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Abstract

We consider a repeated game, in which due to private information and a

lack of flexible transfers, cooperation cannot be sustained efficiently. In each

round, the buyer either buys from the seller or takes an outside option. The

fluctuating outside option may be public or private information. When the

buyer visits, the seller chooses what quality to provide. We find that the buyer

initially forgoes mutually beneficial trades before then visiting more often than

he would like to, myopically. Under private information, the relationship recur-

rently undergoes gradual self-reinforcing downturns when trust is broken and

instantaneous recoveries when loyalty is shown.
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Business success (for small and large businesses alike) is often tied to loyal rela-

tionships with trading partners. Virtually all large retail companies—from airlines

to supermarket chains—run loyalty programs for their customers, recognizing that

a good customer is a repeat customer. Traders in poor countries cite personal re-

lationships as the most important factor for success (Fafchamps and Minten, 1999;

Fafchamps, 2004). In other words, “to be an effective competitor (in the global econ-

omy) requires one to be a trusted cooperator (in some network)” (Morgan and Hunt,

1994). However, how are such relationships with “trusted cooperators” sustained, and

how do they evolve over time when trading opportunities are not common knowledge?

This paper analyzes how a loyal relationship between two parties can be preserved

over time in the face of adverse selection and moral hazard. More precisely, we

consider a repeated game between a buyer and a seller, in which due to private

information and a lack of flexible transfers, cooperation cannot be sustained efficiently.

The buyer repeatedly faces a choice between buying from the seller (at exogenous

terms) and taking an outside option. The value of the outside option (which may or

may not be private information of the buyer) is i.i.d. and drawn from some exogenous

distribution. When the buyer visits the seller, the seller chooses which quality to

provide (at a cost). We are interested in understanding how this relationship is

optimally managed, how it evolves, and how its evolution depends on the information

available to the seller. With low discounting, a folk theorem holds. Instead, we

assume that players are impatient and characterize the (exactly) optimal equilibria,

with a particular focus on the buyer’s favorite equilibrium.

Our main results are as follows: (1) regardless of whether the buyer has private

information, in the buyer-preferred equilibrium, (i) the buyer initially forgoes mu-

tually beneficial trades (the consideration stage) to avoid having to pay rents, and

(ii) once the relationship has started, the buyer will trade more often than he would

myopically like to in order to preserve the relationship (the loyalty loop); (2) mak-

ing information common knowledge reduces volatility in the relationship: in fact,

in the buyer-preferred equilibrium when there is no private information, behavior is

stationary after the first visit; (3) in the face of private information, the relationship

2



necessarily involves varying levels of loyalty and quality: the relationship experiences

gradual downturns when trust is broken, but instantaneously recovers if loyalty is

shown; (4) even in the face of private information, trust is eventually re-established:

the relationship never breaks down.

The intuition for the consideration stage and the loyalty loop is as follows. Once

the relationship has started, the buyer must motivate the seller to provide the desired

quality and does so by coming more often than he would like (myopically). The buyer

wants to delay starting this loyalty loop. The need to deliver rents to the seller after

the first purchase means the buyer forgoes beneficial alternative trades; he therefore

waits longer than he would like to in a myopic sense until he first visits. The seller

is too much of a good thing for the buyer: to motivate the seller, the buyer must

patronize her more often that he would like.

When there is no private information, the buyer-preferred equilibrium is stationary

after the first purchase: the buyer uses a simple cut-off strategy, where he visits the

seller if, and only if, the value of the outside option is sufficiently low, and the seller

provides a constant quality. Given that there is no private information, deviations

are observable, and no variation in payoffs or behaviors on the path is required to

provide incentives: without loss, any deviation leads to a permanent breakdown of

cooperation (players are “quick to anger and never forgive”).

When the value of the outside option is private information, the buyer-preferred

equilibrium is no longer stationary after the first visit: because the buyer’s deviations

are no longer observable, quality varies with the buyer’s loyalty. Consecutive failures

to visit eventually lead to decreases in quality, which in turn make the buyer less

willing to visit, by reducing the range of outside options for which he finds it worth

his while. Continuing decreases in quality hurt the buyer, but continuing decreases

in loyalty also hurt the seller. Hence, re-establishing trust when the buyer visits

the seller boosts the seller’s payoff, and motivates the buyer to visit her. Therefore,

when loyalty is shown (i.e., when the buyer visits the seller), trust is immediately

re-established: after just a single purchase from the seller, quality jumps back to the

(appropriately defined) socially desirable level (players are “slow to anger and quick
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to forgive”).

The relationship may slowly continue to sour for arbitrarily long stretches of time,

with the buyer visiting less and less frequently, and the seller offering lower and lower

quality. Fortunately, this downward spiral occurs sufficiently slowly that a visit always

eventually reoccurs. Hence, the relationship never completely breaks down, even in

the face of private information. Instead, this relationship alternates forever between

phases of slow erosion in quality and loyalty, and immediate re-establishment of those.

The results speak to a variety of phenomena observed in long-term business re-

lationships. For instance, the distinction between the consideration stage and the

loyalty loop (reminiscent of the “insider bias” in Board (2011)) has been documented

by the marketing literature in various contexts from the choice of fast-food restau-

rants (Nedungadi, 1990) to high-technology markets (Heide and Weiss, 1995). Our

paper offers a simple explanation for why forgoing such mutually beneficial trades

may be optimal for consumers.

Traders in developing countries cite loyal relationships as the most important

factor in business success. Part of the reason for this is that repeated interactions

facilitate the flow of information and ensure the regularity of trade (Fafchamps and

Minten, 1999; Fafchamps, 2004). This is consistent with our findings: making in-

formation common knowledge reduces volatility in the relationship, thereby ensuring

regular trade relative to a situation with private information.

Our paper also speaks to the structural asymmetry in many multitier loyalty

programs (Bijmolt et al., 2018). The purpose of loyalty programs is to build a loyal

customer base. Multitier loyalty programs categorize customers into hierarchical tiers

based on behavior, rewarding customers with progressively preferential treatment and

special privileges, among other things. Many such multitier loyalty programs display

structural asymmetry in regard to promoting and demoting customers: airlines such

as Air France have no limit on how quickly a customer can reach the highest tier

(Platinum status) in its loyalty program—however, even if the customer has failed to

be loyal over a given year, the airline demotes the customer by at most one tier. This

structure is consistent with our result that downturns in the business relationship are
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gradual, whereas recoveries are instantaneous.

Our work is related to two main strands of literature. The first is the literature

on trading favors (see Athey and Bagwell, 2001; Möbius, 2001; Fuchs and Lippi,

2006; Hauser and Hopenhayn, 2008). In this literature, there is two-sided adverse

selection: players have (privately known) opportunities to grant a favor at random

times. Granting favors is efficient but costly. In our model, we have adverse selection

on the buyer’s side but moral hazard on the seller’s side.

While there are no flexible transfers included in this analysis, the paper is also

related to the literature on relational contracts with random opportunity costs (Board,

2011; Li and Matouschek, 2013). In this literature, the opportunity cost of paying a

worker varies over time.1 In Board (2011), the opportunity cost is publicly observable,

but the principal can choose to assign a task between multiple agents. Board (2011)

shows that there is insider bias, i.e., the principal is more likely to assign the task

to an agent with whom he has already established a relationship. While we do not

model competition explicitly, the consideration stage (i.e., the “hesitation” to start

a relationship with a new seller) in our paper is reminiscent of the insider bias in

Board (2011). In Li and Matouschek (2013), the relationship experiences gradual

downturns as the principal is repeatedly hit by negative shocks, but trust can quickly

be rebuilt. This is very similar to the dynamics in the unobservable case in our

paper. However, in Li and Matouschek (2013), cycles are driven by the concavity of

the production function, as they note, whereas we assume that costs are linear and

make no assumption on the distribution of outside options.2 Crucially, the availability

of transfers in this literature means that a player can be rewarded or punished without

1Also related is Halac (2012), where the opportunity cost is private information, but unlike
in Board (2011), Li and Matouschek (2013) and this paper, the private information is perfectly
persistent.

2To develop the analogy, both models involve two instruments to transfer utility between buyer
and seller. In Li and Matouschek (2013), payments are allowed, a linear (but bounded) instrument.
Here, varying the quality level provides a similar, linear instrument. In their paper, the second
instrument, the technology, is assumed to be strictly concave. In ours, varying the continuation
payoff vector is the second instrument. However, its strict concavity is a result, not an assumption.
The analogy has its limitations, however: here, the asymmetry between gradual downturns and
drastic recoveries is driven by the alignment between the seller’s payoff and the buyer’s incentives
(in their paper, what matters is the alignment in payoffs as they emphasize).
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surplus destruction. Here, on the other hand, the seller can only punish by decreasing

the quality, but this is inefficient.3

The rest of the paper is structured as follows. The model is described in Section

2. Section 3 analyzes the complete information case (i.e., the outside option is ob-

servable). Section 4 studies the incomplete information case (i.e., the outside option

is the private information of the buyer). Section 5 concludes the paper.

1 Set-Up
A buyer (he) and a seller (she) interact repeatedly. Time is discrete and infinite.

In each round n = 0, . . ., the interaction unfolds as follows:

1. The buyer draws an outside option. This random variable ṽ is i.i.d. across

rounds, according to F , with support V = [v, v], with v ≥ 0.4 The distribution

F admits a density f bounded away from zero on V. The buyer observes this

outside option. The seller may or may not observe this outside option: this

distinction defines the observable vs. the unobservable case.

2. The buyer chooses whether to visit the seller (“In” or, simply, “I ”) or to take

the outside option (“Out” or, simply, “O”).

3. If the buyer chooses In, the seller picks a quality qn ∈ Q := [0, 1].

If the buyer chooses Out, the reward vector to the players (buyer and seller) is (vn, 0),

where vn is the realized outside option in round n. If he chooses In, the vector is

(qn − p, p− cqn), where p, c are exogenous parameters such that 0 < c < p < 1, and

v > 1 − p (outside options can be attractive). That is, the seller receives a fixed,

exogenous price p whenever the buyer chooses In, independent of the quality she

3In motivation, our paper is also related to the literature on relational contracts with random
cost of effort (Levin, 2003; Chassang, 2010; Calzolari and Spagnolo, 2017). In Levin (2003) and
Chassang (2010), the focus is (as in our paper) on the relationship between one principal and one
particular agent. Calzolari and Spagnolo (2017) focus on the principal’s choice between multiple
agents, and as in Board (2011) finds that there is an “insider bias.” In Levin (2003) and Calzolari
and Spagnolo (2017), the cost of effort is private information, whereas in Chassang (2010), there is
learning about the production possibilities of the agent over time.

4The assumption v ≥ 0 is for convenience and can be replaced by v > −p: some outside options
can be costly, as long as they are still preferable to paying the seller for a worthless good.
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picks. Quality is measured in the buyer’s utility and entails a linear cost to the seller.

Given that the price is simply a transfer, surplus is vn when the buyer chooses Out

and qn(1−c) when he chooses In. Hence, the socially efficient decision is for the seller

to choose qn = 1 for all n (whenever the buyer chooses In) and for the buyer to go

to the seller whenever vn ≤ 1 − c. However, in the one-shot game, because p > c,

the buyer would only visit the seller if vn < 1 − p if he expects the seller to provide

maximum quality. Of course, in the one-shot game, it is optimal for the seller to

pocket the price and pick zero quality.

Players share a common discount factor δ ∈ [0, 1). Realized payoffs are then

B0 = (1− δ)
∑

n≥0

δn
(

1{an=I}(qn − p) + 1{an=O}vn
)

for the buyer, and
S0 = (1− δ)

∑

n≥0

δn1{an=I}(p− cqn)

for the seller.

Throughout, the seller’s quality choice is observable. For the moment, we further

assume that information is complete: the seller observes the outside option before

choosing quality.5,6

A history hn−1 ∈ Hn−1 is a sequence (v0, q0, . . . , vn−1, qn−1) ∈ (V×(Q∪{∅}))n, with
the convention that qm = ∅ whenever the buyer chooses am = O in that round, that

is, if the buyer chooses not to visit the seller. A behavior strategy for the seller, then,

is a sequence σS := (σS
n )n, where σ

S
n is a probability transition from Hn−1×V×{I, O}

to Q ∪ {∅}, with the restriction that σS
n (h

n−1, vn, a) = ∅ if, and only if, a = O.7 A

behavior strategy for the buyer is a sequence σB := (σB
n )n, where σB

n is a probability

transition from Hn−1 × V → {I, O}. Note that the buyer’s choice in past rounds is

ignored in the histories, as it is encoded in the seller’s quality choice. Given a strategy

profile σ = (σB, σS), expected payoffs are defined in the obvious way. When no risk

5For most results, one can equivalently assume that the seller only observes the outside option if
the buyer takes it, rather than visiting her, an assumption more reasonable for some applications.

6Hence, we might equivalently assume that the outside option is fixed, but the seller’s cost
fluctuates.

