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Abstract—Most works in the literature on parameter estima-
tion with multiple-input multiple-output (MIMO) systems are
limited to estimating only the direction of arrival (DOA), and/or
based on the far-field assumption. However, the joint estimation
of DOA and range is an important challenge for near-field (NF)
applications. In addition, backscatter coefficient estimation, as
one of the most important parameters of radar systems, has been
neglected in existing works. In this paper, the joint estimation
of the DOA, range and reflectivity is presented for a MIMO
array in the NF. By employing the symmetry property in the
array, first, two special spatial expressions based on fourth-order
and second-order statistics from the received data are defined
so that the output of the first expression lacks targets’ range
information. By collecting the information of all the sensors
and calculating all the interactions between the transmit and
receive sensors based on the first expression, a spatial cumulant
matrix is constructed. In two different approaches, with/without
the use of eigendecomposition, the virtual steering vectors are
extracted. Next, DOAs are estimated by a one-dimensional (1D)
spectral search. The second expression, which contains both angle
and range information, is used to construct several covariance
submatrices and then to construct a covariance matrix with a size
corresponding to the array’s dimensions. Then, corresponding
ranges are estimated by employing estimated DOAs, eigendecom-
position and 1D spectral searches. Finally, the equations required
to estimate the reflectivity are derived. The simulation results
show the remarkable performance of the proposed method in
terms of computational time and estimation accuracy.

Index Terms—DOA-range-reflectivity estimation, MIMO ar-
ray, MOSA, near-field.

I. INTRODUCTION

IN recent decades, active multiple-input multiple-output
(MIMO) array systems have been widely studied, espe-

cially in areas related to radar and sonar target detection and
localization [1–3]. By using waveform diversity techniques,
these systems can offer many advantages over traditional
phased-array radar systems, including better practical parame-
ter identifiability, higher accuracy of parameter estimation, and
flexible transmit beampattern design [4]. There are generally
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two different categories for configuring antennas in a MIMO
radar system. The first one is the distributed MIMO radar [5],
in which the distance between transmitting and/or receiving
antennas is large. In this case, the different view-angles from
the antennas to targets are used to improve the target detection
performance by capturing the spatial diversity of radar cross-
section with non-coherent processing [6]. Oppositely, the other
one, adopted in this paper, is the co-located MIMO radars
[7, 8], in which the spacing between antennas is comparable
with the wavelength. In this case, the waveform diversity is
exploited to improve the estimation performance with the large
virtual aperture [9].

Direction of arrival (DOA) estimation plays a key role
in modern signal processing for various applications such
as radar, sonar, microphone arrays, wireless communications,
electronic surveillance, medical diagnosis and treatment, radio
astronomy and seismology [10]. Numerous DOA estimation
techniques for classical single-input multiple-output (SIMO)
setup have been reported in the literature [11–15]. In re-
cent years, however, the development of MIMO systems has
opened up new opportunities in DOA estimation. In [16],
the performance of the multiple signal classification (MUSIC)
algorithm in MIMO arrays compared to conventional arrays
was investigated by considering the parameters of the number
of snapshots, the number of array elements and signal-to-noise
ratio (SNR) values. Hayashi et al. [17], to detect and classify
indoor human activities, developed a DOA estimation method
for Doppler radars with a MIMO system. To improve the
accuracy of DOA estimation, they proposed a temporal-spatial
virtual array based on the Doppler shift of a moving target.
Lonkeng et al. [18] considered an arbitrary array geometry for
the MIMO system. They studied the two-dimensional (2D)
Fourier domain line search MUSIC algorithm to mutually
estimate azimuth and elevation angles. In [19], the problem of
DOA estimation in MIMO radar with non-orthogonal signals
has been addressed. In [20], to reduce the number of channels,
a DOA estimation method based on compressive sensing
is presented for MIMO radar with co-located antennas. In
the study [21], Liu et al. have addressed the problem of
DOA estimation in a MIMO radar system with orthogonal
waveforms for fast-moving targets. They formulated a least
absolute shrinkage and selection operator (LASSO) with an
atomic norm to denoise the received signals. However, the
denoising problem cannot be solved efficiently and requires
additional steps; because it needs to be formulated first as

. 
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a dual optimization problem and then transformed into a
semidefinite problem. All studies [16–21] make a far-field (FF)
assumption and focus only on estimating the DOA parameter.
Under this assumption, one or more plane waves impinge on
the array.

Although plane-wave assumption can simplify modeling
and processing, it is not valid for near-field (NF) applications;
because when the target is located in the Fresnel zone of the
aperture array, the shape of the spherical wavefront changes
nonlinearly with the position of the array and is determined
by both DOA and range parameters [22]. A joint estimation
of range, DOA and frequency is presented in [23] in which
the impinging signals are assumed to be complex exponential
sequences received from third-party transmitters in the envi-
ronment. In [24], a NF source localization algorithm based
on conventional second-order statistics (SOS) is presented.
By dividing the ULA into two symmetric subarrays, the
steering vectors of the subarrays yield the property of rota-
tional invariance in the signal subspace. A full estimation of
signal parameters via rotational invariant techniques (ESPRIT)
approach is also used for localizing with low computational
complexity in [22]. Methods [22–24] are only compatible
with a passive scenario. A 2D-MUSIC processing for the
simultaneous estimation of target angle and range is presented
in [25]. However, it has a very high computational complexity
due to the use of a 2D spectral search as well as a spatial
smoothing operation. In [26], by considering the spherical
wavefront, a subspace-based NF localization method is pre-
sented for the bistatic system in which the transmitter and
receiver are separated by a distance comparable to the target
distance. Based on an improved blind calibration algorithm,
a NF source localization is proposed in [27]. Although the
iterative approach used in [27] does not require precise initial
conjectures, the convergence process of this approach has a
high computational cost. A joint estimate of the angle and
range applicable in the NF is presented in [28]. In the first
step, two correlation matrices are constructed to obtain DOA
and frequency estimates. Then two more correlation matrices
are formed to obtain the range value. The mechanism used in
[28] requires additional operations to pair the parameters. In
[29], by considering the problem as a regression task, a DOA
estimation framework based on complex-valued deep learning
is presented for short-range MIMO communication systems.
Solving this regression task containing a massive number of
variables is challenging since datasets need to capture many
complicated feature representations. On the other hand, the
problem structure assumes a passive detection that is limited
to receivers.

In summary, and given the above, it can be concluded
that the development of parameter estimation techniques for
MIMO systems is still in progress. The majority of the studies
carried out in the literature are limited to estimating only
the DOA parameter, conventionally under the FF assumption.
However, as noted, the joint estimation of DOA and range is
an important challenge for NF applications. Backscatter is the
portion of the outgoing radar signal that the target redirects
directly back towards the radar antenna. The normalized
measure of the radar return from a distributed target is called

the backscatter coefficient. Backscatter coefficient estimation,
as one of the most important parameters of radar systems
(especially in imaging radars [30–32]) has been neglected
in these works. On the other hand, in most of the existing
methods, the estimation of the parameters is based on the
construction of the covariance matrix of the received signals
and the Gaussian noise affects the entries of this matrix. Even
in the method [21] that does not require such a matrix, noise
cancellation is still a major challenge. Table I summarizes the
main features of the existing methods and their limitations
compared to this work.

In this paper, for the first time, joint estimation of the
DOA, range and reflectivity is presented for a MIMO ar-
ray in NF, where the effect of the spherical wave is non-
negligible. By employing the symmetry property in the array,
first, two special spatial expressions based on fourth-order and
SOS from the received data are defined so that the output
of the first expression lacks targets’ range information. By
collecting all the sensor lags based on the first expression, a
cross-cumulant matrix of the sensors is constructed. In two
different approaches, one using eigendecomposition and the
other employing the propagator method (PM) principle, the
vectors required to estimate the DOAs are extracted. Next,
the DOAs of the targets are estimated by a 1D spectral
search. The second expression, which includes both angle
and range information, is used to construct several covariance
submatrices and then to construct a merged covariance matrix
with a size corresponding to the dimensions of the array. The
ranges are then estimated by using the corresponding esti-
mated DOAs, applying eigendecomposition, and performing
several 1D spectral searches. Finally, the equations required
to estimate the reflectivity coefficients are derived (along with
mathematical proofs). This derivation does not require any
prior information such as noise power and is based only
on data obtained from previous steps. The use of fourth-
order cumulant (FOC) in the proposed method, in addition
to improving the estimation accuracy, causes insensitivity to
Gaussian noises. The proposed method, by separating the pa-
rameter estimation procedure into different phases, eliminates
the very heavy multidimensional search. This will be very
effective in significantly reducing the computational effort
for real-time systems. Moreover, the estimated parameters are
paired automatically and no additional steps are required.

