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Abstract

The Kalman filter (KF) is known to loose its optimality properties when the

model used does not perfectly match the true system. Extending the use of

linear constraints to this filter recently proved to be efficient to mitigate a large

class of parametric model mismatch, through the linearly constrained Kalman

filter and minimum variance filter (LCKF and LCMVF). However, the asymp-

totic performances of these new filters are still an open question. In this work, we

bring a first answer to the latter problem in the case of measurement model mis-

match. We show that both LCKF and LCMVF are equivalent to unconstrained

filters in which the directions of the constraints are cancelled by projection, al-

lowing a better understanding of their asymptotic properties. In particular, the

steady-state mean square error, when it exists, is derived. The consistency of

the filters with respect to nonlinear mismatches is also improved via new con-

straints. An array processing example is provided to assess the derived formulas,

the consistency and performance of the filters.
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1. Introduction

State estimation of linear systems is a fundamental task, especially in signal

processing [1, 2], for which the minimum variance distorsionless response filter

(MVDRF) and Kalman filter (KF) play a major role. However, for these filters

to minimize the mean square error (MSE), four conditions are needed: i) known

system matrices, ii) known noise means and covariance matrices, iii) known in-

puts, and iv) perfect filter initialisation (for the KF). This is hardly the case in

practice, and there thus exists an inherent model mismatch, which may induce

a performance breakdown of the filter [3]. In order to directly mitigate para-

metric system model mismatch, the use of linear constraints [4, 5] was recently

leveraged, yielding a new class of linearly constrained MVDRF (LCMVF) and

linearly constrained KF (LCKF) [6]. While their potential use and extensions

cover various aspects [7, 8], their asymptotic performance is still an open ques-

tion, since standard tools [9, 10] rely on assumptions i)-iv). We give a first

answer in this work, focusing on measurement mismatch. The main theoretical

contributions are as follow

• We present a way to increase the consistency of the LCKF and LCMVF for

nonlinear mismatch, using additional constraints.

• We show that the LCKF and LCMVF are equivalent to standard filters ap-

plied to a system using a projected measurement. This allows applying the

classical tools to study the asymptotic behavior. For time-invariant systems,

the steady-state MSE (if it exists) is also exhibited.

• Numerical experiments on a uniform linear array example, similar to [6], ex-

plain the results observed in this reference, illustrate the impact of higher-order

constraints on mitigation capabilities and achievable MSE. A trade-off appears

between the acceptable range of mismatch and the achievable MSE of the filters.
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2. Improving the LCMVF with Nonlinear Measurement Mismatches

2.1. The LCMVF for Sequential Estimation

Consider the following discrete linear system, with process and observation

matrices Fk−1 ∈ Cmk−1×mk , Hk ∈ Cpk×mk , inputs uk−1 ∈ Cmk−1 , ck ∈ Cpk ,

and where wk−1,vk are zero-mean noises of known covariance Cwk−1
,Cvk

.

xk = Fk−1xk−1 + uk−1 + wk−1, yk = Hkxk + ck + vk. (1)

In this work we consider the LCKF and the class of LCMVFs (which differ only

at their initialisation) derived in [6] to mitigate potential mismatches of (1). We

focus on measurement mismatch only. For the sake of simplicity, we consider an

observation matrix depending on a scalar parameter Hk = Hk(θk), for which

we only have access to Ĥk = Hk(θ̂k). The extension to all the measurement

model mismatches presented in [6] is straightforward.

If the filter is updated at step k with an arbitrary gain L, x̂k|k (L) = x̂k|k−1+

L
(
yk − Ĥkx̂k|k−1

)
, then its error becomes

x̂k|k (L)− xk = (I− LĤk)(Fk−1(x̂k−1|k−1 − xk−1)−wk−1) + Lvk︸ ︷︷ ︸
α(L)

+εk (L) .