7That is, for each hn−1 ∈ Hn−1, σS
n (h

n−1) is a distribution over [0, 1] ∪ {∅}, and the probability
assigned to any Borel set A ⊂ [0, 1] ∪ {∅} is a measurable function of hn−1.

7



of confusion arises, we use B0, S0 to denote this (expected) payoff as well. We use

subgame-perfect Nash equilibrium as a solution concept.8 For conciseness, we omit

many statements that only hold “with probability one.” Throughout, we assume that

a public randomization device is available, even if it is omitted from notations.9

We note that the seller can secure 0 by always choosing zero quality, and the buyer

can secure E[ṽ] by always choosing the outside option. These are also the minmax

payoffs, and the vector (E[ṽ], 0) is an equilibrium payoff: if the seller expects the

buyer to never return, saving on the quality cost is optimal if the buyer unexpectedly

shows up. Conversely, given that the buyer expects the seller to choose zero quality,

it is best for the buyer to always pick the outside option. This strategy profile is

referred to as autarky.

There are three curves tracing the boundary of the feasible payoff set F . First,

suppose the buyer uses a cut-off rule, according to which he visits the seller when the

outside option is below some cut-off, and the seller chooses maximum quality. As the

cut-off varies, the resulting payoff vector traces a curve in the space of buyer/seller

payoff pairs (B, S). Second, suppose the buyer always visits the seller, and the seller

chooses the same quality whenever the buyer visits. As the quality varies, the resulting

payoff vector traces another curve. Finally, suppose the buyer uses another cut-off

rule, coming to the seller when the outside option is above some cut-off, and the seller

chooses zero quality whenever the buyer visits. As the cut-off varies, the resulting

payoff vector traces yet another curve. The convex hull of these curves is the feasible

payoff set. The set of individually rational payoffs V further requires that the seller

obtain at least 0 and the buyer his outside option E[ṽ].10 The sets F and V (shaded

8The solution with commitment on the buyer’s side is derived in Section 2.1. If the seller can
commit, trade becomes uncomplicated, since by assumption p > c, and so the seller breaks even.

9It plays no role in the best equilibria we derive but facilitates the analysis and is used for simple
equilibria; see Section 4.1.

10More formally, the feasible payoff is given by

F :=
{

(B,S) ∈ R2 | BL ≤ B ≤ BU
}

,

where straightforward and omitted calculations give the bounds

BU := min

{

p(1− c)

c
− S

c
,
1− p

p− c
S +

(

1− S

p− c

)

E

[

ṽ
∣

∣

∣
ṽ ≥ F−1

(

S

p− c

)]}

,
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B

S

p

E[ṽ]−p

Figure 1: Feasible (and individually rational) payoff set when (δ, p, c) =
(

13
20 ,

13
25 ,

1
4

)

.

area) are illustrated in Figure 1.

Plainly, a folk theorem holds in our setting regardless of whether outside options

are observed: any feasible, strictly individually rational payoff can be supported pro-

vided the buyer and seller are sufficiently patient.11 Our interest is in situations in

which this is not the case.

Our goal is to understand the relationship between the buyer and seller and how

it evolves. On the seller’s side, a natural measure of the strength of the relationship is

given by the quality she supplies; on the buyer’s side, this measure is the probability

with which he visits the seller.12

and

BL :=

(

1−
S

p

)

E

[

ṽ
∣

∣

∣
ṽ ≤ F−1

(

1−
S

p

)]

− S.

Hence, the feasible and individually rational payoff set is given by

V :=
{

(B,S) ∈ R2 | (B,S) ∈ F
}

∩ [E[ṽ],∞)×R+.

11The standard results under imperfect monitoring (e.g., Fudenberg, Levine and Maskin, 1994)
do not apply given that action and type sets are infinite, but we anticipate no difficulty in adapting
Radner’s (1985) review strategies to this setting.

12Because quality and outside options are drawn from intervals, we avoid the mixed strategies
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To fix ideas, we focus mostly on the buyer-preferred equilibrium—that is, the

equilibrium that maximizes the buyer’s ex ante payoff. To determine this equilibrium,

it is convenient to solve for the Pareto frontier of the equilibrium payoff set, and

the characterization of other equilibria (for instance, the seller-preferred equilibrium)

follows.

Given that complete information is assumed for now, all deviations from a pure

strategy profile are observable. Therefore, any equilibrium remains an equilibrium

if we replace the specification of the continuation strategies after a deviation into

autarky. This specification is assumed throughout, though it is not always stated

explicitly. Hence, we focus on describing behavior as long as neither player has

deviated.

The buyer’s favorite stage-game outcome involves visiting in any round if, and

only if, his outside option is less than q − p, his payoff from visiting the seller. We

refer to such a decision rule by the buyer as myopic or opportunistic, as it ignores the

potential fallout from failing to visit the seller. Of course, the buyer would also like

the seller to provide maximum quality. Independent of whether the seller does so, we

rule out the possibility of myopic behavior in equilibrium (except for in the case of

autarky) through the following assumption on the parameters.

Assumption A1: For all q > 0, it holds that:

(1− δ)cq > δF (q − p)(p− cq).

It immediately follows that

Lemma 1. Under A1, there is no equilibrium in which the buyer visits if, and only

if, vn ≥ Ehn−1,vn[qn]− p for all n, hn−1, vn.

Proof. Let
λ := min

q∈Q
{(1− δ)cq − δF (q − p)(p− cq)} ,

which is strictly positive, given A1. Assume first that the buyer visits w.p.p. (with

positive probability) in every round. Incentive compatibility requires that, for all n,

(and their counterintuitive properties) that would arise with discrete supports.
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all hn−1, vn, and for all qn in the support of σS
n(h

n−1, vn),

(1− δ)cqn ≤ Ehn−1,vn,qn

[

∞
∑

m=n+1

(1− δ)δm−nF (Ehm−1,vm [qm]− p)(p− cEhm−1,vm [qm])

]

≤ (1− δ)cEhn−1,vn,qn

[

∞
∑

m=n+1

δm−n−1((1− δ)qm − λ/c)

]

,

by the law of iterated expectations and A1. In particular, this requires

E[qn] ≤ (1− δ)
∞
∑

m=n+1

δm−n−1E [qm]− λ/c.

Plainly, this cannot hold for all n, given that (E[qn])n is a bounded sequence. If

in some rounds, the buyer does not visit, some terms on the right-hand side must be

replaced by zeros, and the contradiction follows along the same lines.

Hence, opportunistic behavior cannot be sustained as a persistent equilibrium phe-

nomenon: the buyer must visit more often that he would like, at least occasionally.13

We impose Assumption A1 to rule out such trivial equilibria.

In general, the condition in A1 cannot be simplified by requiring it to hold for

q = 1 only, though this is the case for many distributions, including the uniform

distribution.14 It is perhaps easiest to view this as an assumption regarding the

seller’s impatience, as it is satisfied provided the interest rate (1− δ)/δ is sufficiently

large.

Assumption A1 is maintained throughout (including throughout the unobservable

case) and omitted from all statements.

While there are parameters for which autarky is the only equilibrium, we focus on

the case in which other equilibria exist, that is, the parties are impatient enough that

the seller’s incentives are not automatically satisfied but patient enough that she can

be motivated.
13This does not imply that equilibria in which the buyer behaves myopically cannot exist; the

buyer can also provide rents to the seller by accepting a lower quality good when his outside option
is very low. Either way, the buyer must compromise on what he would like.

14Assumption A1 certainly holds for q = p. When F is uniform, the difference between the left-
and right-hand side is convex in q, so that it holds for all q if it holds for q = 1.
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v ≶ v∗I v ≶ v∗S

O

(I)nitial Purchase

I

I, O

(S)ubsequent Purchases

Figure 2: Buyer favorite equilibrium.

2 Observable Case: Main Results
Because of Assumption A1, the buyer cannot expect the seller to provide quality

unless he makes a deliberate effort to visit her more often than he would like: he

gets too much of a good thing. More formally, continuation strategies must deliver

sufficient rents to the seller for her to be willing to provide the requisite quality.

Despite the “stationary” structure of the environment, the optimal decision rule

for the buyer is not stationary. The following proposition describes the buyer-preferred

equilibrium, which is illustrated by the two-state automaton in Figure 2. Recall that

only on-path behavior is specified, as any deviation triggers autarky.

Proposition 1. The buyer’s favorite equilibrium involves a constant quality q∗ pro-

vided by the seller and two cut-off rules for the buyer. As long as the buyer chose Out

in all prior rounds, he visits the seller in round n if, and only if, vn ≤ v∗I . Otherwise,

he visits the seller if, and only if, vn ≤ v∗S. These cut-offs are such that

v∗I < q∗ − p < v∗S.

That is, the buyer uses two cut-offs: an I nitial cut-off v∗I that involves a lower

probability of visiting the seller than myopic behavior would entail and a Subsequent

cut-off v∗S that leads to more visits to the seller than he would like.

In the marketing literature, these two phases are commonly referred to as the

consideration stage and the loyalty loop. This dichotomy is widely documented –

from the choice of fast-food restaurants (Nedungadi, 1990) to high-technology markets
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(Heide and Weiss, 1995). It is usually ascribed to an initial lack of familiarity with the

seller’s product. Here instead, it is driven by the rents that the buyer owes the seller

depending upon whether he has visited her yet. Using the higher cut-off reflects what

is called commitment in that literature, “the implicit or explicit pledge of relational

continuity between exchange partners,” involving the willingness to make short-term

sacrifices to realize longer-term benefits (Dwyer, Schurr and Oh, 1987).

As mentioned, what distinguishes these two phases is the promised utility to the

seller. At the outset, the buyer owes the seller nothing. Once he visits her, his future

behavior must provide the seller with a continuation payoff that compensates her for

her cost. Both the initial payoff vector, and the subsequent payoff vector lie on the

Pareto frontier of the equilibrium payoff set. The proof of the proposition follows

from a general characterization of this Pareto frontier.

Given that the equilibrium behavior is not stationary, one might wonder why it

does not involve more nuanced gradualism. After all, relationships that “start small”

and grow as the relationship evolves are common (see Watson, 1999, 2002). Here, once

the buyer crosses the seller’s doorstep, there is no reason to delay engaging with the

seller in the most profitable way possible, fast-forwarding to whichever continuation

play is the most desirable. This is not a feature of the buyer-preferred equilibrium

only but of any Pareto-efficient equilibrium - what is critical is that each party’s

preferences and opportunities are complete information.

To understand what determines these cut-offs, let us assume for now that max-

imum quality is both feasible (patronizing the seller often enough delivers sufficient

rents) and desirable and that the buyer has no incentive to renege when his outside

option calls for a seller visit. Further, let us assume that these values are drawn from

the uniform distribution on the unit interval.

From the buyer’s point of view, visiting the seller is equivalent to drawing the

cut-off outside option at which he is indifferent between going or not, when in the

consideration stage. That is, his payoff can be computed as if he never visits the

seller, and remains forever in the consideration stage, but cashes in as outside option

the critical cut-off whenever the actual outside option is below this cut-off. Hence, as
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a function of this cut-off v∗I , the buyer’s payoff in state I, denoted BI , is given by

BI = F (v∗I )v
∗
I + (1− F (v∗I ))E[ṽ | ṽ ≥ v∗I ] =

1 + (v∗I )
2

2
. (1)

On the other hand, the buyer’s cut-off in the loyalty loop is determined by the seller’s

incentives, not the buyer’s indifference. The cut-off in state S leaves no excess rents

for the seller. She must be indifferent between supplying the maximum quality and

saving the one-time cost if she does not; thus, the cut-off must solve

δF (v∗S)(p− c) = (1− δ)c, or v∗S =
1− δ

δ

c

p− c
. (2)

Hence,

BS = F (v∗S)(1− p) + (1− F (v∗S))E[ṽ | ṽ ≥ v∗S] = v∗S(1− p) +
1− (v∗S)

2

2
, (3)

which is less than (1 + (v∗S)
2)/2 precisely because the buyer must come more often

than he likes: v∗S > 1− p.

The remaining unknown is the cut-off v∗I . It is pinned down by the buyer’s indif-

ference in the consideration stage, when his outside option happens to be equal to

this cut-off, namely,

(1− δ)v∗I + δBI = (1− δ)(1− p) + δBS,

which immediately implies that v∗I < 1 − p, since BI > BS. All formulas for the

payoffs and cut-offs immediately follow. A higher cost, or a lower discount factor,

increases both cut-offs and decreases the buyer’s payoff. A higher price decreases v∗S,

and this may be good (or not, depending on the parameters) for the buyer, as he

needs to forfeit fewer outside options to compensate the seller. However, a higher

price can increase v∗I , as it makes initiating a relationship with the seller less costly

and hence more attractive.

Proposition 1 does not explicitly specify the quality that the seller provides. (The

values of q∗ are discussed below; see Proposition 2.) Even when equilibria exist in

which maximum quality is provided, the buyer might prefer a lower quality level.