The main contributions and novelties of this paper are
summarized below:
■ The novelty in the scenario: for the first time in a practical

scenario (a NF active MIMO system), the joint DOA, range
and reflectivity estimates are provided. Works in the literature
are either limited to DOA-only estimates or ultimately DOA
and range estimates (usually in passive or SIMO scenarios).
■ The novelty in problem-solving:
• Unlike most existing works that use SOS in estimating

parameters, this work uses mixed second- and fourth-order
statistics (FOS).
• Definition of new cumulants: it is necessary to explain that

cumulants can be defined in numerous forms. By changing the
index of each of the signals in the function cum4 {.}, one can
reach a different output. In fact, the proper design and selection

. 
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TABLE I
A SUMMARY OF THE MAIN FEATURES OF EXISTING WORKS

Reference Method Basis The Main Limitations Compared to This Work

[11] Spatial cumulant (the cumulant output includes both DOA and range
parameters) Applicable for the passive scenario, no reflectivity estimates

[12] Spatial cumulants (with the aim of separating non-coherent and coherent
components) Applicable for the passive scenario, no reflectivity estimates

[21] LASSO LASSO cannot be solved efficiently, DOA estimates only
[23] Spatial cumulants; ESPRIT-like estimator Applicable for the passive scenario, no reflectivity estimates
[24] SOS Applicable for the passive scenario, no reflectivity estimates
[22] Spatial/temporal full ESPRIT-like approach Applicable for the passive scenario, no reflectivity estimates

[25] 2D-MUSIC processing Very high computational complexity, no reflectivity
estimates

[26] Cross-covariance matrices between the output data blocks Applicable for the bistatic system, no reflectivity estimates

[27] Covariance matrix Iterative approach with high computational cost, applicable
for the passive scenario, no reflectivity estimates

[28] SOS Requires additional operations to pair the parameters,
passive detection, no reflectivity estimates

[29] Regression task Need to capture many complicated feature representations,
passive detection, no reflectivity estimates

This work
Mixed-order statistics; Symmetric array; Separation of parameter estimation

steps to avoid heavy multidimensional estimation procedures; Spectral
search-based estimator

of the sensors number to calculate the correlation between
them is the most important factor in defining a cumulant so that
the desired output is obtained and the information is sufficient
to the end of the algorithm. For this purpose, a new special
cumulant is defined in this paper. Cumulant output specific to
the scenario of this paper is calculated for the first time, which
is detailed in Appendix A. Note that the cumulant definitions
available in the literature are for passive scenarios in which
there is only one array (receiver array). Therefore, the selection
of indices is limited to the elements of one array; while this
work considers an active scenario. Therefore, the selection of
indices is based on the interaction of the elements of the two
arrays of transmitter and receiver.

• Mathematical separation of the data required to estimate
each parameter, so as to avoid costly multidimensional esti-
mates.

• Mathematical derivation of covariance and kurtosis of
reflectivity coefficients.

■ Improving the performance of existing methods: the pro-
posed method has high performance compared to the existing
methods in reducing computational complexity and increasing
estimation accuracy, which analysis and the results of Sections
III-E and IV confirm this.

The rest of this paper is organized as follows: the mathemat-
ical data model is stated in Section II; the proposed method
is explained in detail in Section III; simulation results are
presented in Section IV; and finally, conclusions and future
work are presented in Section V. Also, the details of some
equations and proofs are given in the Appendix section.

Notation: Throughout the paper, superscripts (.)T , (.)H , (.)∗

and (.)
† represent the transpose, conjugate transpose, com-

plex conjugate and pseudoinverse, respectively. The symbols
cum4 {.}, diag [.], E {.} and ⊗ denote the FOC, diagonal
matrix, statistical expectation and Kronecker product, respec-
tively. Im and 0, respectively, stand for the m × m identity
matrix and zero matrix. j is the imaginary unit.

II. DATA MODEL
Consider the array geometry as illustrated in Fig. 1. The

transmitter and receiver symmetric uniform linear arrays

(ULAs) consist of M̄ = 2M + 1 and N̄ = 2N + 1 sensor
elements, which are numbered −M, −M + 1, ..., 0, ..., M
and −N, −N + 1, ..., 0, ..., N , respectively. The distance of
adjacent sensors in each ULA is d. We use symmetric arrays
to be able to simplify equations to the form required in Section
III. Therefore, for arrays to be uniform (equal inter-element
spacings), the number of elements in both the transmitting and
receiving arrays must be odd. In the case of an array equipped
with even-numbered antennas, one of the end antennas can be
easily switched off, or the corresponding information ignored.
In this case, the phase reference will still be in the position
of one of the intermediate elements. M̄ orthogonal waveforms
are transmitted in the MIMO radar system, and the waveform
in the m-th transmitting antenna is denoted as sm (t, l) in the
time domain, where l denotes the pulse index, the number
of pulses is L, m = −M, ..., 0, ..., M and l = 1, 2, ..., L.
Therefore, we have∫

t∈Tl

sm (t, l) s∗m′ (t, l) dt =

{
1, m = m′

0, m ̸= m′ , (1)

where Tl is the pulse duration and m′ = −M, ..., 0, ..., M .
Assuming that there are K NF targets, the DOA and range
for the k-th target (k = 1, 2, ..., K) are denoted as θk and rk,
respectively. The target backscatter coefficients (ρk (l) ∈ C)
are assumed to obey the Swerling II model, i.e., they remain
constant during the duration of one radar pulse but change
from pulse to pulse [19, 33, 34]. Also, they follow the inde-
pendent and identical distribution between pulses. Moreover,
without the loss of generality, they are assumed zero-mean.
Later in Section III-D, the bias compensation for the non-zero
mean will be discussed.

The received signals in the n-th receiving antenna can be
expressed as

yn (t, l) =
K∑

k=1

M∑
m=−M

sm (t, l) ejTm, kρk (l) e
jTn, k+ωn (t, l) ,

(2)

where ωn (t, l) represents the additive white Gaussian noise

. 
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Fig. 1. The system model of the co-located MIMO array for parameters
estimation.

in the n-th receiving antenna during the l-th pulse, and n =
−N, ..., 0, ..., N . Tn, k denotes the phase shift associated with
the k-th target due to the propagation time delay between the
reference sensor and the n-th sensor. By considering the array
center as the phase reference, Tn, k can be obtained by [13]

Tn, k =
2π

λ
rk

(√
1 + (nd/rk )

2 − 2nd sin θk/rk − 1

)
,

(3)

where λ is the signal wavelength. According to the second-
order Taylor series expansion, in the Fresnel region, which is
defined as

[
0.62

√
(D3/λ), 2D2/λ

]
, where D symbolizes the

array aperture size, a simplification of the model in (3) is used
as a good approximation and given by [35]

Tn, k ≈ ηkn+ ϕkn
2, (4)

where the electric angles ηk and ϕk are obtained by

ηk = −2π
d

λ
sin θk, (5)

ϕk = π
d2

λrk
cos2θk. (6)

After the matched filter hm (t, l) = s∗m (τ − t, l) for the
waveform sm (t, l) and sampling at time τ , and considering
(4), we can obtain the sampled signal as

yn,m (l) =

∫
t∈Tl

yn (t, l) s
∗
m′ (t, l) dt

=
K∑

k=1

ejTn, k

∫
t

M∑
m=−M

ρk (l) sm (t, l) ejTm, ks∗m′ (t, l) dt

+

∫
t

ωn (t, l) s
∗
m′ (t, l) dt

=
K∑

k=1

ej(ηkm+ϕkm
2)ρk (l) e

j(ηkn+ϕkn
2) + ωn,m (l) ,

(7)

where ωn,m (l) ∼ CN
(
0, σ2

)
. By collecting all the signals

in the n-th receiving antenna, the vector form of the received
signal can be obtained as

yn (l)
∆
= [yn,−M (l) , ..., yn, 0 (l) , ..., yn,M (l)]

T

=

K∑
k=1

ρk (l) bn (θk, rk)a (θk, rk) +ωn (l) ∈ CM̄×1,
(8)

where the steering vector in the transmitter and the noise
vector, respectively, are defined as

a (θk, rk)
∆
=

[a−M (θk, rk) , ..., a0 (θk, rk) , ..., aM (θk, rk)]
T ∈ CM̄×1,

(9)

ωn (l)
∆
= [ωn,−M (l) , ..., ωn, 0 (l) , ..., ωn,M (l)]

T ∈ CM̄×1,
(10)

where am (θk, rk) = ej(ηkm+ϕkm
2). By collecting all the

received signals into a matrix, we can obtain

Y (l)
∆
=

[
yT
−N (l) , ..., yT

0 (l) , ..., yT
N (l)

]T
=

K∑
k=1

ρk (l)b (θk, rk)⊗ a (θk, rk) +W (l)

= Dρ (l) +W (l) ∈ CN̄M̄×1,

(11)

where the steering vector in the receiver, the noise matrix, the
steering matrix and the vector for target scattering coefficients,
respectively are defined as

b (θk, rk)
∆
=

[b−N (θk, rk) , ..., b0 (θk, rk) , ..., bN (θk, rk)]
T ∈ CN̄×1,

(12)

W (l)
∆
=

[
ωT

−N (l) , ..., ωT
0 (l) , ..., ωT

N (l)
]T ∈ CN̄M̄×1,

(13)

D
∆
= [b (θ1, r1)⊗ a (θ1, r1) , b (θ2, r2)⊗ a (θ2, r2) , ...,

b (θK , rK)⊗ a (θK , rK)] ∈ CN̄M̄×K ,
(14)

ρ (l)
∆
= [ρ1 (l) , ρ2 (l) , ..., ρK (l)]

T ∈ CK×1. (15)

where bn (θk, rk) = ej(ηkn+ϕkn
2).

