Sensitivity Analysis on a green roof hydrological model
Axelle Hego, Floriane Collin, Hugues Garnier, Rémy Claverie

To cite this version:
Axelle Hego, Floriane Collin, Hugues Garnier, Rémy Claverie. Sensitivity Analysis on a green roof hydrological model. MascotNum Annual Conference, Apr 2021, Aussois, France. hal-03632462

HAL Id: hal-03632462
https://hal.science/hal-03632462
Submitted on 6 Apr 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sensitivity Analysis on a green roof hydrological model

Axelle HEGO¹, Floriane COLLIN¹, Hugues GARNIER¹, Rémy CLAVERIE²

¹Université de Lorraine, CRAN, CNRS UMR 7039, ²Cerema Est, Team research group, F-54510, Tomblaine, France

Context

Urban imperviousness is a major urban issue during rainfall events

Solution → Green Roofs

• lower the peak flow rate in water system by 22% to 93%
• delay the peak flow by 0 to 30 min

Green Roofs hydrologic modeling

• Rainfall data and real water content measured in a green roof of the CEREMA of Nancy
• Simulation of the water infiltration into the layers using Richards equation (1) implemented in Hydrus-1D software combined with Van Genuchten model (2) and Mualem model (3)

\[
\frac{\partial \theta(h)}{\partial t} = \frac{\partial}{\partial x} \left(K(\theta) \frac{\partial h}{\partial x} \right) - a \frac{\partial h}{\partial x}
\]

\[
\theta(h) = \frac{\theta_s - \theta_r}{(1 + |\alpha h|^m)^n} - \theta_r \quad \text{with} \quad m = 1 - \frac{1}{n}
\]

\[
K(S_i) = K_S S_i^n \left(1 - (1 - S_i)^{1/m} \right)^m \quad \text{with} \quad S_i(\theta) = \frac{\theta(h) - \theta_r}{\theta_s - \theta_r}
\]

Problem statement

• Input : Rainfall
• Output : Water content \(\theta(t) \) or \(VWC(t) \) in (ii)
• \(k = 6 \) uncertain parameters : \(\theta_s, \theta_r, K_s, \alpha, n, \) and \(\alpha \)

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Inf</th>
<th>Sup</th>
<th>Inf</th>
<th>Sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_s)</td>
<td>m m^-1</td>
<td>0.072</td>
<td>0.088</td>
<td>0.054</td>
<td>0.066</td>
</tr>
<tr>
<td>(\theta_r)</td>
<td>m m^-1</td>
<td>0.337</td>
<td>0.473</td>
<td>0.27</td>
<td>0.33</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>m^-1</td>
<td>5.85</td>
<td>7.15</td>
<td>4.5</td>
<td>5.5</td>
</tr>
<tr>
<td>(n)</td>
<td>-</td>
<td>1.422</td>
<td>1.738</td>
<td>1.35</td>
<td>1.65</td>
</tr>
<tr>
<td>(K_s)</td>
<td>(10^{-3}) m s^-1</td>
<td>1.95</td>
<td>2.38</td>
<td>3.25</td>
<td>3.972</td>
</tr>
<tr>
<td>(l)</td>
<td>-</td>
<td>2.583</td>
<td>3.157</td>
<td>0.09</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Method based on PCE :

\[
Y(t) = \mathcal{G}(X,t) = \sum_{i=1}^{n} a_i(t) \psi_i(X_1,\ldots,X_i)
\]

Method applied at each time instant :
1. Define the distribution of uncertain parameters to compose \(\psi_i \)
 Uniform distribution → Legendre Polynomials
2. Define \(p \), the maximum development order of \(\psi_i \)
3. Estimate the PC coefficients \(a_i(t) \) by solving a least square problem
4. Estimate sensitivity index (SI) with :
First order SI :

\[
S_i(t) \approx \frac{\sum_{k \leq p} \int\int a_i(t)^2 E[Y_i](X_1) \partial X_k}{\sum_{k \leq p} \int\int E[Y]^2(\partial X_k)^2}
\]

where \(I_i \) is polynomial index of \(\psi_i \) which depends only on \(X_i \)

Total SI :

\[
S_L(t) \approx \frac{\sum_{k \leq p} \int\int a_i(t)^2 E[Y_i](X_1) \partial X_k}{\sum_{k \leq p} \int\int E[Y]^2(\partial X_k)^2}
\]

where \(I_{\psi_i} \) is polynomial index of \(\psi_i \) which depends on \(X_i \) and all its interactions.

Results on Green Roofs

How vary the water content \(VWC(t) \) in the substrate when ...

... substrate parameters vary ?

• Variations whatever \(VWC(t) \) evolution
• \(S_j = S_j^n \) : no interaction between parameters
• 3 influential parameters : saturated water content \(\theta_s \), pressure head fitting parameter \(\alpha \) and porosity \(n \)
• \(S_j \) follows \(VWC(t) \) i.e. \(\varphi \) when it rains
• \(S_j \) inversely follows \(VWC(t) \) i.e. \(\varphi \) when it rains
• \(S_j \) varies slightly following \(VWC(t) \)
• The other parameters are not influential

... drainage parameters vary ?

• No variation when \(VWC(t) \) is saturated
As for the variation of substrate parameters, we have :
• \(S_L = S_L^n \)
• Same 3 influential parameters and the other parameters uninfluential
• Same dynamics for \(S_{\alpha}, S_{\theta_s} \) and \(S_n \) but with more intensity

Conclusion and Prospect

• 3 influential parameters, saturated water content \(\theta_s \), pressure head fitting parameter \(\alpha \) and porosity \(n \) and different influences depending on the layer
• Prospects : analyse the outflow and include meteorological uncertainties

References