Indeed, to the extent that he needs to patronize the seller often enough to repay
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his debt, he internalizes the future cost in terms of the foregone opportunities that

a higher quality level calls for, and this future cost might deter him from seeking a

higher quality.

In the absence of transfers, the relationship involves what anthropologists refer

to as gift giving (see for instance Mauss, 1925). By giving a gift, they argue, one

establishes a relationship by placing the recipient in debt. From the buyer’s point

of view, it is preferable that the gift that the seller bestows when she provides high

quality does not make him too indebted, as he will have to reciprocate with more

visits than he might find ideal.

There is another, more subtle, reason why quality might not be as high as possible

which we assumed away in the simple formulas above. Even if the buyer would like

to patronize the seller sufficiently often to compensate her for providing maximum

quality, such visits must be credible: that is, the requisite cut-off might be so high

that if the outside option is at this cut-off, the buyer might prefer to renege and take

the outside option, even if it implies that autarky prevails thereafter. That is, the

cut-off might not satisfy interim incentive compatibility on the buyer’s side, and this

credibility constraint might force the buyer to fall back on a lower cut-off; hence, on

lower seller’s rents and thus, on a lower quality.

Here, our focus has been on the buyer-preferred equilibrium. A byproduct of

the proof of Proposition 1 is a “near” characterization of the boundary of the entire

equilibrium payoff set.15 Here, we provide a brief informal description of the entire

equilibrium payoff set.16 The payoffs on the boundary of the equilibrium payoff set

which deliver less than the seller receives after the first visit (as described in Propo-

sition 1) are delivered in a fashion similar to that of the buyer-preferred equilibrium:

the initial cut-off is calibrated to deliver the desired payoff to the seller, but the contin-

uation after the first visit matches the buyer’s favorite equilibrium. When the seller’s

payoff is higher than what she receives after the first visit in the buyer-preferred equi-

15More precisely, Proposition 2 does not provide information about the boundary of the equilib-
rium payoff set when the seller receives less than the buyer would grant her in his favorite equilibrium
and ignores the buyer’s interim incentive compatibility.

16See the additional appendix for further details, and see Figure 3 for a graphical illustration of
the equilibrium payoff set.
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librium, the seller’s incentive compatibility no longer binds. In this case, the buyer’s

incentive compatibility might pin down the cut-off that determines the visits by the

buyer. For sufficiently high seller payoffs, the seller provides suboptimal quality when

the outside option is low, that is, when the buyer is not tempted to take it.

B

S

(B̃, S̃)
(B, S̄)
(B∗, S∗)

Figure 3: Equilibrium payoff set (blue) vs. feasible & IR set (red) when (δ, p, c) =
(

13
20 ,

13
25 ,

1
4

)

.

2.1 A Sketch of the Proof and a More General Result

This section can be skipped without loss for the reader with little time for proofs.

The proof borrows techniques introduced by Spear and Srivastava (1987) and Thomas

and Worrall (1990). To establish Proposition 1, we solve for the bounded solution to

the following optimization program:

B : [0, p] → R (P)

S -→ sup (1− δ)

[
∫

A

(q(v)− p)F (dv) +

∫

Ac

vF (dv)

]

+ δ

∫

V

B(S(v))F (dv),

over A ⊂ V, S : V → R+, and q : V → Q∪ {∅} (all functions of S) such that ∀v ∈ A,

(1− δ)cq(v) ≤ δS(v), (4)

and
S ≤ (1− δ)

∫

A

(p− cq(v))F (dv) + δ

∫

V

S(v)F (dv). (5)

The set A is the set of outside options for which the buyer visits the seller, q(·) is
the quality expected from the seller, and S(·) is her (on-path) minimum continuation
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utility given the buyer’s outside option v.17 Equation (4) has an obvious interpretation

as an incentive constraint for the seller and (5) as a promise-keeping constraint. Note

that promise-keeping involves an inequality: that is, we only require that the seller

receive no less than S. The program P delivers the maximum payoff B(S) to the

buyer given that the seller’s payoff is at least S and that he does not anticipate more

than B(S(v)) from the next round onward given that the seller must receive at least

S(v) going forward.

Program P assumes that the buyer never randomizes his decision: either he visits

the seller, or he does not. This is made for notational convenience and entails no loss

of generality. One might expect that the seller’s promised utility from the next round

onward need not depend on the current outside option provided that it lies in A (or

in Ac). Indeed, one of the steps involved in solving P consists of showing that, given

S, it is sufficient to consider a pair of promises (SI , SO) ∈ R2
+, depending on whether

the buyer picks In or Out. Unless the promise S is very high, one can also pick a

quality that is independent of the outside option, that is, a scalar q ∈ Q. Finally, one

might expect that A can be taken to be a lower interval [v, v∗]: after all, the seller

only cares about the probability that the buyer visits, not about the circumstances

under which he does. This simplification is also warranted, as we show.

Finally, as noted above (see ft. 15), the program omits the buyer’s incentive to

visit, depending on the realized outside option. It assumes commitment on the buyer’s

side; namely, for all v′ ∈ A,

(1− δ)v′ + δE[ṽ] ≥ (1− δ)(q(v′)− p) + δB(S(v′)). (6)

This does entail a loss of generality, as it rules out a set of parameters for which (6)

affects the quality q and cut-off v∗ that characterize the buyer-preferred equilibrium.

As mentioned, the reader is referred to the additional appendix for a proof that takes

this additional constraint into account.

The uniqueness of the bounded solution of P is a consequence of the principle of

optimality, given discounting. We now give the arguments of the maximum. The proof

17The use of S for the (scalar) minimum promise and of S(·) as the continuation promise, given
v and S, should cause no confusion because the problem will immediately simplify.
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(in Appendix A) consists of solving for B(·) given the conjectured transitions (that is,

the values SI , SO) and then applying a verification argument, namely, showing that

the resulting function solves the optimality equation.

Let κ := min{p(1 − c)/c, v}. It holds that κ > v, for otherwise 1 − p < v, and

autarky is the unique equilibrium.

How the promised utility evolves depends on how it compares to a cut-off. Let

S̃ := min

{

1− δ

δ
c,

p
1

F (κ) +
δ

1−δ

}

. (7)

Proposition 2. For all S ∈ [0, pF (κ)], the following holds for the solution of P.

Promises are SO = S,18 and SI = max{S, S̃}. Quality is equal to

q∗(S) = min

{

1,
1

c

(

p− max{S, S̃}
F (κ)

)}

,

provided the minimum is positive, and 0 otherwise. Finally, for some (unique) S ∈
[0, S̃],

v∗(S) =

⎧

⎪

⎨

⎪

⎩

F−1
(

(1−δ)max{S,S}
(1−δ)p−δmax{S,S}

)

for S < S̃,

min
{

F−1
(

S
p−c

)

, κ
}

for S ≥ S̃,

whenever q∗ ≥ 0 (v∗(S) = F−1(S/p) otherwise).

The seller’s incentive constraint binds if, and only if, S ≤ S̃. The threshold S is

the minimum payoff that the buyer delivers to the seller: because giving the seller

less than S̃ hurts the buyer as well, he always gives at least S̃ to the seller, even if he

does not owe her that much.19 Any higher promise is exactly delivered, as the buyer’s

payoff then decreases in S. That is, S is the seller’s payoff at which the buyer’s payoff

is maximized and therefore also the payoff that he would choose at the outset; S is

the seller’s payoff in the consideration stage. In contrast, S̃ is the payoff she receives

when the loyalty loop starts. Promises above S̃ require frequent visits, and the buyer

18If S ≤ S, we may equivalently specify that SO = S, since this is the payoff actually delivered to
the seller in the continuation. Note that the domain of the seller’s promised utility is [0, p], which
is larger than [0, pF (κ)], when κ < 1. For S > (pF (κ), p], lower quality is provided for low values of
the outside option. We omit the details.

19The equation that characterizes S is given in the proof of Proposition 2 (See (10), Appendix A).
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Figure 4: Quantile and Quality.

no longer gains from delivering distinct continuation payoffs according to his choice

to visit.

For S ≤ S̃, the quality that the seller chooses if the buyer chooses In is constant:

what matters to the seller is the continuation payoff SI , which is constant over this

range (and equal to S̃). Higher promises call for lower quality choices (though not

necessarily strictly lower choices, in case the boundary condition q ≤ 1 binds). Higher

promises also call for more frequent visits, so that the cut-off v∗ strictly increases in

S ≥ S, the lowest seller’s payoff actually delivered.

Figure 4 illustrates Proposition 2.

2.2 Discussion

Persistence Here, it has been assumed that the outside option is drawn afresh in

every round, independent of past realizations. This reduces the relationship to a re-

peated game (though with a nontrivial extensive form in each round) and so simplifies

the analysis considerably.20 In practice, however, alternative trading opportunities

20The i.i.d. assumption prevents the analysis from being conducted in continuous time. With
persistence, however, equilibrium analysis would require the current outside option to be added to
the promised utility as a state variable. Betting that this is intractable might be highly unfortunate
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are uncertain yet persistent: the current buyer’s market, say, foreshadows the buyer’s

market in the near future.

For concreteness, assume that, given an outside option worth v in round n, the

outside option in round n+1 is equal to v once again with probability λ, independent

of all other aspects of the history. With complementary probability (and in the initial

round), this outside option is drawn afresh from F . Therefore, the outside option

follows a renewal process – a fairly specific, but common, way to model persistence,

that includes the i.i.d. case when λ = 0 and the perfectly persistent case, when λ = 1.

The seller is only concerned about the frequency with which the buyer patronizes

her and not about the circumstances in which he does. Thus, persistence only matters

to the extent that it affects the buyer’s willingness to honor his promise to visit the

seller again. When λ = 1, the buyer is only willing to come if q − p ≥ v, and so, if it

is myopically optimal to visit the seller.21 If, say, v > 1− p, autarky must prevail.

This extreme case brings to the foreground a constraint mentioned earlier: the

buyer’s interim incentive compatibility (see (6)). Given the outside option at hand,

is it worth honoring the promise to the seller, if failing to do so leads in autarky?

This constraint curtails the future sales volume the buyer can credibly promise to

the seller. Sales volume, however, is not the only channel through which to transfer

surplus. An alternative, if less efficient, way to reward the seller is to let her pick a

lower quality when the buyer’s outside option is unattractive to save on cost. More

precisely, for some parameters, the buyer-preferred equilibrium can involve a cut-off

v∗ such that

(1− δ)v∗ + δ(1− λ)E[ṽ] = (1− δ)(1− p) + δ(1− λ)B, 22

but equally safe.
21Of course, quality could vary over time, in which case the inequality must be adjusted accord-

ingly.
22To see this, first note that the value O(v∗) from autarky given v∗ solves

O(v∗) = (1− δ)v∗ + δλO(v∗) + δ(1− λ)E[ṽ],

and, given outside option v∗, the buyer is indifferent between autarky and obtaining quality q = 1
if

O(v∗) = (1− δ)(1 − p) + δλO(v∗) + δ(1− λ)B.

Equating these two right-hand side terms gives the expression in the text.
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making the buyer indifferent between honoring the promise and getting the ex ante

payoff B as the continuation payoff and reneging when his outside option is equal to

the cut-off, with q(v∗) = 1.23 However, we may pick q(v) < q(v∗) for v < v∗ (with

q(v) still high enough to satisfy the version of (6) that applies given commitment)

to reduce the seller’s cost and at the same time boost her expected payoff, so as to

ensure that, for all v ≤ v∗,

(1− δ)cq(v) ≤ δS(v),

where S(v) is the seller’s continuation payoff when the buyer visits the seller given

outside option v.24

Flexible prices It is not the purpose of this paper to discuss why contractual

prices do not always arise in buyer-seller relationships and when they fail to do so

(see Macaulay, 1963). Plainly, here, the dynamics in the buyer-seller relationship arise

because money is not available as a flexible tool to settle debts. If the buyer could

commit to a bonus, a “tip” that is commensurate to the seller’s quality choice, first-

best would be readily achievable, and the relationship would reduce to a repetition of

identical transactions. Absent commitment, the size of the bonus is constrained by

the loss that reversal to autarky entails, but the logic remains similar: money would

be used first and foremost as a superior way of settling liabilities.

Note that the seller does not necessarily prefer a higher price, or the buyer a lower

price. This is because the buyer, say, internalizes the cost of the future foregone

opportunities to compensate the seller for the quality she provides when the price is

low. To be obligated to someone is to be his slave, as the saying goes; paying a higher

price up front is to free oneself.

One-time welcome coupons to lure first-time customers is a widespread practice

that is often described as a way of acquainting the buyer with the seller’s product.

Our model provides an alternative explanation for such discounts, as they mitigate

23This is only one possibility, as depending on the parameters, q(v∗) = 1 might not be what the
buyer prefers, and the surplus transfer via lower quality for lower outside options might not satisfy
both the seller’s and the buyer’s incentive compatibility constraints.