III. PROPOSED METHOD

In this section, the details of the mixed-order statistics
algorithm (MOSA) are presented in the form of two methods.
First, in Section III-A, we define two spatial expressions based
on FOS and SOS from the received data. These expressions
are defined mathematically so as to provide the information
needed to estimate the DOA and range parameters in Sec-
tions III-B and III-C, respectively. Also, in Section III-D,
the information of both expressions is used to estimate the
reflectivity coefficients. Section III-E presents the main steps
in implementing the algorithms.

A. Definition of the Special Spatial Expressions
We define one special spatial cross-cumulant

c4y (u, v, p, q) and one special spatial cross-covariance
ry (u, v, p, q) for the array output signals with different
sensor lags in the following forms:

c4y (u, v, p, q)
∆
=

cum4

{
y∗u, p (l) , yv, q (l) , y

∗
−v,−q (l) , y−u,−p (l)

}
,

(16)

ry (u, v, p, q)
∆
= cov

{
y∗v, q (l) , yu, p (l)

}
, (17)

where u, v ∈ [−N, N ] and p, q ∈ [−M, M ]. The cumulant
and covariance of (16) and (17) are calculated as

. 
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c4y (u, v, p, q) = E
{
y∗u, p (l) yv, q (l) y

∗
−v,−q (l) y−u,−p (l)

}
− E

{
y∗u, p (l) yv, q (l)

}
E
{
y∗−v,−q (l) y−u,−p (l)

}
− E

{
y∗u, p (l) y

∗
−v,−q (l)

}
E {yv, q (l) y−u,−p (l)}

− E
{
y∗u, p (l) y−u,−p (l)

}
E
{
yv, q (l) y

∗
−v,−q (l)

}
,

(18)

ry (u, v, p, q) = E
{
y∗v, q (l) , yu, p (l)

}
. (19)

The results of the cumulant and covariance of (18) and (19)
can be written as (for more details refer to Appendix A)

c4y (u, v, p, q) =
K∑

k=1

c4ρk
ej2ηk(−u)e−j2ηk(−v)ej2ηk(−p)e−j2ηk(−q),

(20)

ry (u, v, p, q) =
K∑

k=1

rρk
ej(ηku+ϕku

2)e−j(ηkv+ϕkv
2)ej(ηkp+ϕkp

2)

e−j(ηkq+ϕkq
2) + σ2δ (u− v) δ (p− q) ,

(21)

where c4ρk
and rρk

are the kurtosis and the covariance related
to the k-th backscatter coefficient (reflectivity), respectively,
and can be written as (for more details refer to Appendix A)

c4ρk
= cum4 {ρ∗k (l) , ρk (l) , ρ∗k (l) , ρk (l)} = E

{
|ρk (l)|4

}
− 2E2

{
|ρk (l)|2

}
− E

{
ρ2k (l)

}
E
{
ρ∗k

2 (l)
}
,

(22)

rρk
= cov {ρ∗k (l) , ρk (l)} = E

{
|ρk (l)|2

}
. (23)

Note that the cumulants defined in [12] and [11] are based
on a passive scenario, and the interactions between indexes
are limited to elements of an array (receiver array); whereas
in (18)-(21), the interactions between the indices include the
elements of the receiver and transmitter arrays. Also, the
approach of selecting the indices in this paper is such that
the output of the first expression lacks range information;
while the cumulant output in [11] includes both DOA and
range parameters, and in [12], the definition of cumulants is
done with the aim of separating non-coherent and coherent
components [36]. So, they have different definitions and out-
puts. In addition, since this paper considers an active scenario,
reflectivity coefficients have also appeared in the outputs;
while in [12] and [11], the output of spatial expressions
includes the signals received from non-cooperative sources of
illumination in the environment.

B. DOA Estimation
According to (20), and by collecting all the sensor lags, we

can construct the cross-cumulant matrix of the sensors in the
following form:

C
∆
=


C−M,−M C−M,−M+1 ... C−M,M

C−M+1,−M C−M+1,−M+1 ... C−M+1,M

...
...

. . .
...

CM,−M CM,−M+1 ... CM,M


= Av1CρA

H
v1 ∈ CM̄N̄×M̄N̄ ,

(24)

where the (i, i′)-th entry of the matrix Cm,m′ ∈ CN̄×N̄

is equal to c4y (i−N − 1, i′ −N − 1, m, m′), and i, i′ ∈
[1, 2N + 1]. In this way, the virtual steering matrix Av1 ∈
CM̄N̄×K and the matrix Cρ ∈ CK×K can be written as
follows:
Av1 = [av1 (θ1)⊗ bv1 (θ1) , av1 (θ2)⊗ bv1 (θ2) , ...,

av1 (θK)⊗ bv1 (θK)] ,
(25)

Cρ = diag [c4ρ1 , c4ρ2 , ..., c4ρK
] , (26)

where the virtual steering vectors av1 (θk) ∈ CM̄×1 and
bv1 (θk) ∈ CN̄×1 are obtained as

av1 (θk)
∆
= [ã−M (θk) , ..., ã0 (θk) , ..., ãM (θk)]

T
, (27)

bv1 (θk)
∆
=

[
b̃−N (θk) , ..., b̃0 (θk) , ..., b̃N (θk)

]T
, (28)

where ãm (θk) = e−j2ηkm and b̃n (θk) = e−j2ηkn.
As can be seen, C lacks range information. In fact, in the

definition of cumulant c4y , we considered the index of the
sensor elements in such a way that the output of cumulant
does not depend on the range. This trick will help us avoid
complex multidimensional estimates with high computational
costs.

To estimate the DOAs of the targets, we implement the
eigenvalue decomposition (EVD) of the Hermitian matrix C
as
C = QΛQH = QsΛsQ

H
s +QnΛnQ

H
n

= [q1, q2, ..., qK ] diag [χ1, χ2, ..., χK ] [q1, q2, ..., qK ]
H

+ [qK+1, qK+2, ..., qM̄N̄ ] diag [χK+1, χK+2, ..., χM̄N̄ ]

[qK+1, qK+2, ..., qM̄N̄ ]
H

(29)

where Λ is a diagonal matrix with eigenvalues arranged as
|χ1| ≥ ... ≥ |χK | > |χK+1| ≥ ... ≥ |χM̄N̄ |, Q ∈ CM̄×N̄ is
the matrix of eigenvectors with column vectors qi′′ (1 ≤ i′′ ≤
M̄N̄ ). Qs ∈ CM̄N̄×K , spanning the signal subspace of C,
consists of the eigenvectors related to the diagonal elements
of Λs ∈ RK×K . Similarly, Qn ∈ CM̄N̄×(M̄N̄−K) consists
of the eigenvectors related to the diagonal elements of Λn ∈
R(M̄N̄−K)×(M̄N̄−K), which spans the noise subspace of C.

Since Qn is orthogonal to av1 (θ) ⊗ bv1 (θ), with respect
to (24) and (27)-(29), we can estimate the DOAs of targets by
the 1D spectral search function as

θ̂k = argmax
θ

[
(av1 (θ)⊗ bv1 (θ))

H
QnQ

H
n

(av1 (θ)⊗ bv1 (θ))]
−1
, k = 1, ..., K.

(30)

Since the EVD operation has a relatively high computational
complexity, to improve performance, another technique for
estimating DOAs without eigendecomposition is presented
here. We use the PM principle [37–40] as an alternative to
the EVD approach to estimate the noise subspace with less
computational complexity. C can be partitioned according to
(25) as follows:

C =

[
C′

C′′

]
=

[
A′

v1

A′′
v1

]
Cρ

[
A′

v1

A′′
v1

]H
, (31)

. 
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where C′ ∈ Cα×M̄N̄ , C′′ ∈ C(M̄N̄−α)×M̄N̄ , A′
v1 ∈ Cα×K ,

A′′
v2 ∈ C(M̄N̄−α)×K , and α is an arbitrary value of the

interval
[
1, M̄N̄ − 1

]
. Thus, there will be a matrix Π ∈

CK×(M̄N̄−α) such that A′′
v1 = ΠHA′

v1 [41]. An estimate
of Π can be obtained as follows (see [38–40] for details):

Π̂ =
(
C′C′H

)−1

C′C′′H . (32)

If we define F
∆
=

[
ΠT −IM̄N̄−α

]T
, we have FHAv1 =

ΠHA′
v1 −A′′

v1 = 0. In other words, the columns of matrix
F form a basis of the null space of Av1. This means that the
subspace spanned by the columns of F is equivalent to the
subspace spanned by the noise subspace obtained through an
eigendecomposition of C. So, we can write

AH
v1F̂ = 0. (33)

To ensure more accurate DOA estimates and improve reso-
lution, we orthonormalize [42] the components of the matrix
F̂ as follows:

F̂o = F̂
(
F̂HF̂

)− 1
2

. (34)

Finally, the DOAs of all signals can be estimated by the 1D
spectral search function as:

θ̂k = argmax
θ

[
(av1 (θ)⊗ bv1 (θ))

H
F̂oF̂

H
o

(av1 (θ)⊗ bv1 (θ))]
−1
, k = 1, ..., K.