α(L) is the standard term of Kalman filtering theory, and εk (L) = L(Hk −

Ĥk)xk. Thus, for the filter to be unbiased and for its variance to be consistent,

it is imposed that εk (L) = 0. Of course, this cannot be done in general without

exploiting a mismatch model. Here, the considered mismatch model is a para-

metric one, which leads to linear constraints for the gain which are detailed in

Section 2.2. The LCKF is thus closely related to the gain-constrained Kalman

filter [11]. In this case, focusing on measurement model mismatch, this yields

Lk = argmin
L

{
E
[
(x̂k|k (L)− xk)(·)H

]}
s.t. L∆k = 0. (2)
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It turns out that (2) has a closed-form solution, leading to the following recursion

Pk|k−1 = Fk−1Pk−1|k−1F
H
k−1 + Cwk−1

, (3a)

Sk|k−1 = ĤkPk|k−1Ĥ
H
k + Cvk , Kk = Pk|k−1Ĥ

H
k (Sk|k−1)−1, (3b)

Lk = Kk −Kk∆kΨ
−1
k ∆H

k

(
Sk|k−1

)−1
, Ψk = ∆H

k (Sk|k−1)−1∆k (3c)

Pk|k =
(
I−KkĤk

)
Pk|k−1 + Kk∆kΨ

−1
k ∆H

k KH
k (3d)

where, Kk is the unconstrained Kalman gain. If no prior exists for x̂0|0,P0|0, the

LCKF is replaced with the LCMVF, initialised with a least-squares approach,

the so-called Fisher Initialisation, with ∆̃1 =
(
Ĥ1 ∆1

)
, and T̃1 =

(
I 0

)
:

P1|1 = T̃1(∆̃H
1 C−1v1

∆̃1)−1T̃H
1 , x̂1|1 = T̃1(∆̃H

1 C−1v1
∆̃1)−1∆̃H

1 C−1v1
z1. (4)

The LCMVF can also be seen as an MVDRF with additional constraints [6].

2.2. Increasing the Consistency for Nonlinear Measurement Mismatches

For mismatched observation models, we know that ε(Lk) = Lk(Hk−Ĥk)xk.

Recursion (3) is only valueable if the LCKF covariance correctly reflects the

system’s MSE, i.e., if Lk∆k = 0 ensures ε(Lk) = 0. One of the main limitations

of the LCKF as derived until now is that it relied on linearisation, and was thus

only consistent for linear and small nonlinear mismatch [6]. In this section, a

way to extend the consistency domain of the LCKF is presented. Consider the

Taylor expansion of the parametric mismatch

Hk(θk) = Hk(θ̂k) +
∑
m

1

m!

∂mHk

∂θm

∣∣∣∣
θ̂k

(θk − θ̂k)m. (5)

Then, adding the constraints Lk
∂mHk

∂θm

∣∣∣
θ̂k

= 0 for m ≥ 0 would properly yield an

unbiased estimator. Obviously, unless the expansion is finite and short enough,

this implies Lk = 0. However, this means that, until rank(∆k) = pk − 1,

additional constraints associated to a longer Taylor expansion can be added,

extending the range of mitigable mismatch. This will also lower the filter’s per-

formance. This trade-off is illustrated in Section 5 on a multi-channel example,

which involves a scalar mismatch in an observation model of large dimension.
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3. Studying the Asymptotic Behavior with Measurement Mismatch

3.1. Reinterpreting the Constraint Lk∆k = 0

Theorem 1. Consider an LCKF with constraint Lk∆k = 0 for all k. Let ∇k

be a basis of Span(∆k)⊥. Then the LCKF is equivalent to the standard KF

associated with (1), where the observation model is replaced by

ỹk = ∇H
k yk (6)

Proof. Only the update must be checked. (3) can be written

= Pk|k−1 −Pk|k−1Ĥ
H
k S−1k|k−1Π

⊥
∆k

ĤkPk|k−1.

Notice that Π⊥∆k
is a projector on Span(∆k)⊥. Then we can check that S−1k|k−1Π

⊥
∆k

=

∇k(∇H
k Sk|k−1∇k)−1∇T

k . Indeed, both coincide on the columns of (∆k,Sk|k−1∇k),

which form a basis of Rpk . Thus, we can replace in (7) and get

Pk|k = Pk|k−1 −Pk|k−1(∇H
k Ĥk)H(∇H

k Sk|k−1∇k)−1∇H
k ĤkPk|k−1 (8)

which exactly coincides with the standard KF update using (6).

Theorem 1 means that the LCKF cancels information contained in the mis-

matched direction. This seems intuitive, but the LCKF has an advantage over

directly using the projected observation model (6): it avoids computing ∇k.