24Given persistence, S(v) = 1−δ
1−δλ (p− cq(v)) + δ(1−λ)

1−δλ F (v∗)(p− cE[q]).
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the delay that comes with the consideration stage. However, such a discount is not

the only way to deal with this delay. For instance, offering a discount to returning

customers, which loyalty programs often do, reduces the future opportunity cost that

makes the buyer reluctant to start a relationship, encouraging him to come sooner.

Incomplete Information Loyalty programs are meant to address not only moral

hazard but also adverse selection: some customers are intrinsically more valuable and

loyal than others, and calibrating quality with the status of the relationship allows

sellers to screen them. Such incomplete information can be modeled similarly to

persistence: with some probability, a customer is potentially a repeat customer, or

“local,” whose characteristics are as described in the model; with complementary

probability, the customer is a one-time customer that has no interest in purchasing

again: a “tourist.” In the initial round, quality is constrained by the risk the seller

faces that her customer is a tourist. In turn, this exacerbates the reluctance to kick

off the relationship. Interesting dynamics might arise with a richer set of customer

types that might help explain why quality would slowly grow over time as the seller

learns that her customer is recurrent.

Competition Our model takes a drastic shortcut in modeling competition as an

exogenous outside option. We note that after the consideration stage, the buyer’s

visits occur in an i.i.d. fashion, which is at least consistent with the assumption that

we have made on the outside option—an i.i.d. draw. Hence, it would not be difficult

to model this outside option as an offering by an alternative firm, or a competitive

fringe of such firms, with the customer’s preference for one over the other product

being modeled as a random shock. However, doing so explicitly raises modeling

choices (what do firms observe about each others’ offerings?) that open the door

for phenomena (collusion among firms, in particular) that our model abstracts away.

Board (2011) highlights the insider bias that arises in such interactions; such a bias

would arise in our setting as well.
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3 Incomplete Information
Henceforth, the buyer’s outside option is private information. This does not affect

realized payoffs, so their specification is not repeated.

A seller’s history hn−1 ∈ Hn−1 is a sequence (q0, . . . , qn−1) ∈ (Q∪ {∅})n, with the

convention that qm = ∅ whenever the buyer chooses am = O in that round, that is,

when the buyer does not visit the seller. A behavior strategy for the seller, then, is

a sequence σS := (σS
n )n where σS

n is a probability transition from Hn−1 × {I, O} into

Q ∪ {∅}, with the restriction that σS
n (h

n−1, a) = ∅ if, and only if, a = O.25 A buyer’s

history ĥn−1 ∈ Ĥn−1 is a sequence (v0, q0, . . . , vn−1, qn−1) ∈ (V ×Q∪ {∅})n; that is, it
specifies the outside option and the seller’s quality whenever applicable. A behavior

strategy for the buyer is a sequence σB := (σB
n )n, where σ

B
n is a probability transition

from Ĥn−1×V → {I, O}. Note that the buyer’s choice in past rounds is omitted from

the histories, as it is implied by the seller’s quality choice. We use perfect Bayesian

equilibrium as a solution concept. In addition to Assumption A1, we assume that

always visiting the seller, independent of the outside option, is worse than autarky

for the buyer, even when quality is maximum. This ensures that both visiting the

seller and not visiting the seller are on the equilibrium path (hence, monitoring has

“full support”). This ensures that a buyer cannot hope for his first-best payoff and

that he chooses Out whenever v = v.

Three remarks are in order. First, without loss of generality (as far as equilibrium

payoffs are concerned, as well as equilibrium outcomes, in terms of public histories)

attention can be restricted to buyer’s strategies that are independent of past outside

options, that is, that are measurable with respect to (the σ-algebra on) Hn−1 × V.
This follows from the Markovian (indeed, i.i.d.) structure on the process of the outside

option (and the product structure of monitoring, see Fudenberg and Levine, 1994).

Second, because the outside option is unobservable, the cut-off structure of the

buyer’s strategy, which is a property of the extremal equilibria of interest under

complete information, but not of all equilibria, is now a feature of any best reply

25That is, for each hn−1 ∈ Hn−1, σS
n (h

n−1) is a distribution over Q ∪ {∅}, and the probability
assigned to any Borel set A ⊂ Q ∪ {∅} is a measurable function of hn−1.
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Figure 5: Comparison of equilibrium payoff sets when (δ, p, c) =
(

13
20 ,

13
25 ,

1
4

)

.
The equilibrium payoff set for the observable (unobservable) case is shown in blue (black); the
feasible and IR payoff set is shown in red. (B∗, S∗) denotes the payoffs in the buyer’s first-best
(on the boundary of the feasible payoff set), and (B̄, S̄) denotes the payoffs in the buyer-preferred
equilibrium in the observable case.

of the buyer. That is, if σB
n (h

n−1, v) assigns positive probability to Out for some

v, then it assigns probability zero (resp., one) to In (Out) for all v′ < v (v′ >

v). For definiteness, we follow the convention that an indifferent buyer chooses In.

Furthermore, at the cut-off, the buyer is indifferent between going to the seller or

not.26

Third, because the seller’s chosen quality is public, it is still without loss to assume

that any seller deviation triggers autarky. Hence, we focus on histories within which

the seller has not deviated.

For concreteness, we still focus on the buyer’s favorite equilibrium, though this

now requires us to also solve for many other extremal equilibria that serve as pos-

sible continuations. Figure 5 compares the equilibrium payoff set in the complete

information case to that in the incomplete information case.

3.1 Simple Equilibria

Assumption A1 implies that the seller’s quality cannot be independent of the

history, except under autarky. If it were, then the buyer would act myopically, and

the seller would not recoup her cost. More precisely, if the buyer is supposed to

visit (w.p.p.) after hn−1, and the seller is expected to pick q > 0, then the seller’s

26This property is definitely not shared by the buyer’s favorite equilibrium under complete infor-
mation, except in the initial stage.
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continuation strategy σS |(hn−1,·) must depend on the buyer’s decision in round n.

To gain some intuition of the trade-offs involved, it is useful to consider equilibria

that can be represented by a finite-state automaton—even if those are suboptimal. Let

us start with two-state automata. Our goal is not to conduct an exhaustive analysis of

such equilibria but rather to focus on those parameters for which the (buyer) optimal

two-state automaton shares interesting properties with the best (perfect Bayesian)

equilibrium.27

Call these states “H” and “L,” with the convention that the buyer’s payoff BH in

stateH is the higher of the two. Since this is the buyer’s favorite two-state automaton,

the seller’s incentive compatibility must bind in state H . As is clear from the previous

discussion, qH ≠ qL. Since we focus on specific parameters, let us further assume that

SH ≥ SL, qH = 1 and qL > 0. That is, we consider parameters for which the higher

quality is maximum, the lower is not zero, and the buyer’s favorite state is also the

seller’s favorite; after all, while the cost is higher, the buyer is also, unsurprisingly,

going to the seller more often in that state: vH > vL.28

It is not hard to see that when in state H , play remains in state H whenever the

buyer visits; similarly, when in state L, play remains in state L whenever the buyer

fails to visit. More interesting are the switching probabilities rH and rL in states H

and L when the buyer makes the other choice.

Perhaps surprisingly, it must be that rL = 1: if the buyer visits the seller in

state L, play transits to state H . The seller forgives the buyer regardless of his past

conduct. To see this, suppose rL < 1. Note that the buyer’s payoff in that state can

be written as
BL = E[max{vL, ṽ}],

as a buyer that goes to the seller reaps the same payoff as a buyer whose outside

27Transitions across states are implemented with the public randomization device. Hence, the
prevailing state is common knowledge. In the best equilibrium (see Section 3.2), transitions are
deterministic, so such a device is not necessary.

28Specifically, the assumption is that qH = 1, qL > 0 and SH > SL are satisfied provided V = [0, 1]
and F = U [0, 1],

(√
5− 4c+ 3

)

c

2(c+ 1)
< p <

1

2

(

c+
√

(4− 3c)c
)

,

and δ is in the range described below; see (8) and the discussion that follows.
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Figure 6: Best two-state automaton.

option makes him indifferent between visiting or not. Hence, by decreasing qL and

increasing rL to keep vL constant (the first change making him less likely to visit

the seller, the second, more likely), we keep both the buyer’s payoff BL and so also

BH constant, yet we unambiguously increase SL given that the seller supplies a lower

quality, the buyer visits as often as before, and visits lead to more frequent transitions

to the desirable state H (SH ≥ SL). Since SH also depends on the continuation payoff

in state L, it increases as well. This implies that the seller’s incentive compatibility

condition in state H becomes slack, a contradiction. Loosely speaking, the seller’s

payoffs are aligned with the buyer’s incentives.

This reasoning does not apply to the transitions that apply in state H : increasing

rH , the probability of switching to state L if the buyer does not come to the seller,

while decreasing qH to keep vH constant does not affect the buyer’s payoff BH , as

before, but it might no longer benefit the seller: switching more often to state L could

be costly, since SL ≤ SH . There is a trade-off between a lower quality cost and a

lower continuation payoff, so rH might well be interior.

Figure 6 illustrates the best two-state automaton.

To obtain a better sense of the choices involved, we illustrate this discussion with

the following parameters. First, let the outside option be drawn from the uniform
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distribution on the unit interval (that is, V = [0, 1], F = U [0, 1]). Second, define

ε :=
δ

1− δ
− c

(1− p)(p− c)
, (8)

The parameter ε (taken to be nonnegative) measures the extent to which the seller

must be given rents to supply high quality. If ε = 0, the discount factor solves

δ(1−p)(p−c) = (1−δ)c; then, the seller is barely willing to provide maximum quality

to the buyer when he behaves myopically, that is, when he visits with probability

F (1 − p) = 1 − p. When ε > 0, the buyer’s cut-off must be raised accordingly. We

can solve for the best two-state automaton in terms of this parameter, assuming it is

small enough that higher-order terms are negligible.29

Given that the myopic cut-off is insufficient repeat business for the seller, the best

equilibrium features a slightly higher cut-off, namely,

vH = 1− p+ νHε,

for some constant νH ∈ R+.30 To induce the buyer to visit with that frequency, there

are two instruments at the seller’s disposal: how often we transit to state L when the

buyer fails to visit, and how low quality is in that state. As it turns out, they are

used to an equal degree in the best equilibrium, in the sense that

rH = ρH
√
ε,

and
1− qL = γL

√
ε.

Taken together (“multiplicatively”), these values shift the buyer’s cut-off away from

the myopic cut-off by the desired amount. Of course, lower quality in state L also

means a commensurately lower cut-off in state L, despite the future benefits that

visiting the seller provide:
vL = 1− p− νL

√
ε.

The buyer’s first-best payoff is E[max{1− p, ṽ}] = (1+ (1− p)2)/2, leaving the seller

with payoff (1−p)(p−c). Relative to this benchmark, some of the payoff is transferred

29Even in this simple case, in which at the optimum qH = 1 and rL = 1, the exact values of rH

and qL involve the root of an uninspiring polynomial of degree 14—hence the use of expansions.
30These positive constants and those that follow are specified in Appendix B.
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from the buyer to the seller in state H , which both parties nonetheless prefer to state

L. Indeed, the buyer gets31

BH =
1 + (1− p)2

2
− βHε, BL =

1 + (1− p)2

2
− βL

√
ε.

while the seller reaps

SH = (1− p)(p− c) + cε, SL = (1− p)(p− c)− σL
√
ε.

While this specification is optimal (in an asymptotic sense) for a two-state au-

tomaton, the focus on two states only is restrictive. The first observation, inspired by

the analysis of the observable case, is that a consideration stage benefits the buyer:

at the outset, he does not need to make good on the seller’s rents entailed by the

high state. Hence, the buyer profits from the initial state I in which the relationship

begins but that is left for good once he chooses to visit the seller. Unsurprisingly, this

consideration stage involves a cut-off vI below the buyer’s first-best cut-off,

vI = 1− p− νIε,

and a payoff that exceeds that reaped in the good state,

BI =
1 + (1− p)2

2
− βIε,

for some constants νI , βI ∈ R+.32 See Figure 7.

The abovementioned approach is not the only way the two-state automaton can

be improved. Given that visits to the low state are both costly and inescapable, they

should be chosen wisely. Waiting before passing judgment, that is, before moving to

the low state, makes it possible to improve the statistical power of the test that such a

transition involves, thus reducing inefficiency without lessening incentives. “Splitting”

31The buyer’s shortfall is of order ε. In the observable case, the shortfall is of order ε2 only:
providing additional patronage of order ε involves giving up outside options exceeding the flow payoff
the seller delivers by at most ε. Instead, when the outside option is unobservable, “punishments”
cannot be tailored to the outside option and are sometimes carried out even when the outside option
is well above the cut-off.