(35)
Remark 1: In the proposed method, to avoid phase ambigu-

ity, λ/4 is considered as the upper bound of d (see Appendix
B for more details).
C. Range Estimation

According to (21), and by collecting all the sensor lags, we
can construct the cross-covariance matrix of the sensors as

R
∆
=


R−M,−M R−M,−M+1 ... R−M,M

R−M+1,−M R−M+1,−M+1 ... R−M+1,M

...
...

. . .
...

RM,−M RM,−M+1 ... RM,M


= Av2RρA

H
v2 ∈ CM̄N̄×M̄N̄ ,

(36)

where the (i, i′)-th element of the matrix Rm,m′ ∈ CN̄×N̄

is equal to ry (i−N − 1, i′ −N − 1, m, m′), and the virtual
steering matrix Av2 ∈ CM̄N̄×K and the matrix Rρ ∈ CK×K

can be written as
Av2 = [a (θ1, r1)⊗ b (θ1, r1) , a (θ2, r2)⊗ b (θ2, r2) , ...,

a (θK , rK)⊗ b (θK , rK)] ,
(37)

Rρ = diag [rρ1 , rρ2 , ..., rρK
] . (38)

To estimate the ranges of the targets, EVD is applied to R

R = UΨUH = UsΨsU
H
s +UnΨnU

H
n = [u1, ..., uK ]

diag [ψ1, ..., ψK ] [u1, ..., uK ]
H
+ [uK+1, ..., uM̄N̄ ]

diag [ψK+1, ..., ψM̄N̄ ] [uK+1, ..., uM̄N̄ ]
H
,

(39)
Now, we define the function f (θ, r) as follows:

f (θ, r)
∆
=[

(a (θ, r)⊗ b (θ, r))
H
UnU

H
n (a (θ, r)⊗ b (θ, r))

]−1

.

(40)

With regard to (9) and (12), and using the following equation,
we can estimate the range of targets:

r̂k = argmax
r
f
(
θ̂k, r

)
, k = 1, ..., K. (41)

These 1D spectral searches are performed within the Fresnel
region. In the above method, the corresponding DOAs and
ranges are automatically paired.
D. Reflectivity Estimation

With the DOA and range pairs,
(
θ̂k, r̂k

)
s, estimated in the

previous sections, an estimate of the steering matrix can be
reconstructed as follows:

D̂
∆
=[

b
(
θ̂1, r̂1

)
⊗ a

(
θ̂1, r̂1

)
, ..., b

(
θ̂K , r̂K

)
⊗ a

(
θ̂K , r̂K

)]
.

(42)

Therefore, by considering (11) and that the mean noise is zero,
an estimate of the backscatter coefficients can be obtained in
the following form:

ρ̂ = D̂†Ȳ, (43)

where Ȳ =
L∑

l=1

Y (l)/L . Although the mean obtained from

(43) is sufficient to solve our problem, (44) and (45) also pro-
vide estimates of the covariance and kurtosis of the backscatter
coefficients, respectively (see Appendix C for proof):
r̂ρk

=((
a
(
θ̂k, r̂k

)
⊗ b

(
θ̂k, r̂k

))H(
Us

(
Ψs − σ̂2IK

)
UH

s

)†
(
a
(
θ̂k, r̂k

)
⊗ b

(
θ̂k, r̂k

)))−1

,

(44)

ĉ4ρk
=

((
av1

(
θ̂k

)
⊗ bv1

(
θ̂k

))H(
QsΛsQ

H
s

)†
(
av1

(
θ̂k

)
⊗ bv1

(
θ̂k

)))−1

.

(45)
The above results are obtained by assuming that the distri-

bution’s mean of backscatter coefficients is zero. In the more
general case, where this mean is not necessarily zero, the mean
bias can be eliminated from the received data with a simple
subtraction Ỹ = Y−Ȳ before processing. This action is valid
because Dρ + W − E {Dρ+W} = D (ρ− E {ρ}) + W.
In this case, (43) can be updated as follows:

ρ̂ = D̂†
(
Ỹ + Ȳ

)
. (46)

Although (44) and (45) are valid for both complex and
real backscatter coefficients, in the case of real coefficients,
by simplifying (22) and (23), estimates of the second-order
moment (SOM) and the fourth central moment (FCM) of the
backscatter coefficients can be obtained from r̂ρk

+ ρ̂2k and
ĉ4ρk

+ 3r̂2ρk
, respectively.

. 
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E. Steps of Implementing the Proposed Method
The main steps of implementing the proposed algorithms

MOSA I and MOSA II can be found in Algorithm 1. Further-
more, their computational complexity is computed considering
the major multiplications involved in statistical matrices con-
struction, eigen-decomposition and spectral search [43]. Note
that only steps 3 and 4 are different in the two methods and
the other steps are the same in both algorithms.

Algorithm 1 The main steps of implementing the proposed
algorithms MOSA I and MOSA II.

INPUT: Y
OUTPUT:

(
θ̂k, r̂k, ρ̂k

)
, and SOM and FCM of ρk, k =

1, 2, .., K

Step 1: Ȳ → ˜̄Y and Y − Ȳ → Y.
Step 2: Estimate C based on L pulses by using (18),

(24) and (58).
Step 3-I: Implement the EVD of C and form Qn from

(29).
Step 3-II: Partition C as (31). Then form the matrix F̂o

by using (32) and (34).
Step 4-I: Obtain θ̂ks from (30).
Step 4-II: Obtain θ̂ks from (35).
Step 5: Estimate R based on L pulses by using (19),

(36) and (59).
Step 6: Implement the EVD of R and form Un from

(39).
Step 7: Obtain r̂ks from (39) and (40).
Step 8: With the pairs

(
θ̂k, r̂k

)
, obtain D̂ according to

(42).
Step 9: Estimate ρk, the covariance of ρk and kurtosis

of ρk from ρ̂ = D̂†
(
Y + ˜̄Y

)
, (44) and (45), respectively.

Note that the estimation of all three parameters in the
proposed method is done under the same conditions in terms
of SNR, number of samples, number of elements partic-
ipating in the estimation and aperture size. Therefore, if
the conditions are unfavorable (for example, low SNR), it
affects all estimates, whether these estimates are performed in
parallel (simultaneously) or sequentially (one by one). In some
approaches in the literature [44, 45] (and not in the proposed
method), the estimation of the first parameter suffers from
a sharp loss in the aperture, which can affect the estimation
accuracy of the next parameter. The second point is that if
the first parameter (e.g. DOA) is not estimated correctly, the
correct or incorrect estimation of subsequent parameters will
no longer matter; because the target location is detected with
both DOA and range parameters and not alone. Another point
is that in the proposed method, we have used FOS, which
offers higher accuracy [46], to estimate the first parameter
(DOA) to provide higher reliability.

Both methods construct M̄2 FOC matrices of size N̄ ×
N̄ , and also M̄2 covariance matrices of size N̄ × N̄ . EVD
operation is applied to R. Also, MOSA I requires an additional
EVD operation before estimating DOAs. Furthermore, a 1D
spectral search and K ones are required to estimate the DOAs
and ranges, respectively. Therefore, the major computational

complexities of MOSA I and MOSA II are given in (47) and
(48), respectively:

O
(
10

(
M̄N̄

)2
L+ 8

(
M̄N̄

)3
/3 +(

180/∆θ +K
(
2D2/λ − 0.62

√
D3/λ

)
/∆r

) (
M̄N̄

)2)
,

(47)

O
(
10

(
M̄N̄

)2
L+ 4

(
M̄N̄

)3
/3 +(

180/∆θ +K
(
2D2/λ − 0.62

√
D3/λ

)
/∆r

) (
M̄N̄

)2)
,

(48)

where ∆θ and ∆r are the size of the angle and range search
steps, respectively.