3.2. Consequence for the Asymptotic Behavior of the LCKF

3.2.1. General Stability Conditions

An important open question is the asymptotic stability of the LCKF, i.e.,

how the constraints may affect the convergence properties of the KF. Theorem 1

substantially eases this task, as it allows using all the tools which were designed

for the KF, such as [9, 10]: most of the practioner’s work will be to check the
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impact of ∆k on controlability and observability of the system. Since these

stability results heavily rely on the particular structure of the Kalman gain, lost

for the LCKF, this would have been impossible simply based on (3).

3.2.2. Steady-State Covariance

Consider a time-invariant system, i.e. Fk−1 = F, Ĥk = Ĥ, Cwk−1
= Cw,

Cvk = Cv. If the predictor covariance Pk|k−1 converged to a steady-state value

P∞, it would be a solution of, using S = ĤPĤH + Cv,

P = F
(
P−PĤH

(
S−1 + S−1∆(∆HS−1∆)−1∆HS−1

)
ĤP

)
FH + Cw. (9)

This is not a Riccati equation, because of the term (∆HS−1∆)−1. This is

illustrated in Section 4.2, where, for a scalar state, (9) becomes a polynomial

of degree three. To the best of our knowledge, solving (9) is an open question

in general, but an important one, since explaining and predicting the plateaus

reported for instance in [6] would greatly help the practitioner for system design.

However, Theorem 1 allows replacing (9) with a proper Riccati equation

P = F
(
P−PĤT∇(∇H(ĤPĤH + Cv)∇)−1ĤP

)
FH + Cw (10)

which will, in Section 4.2, induce a second-order polynomial.

Remark 1. Note that the filter’s initialisation plays no role in (9), meaning

that, asymptotically, the LCMVF and the LCKF show the same performances

(which is also true for their unconstrained counterparts).

4. Explaining and Improving Linearly Constrained Array Processing

Consider the uniform linear multi-channel array signal processing problem

with a miscalibration issue, as in [6]. The signal is obtained by N sensors equally

spaced at the assumed distance d̂ = λ/2 (half-wavelength), but in reality at

d 6= d̂. The impinging random signal source x, assumed Gaussian complex

circular, is at a broadside angle α = 10◦, subject to a spatially and temporally
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white noise. Due to fluctuation of the propagation medium, x is also assumed

partially coherent with constant correlation factor f and received mean power:

xk = fxk−1 + wk−1, Cwk−1
= (1− f2)Cxk−1

, (11)

yk = h(d, α)x+ vk, h(d, α) =
(
ej2π

(n−1)d sin(α)
λ

)
1≤n≤N

, Cvk
= rI. (12)

Moreover, a jamming source xJ might be present, at a known broadside angle

αJ , thus modifying (12) as

yJAM
k = yk + h(d, αJ)xJ . (13)

The goal here is to mitigate the mismatch on d, the presence of the jammer, or

both at once. They had only been treated separately in [6].

4.1. Mitigation of the Mismatches

Jammer only. In this case, we assume that the array is properly calibrated, i.e.

d̂ = d, but a jammer is present. This induces a purely linear mismatch, as the

only unknown is xJ , and it is entirely mitigated by cancelling h(d, αJ) [6], i.e.

∆ = h(d, αJ) (14)

Miscalibration only. The mismatch on d has a nonlinear effect on (12). Follow-

ing Section 2.2, we consider M constraints, where 1 ≤M ≤ N−1 is user-chosen:

∆M =

[
∂h
∂d

∣∣
d̂,α

· · · ∂Mh
∂dM

∣∣∣
d̂,α

]
,

(
∂mh

∂dm

∣∣∣∣
d̂,α

)
i

= (i− 1)

(
∂m−1h

∂dm−1

∣∣∣∣
d̂,α

)
i

(15)

Both mismatches at once. If both a miscalibration and a jammer are present,

a naive approach would be to simply concatenate (14) and (15). However, (14)

also involves d. Thus, the Taylor expansion of h(d̂, αJ) must also be considered:

∆M1,M2 =

[
h(d̂, αJ) ∂h

∂d

∣∣
d̂,α

∂h
∂d

∣∣
d̂,αJ

· · · ∂M1h
∂dM1

∣∣∣
d̂,α

∂M2h
∂dM2

∣∣∣
d̂,αJ

]
(16)