32Note that the best such three-state automaton uses the optimal two-state automaton as a
continuation equilibrium because a larger buyer’s payoff in the high state implies a larger buyer’s
payoff in the initial state.
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qI = 1
v ≶ vI

qH = 1
v ≶ vH

qL < 1
v ≶ vL

O

Initial State

I

I

High State

1− rH
O

0 < rH < 1

O

I

O

Low State

Figure 7: Automaton with consideration stage.

the high state into two states in which quality remains maximum naturally leads to

an adjustment in the buyer’s optimal unobserved cut-off, enabling a utility transfer

from the buyer to the seller that does not directly involve the inefficiency that lower

quality entails. Similarly, splitting the low state allows us to fine tune the quality drop

and to maintain a balance between rewards and punishments.33 Figure 8 illustrates

such an automaton.

There is no reason to expect that improvements are confined to one, two or finitely

many splittings. To describe the buyer’s favorite equilibrium, it is necessary to move

beyond finite automata and describe the equilibrium payoff set with greater generality.

3.2 The Buyer’s Favorite Equilibrium

This section provides an answer to the following two questions: how does equilib-

rium behavior develop? Must the relationship end in autarky?

Our focus remains on the buyer-preferred equilibrium, but the answers to these

questions do not depend on it: the same answers also hold for the seller-preferred

33More formally, as will be clear in the next section, optimal incentive schemes require the buyer’s
marginal payoff to be a martingale, if possible, and this can only be achieved if both penalties and
rewards are in the cards.
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qI = 1
v ≶ vI

qH = 1
v ≶ vH

qM = 1
v ≶ vM

qL < 1
v ≶ vL

O

Initial State

I

I

1− rH
O

High State

0 < rH < 1

O

I

O

0 < rM < 1

Medium State

O

1− rM

I

O

Low State

Figure 8: Automaton with consideration stage and information aggregation.

equilibrium and, indeed, for any equilibrium whose payoff vector lies on the Pareto

frontier of the equilibrium payoff set.

The technical reason for this is that, owing to the one-sided structure of imperfect

monitoring, the upper boundary of this equilibrium payoff set is self-generating (in

the sense of Abreu, Pearce and Stacchetti, 1990). More precisely, let

Eδ :=
{

(B, S) ∈ R2
+ | there exists an equilibrium σ s.t. (B, S) is the payoff given σ

}

denote the (closed, compact, convex) equilibrium payoff set given δ, and

D = {(B, S) ∈ Eδ | (B, S ′) ∈ Eδ ⇒ S ′ ≤ S}

be its upper boundary, that is, those vectors that cannot be improved for the seller,

holding the buyer’s payoff fixed. The Pareto frontier of Eδ is a subset of D, but the

closed curve D also includes Pareto-inferior vectors to the extent that, here as in the

observable case, the parties’ interests are not entirely misaligned: if the buyer obtains

his autarky payoff only, the seller cannot obtain more than hers.

Figure 9 makes clear why D is self-generating. Here, S(B) is the highest equi-

librium payoff for the seller consistent with the buyer obtaining payoff B; that is,

(B,S(B)) indicates the point of the curve D with abscissa B. Holding fixed the qual-

30



B

S

(B, S)

(BI , SI)

(BO, SO)

(BI ,S(BI))

(BO,S(BO))

(B,S(B))

Eδ

Figure 9: The curve D is self-generating.

ity that is expected from the seller and the buyer’s continuation payoffs BO, BI as a

function of the buyer’s choice of Out or In, an increase in the seller’s continuation

payoffs SO, SI increases her expected payoff while relaxing her incentive constraints.

Doing so to the greatest extent possible drives the seller’s payoff to its highest level,

S(B). However, because it is generally necessary to punish the buyer when he fails

to visit the seller and because such punishments may hurt the seller, Pareto-inferior

payoff vectors arise on this path. As we shall see, a subset of D is self-generating, but

it is not the Pareto frontier.34

The same figure exhibits some features of the equilibrium payoff set that can be

shown more generally (see Appendix C.1). The autarky payoff vector (E[ṽ], 0) is an

extreme point of Eδ and of the (strictly convex) plane curve D. At the other end of

D lies the buyer’s favorite equilibrium vector, (B, S). The slope of D is infinite at

both extremities.
34The lower boundary of the equilibrium payoff set is also self-generating for the same reasons.

The lower boundary can be studied along the same lines as the higher boundary. Such a study is
omitted here, although this boundary is represented in Figures 10 and 13 below.
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B

S

Figure 10: Dynamics along the curve D.

The infinite slope of D at the autarky payoff plays such an important role in what

follows that it deserves some comments. For the seller to receive a payoff of order

ε > 0, the buyer must visit with commensurate probability, and so only when his

outside option is within (an order) ε of his lowest possible outside option, v. In other

words, his outside option cannot be more than ε below the level at which he would

be indifferent between visiting or not, and so he gains at most ε from visiting. To

recap, he visits with a probability of (an order) ε for a benefit of at most ε; so, he

obtains only (at best) ε2 more than from autarky, which is much less than the seller’s

ε. This implies that
lim

B↓E[ṽ]

S

B − E[ṽ]
= +∞. (9)

How does behavior evolve along the curve D? Figure 10 schematically illustrates

the dynamics, with red arrows indicating the change in payoff following the action In

and blue arrows indicating the change following Out. Figure 11 illustrates a sample

path over time: it shows how quality and the buyer’s payoff change as a function of

the buyer’s decision to go to the seller (red) or take the outside option (blue) when

(δ, p, c) =
(

13
20 ,

13
25 ,

1
4

)

. As can be seen from both Figure 10 and 11, the relationship
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experiences gradual downturns (in terms of payoffs to both parties and the qual-

ity provided by the seller) when the buyer breaks the seller’s trust by not visiting

(indicated by blue arrows in Figure 10 and blue dots in Figure 11). However, the re-

lationship instantaneously recovers (in terms of payoffs to both parties, and also the

quality provided by the seller) if loyalty is shown. This can be seen from the jumps

in payoffs and quality following a visit by the buyer indicated by red arrows in Figure

10 and red dots in Figure 11.

This difference in how downturns and upturns in the relationship play out is

consistent with the structural asymmetry observed in many multitier loyalty programs

(Bijmolt et al., 2018). Multitier loyalty programs, designed to build a loyal customer

base, categorize customers into tiers based on past behavior. In particular, such

programs offer better perks, the more frequent a customer visits. Many such loyalty

programs such as those of airlines like Air France or hotel chains like Marriott display

a structural asymmetry when it comes to promoting and demoting customers: if

customers fail to be loyal over a given year, these programs offer a “soft landing” -

i.e., the customer is demoted by at most one tier. On the other hand, there is no

limit on how quickly a customer can reach the highest tier - in fact, promotion is

typically applied instantaneously (rather than at the end of the evaluation period).

Whenever the buyer fails to visit the seller, his payoff drops. This drop need not

be large: indeed, BO = B when B = B: that is, failing to come to the seller leads to

a strictly lower payoff only when B ∈ (E[ṽ], B) (see Appendix C, Claim 12). Figure

12 illustrates the buyer’s continuation payoff as a function of B.

Here, we recognize the equivalent of the consideration stage: when B = B, the

buyer owes nothing to the seller, and the seller’s payoff is only positive because of the

expected rents that are delivered once the relationship starts in earnest. This initial

stage prevails until the buyer visits the seller.

The buyer is not necessarily rewarded for visiting the seller. Indeed, there is an

upper bound, B̃ < B, on the value of BI . Starting from B ∈ (B̃, B), the buyer’s

payoff drops even when he patronizes the seller. When he does, his payoff is stuck

below B̃ from that time onward: failing to visit leads to a drop, and visiting the seller
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)

.
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leads to B̃ at best. Therefore, the payoffs in the range (B̃, B] are transient. The

continuation payoff from going to the seller, BI , is bounded not only above but also

below. Let B̂ denote the buyer’s payoff at which the weighted sum of payoffs B+S/c

is maximized along D. Then, unless a corner solution prevails (whereby even zero

quality and BO = E[ṽ] do not suffice to drive down the buyer’s payoff arbitrarily close

to E[ṽ], if BI = B̂), BI is always at least B̂ (see Appendix C, Claim 11). A singular

reappearance by the buyer leads to a jump in his payoff. As in the two-state example,

the seller’s interests are aligned with the buyer’s incentives: considering any candidate

lower value of BI , an increase in BI benefits the seller and motivates the buyer so

that concomitantly decreasing the quality (if possible) leads to an improvement in

the seller’s payoff, keeping the buyer’s payoff fixed.35,36

B

BO

B̃ B
q < 1 q = 1

B

BI

B̃ B

B̂

q < 1 q = 1

Figure 12: Continuation payoffs, BO (left) and BI (right), as a function of B.

How does the seller’s quality and the buyer’s cut-off vary with the buyer’s payoff

B? Unfortunately, we have been unable to formally establish the robust pattern

35This is somewhat imprecise, as B̂ is not the buyer’s payoff such that the corresponding seller’s
payoff is maximized. What matters is the rate of substitution between the buyer’s and seller’s
payoffs, relative to the rate of substitution in quality, 1/c—hence, the definition of B̂.

36As we hinted, this lower bound can be lower than B̂ in the case that decreasing quality is no
longer feasible given B. At that point, promise-keeping determines the lower bound. The buyer’s
payoff jumps in this case as well, albeit to a level determined by feasibility. Additionally, while
Figure 13 suggests that B̂ < B̃, this need not be the case. If, instead, B̂ = B̃, then any buyer
visit leads to the same “resetting” of the buyer’s payoff. The case B̂ < B̃ provides the “richest”
dynamics; hence, we focus on it here. The analysis in Appendix C provides a systematic taxonomy
of the equilibrium structure.
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B̃BB̂

Eδ

Figure 13: Range of continuation payoffs following In.

that emerges from numerical simulations.37 Figure 14 provides an illustration of this

pattern. The lower the buyer’s payoff is, the lower the seller’s quality. There is a

cut-off, labeled Bq > E[ṽ] here, such that q < 1 if, and only if, B < Bq.38 For the

parameters chosen here (the same as those used in Figure 12), the lower bound on

quality, 0, is not binding; as the buyer’s payoff approaches that obtained from autarky,

quality becomes sufficiently low that, given the price p that the buyer must pay, the

buyer finds it worthwhile to visit the seller only given very low outside options, despite

the jump in continuation value that such a visit entails.

When quality is maximum, the cut-off decreases with the buyer’s payoff. This

is consistent with our intuition, gleaned from our four-state example, that utility is

transferred from the buyer to the seller via a higher cut-off as the buyer’s payoff

decreases and that this transfer is incentivized by the more plausible and pressing

37We were able to establish some elements of that pattern, but not all, even in the special case
of F ∼ U [0, 1], and so we refrain from stating fragmentary results beyond those that immediately
follow from the results in Appendix C. These properties depend on the rate of change in concavity
(the third derivative of B -→ S(B)), so we cannot rule out that they depend on F .

38Of course, we do not rule out that q < 1 for all B ∈ [E[ṽ], B].
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E[ṽ]

Figure 14: Cutoff and quality.

threat of a decrease in the seller’s quality. For buyer’s payoffs such that the seller’s

quality is no longer maximum, the deleterious effect of lower quality on the buyer’s

incentive to visit the seller more than offsets the stronger incentives provided by

a higher continuation payoff difference (between visiting and not), and the cut-off

decreases all the way to its minimum value, v, as the buyer’s payoff approaches the

autarky payoff.

Figures 11 and 12 show how the relationship evolves over time. Specifically, Fig-

ure 11 provides a representative sample path of visits, quality levels, and continuation

buyer’s payoff, as the round n progresses. Figure 12 shows how the buyer’s continu-

ation payoff varies with the buyer’s decision to visit. The next proposition addresses

the asymptotic properties of this random payoff process.

Proposition 3. The buyer’s payoff moves arbitrarily close to his autarky payoff and

arbitrarily close to B̃ ≥ B̂ infinitely often.