IV. SIMULATION RESULTS

In this section, the results of some numerical simula-
tions to evaluate the performance of the proposed method
are presented. All results are performed on the MATLAB
R2020b of 64-bit Windows 10 operating system with 12GB
of random-access memory and a Core-i7 central processing
unit at 2.7GHz. We compare the performance of the proposed
MOSA I and MOSA II algorithms with the methods [25],
[21] and [22] as well as the corresponding Cramer-Rao bound
(CRB) [47]. ∆θ and ∆r are assumed to be 0.1◦ and 0.1λ,
respectively. The parameters L and α are assumed to be 250
and K, respectively. The control parameter in the method
[21] is considered equal to 2

√
M̄N̄ log M̄N̄σn. Where not

mentioned, ρks are assumed to be drawn from a uniform
distribution in [0.5, 1.5]. In methods [25], [21], [22] and the
proposed method, where not mentioned, d is considered equal
to d = λ/2 , d = λ/2 , d = λ/4 and d = λ/4 , respectively.
The number of time lags in method [22] is assumed to be equal
to 2. To evaluate the performance of estimation accuracy, we
use the root mean square error (RMSE) criterion, which is
defined as follows [48]:

RMSE =

√√√√ 1

NTK

K∑
k=1

NT∑
i=1

∣∣∣ζ̂k, i − ζk

∣∣∣2, (49)

where NT denotes the number of independent Monte-Carlo
executions, and ζ̂k, i is an estimate of the parameter ζk in the
i-th trial.

Example 1: In the first experiment, we examine the esti-
mated spatial spectrums for DOA and range. Here, the values
M̄ and N̄ are equal to 5 and 11, respectively. The interval
[2.45λ, 12.5λ] approximates the Fresnel zone. Targets are
located at {θ1 = −29◦, r1 = 11λ}, {θ2 = 1◦, r2 = 3λ} and
{θ3 = 41◦, r3 = 4λ}. The SNR is set to 20dB. Figs. 2-4
show the estimated spatial spectrums for the method [25], the
method [21] and the proposed method. Also, the computational
times of the different methods are given in Table II. Regarding
DOA estimates (considering Figs. 2(b) and 3), it can be seen
that the proposed method has provided the best performance
in terms of estimation accuracy. Given the use of FOC in
the proposed method and the fact that kurtosis of Gaussian
noise is zero, so by reducing the noise effect, it was expected
that the estimation accuracy of the proposed algorithms would
be better than the other methods. Although in [25], in the

. 
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final stage, a 2D-MUSIC processing is used to estimate the
parameters, the input data of this estimator is based on the
covariance of the smoothed received signals; while in the pro-
posed method, FOSs are used for DOA estimation. An analysis
of the superiority of estimation accuracy using cumulants is
given in [46]. Although in this example, the spectra of MOSA I
and MOSA II are apparently similar, the slight differences can
be found by looking closely at the vertical axes. This similarity
should not be interpreted to mean the same functionality, as
this is just one example, and changing parameters (e.g., the
size of search steps or the number of elements) may lead to
different results. The method [25] provides better resolution
than other methods. However, by examining Table II, it is
found that it is by no means suitable in terms of computational
time (especially for real-time applications). The reason for the
very high computational time in the method [25] is the use
of 2D search to simultaneously estimate the angle and range.
In fact, it has to search a very large space. In the proposed
method, we have reduced 2D search to 1D searches, which
has significantly reduced computations. Among MOSA I and
MOSA II, the latter has less computational time due to the
elimination of an EVD operation. The long computational time
in the method [21] is due to solving the minimization problem.
Another important drawback of the method [21] is the creation
of spurious peaks in the estimated spectrum. This may be
even more acute at lower SNRs. Fig. 3 shows the normalized
DOA spectrum estimated by method [21] when d decreases
from λ/2 to λ/4 . As can be seen, although the spurious
peaks are removed in this case, the three peaks are more
difficult to detect because the method [21] does not provide a
suitable resolution. In addition, the accuracy of the estimates
has decreased. Obviously, the larger the array aperture, the
more accurate the results. On the other hand, the size of
the array aperture is related to the number of array elements
and the distance between adjacent elements in the array.
Therefore, as the number of array elements and the distance
between adjacent elements increase, the accuracy of the results
increases. However, according to the analyzes in Appendix B,
in the proposed method, when d is considered greater than
λ/4 , although the accuracy increases, phase ambiguity occurs.
Therefore, for the proposed method, the distance between
two adjacent elements is considered λ/4 . Figs. 2(c) and 4
show the spatial spectra related to the range estimates in the
method [25] and the proposed method, respectively. As can be
seen in the case of range estimates, the proposed method still
provides higher accuracy. Since the estimated DOA values in
this particular example were equal for MOSA I and MOSA II,
the associated spatial spectra of the range are the same, as the
range estimation mechanism is the same for both algorithms.
Note that the method [21] provides only the DOA parameter
estimation. However, since our proposed method estimates
DOA separately from other parameters, the virtual steering
vectors used in our methods contain pure angles (see (27)
and (28)), similar to the steering vectors used in the method
[21] (although the forms of these vectors are different in these
methods).

Example 2: In the second scenario, we reduce the num-
ber of transmitting and receiving antennas to 3 and 9, re-

(a)

(b)

(c)
Fig. 2. The spatial spectrums for DOA and range estimations by using the
method [25] (M̄ = 5 and N̄ = 11); (a) the 2D spatial spectrum, (b) the
spatial spectrum of DOA, (c) the spatial spectrum of range.

TABLE II
COMPARISON OF COMPUTATIONAL TIME OF DIFFERENT METHODS IN

EXAMPLE 1
Method Computational Time

[25] 1.08 hours
[21] 9.18 seconds

MOSA I 1.11 seconds
MOSA II 0.82 seconds

. 



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3138251, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 9

Fig. 3. The normalized spatial spectrum for DOA estimation by using the
method [21] with d = λ/2 and d = λ/4 , and the proposed method (MOSA
I and MOSA II). M̄ = 5 and N̄ = 11.

Fig. 4. The spatial spectrums for range estimations by using the proposed
method. M̄ = 5 and N̄ = 11.

spectively. The interval [1.75λ, 8λ] approximates the Fres-
nel zone. Targets are located at the same angles as Exam-
ple 1 but with different ranges as {θ1 = −29◦, r1 = 6.1λ},
{θ2 = 1◦, r2 = 2λ} and {θ3 = 41◦, r3 = 3λ}. The SNR is
still 20dB. Figs. 5-7 show the estimated spatial spectrums
for the method [25], the method [21] and the proposed
method. Also in Table III, the computational times of different
methods are given. It is clear that by reducing the number of
transmitting and receiving elements, it is expected that the
computational time in all methods will be reduced, which
is confirmed by comparing Tables II and III. By considering
Figs. 5-7 and Table III, it can be concluded that by reducing
the number of elements, the proposed method still provides
the best performance in terms of estimation accuracy and
computational time. In the previous example, the difference
in estimation accuracy between the proposed MOSA I and
MOSA II algorithms was not very clear, but now we can see
the superiority of MOSA I more clearly by examining Figs. 6
and 7. Note that the ranges corresponding to the DOAs in Fig.
6 are marked with the same markers in Fig. 7. This pairing
of parameters is done completely automatically. Although the
same DOAs are found in Figs. 2(b) and 5(b), a closer look
reveals that Fig. 2(b) has a better resolution. Despite the
reduction in the number of elements in this example, the
very high computational time is still the major drawback
of the method [25]. As Fig. 6 shows, the method [21] still

(a)

(b)

(c)
Fig. 5. The spatial spectrums for DOA and range estimations by using the
method [25] (M̄ = 3 and N̄ = 9); (a) the 2D spatial spectrum, (b) the spatial
spectrum of DOA, (c) the spatial spectrum of range.

suffers from the problem of creating spurious peaks and low
resolution. The reason for the reduction in computational time
compared to the previous example is the reduction in the size
of the processed data due to the reduction in the number of
elements. Also, according to Table III, it can be seen that the
computational time of the method [21] is more than 25 times
the proposed method. Note that since the method [25], as well
as the proposed method, are based on subspace decomposition,
they provide better resolution.

Example 3: In the third example, we calculate the RMSEs

. 
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Fig. 6. The normalized spatial spectrum for DOA estimation by using the
method [21] with d = λ/2 and d = λ/4 , and the proposed method (MOSA
I and MOSA II). M̄ = 3 and N̄ = 9.

Fig. 7. The spatial spectrums for range estimations by using the proposed
method (MOSA I and MOSA II). M̄ = 3 and N̄ = 9.

associated with the estimates in the previous examples and
compare them with each other as well as with the correspond-
ing theoretical CRBs [47]. NT is considered equal to 400.
Figs. 8 and 9 show the RMSEs of DOA versus SNR with the
assumptions of Examples 1 and 2, respectively. It is natural and
obvious that with increasing SNR, the errors have decreased.
As can be seen, at low SNRs, the method [25] provides the
best accuracy. However, as the SNR increases, the superiority
of the proposed method becomes more apparent, so that for
SNRs higher than 12dB, the closest diagrams to the CRBs
belong to the proposed method. At very low SNRs, the method
[21] shows the worst performance. A major reason may be
the negative impact of spurious peaks created in this method,
which was mentioned in previous examples. By Comparing
Figs. 8 and 9, it can be seen that in general, CRB and MOSA
II have shown the lowest and highest sensitivity to the change
in the number of elements, respectively (mean point-to-point
changes in algorithms [25], [21], MOSA I, MOSA II, and CRB

TABLE III
COMPARISON OF COMPUTATIONAL TIME OF DIFFERENT METHODS IN

EXAMPLE 2
Method Computational Time

[25] 26.26 minutes
[21] 7.01 seconds

MOSA I 0.27 seconds
MOSA II 0.24 seconds

Fig. 8. The RMSEs of DOA versus SNR with the assumptions of Example
1.