4.2. Predicted Steady-State Covariance

Although Riccati equations may be hard to solve in general, the fact that the

state is scalar here gives (10) a much gentler form. Let ∇M be an orthonormal
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basis of Span(∆M )⊥, and denote h̃ = ∇H
Mh(d̂, α). Then, if it exists, the steady-

state covariance of the KF satisfies, since Cv = rI and ∇M is orthogonal

p = f2p− f2p2h̃H(h̃ph̃H + ∇H
MCv∇M )−1h̃ + Cw (17a)

= f2p− f2p2h̃H(ph̃h̃H + rI)−1h̃ + Cw. (17b)

In the particular case of M = 1, h̃h̃H is of rank one, thus we have (ph̃h̃H +

rI)−1 = 1
r I−

1

r+p‖h̃‖2
p
r h̃h̃H . Thus, injecting in (17), we readily obtain

p = f2p− f2 ‖h̃‖2

r + p‖h̃‖2
p2 + Cw ⇔ p2 +

(
(1− f2)r̃ − Cw

)
p− r̃Cw = 0, (18)

with r̃ = r

‖h̃‖2
. Therefore, the steady-state variance always exists, and it is

obtained as the only positive root of this degree 2 polynomial:

p =
1

2

(
−(1− f2)r̃ + Cw +

√
((1− f2)r̃ − Cw)

2
+ 4r̃Cw

)
. (19)

Note that there is, in practice, no need to compute ∇M , since it only appears

in ‖h̃‖2, and we have ‖∇H
M ĥ‖2 = ‖(I−∆(∆H∆)−1∆H)ĥ‖2, with ĥ = h(d̂, α).

Theorem 1 greatly simplifies the study of the steady-state. Indeed, the initial

equation (9) leads to a polynomial of degree three, which shares the positive root

of (19), with φ = ‖ĥ‖2‖∆‖2, ψ = ‖ĥ‖2‖∆‖2 − (∆H ĥ)2, µ = φ+ ψ

ψp3 − (ψCw + f2r̃φ− µr̃)p2 − (µr̃Cw + φ(f2 − 1)r̃2)p− φr̃2Cw = 0. (20)

5. Numerical Experiments

Numerical simluations validate the steady-state covariance formulae ((18)

in general, (19) for M = 1, and, incidentally, (20)), and show the influence of

extended constraints ∆M for M ≥ 1. We used Cx = 1, a correlation factor

f = 1 − 10−4, and observation variance r = 1. Each time, 104 Monte Carlo

runs of K = 103 successive measurements were computed. We first reproduce

experiment 4.2.1 of [6], and compare the asymptotic variance with the one given

by (19), represented by a horizontal line in Figure 1. (17) correctly predicted

P∞, as in all other reported cases (note that, this may not coincide with the

actual MSE of the system as we show thereafter).
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5.1. Mitigation Capability of Large Nonlinear Mismatches

We investigate the mitigation capability of taking into account a growing

number of Taylor expansion terms (i.e., with increasing M) for a large mismatch

of d = d̂ + λ/10, that is, a 20% mismatch. The predicted and emprirical MSE

(denoted as (LCKF) and (MC) respectively) of the first- to fifth-order filters

are shown on Figure 2. We can clearly see that this mismatch is far too heavy

to be handled by an LCKF using only a first-order constraint, which becomes

biased. However, the higher the order, the less biased the filter is, and the more

accurate the filter estimated MSE is, the fit being very good for the fifth order.

5.2. Impact of the Constraints on the MSE

Naturally, when more constraints are considered, the achievable MSE is also

larger. The next question is thus whether this steady-state MSE grows indef-

initely or also has a finite limit. Note that, due to the chosen model (12) for

h, ‖h̃‖2 only involves N . We thus solved (17) for 1 ≤ M < N , with various

values of N , as reported in Figure 3. It turns out that the steady-state filters’

MSE indeed has a finite upper limit, i.e., as long as the Taylor expansion holds,

one can guarantee a given accuracy once the filter has converged. What was

however much less expected, is that this value does not seem to depend on N .

This is very important, as it means that, if the expected mismatch is large and

one needs additional constraints, the gains of having a larger array could be lost.

Moreover, note that, when considering a large number of constraints, a practical

numerical issue may arise, because (∆M )H∆M becomes severely ill-conditioned

as M grows. In particular, we had to resort to the variable arithmetic precision

tools of Matlab to compute the last values of Figure 3.