That is, the relationship never settles or dissolves.39 It should be clear that,

39This volatility in the face of private information is consistent with traders in developing countries
focusing on relationships that facilitate the flow of information thereby ensuring the regularity of
trade (Fafchamps and Minten, 1999; Fafchamps, 2004).
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conditional on not dissolving, buyer (and seller) values must keep changing given

that the buyer must be incentivized to visit. Hence, the main step in establishing

Proposition 3 involves showing that the relationship does not eventually crumble for

reasons related to our earlier observation that very low equilibrium payoffs harm

the buyer more than the seller relative to autarky payoffs (see (9)). This insight

implies that it is always preferable to have continuation payoffs that exceed the payoffs

from autarky, even if by only a minute amount. However, this does not suffice to

establish the result: given that the buyer is less and less likely to come as his payoff

approaches the payoff from autarky, further degradation only becomes more likely

as the relationship deteriorates. What matters is the rate at which this degradation

occurs. Formally, because the marginal utility of the buyer as a function of the

promised utility to the seller is a martingale (that is, along the boundary, the slope

of B as a function of S is the expectation of the slope in the next round), it must

converge, and the infinite slope at the autarky payoff guarantees that the probability

that autarky ultimately prevails must be zero.40

4 Concluding Comments
This paper shows that the buyer-seller relationship exhibits two asymmetries. The

first occurs over time and captures the dichotomy between the buyer’s consideration

stage and the loyalty loop stressed by the marketing literature. The second is be-

tween drastic improvements and gradual deteriorations in the quality supplied by the

seller at any moment in time. While these asymmetries can be explained by a host

of factors (learning about the seller’s product and the buyer’s attributes in the first

case; in the second case, undesirable behavioral responses to sudden deteriorations

or imperceptible improvements, strict convexities in the production technology as in

40The proof is slightly more involved because the buyer’s marginal utility is not a martingale
over the entire range [E[ṽ], B]. The martingale property is a standard result in dynamic agency
models, but it relies on the constraint set of the optimization programming having a nonempty
interior (so that some first-order conditions must hold with equality, which is equivalent to the
martingale property). This is not necessarily the case here, as we have three variables to choose
(the two continuation payoffs for the buyer and the seller’s quality) and three constraints that
might bind (the seller’s incentive compatibility, promise-keeping, and quality being no larger than
1). Fortunately, this turns out not to be an issue for values of B close enough to the autarky payoff.
See Appendix C.3 for details.
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Li and Matouschek, 2013), they arise naturally under moral hazard and adverse se-

lection. The first asymmetry is readily understood. At the start of the relationship,

the buyer is not bound to the seller just yet and thus feels less of a need to patronize

her. The second involves the trade-off between the two instruments to discipline the

buyer, current quality and future continuation payoff. Whereas quality and punish-

ment/reward are substitutes for the buyer’s incentives (a higher punishment/reward

makes up for a lower quality), quality and reward are not substitutes for the seller’s

payoff when their interests are aligned (both lower quality and higher rewards are

desirable); hence, the reward is as high (and the quality as low) as is consistent with

the alignment of interests and the range of feasible qualities.

We have not discussed whether more or less information is actually desirable for

trade, an important issue given prevalent privacy concerns. As Figure 5 illustrates,

the buyer is better off when the seller knows the outside options provided that we

focus attention on the equilibrium preferred by the buyer. This is because costly

punishments no longer need to be carried out under complete information. However,

this ranking does not extend to all equilibria. In particular, in the equilibrium pre-

ferred by the seller, the buyer is better off when the seller has less information: the

seller is loath to carry out such punishments and so suffers as well when incomplete

information forces her to do so. This suggests that bargaining power plays a key role

in this debate.

References
Abreu, D., D. Pearce, and E. Stacchetti. 1990. “Toward a Theory of Discounted Repeated

Games with Imperfect Monitoring.” Econometrica, 58: 1041–1063.

Athey, S., and K. Bagwell. 2001. “Optimal Collusion With Private Information.” RAND Journal
of Economics, 32: 428–465.

Bijmolt, T. H. A., M. Krafft, F. J. Sese, and V. Viswanathan. 2018. “Multi-tier Loyalty
Programs to Stimulate Customer Engagement.” In Customer Engagement Marketing, edited by
R. Palmatier, V. Kumar and C. Harmeling, Springer Nature, Cham, Switzerland.

Board, S. 2011. “Relational Contracts and the Value of Loyalty.” American Economic Review,
101: 3349–3367.

Calzolari, G., and G. Spagnolo. 2017. Relational Contracts, Procurement Competition, and
Supplier Collusion. working paper, DIW Berlin.

Chassang, S. 2010. “Building Routines: Learning, Cooperation, and the Dynamics of Incomplete
Relational Contracts.” American Economic Review, 100: 448–465.

39



Dwyer, F. R., P. H. Schurr, and S. Oh. 1987. “Developing Buyer-Seller Relationships.” Journal
of Marketing, 51: 11–27.

Fafchamps, M. 2004. Market institutions in Sub-Saharan Africa - Theory and Evidence. Cam-
bridge, MA: MIT Press.

Fafchamps, M., and B. Minten. 1999. “Relationships and traders in Madagascar.” Journal of
Development Studies, 35: 1–35.

Fuchs, W., and F. Lippi. 2006. “Monetary Union with Voluntary Participation.” Review of
Economic Studies, 73: 437–457.

Fudenberg, D., and D. K. Levine. 1994. “Efficiency and Observability with Long-Run and
Short-Run Players.” Journal of Economic Theory, 62: 103–135.

Fudenberg, D., Levine, D. K., and E. Maskin. 1994. “The Folk Theorem with Imperfect
Public Information.” Econometrica, 5: 997-1039.

Halac, M. 2012. “Relational Contracts and the Value of Relationships.” American Economic Re-
view, 102: 750–779.

Hauser, C., and H. Hopenhayn. 2008. Trading Favors: Optimal Exchange and Forgiveness.
working paper, Collegio Carlo Alberto.

Heide, J. B., and A. M. Weiss. 1995. “Vendor consideration and switching behavior for buyers
in high technology markets.” Journal of Marketing, 59: 30–43.

Levin, J. 2003. “Relational Incentive Contracts.” American Economic Review, 93: 835–857.

Li, J., and N. Matouschek. 2013. “Managing Conflicts in Relational Contracts.” American Eco-
nomic Review, 103: 2328–2351.

Mauss, M. 1925. Essai sur le don: forme et raison de l’échange dans les sociétés archäıques.
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Appendix: For Online Publication

A Proof of Propositions 1 and 2
Plainly, Proposition 1 is an immediate corollary of Proposition 2 (ignoring the issue of buyer

incentive compatibility, as explained after Proposition 2), so that it suffices to establish the latter.

Before doing so, we introduce the last unspecified threshold, namely the minimum payoff that

the seller actually delivers. To do so, let v̌ be the solution to

S̃

c
+ B̃ − 1− δ

δ
p =

∫

ṽ≥v
ṽF (dṽ) +

(

1− δ

δ
+ F (v)

)

v, (10)

where

B̃ := F (v∗(S̃))(q∗(S̃)− p) +

∫

ṽ≥v∗(S̃)
ṽ dF (ṽ), (11)

where v∗, q∗ and S̃ are defined in Proposition 2. B̃ is simply the buyer’s payoff B(S̃). As the right-

hand side of (10) is increasing in v, the solution is unique, if it exists. As will be clear, v̌ ∈ (v, v).

The lowest payoff the seller actually receives, independent of the minimum promise S, is

S :=
(1− δ)F (v̌)

1− δ + δF (v̌)
p. (12)

Why v̌ and S are defined this way will become clear from the proof.

Our proof consists in two steps. First, we explicitly describe the value functions, given the policy

function (e.g., the functions q∗, v∗, SI , SO with domain [0, p]) specified in Proposition 2. Second, we

verify the optimality equation.

It is instructive to derive the optimal q∗, v∗, taking only SI , SO as given. We note that, for

S ∈ [0, S̃], the buyer and seller’s payoffs solve, for q = q∗(S), v = v∗(S), B = B(S),

S = (1− δ)F (v)(p − cq) + δF (v)S̃ + δF̄ (v)S,

B = (1− δ)

[

F (v)(q − p) +

∫

ṽ≥v
ṽF (dṽ)

]

+ δF (v)B̃ + δF̄ (v)B,
(13)

assuming that the buyer delivers S and no more. For S ∈ [S̃, p], this system becomes

S = (1− δ)F (v)(p − cq) + δS,

B = (1− δ)

[

F (v)(q − p) +

∫

ṽ≥v
ṽF (dṽ)

]

+ δB.
(14)

Because the seller’s incentive constraint is taken to bind for S ≤ S̃, (1− δ)cq = δS̃, and so (13) can

be rewritten as

S = (1− δ)F (v)p + δF̄ (v)S,

B = (1− δ)

[

F (v)(q − p) +

∫

ṽ≥v
ṽF (dṽ)

]

+ δF (v)B̃ + δF̄ (v)B.
(13’)
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(The seller’s payoff is “as if” she shirked if the buyer came.) As is clear from these formulas, it is

often convenient to work with quantiles t := F (v) rather than outside options v.

From the first equation of (13’), it is immediate that

t =
(1− δ)S

(1− δ)p− δS
, (15)

which confirms the formula for v∗ in Proposition 2 (with the caveat that S must be replaced with

max{S, S̄} in case some value S̄ ≥ S proves more advantageous to the buyer, see below).

From the second equation of (13’), and eliminating q using (1− δ)cq = δS̃,

B =
(1− δ)

[

t
(

δS̃
(1−δ)c − p

)

+
∫

ṽ≥F−1(t) ṽF (dṽ)
]

+ δtB̃

1− δ(1 − t)

=
S

p

[

δ

1− δ
(S̃/c+ B̃)− p

]

+

(

1−
δS

(1 − δ)p

)
∫

ṽ≥F−1( (1−δ)S
(1−δ)p−δS )

ṽF (dṽ), (16)

using (15) to eliminate t. The derivative of (16) w.r.t. S equals

δ

(1− δ)p

[

S̃/c+ B̃ −
∫

ṽ≥v
ṽF (dṽ)−

(

1− δ

δ
+ F (v)

)

v

]

− 1. (17)

In turn, this expression is decreasing in v = F (t),41 hence decreasing in t and so in S (cf. (15)).

Therefore, the right-hand side (R.H.S.) of (16) admits a unique maximum in S, obtained by setting

(17) to 0.42 Hence, the expression for v̌ given by (10), and thus, given (15), the seller receives always

at least

S ≥ S,

as defined in (12). Hence, (16) with S replaced with max{S, S} gives the buyer’s payoff given that

the seller is promised at least S, for S ≤ S̃.

As will be clear, S < S̃, given that the buyer’s favorite promise to the seller if he is bound to give

S̃ once he comes is less than S̃. Alongside (15) and the incentive constraint that gives q = δ
1−δ

S̃
c ,

this completes the description of the policy and payoffs for S ≤ S̃. We note that, given the formula

for S̃ given in (7), q is either one (when S̃ = 1−δ
δ c); else, it is a constant strictly lower than one.

Turning our attention to S ∈ [S̃, p], (14) immediately simplifies to

S = F (v)(p− cq),

B = F (v)(q − p) +

∫

ṽ≥v
ṽF (dṽ).

(18)

41Its derivative w.r.t. v is − δ
(1−δ)p

(

1−δ
δ + F (v)

)

< 0.
42That is, provided a maximum exists. For this, note from (13’) that, if S = 0, F (v) = 0

and so B = E[ṽ]. Yet, it is readily verified that B(S̃) > E[ṽ], and so it must be that B(S) is

increasing for S small enough. At S̃, the derivative equals
1−p−F−1( 1−δ

δ
c

p−c)
p−c when S̃ = 1−δ

δ c. But

1−p−F−1
(

1−δ
δ

c
p−c

)

< 0 ⇔ δF (1−p)(p−c) < (1−δ)c, which follows fromA1. Similar computations

yield a negative derivative at S̃ when S̃ = p
1

F (κ)+
δ

1−δ

.
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The first equation gives

q =
1

c

[

p− S

F (v)

]

, (19)

and so, using as before t = F (v), the second equation becomes

B = p
1− c

c
t− S

c
+

∫

ṽ≥F−1(t)
ṽF (dṽ), (20)

Assuming for now that q, as given by (19) is in (0, 1), we can then derive the optimal value of v.

The derivative w.r.t. t of (20) is

p
1− c

c
− F−1(t),

a function decreasing in t, and so B, as given by the R.H.S. of (20) is concave in t, with maximum

given by

t = min

{

1, F

(

p
1− c

c

)}

=: F (κ),

where we recall that κ := min
{

v, p 1−c
c

}

. Hence,

v = κ. (21)

In turn, (19) gives

q =
1

c

[

p− S

F (κ)

]

, (22)

and (20) yields

B = p
1− c

c
F (κ)− S

c
+

∫

ṽ≥κ
ṽF (dṽ), (23)

We note that the threshold is constant, but quality and payoff decrease linearly in S. Recall, however,

that we assumed q ∈ (0, 1) (see (19)), or to put it differently, the value of S might be so small that

the R.H.S. of (19) exceeds 1 when evaluated at t = F (κ). In fact,

1− δ

δ
c <

p
1

F (κ) +
δ

1−δ

⇔
1

c

[

p−
S

F (κ)

]
∣

∣

∣

∣

S= 1−δ
δ c

> 1,

implying that (22) does not hold at values of S right above S̃ if S̃ = 1−δ
δ c. If instead S̃ = p

1
F (κ)+

δ
1−δ

then (22) satisfies q ≤ 1.