Fig. 9. The RMSEs of DOA versus SNR with the assumptions of Example
2.

are 0.54◦, 0.55◦, 0.61◦, 0.84◦, respectively). This is consistent
with the findings of previous examples. Figs. 10 and 11 show
the RMSEs of range versus SNR with the assumptions of
Examples 1 and 2, respectively. These figures show that the
closest diagrams to CRB generally belong to MOSA I. It can
also be seen that the method [25] shows a saturation behavior
so that by increasing the SNR, no significant improvement in
accuracy is achieved. This is because it requires a 2D spatial
smoothing process on the spatial/time sampled data matrix. An
insufficient number of time samples can lead to such saturation
behavior. An analysis of this has been done in [49]. Note
that although the RMSEs in Fig. 11 are calculated with a
smaller number of elements than in Fig. 10 (and we expect
larger RMSEs), the area of the range search, as well as the
corresponding values, are smaller in the latter case (we expect
smaller RMSEs). Therefore, given these two opposite cases, it
is expected that the variance of the errors in the two cases will
moderate each other to some extent, which the results confirm.
Note that CRB represents an optimal and theory performance
that is independent of the type of algorithm and depends
only on the simulation parameters [50]. However, estimation
algorithms can eventually exhibit a suboptimal behavior, in
which the RMSE depends on the problem-solving method in
addition to the value of the parameters.

Example 4: In the fourth example, we examine the perfor-
mance of the proposed algorithms in estimating the reflectivity
coefficients (which have been neglected in similar works).
Figs. 12(a) and 12(b) show the results of the estimates of

. 
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Fig. 10. The RMSEs of range versus SNR with the assumptions of Example
1.

Fig. 11. The RMSEs of range versus SNR with the assumptions of Example
2.

the reflectivity, SOM and FCM of the backscatter coefficients
in 100 independent experiments by MOSA I and MOSA II
with the parameters of Example 1, respectively. As can be
seen, although the mean of the target backscatter coefficients
is non-zero, both methods have successfully estimated all three
parameters. These estimates are also obtained with the param-
eters of Example 2, the results of which are given in Figs.
13(a) and 13(b). Figs. 12 and 13 confirm that the estimates in
100 independent experiments (marked with circular markers)
are distributed around the correct values (lines). Table IV
shows the RMSEs calculated in Figs. 12 and 13. Obviously,
with decreasing number of elements, accuracy is expected to
decrease, which can be seen by comparing Figs. 12 and 13 as
well as by examining Table IV. As can be seen, the estimated
samples in Figs. 13(a) and 13(b) show more deviation than
the corresponding samples in Figs. 12(a) and 12(b). Also, the
results estimated by MOSA I are somewhat more accurate than
MOSA II, which is consistent with the findings of previous
examples. In order to show the compatibility of the proposed
method with the complex backscatter coefficients, here we
present the results of the estimates assuming the coefficients
are complex and assuming the same distribution. Figs. 14
and 15 show the results of the estimates of the reflectivity,
covariance and kurtosis of the backscatter coefficients in 100
independent experiments by the proposed method with the
parameters of Examples 1 and 2, respectively. As can be
seen, the parameters are still estimated correctly. As expected,

(a)

(b)
Fig. 12. Results of the estimates of the reflectivity, SOM and FCM of the
backscatter coefficients in 100 independent experiments with the parameters
of Example 1; (a) by MOSA I, (b) by MOSA II.

TABLE IV
RMSES CALCULATED IN IN FIGS. 12 AND 13

Parameter
RMSE
(Fig.

12(a))

RMSE
(Fig.

12(b))

RMSE
(Fig.

13(a))

RMSE
(Fig.

13(b))
ρ 0.013 0.013 0.015 0.016

SOM of ρ 0.028 0.029 0.036 0.037
FCM of ρ 0.0001 0.0001 0.0018 0.0019

the results related to Example 2 generally show a greater
deviation than those associated with Example 1. Note that
in any case, the values of the covariance and kurtosis of the
backscatter coefficients are real (see Appendix D), which the
results confirm.

Example 5: In the fifth experiment, we examine the angular
resolution of the proposed method. Backscatter coefficients are
considered as complex values. First, we assume that the targets
are located at {θ1 = −29◦, r1 = 11λ}, {θ2 = 1◦, r2 = 3λ}
and {θ3 = 31◦, r3 = 4λ}. Other parameters are similar to
Example 1. Then, we bring the third target closer to the second
one by gradually reducing its DOA. The corresponding results
for angles 31◦, 21◦, 11◦, 8◦ and 7◦ are given in Fig. 16. It can
be seen that up to the angle of 8◦ (purple diagram), all three
peaks are well separable. However, when the third target is at
the angle of 7◦ (green diagram), it becomes relatively difficult
to separate the peaks corresponding to the second and third

. 
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(a)

(b)
Fig. 13. Results of the estimates of the reflectivity, SOM and FCM of the
backscatter coefficients in 100 independent experiments with the parameters
of Example 2; (a) by MOSA I, (b) by MOSA II.

targets. Now, similar to Example 2, we reduce the number of
elements and repeat the above experiment. It can be seen that
this time the angular resolution decreases slightly; so that all
three peaks can be identified up to the angle of 9◦ (purple
diagram), but when the third target is at the angle of 8◦, the
threshold of joining the two adjacent peaks can be identified
(see green diagram). This relative decrease in performance is
consistent with a decrease in the number of elements.

Example 6: In the sixth example, an analysis of computa-
tional complexity is presented. Fig. 17 shows a comparison
between the computational complexity in the method [25] and
the proposed method versus the number of elements for ∆θ

equal to 0.01◦, 0.1◦ and 1◦. The computational complexities
of the proposed method are given in (47) and (48). The major
computational complexity in the method [25] is equal to

O
(
l1l2

(
M̄N̄ − l1 + 1

)
(L− l2 + 1)L+ 4(l1l2)

3
/3

+180
(
2D2/λ − 0.62

√
D3/λ

)
(l1l2)

2
/(∆θ∆r)

)
,

(50)

where l1 × l2 denotes the dimensions of the scanning win-
dow [25]. It is clear that as the value of ∆θ increases, the
complexity decreases; because the search steps get bigger.
This comes at the cost of reducing the estimation accuracy.
As Fig. 17 shows, the computational complexities of the
proposed method are much less than that of the method [25]

(a)

(b)
Fig. 14. Results of the estimates of the reflectivity, covariance and kurtosis
of the backscatter coefficients in 100 independent experiments with the
parameters of Example 1; (a) by MOSA I, (b) by MOSA II.

(especially for a small or medium number of elements). This
advantage holds for all three values of ∆θ. This confirms
the results of Tables II and III. Also, as seen, MOSA II has
less overall computational complexity. The dominant term in
computational complexity is the spectral search, which is the
same in both algorithms and varies with

(
M̄N̄

)2
. But the term

related to eigendecomposition changes with
(
M̄N̄

)3
, so as the

number of elements increases, the two graphs are expected to
be further apart. A general conclusion and comparison of the
performance of the two proposed algorithms are provided in
Section V.

Example 7: In the last example, the advantage of an active
MIMO structure over a passive SIMO one is examined. Al-
though these two structures have completely different systems,
we here investigated them only in terms of estimation accuracy
(and not implementation mechanisms) under as equal condi-
tions as possible. Backscatter coefficients are considered as
complex values. The other parameters are considered similar to
Example 1. In 100 independent experiments, we estimated the
location of the targets by method [22], MOSA I and MOSA II,
the results of which are shown in Figs. 18(a), 18(b) and 18(c),
respectively. These figures also indicate the mean (standard
deviation) calculated based on these 100 experiments for
each target. As can be seen, the locations estimated by the

. 
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(a)

(b)
Fig. 15. Results of the estimates of the reflectivity, covariance and kurtosis
of the backscatter coefficients in 100 independent experiments with the
parameters of Example 2; (a) by MOSA I, (b) by MOSA II.

proposed method have both higher estimation accuracy and
much less scatter around the true location, which indicates a
more reliable MIMO structure compared to a SIMO one. This
was not unexpected because a MIMO system, by using spatial
diversity, can provide better performance than a conventional
SIMO structure. In the case of MOSA I and MOSA II,
as expected, the results are almost identical, which again
confirms the practicality of using the PM principle instead
of eigendecomposition to estimate the noise subspace. The
slightly better estimation results in MOSA I than in MOSA
II are consistent with the results obtained in the previous
examples. Also, as can be seen, the standard deviation values
of the DOA estimates for all three targets in each method are
close to each other. In such cases, according to the analyzes
presented in [51], it is expected that the values of the standard
deviation of the first target will be higher than those of
the other targets because it has a greater range. The results
presented in Fig. 18 confirm this.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, a novel method (In the form of MOSA I
and MOSA II algorithms) based on the mixing of FOS and
SOS for the joint estimation of DOA, range and reflectivity
in NF MIMO systems was presented. The use of FOC in the
proposed method, in addition to improving the estimation ac-

(a)

(b)
Fig. 16. Angular resolution results obtained by reducing the spatial spacing
of the second and third targets in the proposed method (MOSA I); (a) M̄ = 5
and N̄ = 11, (b) M̄ = 3 and N̄ = 9.

