−
√
10
5
≤ λ ≤ −1 +

√
2



−4369626λ− 96556789584λ9 + 67892860719λ8 − 39049896447λ7

+18037355157λ6 − 6531899778λ5 + 1798835931λ4 − 362167200λ3

+50388480λ2 − 111685140678λ11 + 113755653873λ10

+91199583777λ12 − 61188027975λ13 + 177147 + 19584λ23 − 738624λ22

+9092208λ21 − 57219708λ20 + 209625442λ19 − 410817890λ18

−58130301λ17 + 3379320706λ16 − 13234824797λ15 + 32807109456λ14


(

3888 (−3 + 2λ)2 (3 + λ) (λ− 1)4 (−4 + 3λ)λ3
(
−5λ+ 3λ2 + 3

)(
3 + λ2 − 5λ

) (
2λ2 − 6λ+ 3

) (
2λ2 − 3λ+ 3

) (
3− 2λ+ λ2

) ) if − 1 +
√

2 ≤ λ ≤ 1
2



1741824λ18 − 10907136λ17 − 758016λ16 + 168682080λ15

−542778056λ14 + 381266732λ13 + 2078569192λ12 − 7655867648λ11

+13684744844λ10 − 15725654684λ9 + 12680394759λ8 − 7818174426λ7

+4168442997λ6 − 1906236342λ5 + 503338293λ4 + 66250062λ3

−98990181λ2 + 28811538λ− 2886840


(

46656 (3 + λ)
(
2λ2 − 3λ+ 3

) (
3− 2λ+ λ2

)
(λ− 1) (−7λ+ 3)

(1 + 3λ) (−4 + 3λ) (−3 + 2λ)2 λ4

) if 1
2
≤ λ ≤ 3

5
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=





1244160λ20 − 16464384λ19 + 57270528λ18 + 83844384λ17

−1061276248λ16 + 2693408772λ15 − 664982416λ14 − 12981572404λ13

+38640837008λ12 − 58851878656λ11 + 52663055577λ10 − 23828524786λ9

−886000740λ8 + 5706458679λ7 − 293767497λ6 − 2264168214λ5

+1151368020λ4 − 78824583λ3 − 98240040λ2 + 31195368λ− 2939328


(

46656 (3 + λ)
(
2λ2 − 3λ+ 3

) (
3− 2λ+ λ2

) (
−7λ+ 3 + λ2

)
(5λ− 2) (1 + 3λ) (−λ+ 1) (−4 + 3λ) (−3 + 2λ)2 λ4

) if 3
5
≤ λ ≤ 5

7



414720λ19 − 4935168λ18 + 12509952λ17 + 50678584λ16

−389881692λ15 + 1122604750λ14 − 1889543531λ13 + 2231491822λ12

−2814863390λ11 + 4920482481λ10 − 7665836555λ9 + 7933448364λ8

−4689397074λ7 + 925995555λ6 + 597329316λ5 − 421617150λ4

+71923140λ3 + 15707034λ2 − 7247718λ+ 734832


(

46656 (3 + λ)
(
2λ2 − 3λ+ 3

) (
3− 2λ+ λ2

)
(λ− 1)

λ4 (−3 + 2λ)2
(
−7λ+ 3 + λ2

)
(−5λ+ 2) (1 + 3λ)

) if 5
7
≤ λ ≤ 3

4


414720λ20 − 7008768λ19 + 36356352λ18 + 118840λ17 − 701475188λ16

+3173845802λ15 − 7336790313λ14 + 9998128561λ13 − 7604183170λ12 + 2406538637λ11

−113742558λ10 + 74001411λ9 + 3583353636λ8 − 9901165347λ7 + 11050921233λ6

−6093026712λ5 + 1307401722λ4 + 295874856λ3 − 242061534λ2 + 54062640λ− 4330260


(

46656
(
3− 2λ+ λ2

)
(3 + λ)λ4

(
2λ2 − 3λ+ 3

)
(−3 + 2λ)2(

−6λ+ 3 + λ2
) (
−7λ+ 3 + λ2

)
(−5λ+ 2) (1 + 3λ)

) if 3
4
≤ λ1
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