If S̃ = 1−δ
δ c, given the concavity of B in t established in (20), it follows that it is then optimal

to set t as high as is consistent with q ≤ 1, that is, q = 1 and so v solves 1
c

[

p− S
F (v)

]

= 1, or

v = F−1

(

S

p− c

)

, (24)

with (20) giving

B =
1− p

p− c
S +

∫

ṽ≥F−1( S
p−c)

ṽF (dṽ). (25)
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In that case, q is constant, and v and B decrease in S.43

Finally, as is clear from (19), the constraint q ≥ 0 might bind if S is too large, given v = κ.

This is the case, given this equation, if S ≥ pF (κ). In that case, q = 0, and we immediately get

v = F−1(S/p) from that equation; from the second line of (18), it follows that

B =

∫

ṽ≥F−1(S/p)
ṽ dF (ṽ)− S (26)

in that range.

As is clear from this discussion, if S̃ = 1−δ
δ c, then there is a range [S̃, F (κ)(p − c)) over which

q = 1, and v,B are given by (24)–(25). For S ∈ [F (κ)(p − c), F (κ)p], v, q and B are given by

(21)–(23). If instead S̃ = p
1

F (κ)+
δ

1−δ

, the first range does not exist, and for all S ∈ [S̃, F (κ)p], v, q

and B are given by (21)–(23).

Finally, for S ∈ [F (κ)p, p], the solution is q = 0, v = F−1(S/p), with payoff B given by (26).

It is readily verified that, in each of the four cases (according to the two possible values of S̃

and κ), the resulting function B is globally concave on [0, p].

This completes the first step, namely, the derivation of v, q and B, as described in Proposition 2,

taking as given that SO = S and SI = max{S, S̃}. Using the candidate B(·) that we have derived,

we now verify the principle of optimality. Consider then maximizing

B̂ : [0, p] → R (P̂)

S -→ sup (1 − δ)

[
∫

A
(q(v)− p)F (dv) +

∫

Ac

vF (dv)

]

+ δ

∫

V
B(S(v))F (dv),

over A ⊂ V , S : V → R+, and q : V → Q ∪ {∅} (all functions of S) subject to (4) and (5).

Our goal is to show that B̂ = B. The first observation is that the candidate payoff functions B(·)
that we have derived (cf. (16), (23), (25) and (26)) are concave in S on their domain; further, it is

easy to see that the function B(·) : [0, p] → R defined by patching them together according to their

domains is concave as well (in fact, B(·) is continuously differentiable on [0, p]), while the constraints

(4) and (5) are linear in S(·). Hence, P̂ is a concave programme, and we can take S(·) to be constant

on the sets A, Ac. Similarly, replacing q(·) on A by E[q(ṽ) | ṽ ∈ A] does not affect the objective or

(5), and certainly satisfies (4), because (4) must hold for all v ∈ A. Finally, replacing A with a set

[v, v] such that
∫ v
v F (dṽ) =

∫

A F (dṽ) does not affect (4) and (5), and cannot decrease the objective.

Hence, the problem reduces to finding, for every S ∈ [0, p], a pair SI , SO ∈ [0, p], q ∈ Q, and v ∈ V .
The constraints being equalities or weak inequalities, and being continuous in v, q and SI , SO, as is

the objective, the maximum is achieved. Finally, it is also clear that B̂ must be non-decreasing in S,

since (5) is an inequality. Let Ŝ := max{S | B̂(S) = B′(0)} denote the highest promise that entails

no loss to the buyer (well-defined by the theorem of the maximum). Plainly, either SO = Ŝ, or (5)

binds with equality (decrease SO otherwise).

43The latter property isn’t apparent from (25): but differentiating the R.H.S. gives 1−p
p−c −

1
p−cF

−1
(

S
p−c

)

, which in light of (24) is negative provided v > 1 − p; since 1 − p is the myopic

threshold given that q = 1, this is necessarily the case given A1.
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By concavity of B also, either SI is such that (a) (4) binds, q > 0, v > v, and SI > SO,44 or

(b), we can take SI = SO.

On an interval of values such that case (a) applies,45

B̂(S) = max
SO,SI ,q,t

{

(1− δ)

(

t(q − p) +

∫ 1

t
F−1(t′) dt′

)

+ δtB(SI) + δ(1− t)B(SO)

}

,

such that
1− δ

δ
cq = SI , (27)

and

S ≤ (1 − δ)tp+ δ(1− t)SO, with equality if SO > Ŝ. (28)

where, as before, t = F (v) ∈ [0, 1], and the last equation (promise-keeping) uses the preceding

equality to eliminate quality. On an interval of values such that (b) applies,

B̂(S) = max
S′,q,t

{

(1− δ)

(

t(q − p) +

∫ 1

t
F−1(t′) dt′

)

+ δB(S′)

}

, (29)

such that
1− δ

δ
cq ≤ S′, or t = 0, (30)

and

S ≤ (1− δ)t(p− cq) + δS′. (31)

We note that either (30) or (31) binds, without loss (decrease S′ otherwise).

First, let us consider values, if any, for which incentive compatibility does not bind in the

determination of B̂. Then, case (b) must apply, and (31) must bind. Inserting this constraint in the

objective, by eliminating q, yields

B̂(S) + S

c
= max

S′,t

{

(1− δ)
1− c

c
pt+ (1 − δ)

∫ 1

t
F−1(t′) dt′ + δ

(

B(S′) +
S′

c

)}

. (32)

Note that the R.H.S. is concave in S′, since B is, and strictly concave unless S′ ∈ [S̃, F (κ)p] when

S̃ = p
1

F (κ)+
δ

1−δ

; (S′ ∈ [F (κ)(p − c), F (κ)p] if S̃ = 1−δ
δ c.) If q ∈ (0, 1), so that first-order conditions

with respect to S′ must apply, it holds that

B′(S′) +
1

c
= 0.46 (33)

and so indeed S′ must belong to the interval in which B is affine. Hence, for S in this interval,

choosing S′ = S satisfies the first-order conditions with respect to S′, and the optimality of t and

q ∈ (0, 1) as described in step 1 follows. Since this is a relaxed programme, yet B̂(S) ≤ B(S) in this

44Otherwise, increase SI and decrease SO, keeping the R.H.S. of (5) constant; if v = v, SI is
irrelevant to P̂.

45The maximum theorem ensures that intervals are without loss of generality.
46Unless S′ = 0, p, but the derivatives of B(·) at these extreme values imply the inequality that is

opposite to the first-order condition.
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interval, it follows that B̂(S) = B(S) over this interval.
Still ignoring the incentive compatibility constraint, if the solution to B̂ involves q = 1, we

eliminate t using (31), and get as objective

B̂(S) = max
S′

{

1− p

p− c
(S − δS′) + (1− δ)

∫ 1

S−δS′

(1−δ)(p−c)

F−1(t′) dt′ + δB(S′)

}

,

with derivative w.r.t. S′ equal to

−δ
1− p

p− c
+

δ

p− c
F−1

(

S − δS′

(1− δ)(p− c)

)

+ δB′(S′), (34)

a decreasing function in S′, and so the objective is strictly concave in S′, so that, if a maximizer

exists, it is unique. Yet, evaluating the first-order condition at S′ = S gives47

B′(S) =
1− p

p− c
−

1

p− c
F−1

(

S

p− c

)

,

which indeed holds for S ∈ [S̃, F (κ)(p−c)] if S̃ = 1−δ
δ c (compare (25)). Finally, if q = 0, eliminating

t the same yields

B̂(S) = max
S′

{

δS′ − S + (1− δ)

∫ 1

S−δS′

(1−δ)p

F−1(t′) dt′ + δB(S′)

}

,

with derivative

δ +
δ

p
F−1

(

S − δS′

(1− δ)p

)

+ δB′(S′).

This is decreasing in S′. Hence, B̂ is concave in S′ in this case as well. Setting this derivative to 0

and evaluating at S′ = S gives

B′(S′) = −1− 1

p
F−1

(

S

p

)

.

Comparing to (26), it follows that B̂ = B on the range [F (κ)p, p]. Hence, we have shown that our

policy is optimal for S ≥ S̃.

Consider now S ≤ S̃. First, we note that, upper bounding B by (23) on the range [F (κ), p]

(that is, ignoring the constraint q ≥ 0 that binds on this range, so that B remains affine with

slope −1/c for these values too), it follows from the previous analysis that, in case (b), and still

ignoring the incentive compatibility constraint, we may take S′ ∈ [0, S̃] in case S̃ = p
1

F (κ)+
δ

1−δ

, and

S′ ∈ [0, F (κ)(p − c)], with q = 1 if S′ ∈ (S̃, F (κ)(p − c)) in case S̃ = 1−δ
δ c. Indeed, if q < 1, (33)

shows that S′ belongs to the affine range of B, and we can then lower S′ without loss. If q = 1 and

S′ ∈ (S̃, F (κ)(p− c)) when S̃ = 1−δ
δ c, (34) must hold, but given the formula for B in that range (cf.

47Again, the cases S′ = 0, p are readily dismissed.
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(25)), it follows that

F−1

(

S − δS′

(1 − δ)(p− c)

)

= F−1

(

S′

p− c

)

or S = S′,

which isn’t possible given S ≤ S̃ < S′. Hence, in all cases, we may take S′ ∈ [0, S̃]. Given that this

is true when case (b) is relaxed (ignoring incentive compatibility, upper bounding the continuation

payoff for S′ ≥ F (κ)), the same conclusion holds for the original problem.

If S̃ = 1−δ
δ c, then if q < 1, S′ ≥ F (κ)(p − c), yet, as we saw, without loss, S′ ≥ 1−δ

δ c. Hence,

in that case, q = 1. But then incentive compatibility in case (b) requires S′ = 1−δ
δ c. This gives us

one candidate value B(S) to compute in that case. This value is readily shown to be less than B(S)
given by (16).

If S̃ = p
1

F (κ)+
δ

1−δ

, and q = 1 for S < S̃, given that the solution to the relaxed problem gives

S′ ≤ 1−δ
δ c without loss, we then have (1− δ)c = δ 1−δ

δ c > δ p
1

F (κ)+
δ

1−δ

, and so incentive compatibility

would fail. Hence, either q < 1, but then necessarily S′ = p
1

F (κ)+
δ

1−δ

in the relaxed problem (because

we must have B′(S′) = −1/c), or ignoring incentive compatibility in case (b) is unwarranted. If

q < 1 and S′ = p
1

F (κ)+
δ

1−δ

, then first-order conditions in (32) yields t = F (κ), and so (31) gives, for

the relaxed problem,

q =
1

c

(

p− S − δS̃

(1− δ)F (κ)

)

,

so that the seller’s cost of quality is equal to

(1 − δ)cq = (1− δ)p− S − δS̃

F (κ)
≤ δS̃,

with strict inequality unless S = S̃. Hence, incentive compatibility binds in this case as well. To

conclude, in case (b), when S̃ = p
1

F (κ)+
δ

1−δ

, incentive compatibility must bind for S < p
1

F (κ)+
δ

1−δ

, and

either S′ = p
1

F (κ)+
δ

1−δ

, t = F (κ), and q =

(

p
1

F (κ)+
δ

1−δ

)

/
(

1−δ
δ c
)

< 1, or q = 1 and S′ = 1−δ
δ c. This

gives us two candidate values B(S) to compute in that case. These two values are readily shown to

be less than B(S) given by (16).

Hence, when S < S̃, case (a) must apply. We start by considering values of S such that promise-

keeping holds, if any. Using (27) and (28) to eliminate SO and q yields

B̂(S) = max
t,SI

{

δt
SI

c
− (1 − δ)tp+ (1 − δ)

∫ 1

t
F−1(t′) dt′

+ δ(1− t)B
(

S − (1− δ)tp

δ(1− t)

)

+ δtB(SI)

}

. (35)

Differentiating with respect to SI , and recalling that q ≤ 1 ⇔ SI ≤ 1−δ
δ c yields that SI is the

smaller of 1−δ
δ c and the solution to 1/c + δB′(SI) = 0,48 that is, SI = S̃. Note also that (35) is

48Recall that in case (a), v > v, that is, t > 0.

47



concave in t, and thus admits at most a unique interior critical point, which is then a maximum.

Equivalently, given promise-keeping, there is at most a unique SO satisfying the first-order condition

w.r.t. SO, a maximum as well. Replacing t with SO given promise-keeping yields

B̂(S) = max
SO

{

(

δSO − S
)

(

δS̃ − (1 − δ)cp
)

δcSO − (1− δ)cp
+ (1− δ)

∫ 1

S−δSO

(1−δ)p−δSO

F−1(t′) dt′

+ δ
S − δSO

(1− δ)p− δSO
B(SI) + δ

(1− δ)p− S

(1− δ)p− δSO
B(SO)

}

.

Taking first-order conditions w.r.t. SO, and using (17) to evaluate B′(·), establishes that SO = S is

a critical point of the R.H.S., and thus the maximizer of our problem. This concludes the proof.

B Finite-State Automata: Missing Details
Here, we provide the specific values for the constants mentioned in Section 3.1. Details for their

derivation are available upon request.