Fig. 17. Comparison of the computational complexity of the method [25] and
the proposed method versus the number of elements for ∆θ equal to 0.01◦,
0.1◦ and 1◦.

. 
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(a)

(b)

(c)
Fig. 18. Estimated locations in 100 independent experiments by (a) method
[22], (b) MOSA I, (c) MOSA II.

curacy, causes insensitivity to Gaussian noises. The proposed
method, by separating the parameter estimation procedure into
different phases, eliminates the very heavy multidimensional
search. This will be very effective in significantly reducing the
computational effort. Moreover, the estimated parameters are
paired automatically and no additional steps are required.

The performance of the proposed method was compared
with similar methods as well as theoretical CRBs. The sim-
ulation results showed that the proposed method has much
less computational time than similar methods, which is a
major advantage for employing them in real-time applications.

It was also shown that in terms of estimation accuracy of
all parameters, they provide high performance (especially for
medium and high SNRs). Although the resolution of the
proposed method is better than the method [21], the results
showed that the method [25] offers better performance in terms
of angular resolution than other methods.

All in all, given all the examples, one can draw a general
conclusion about MOSA I and MOSA II, that MOSA I as
a whole provides a relatively better estimate of the parame-
ters; however, it has relatively more computational and time
complexities. Increasing the number of elements brings the
accuracy of these two methods closer to each other, but the
difference in calculations in them becomes more. Therefore,
in low-element and high-element scenarios (massive MIMO
scenarios), the use of MOSA I and MOSA II, respectively, is
recommended. This is a logical trade-off that can be applied
in different applications according to priority and need.

To put the proposed method into further applications, fu-
ture works will be concentrated on developing the proposed
approach for more complex scenarios and providing new
solutions to the problem, as follows:
■ Dealing with a multipath environment [52]: In this

scenario, the received signals are no longer necessarily in-
dependent [53]. Therefore, not only will the simplifications in
Appendix A no longer be valid (the equations will be much
more complex), but the rank of the statistical matrices will de-
crease [12]. The use of radio-based simultaneous localization
and mapping process [54, 55] and reconfigurable intelligent
surfaces technology [54, 56] may provide efficient solutions
for more complex assumptions and more specific applications
in this direction.
■ Considering the mutual coupling effect [57]: In general,

there are two strategies to deal with the issue of mutual
coupling:
• In the physical layer: The use of special antennas made

or insulated with special materials, for example, using mantle
cloaking [58]. The use of photonic bandgap structure between
elements [59] and neutralization line [60] are other solutions.
On the other hand, electrically small antennas [61] with a size
of λ/10 or less can be used. In this case, the distance between
the antennas can be less than λ/10 ; and to reduce mutual
coupling in this case, metamaterials with cells less than λ/100
can be used.
• Another strategy could be to use a compensator matrix

in the receiver’s processing section. This method is a suitable
technique to eliminate the effect of mutual coupling in dipole
array antennas. By considering the effect of mutual coupling
between the array elements, (11) changes to the following
form:

Y (l) = MDρ (l) +W (l) , (51)

where M denotes the mutual coupling matrix. As discussed in
[62], it is often sufficient to consider the ULA coupling model
with finite non-zero coefficients, and a symmetric Toeplitz
matrix can be used to model mutual coupling. Therefore, the
output observed at the n-th sensor can be written as follows:

. 
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yn (l) =
[
01×(n−P ), mP−1, ..., m1, 1, m1, ..., mP−1,

01×(N̄−n−P+1)

]
Dρ (l) + ωn (l) ,

(52)

where when the distance between the two sensors is greater
than Pd, the mutual coupling coefficient is assumed to be zero
[63]. Mutual coupling effect will exist even if the distance
between the elements is λ/2 . Thus, this issue is usually
addressed as an independent problem in the literature. On the
other hand, the inter-element spacing of λ/4 is known as
conventional spacing in some localization problems, especially
in the NF [22, 64, 65]. The development of the proposed
method considering mutual coupling will be investigated in
future works.

■ In this paper, a spectral search-based estimator was em-
ployed. Although the proposed method provides less computa-
tional complexity than multidimensional estimation techniques
and optimization solvers, the use of ESPRIT-like estimators
can further reduce computational complexity. The ESPRIT
technique requires a structure with two shift-invariant subar-
rays from an antenna array to form two basic ESPRIT equa-
tions [66]. Although the separation of terms corresponding to
DOA and range in this paper helps to bring the steering matrix
form closer to the basic ESPRIT equations [22], since we are
dealing with a MIMO (not SIMO) system, the structure of
the virtual steering matrix is more complex. Specifically in
our case, Av1 lacks the form required to apply the ESPRIT
technique directly. The k-th column of Av1 is given below:

av1 (θk)⊗ bv1 (θk) = [e−j2ηk(−M−N), e−j2ηk(−M−N+1)︸ ︷︷ ︸
→

×e−j2ηk

,

e−j2ηk(−M−N+2), . . . , e−j2ηk(−M+N), e−j2ηk(−M+1−N)︸ ︷︷ ︸
→

×e−j2ηk(1−2N)

,

e−j2ηk(−M+1−N+1), . . . , e−j2ηk(M+N)]
T

(53)

As can be seen, the translational invariance requirement for
using the ESPRIT technique does not exist in the virtual
steering vector. In other words, it is not possible to directly
create the two shift-invariant vectors needed to form the two
basic ESPRIT equations. Note that in the above equation only
a small part of the k-th column of Av1 is given. In fact, shifts
e−j2ηk(1−2N) are repeated alternately along the vector. The
limitation mentioned above does not apply to the MUSIC
estimator; because it is compatible with any type of array
geometry (or steering vector). To use the ESPRIT technique,
it is necessary to redefine the spatial expressions in (16) and
(17) and/or the spatial matrices in (24) and (36). We intend
to consider this as one of the future works. Although there is
a technical justification for not using ESPRIT in this work, it
should be noted that under equal conditions, the aperture loss
in ESPRIT-based techniques is slightly greater than in spectral
search-based estimators [13]. Also, despite the less complexity
of ESPRIT, MUSIC provides higher accuracy [67].

APPENDIX A
Proof of (20) and (21) and their estimation: According to

(7) and starting from (18), we can obtain (54). Due to the
independence of reflectivity coefficients from each other as
well as noise, (54) can be simplified as (55). Due to the noise
being Gaussian, the terms related to the noise neutralize each
other. Finally, by simplifying exponential terms and factoring
the common expression ej2ηk(−u+v−p+q) in the terms related
to the signal, the following is obtained:

c4y (u, v, p, q) =
K∑
i=1

[E {ρ∗k (l) ρk (l) ρ∗k (l) ρk (l)}

− E {ρ∗k (l) ρk (l)}E {ρ∗k (l) ρk (l)}
− E {ρ∗k (l) ρ∗k (l)}E {ρk (l) ρk (l)}
−E {ρ∗k (l) ρk (l)}E {ρk (l) ρ∗k (l)}] ej2ηk(−u+v−p+q).

(56)

Therefore, according to the definition of kurtosis in (22), (20)
is obtained.