Remark 2. In this particular case, the limit MSE is that of an ideal KF

(i.e., not mismatched) with only one sensor (i.e., N = 1). Indeed, we have(
1 0 · · · 0

)H
∈ Span(∆N−1)⊥. Thus, the measurement is projected on its

first component. This is not true for other models, although a limit still exists.
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5.3. How Many Constraints are Needed?

The sensitivity of (12) to d increases with N , so the validity domain of a

Taylor expansion of given length decreases. Thus, one can expect that more

constraints will be needed as N grows in order to mitigate a given mismatch

range. This, along with the results of Sections 5.2 and 5.1, brings up an impor-

tant practical question: for given mismatch range and array size, which order of

the Taylor expansion is needed ? An answer is given in Figure 4, which reports

the number of terms of the expansion required so that the LCKF predicted MSE

deviates from the empirical one from less than 5%. That is, experiments similar

to Section 5.1, with three mismatch levels, 5%, 10% and 20%, and array sizes

ranging from 10 to 50, were run with growing M until the MSE is correctly

estimated. The resulting M values are reported here. The number of terms

needed increases with N , but slowly, and the mismatch. A sixth-order expan-

sion is needed to properly mitigate the heaviest mismatch, with N = 50. For

the lowest mismatch, only two terms are needed for all the considered cases.

5.4. Handling Miscalibration and Jamming

Finally, the ability of linear constraints to mitigate both jammer and mis-

calibration as exposed in Section 4.1 is evaluated, in particular the failure of

the naive method. A low miscalibration d = 0.98d̂ is considered, with a jammer

located at αJ = α+ α3dB , where α3dB denotes the bandwidth. The jammer to

noise power is 60 dB and it is always activated. We compare the performance of

three filters: the naive approach of simply concatenating the constraints (15) and

(14) (i.e., taking M1 = 1 and M2 = 0); the LCMVF with M1 = 1 and M2 = 2;

and the LCKF with the same parameters, starting with x̂0 = 0, p0 = 1. The

esimated and empirical MSE of each filter are plotted in Figure 5. The naive ap-

proach obviously fails, because the miscalibration, although small, is amplified

by the jammer to noise ratio. Taking second order derivatives into account for

the jammer allows perfectly estimating the MSE. And, as expected, the LCKF

and LCMVF are asymptotically equivalent.
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6. Conclusion

This paper studied the asymptotic behavior and consistency of the LCMVF

and LCKF in the case of observation-only mismatches. It turns out that these

filters are equivalent to unconstrained ones with projected measurements can-

celling the directions of the constraints. This allows using all the existing asymp-

totic stability results for the KF and MVDRF, applied to the system with pro-

jected observations. In particular, the steady-state covariance is exhibited. The

asymptotic consistency of the filters is also improved for nonlinear mismatches,

thanks to additional constraints based on higher-order terms. Numerical exper-

iments validate the derived formulas, and show the trade-off between the mis-

match range in which the filter is consistent, and the accuracy of its estimate.

Future work will investigate the general case with process model mismatch.
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Figure 1: LCMVF estimated and empirical (Monte Carlo) variance for a uniform linear array

in the presence of a jammer, as studied in [6]. The steady-state MSE is correctly predicted

by (19).

Figure 2: Evolution of the LCMVF variance and the empirical MSE, for different orders of

the Taylor expansion used in the constraints, for a 20% mismatch on d. The first-order fails

completely, but adding constraints reduces the gap, and from to the fifth-order, the LCKF

correctly captures the state’s MSE.
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Figure 3: Steady-state variance of the LCMVF computed with (17) for 1 ≤ M ≤ N − 1, and

different values for N . For each N , the steady-state variance tends to a limit as M grows.

Unexpectedly, this limit is the same for all N .

Figure 4: Number M of terms of the Taylor expansion needed to achieve 5% error between the

predicted and empirical steady-state MSE, for various mismatch levels. As expected, larger

arrays require more terms, since they induce increased nonlinearities. However, M increases

much more slowly than N .

14



Figure 5: Predicted and empirical MSE of filters in the presence of jamming and miscalibration

issues. Merely treating them separately fails, while using constraints up to the 2nd order for

the miscalibration in the direction of the jammer cancels the mismatch.
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