In a similar way, and of course simpler, (21) can be obtained
as follows:

ry = E

{[
K∑

k=1

ρ∗k (l) e
−j(ηkv+ϕkv

2)e−j(ηkq+ϕkq
2) + ω∗

v, q (l)

]
[

K∑
k′=1

ρk′ (l) ej(ηk′u+ϕk′u2)ej(ηk′p+ϕk′p2) + ωu, p (l)

]}

=
K∑
i=1

E {ρ∗k (l) ρk (l)}e−j(ηkv+ϕkv
2)e−j(ηkq+ϕkq

2)

ej(ηku+ϕku
2)ej(ηkp+ϕkp

2) + E
{
ω∗
v, q (l)ωu, p (l)

}
.
(57)

Given that the number of samples is finite, c4y (u, v, p, q) and
ry (u, v, p, q) can be estimated as follows:
ĉ4y (u, v, p, q) =

1

L

L∑
l=1

y∗u, p (l) yv, q (l) y
∗
−v,−q (l) y−u,−p (l)

− 1

L2

L∑
l

y∗u, p (l) yv, q (l)
L∑

l=1

y∗−v,−q (l) y−u,−p (l)

− 1

L2

L∑
l=1

y∗u, p (l) y
∗
−v,−q (l)

L∑
l=1

yv, q (l) y−u,−p (l)

− 1

L2

L∑
l=1

y∗u, p (l) y−u,−p (l)
L∑

l=1

yv, q (l) y
∗
−v,−q (l),

(58)

r̂y (u, v, p, q) =
1

L

L∑
l=1

y∗v, q (l) yu, p (l). (59)

APPENDIX B
Upper bound of inter-element spacing: Consider (27), (28),

(30) and (35). From (5) we define ξk ≜ ã (θk) = b̃ (θk) =
ej4πd sin θk/λ . ξks are the constituent entries of virtual steering
vectors for estimating DOAs. Without placing any conditions
on d, we will have a series of ambiguous DOA estimates as
follows:

θ̂k (z) = arcsin (νk + zλ/2d ) , k = 1, 2, ..., K, (60)

. 
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c4y (u, v, p, q) = E

{[
K∑

k=1

ρ∗k (l) e−j(ηku+ϕku
2)e−j(ηkp+ϕkp

2) + ω∗
u, p (l)

] [
K∑

k′=1

ρk′ (l) ej(ηk′v+ϕk′v2)ej(ηk′q+ϕk′q2) + ωv, q (l)

]
[

K∑
k′′=1

ρ∗k′′ (l) e
−j(−ηk′′v+ϕk′′v2)e−j(−ηk′′q+ϕk′′q2) + ω∗

v, q (l)

][
K∑

k′′′=1

ρk′′′ (l) ej(−ηk′′′u+ϕk′′′u2)ej(−ηk′′′p+ϕk′′′p2) + ωu, p (l)

]}

− E

{[
K∑

k=1

ρ∗k (l) e−j(ηku+ϕku
2)e−j(ηkp+ϕkp

2) + ω∗
u, p (l)

][
K∑

k′=1

ρk′ (l) ej(ηk′v+ϕk′v2)ej(ηk′q+ϕk′q2) + ωv, q (l)

]}

E

{[
K∑

k′′=1

ρ∗k′′ (l) e
−j(−ηk′′v+ϕk′′v2)e−j(−ηk′′q+ϕk′′q2) + ω∗

v, q (l)

][
K∑

k′′′=1

ρk′′′ (l) ej(−ηk′′′u+ϕk′′′u2)ej(−ηk′′′p+ϕk′′′p2) + ωu, p (l)

]}

− E

{[
K∑

k=1

ρ∗k (l) e−j(ηku+ϕku
2)e−j(ηkp+ϕkp

2) + ω∗
u, p (l)

][
K∑

k′′=1

ρ∗k′′ (l) e
−j(−ηk′′v+ϕk′′v2)e−j(−ηk′′q+ϕk′′q2) + ω∗

v, q (l)

]}

E

{[
K∑

k′=1

ρk′ (l) ej(ηk′v+ϕk′v2)ej(ηk′q+ϕk′q2) + ωv, q (l)

][
K∑

k′′′=1

ρk′′′ (l) ej(−ηk′′′u+ϕk′′′u2)ej(−ηk′′′p+ϕk′′′p2) + ωu, p (l)

]}

− E

{[
K∑

k=1

ρ∗k (l) e−j(ηku+ϕku
2)e−j(ηkp+ϕkp

2) + ω∗
u, p (l)

][
K∑

k′′′=1

ρk′′′ (l) ej(−ηk′′′u+ϕk′′′u2)ej(−ηk′′′p+ϕk′′′p2) + ωu, p (l)

]}

E

{[
K∑

k′=1

ρk′ (l) ej(ηk′v+ϕk′v2)ej(ηk′q+ϕk′q2) + ωv, q (l)

][
K∑

k′′=1

ρ∗k′′ (l) e
−j(−ηk′′v+ϕk′′v2)e−j(−ηk′′q+ϕk′′q2) + ω∗

v, q (l)

]}
.

(54)

c4y =

K∑
i=1

E {ρ∗k (l) ρk (l) ρ∗k (l) ρk (l)}e−j(ηku+ϕku
2)e−j(ηkp+ϕkp

2)ej(ηkv+ϕkv
2)ej(ηkq+ϕkq

2)e−j(−ηkv+ϕkv
2)e−j(−ηkq+ϕkq

2)

ej(−ηku+ϕku
2)ej(−ηkp+ϕkp

2) −
K∑
i=1

E {ρ∗k (l) ρk (l)}e−j(ηku+ϕku
2)e−j(ηkp+ϕkp

2)ej(ηkv+ϕkv
2)ej(ηkq+ϕkq

2)
K∑
i=1

E {ρ∗k (l) ρk (l)}

e−j(−ηkv+ϕkv
2)e−j(−ηkq+ϕkq

2)ej(−ηku+ϕku
2)ej(−ηkp+ϕkp

2) −
K∑
i=1

E {ρ∗k (l) ρ∗k (l)}e−j(ηku+ϕku
2)e−j(ηkp+ϕkp

2)e−j(−ηkv+ϕkv
2)

e−j(−ηkq+ϕkq
2)

K∑
i=1

E {ρk (l) ρk (l)}ej(ηkv+ϕkv
2)ej(ηkq+ϕkq

2)ej(−ηku+ϕku
2)ej(−ηkp+ϕkp

2) −
K∑
i=1

E {ρ∗k (l) ρk (l)}e−j(ηku+ϕku
2)

e−j(ηkp+ϕkp
2)ej(−ηku+ϕku

2)ej(−ηkp+ϕkp
2)

K∑
i=1

E {ρk (l) ρ∗k (l)}ej(ηkv+ϕkv
2)ej(ηkq+ϕkq

2)e−j(−ηkv+ϕkv
2)e−j(−ηkq+ϕkq

2)

+ E
{
ω∗
u, p (l)ωv, q (l)ω

∗
v, q (l)ωu, p (l)

}
− E

{
ω∗
u, p (l)ωv, q (l)

}
E

{
ω∗
v, q (l)ωu, p (l)

}
− E

{
ω∗
u, p (l)ω∗

v, q (l)
}
E {ωv, q (l)ωu, p (l)}

− E
{
ω∗
u, p (l)ωu, p (l)

}
E

{
ωv, q (l)ω

∗
v, q (l)

}
.

(55)

where νk = λ∠ξk/(4πd) and

⌈2d (−1− νk)/λ ⌉ ≤ z ≤ ⌊2d (1− νk)/λ ⌋ . (61)

For each θ̂k and d, we have −π ≤ ∠ξk ≤ π. To avoid any
cyclic ambiguity in ∠ξk, it must be limited to 0 ≤ ∠ξk ≤ π
and −π ≤ ∠ξk ≤ 0 for 0 ≤ θ̂k ≤ π/2 and −π/2 ≤ θ̂k ≤
0, respectively. Therefore, according to (61), to avoid phase
ambiguity, λ/4 should be considered as the upper bound of
d.

APPENDIX C

The derivation of (44) and (45): By considering Av1, the
kurtosis of the k-th backscatter coefficient can be computed
as

c4ρk
=

(
εHk diag [1/c4ρ1

, 1/c4ρ2
, ..., 1/c4ρK

] εk
)−1

, (62)

where εk is the k-th column of the K×K-dimensional identity
matrix. Due to the fact that A†

v1

(
av1

(
θ̂k

)
⊗ bv1

(
θ̂k

))
=

εk, we have

c4ρk
=

(
(av1 (θk)⊗ bv1 (θk))

H
(
A†

v1

)H

CρA
†
v1

(av1 (θk)⊗ bv1 (θk)))
−1
.

(63)

where av1

(
θ̂k

)
⊗ bv1

(
θ̂k

)
is the k-th column of Av1.

Based on the property of
(
A†

v1

)H

=
(
AH

v1

)†
and due to

the elimination of the noise effect in cumulant C, (45) can be
reached.

Equation (44) can be derived in a similar way. The differ-
ence is that unlike C, the sensor noise power must also be
taken into account in the case of R. The amount of noise
power can be estimated as follows:

σ̂2 =
1

M̄N̄ −K

M̄N̄∑
k=K+1

ψk. (64)

APPENDIX D
Given (23), it is clear that the value of the covariance of

the backscatter coefficient is real. Also, the first two terms in
(22) are real. Here we show that the third term is also real.
Assume that ρk (l) = a + jb, where a and b denote the real
and imaginary parts of ρk (l), respectively. So, we can write

. 
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E
{
ρ2k (l)

}
E
{
ρ∗k

2 (l)
}
= E

{
(a+ jb)

2
}
E
{
(a− jb)

2
}

=
(
E
{
a2
}
− E

{
b2
}
+ j2E {ab}

)(
E
{
a2
}
− E

{
b2
}
− j2E {ab}

)
= E2

{
a2
}
+ E2

{
b2
}
+ 4E {ab} ,

(65)

which is a real value. Therefore, the kurtosis of the backscatter
coefficient will always be real.
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