BH =
1 + (1 − p)2

2
− pε/γ, BL =

1 + (1 − p)2

2
− (1 − p)τ

√

ε/γ,

and

vH = 1− p+ ε/γ, vL = 1− p− τ
√

ε/γ,

as well as

SH = (1 − p)(p− c) + cε, SL = (1− p)(p− c)− (p− c)2 − p(1− p)c

p
τ
√

ε/γ,

where

τ :=

√

2(p− c)p(1 + c− p)

p2 + (2− p)pc− 2c2
, γ :=

p(1− p)− (p− c)2 − (1 − p)2c

(1− p)c
.

Finally,

qL = 1− p

p− c
τ
√

ε/γ, rH = (1− p)(p− c)τ
√

ε/γ.

The third state, corresponding to the consideration stage, involves payoff and threshold given by

vI = 1− p− c

1− p
ε/γ, BI =

1 + (1 − p)2

2
− cε/γ.
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C Incomplete Information: Proofs for Section 3.2

C.1 The Equilibrium Payoff Set Eδ: Preliminaries
Throughout, we renormalize the buyer’s payoff to be B −E[ṽ], so that its minimum value is 0.

Rather than study the maximum seller’s payoff as a function of the buyer’s payoff, we study

φ : [0,∞) → R

B -→ sup
{(B′,S′)∈Eδ|B′=B}

{B′ + S′/c} ,

with φ(B) = −∞ if no equilibrium exists that gives B to the seller. We let B denote the maximum

over B such that φ(B) > −∞.

Fixing an equilibrium, given the buyer’s equilibrium payoff B after some history, we denote by

BI , BO the buyer’s continuation payoff according to whether the buyer chooses In or Out, and S(B)

(resp., S(BI), S(BO)) for the corresponding seller’s payoff.

We start by studying the behavior of φ(·) for values of B that are close to 0. Recall that the

buyer’s outside option is distributed according to F , with support [0, 1], and that the distribution

F is assumed to be twice continuously differentiable, with density f bounded away from 0.

Claim 1. It holds that φ(0) = 0.

Proof. Suppose instead that φ(0) > 0, i.e., there exists an equilibrium in which the seller gets more

than 0 yet the buyer gets just E[ṽ]. Consider the first round n in which the buyer comes to the seller

with positive probability (“wpp”). Note that n < ∞, for otherwise φ(0) = 0. Second, the payoff of

the buyer from round n onward is E[ṽ], for his reward is E[ṽ] in each round until round n. Hence,

without loss, take n = 1.

Next, suppose that the buyer comes with probability one (“wp1”) in round 1. Then his payoff

from coming is E[ṽ]. Consider instead the strategy of the buyer that comes to the seller in round n

if, and only if, ṽ > v for some arbitrary v ∈ (0, 1); if he comes, he follows the equilibrium strategy;

if he does not come, he never does in the future either. Note that conditional on coming, he gets

E[ṽ], as explained (the current value is irrelevant, since he then comes). Conditional on not coming,

he gets strictly more (since he gets a strictly higher (conditional expectation of his) reward today,

and E[ṽ] from tomorrow onward). Hence, this is a profitable deviation.

Hence, the buyer comes with probability less than 1 in round 1. This implies that there exists

some threshold v such that he comes if, and only if, ṽ < v. Note that knowing his outside option

is strictly valuable to the buyer (since his reward from coming is strictly increasing in v, and his

continuation payoff conditional on not coming is independent of it). Yet, conditional on not knowing

his outside option, he can get E[ṽ] by never coming. A contradiction.

Claim 2. It holds that, for all B ∈ (0, B], φ(B) > 0.

Proof. Immediate, as if the buyer gets more than 0, he must go to the seller on a set of histories

with positive probability. A strategy available to the seller is to always choose zero quality, which

then secures a strictly positive payoff.
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Note that φ is weakly concave (being the upper boundary of a convex set), hence continuous–in

fact, with left- and right-derivatives everywhere.

Claim 3. It holds that

lim
B↑B

φ(B)− φ(B)

B −B
= −∞.

Further, for B = B, we may set BO = B.

Proof. The fact that BO = B whenever B = B is immediate: if not, increase BO, keeping BI and q

constant. Because BO does not affect the seller’s incentives, this change must benefit the buyer (as

he can still come to the seller if he’d like to, and if he doesn’t, his continuation pay off is higher).

To show that the slope of φ is infinite at B, consider setting BO = (1 − α)B, for a range of

(small) α > 0. Indifference of the buyer at the critical cut-off v is equivalent to49

(1 − δ)(q − p− v) = δ((1 − α)B −BI).

This implies that (1 − δ) dv = δB dα at α = 0. The buyer’s payoff changes by

dB = −δF (v)B dα = −(1− δ)F (v) dv,

while the seller’s payoff change by

dS = F (v)
(

(1 − δ)(p− cq) + δSI
)

dv − δF (v)BS′(B) dα, 50

or, combining and evaluating at α = 0,

dS = −
F (v)

(1− δ)F (v)

(

(1− δ)(p− cq) + δSI
)

dB + S′(B) dB,

or

S′(B) =
dS

dB

∣

∣

∣

∣

B=B

= − F (v)

(1− δ)F (v)

(

(1 − δ)(p− cq) + δSI
)

+ S′(B),

which implies that limB→B S′(B) = ±∞ (it cannot be that vn → v for a sequence Bn → B, as

otherwise B is the autarky payoff). By concavity, S′(B) = −∞. Since φ(B) = B + S/c, it follows

that also

lim
B↑B

=
φ(B)− φ(B)

B −B
= −∞.

49For α small, the buyer must come to the seller for v ∼ v, while he does not when v ∼ v because
v > 1 − p (BO = B without loss if the buyer comes wp1, and so if he were to come when v = v it
would have to be that B = (1− δ)(q− p)+ δBI ≥ (1− δ)v+ δB, which is impossible since 1− p < v
and BI ≤ B). So the buyer is indifferent for some v ∈ V .

50Here, we interpret S′(B) as limB↑B S′(B), for any sequence of (Bn), with Bn → B, at which S
is differentiable.
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Claim 4. It holds that

lim
B↓0

φ(B)

B
= +∞.

Further, limB↓0 BO exists and is equal to 0.51 Similarly, limB↓0 v = v.

Proof. Fix some ε > 0 small. Let BO = 1−δ
δ ε. We distinguish two cases.

(a) (1− δ)p > δB̂: Let BI = B̂ − 1−δ
δ ε(1 + ε), q = p− δ

1−δ B̂.

(b) (1− δ)p ≤ δB̂: Let q = 0, BI = 1−δ
δ

(

ε2 + ε+ p
)

, which is in (0, B̂) for ε small enough.

In both cases, v = v + ε solves

(1− δ)(v + ε) + δBO = (1− δ)(q − p) + δBI ,

so that the buyer comes to the seller if, and only if, v ≥ v + ε. If the seller is indifferent for some

v > v between coming and not, adding the seller’s incentive constraint for q > 0 to the indifference

condition for the buyer with type v gives, as in the previous claim,

δφ(BI) > (1− δ)(p+ v) + δBO,

which is satisfied in case (a) as v+ ε → v, by the assumption (36). In case (b), the seller’s incentive

compatibility is trivial, since q = 0.

In either case, the buyer gets (net of the payoff of always going to the outside option)

(1− δ) (ε(ε+ F (v + ε)) ,

while the seller gets δF (v + ε)S(B̂). Recall that, since the density of F is bounded away from 0,

there exist constants m,M > 0 such that Mε ≥ F (v + ε) ≥ mε. Taking the ratio and v + ε → v

yields the desired result in that case.

The claim that limB↓0 B0 = 0 is immediate, as the buyer could otherwise secure a payoff bounded

above E[ṽ] by simply not coming in the first round. Similarly, if v ! v along some subsequence of

B tending to 0, the seller would secure a payoff bounded above E[ṽ], given that his preference to

come to the seller for, say, all ṽ ≤ (v + v)/2 is bounded away from v.

Note that this implies that Eδ has nonempty interior (whenever it properly includes 0) as for

any (B,φ(B)) vector, the line segment [0, (B,φ(B))] is included in {(B,B + S/c) | (B,S) ∈ Eδ}.
Note that, since φ is continuous, it admits a maximum. Fix the largest maximizer B̂ of φ, and

let φ̂ denote the maximum.

Claim 5. If Eδ ≠ {∅}, then
δφ̂ > (1− δ)p. (36)

51More precisely, fix any sequence (Bn), with Bn ↓ 0, and any sequence of equilibria with buyer’s
payoff Bn; then the corresponding sequence BO

n converges to 0.
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Proof. If some equilibrium quality q is s.t. q > 0, then incentive compatibility for the seller requires

δ
S(BI)

c
≥ (1− δ)q,

If the buyer is willing to come to the seller with positive probability in that round, then

(1− δ)(q − p) + δBI > δBO.

Adding up the inequalities gives

δφ(BI) > (1− δ)p+ δBO ≥ (1 − δ)p,

hence the conclusion.

From here on, we maintain as an assumption that (36) holds, as the equilibrium payoff set is

simply the null payoff vector otherwise.

Claim 6. If B > 0, then in any equilibrium achieving payoff vector (B,φ(B)), the buyer comes wpp

to the seller in the first round.

Proof. Suppose not. Then (for at least some realization of the randomization device) the interim

payoff vector is a convex combination of the vector 0, and some continuation payoff vector in Eδ. By

the previous claim, such a convex combination must lie in the strict hypograph of φ, a contradiction,

given that all continuation payoffs must lie on the graph.

Note that the previous proof establishes a somewhat stronger claim: for all realizations of the

randomization device, the buyer comes to the seller wpp.

Let v denote the supremum of the types of the buyer who go to the seller, given some vector

(B,φ(B)) and corresponding equilibrium. By the previous claim, v > v. In fact:

Claim 7. Fix a payoff vector (B,φ(B)) and corresponding equilibrium. Then without loss, there

exists v ∈ (v, v] s.t.

(1− δ)v + δBO = (1− δ)(q − p) + δBI .

Proof. By the previous claim, the highest buyer’s type that comes to the seller satisfies v > v. If

v = v strictly prefers to come to the seller, then we may increase BO without loss. Hence, we may

increase it either to the point at which indifference obtains when v = v, and the claim follows, or

BO = B. In the latter case, it would have to hold that B = (1− δ)(q−p)+ δBI ≥ (1− δ)v+ δB, for

q the quality that the seller provides. This is impossible, since BI ≤ B, and q − p ≤ 1− p < v.

Suppose that (B,φ(B)) is achieved without initial lottery. Then we have

B = (1 − δ)

∫ v

v
(v − ṽ) dF (ṽ) + δBO, (37)
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as well as
S(B)

c
= (1 − δ)F (v)

(p

c
− q
)

+ δF (v)
S(BI)

c
+ δF (v)

S(BO)

c
, (38)

and, rearranging the indifference condition that defines v,

0 = (1− δ)(q − p) + δBI −
(

(1− δ)v + δBO
)

. (39)

Multiply (39) by F (v), add the resulting equations to (37) and (38), and we get

φ(B) = (1− δ)

∫ v

v
(κ− ṽ) dF (ṽ) + δF (v)φ(BI ) + δF (v)φ(BO), (40)

where B = (1 − δ)
∫ v
v (v − ṽ) dF (ṽ) + δBO, q ∈ [0, 1], and the seller’s incentive constraint holds,

namely either q = 0 or

δφ(BI) ≥ (1− δ)(p+ v) + δBO,

combining the actual seller’s IC constraint with the buyer of type v’s indifference, as before. The

constraint q ∈ [0, 1] can be rewritten as, using (39)

(1 − δ)(p+ v) + δ(BO −BI) ∈ [0, 1− δ].

These last two constraints can be rewritten as (using the indifference condition)

min{δφ(BI), 1 − δ + δBI} ≥ (1− δ)

(

p+ v −
∫ v

v
(v − ṽ) dF (ṽ)

)

+B ≥ δBI . (41)

We can rewrite (40) as

φ(B) = (1− δ)

∫ v

v
(κ− ṽ) dF (ṽ) + δF (v)φ(BI ) + δF (v)φ

(

B

δ
− 1− δ

δ

∫ v

v
(v − ṽ) dF (ṽ)

)

. (42)

Recall that B is the highest equilibrium payoff of the buyer.

Claim 8. It holds that

δφ(B) < 1− δ + δB.

Proof. Note that, if δφ(B) ≥ 1−δ+δB, the seller’s incentive compatibility is satisfied when BI = B–

and thus can be ignored. This implies that the best equilibrium payoff for the buyer coincides with

q = 1 always and myopic behavior by the buyer, contradicting Assumption A1.

C.2 Equilibrium Behavior for Payoffs (B, S), S = φ(B)
Given Claim 9, the vector (B,φ(B)) lies in the hypograph of the map B -→ 1− δ + δB. Hence,

either the graph of this map crosses the graph of B -→ φ(B), or it lies above it. Let B̃ be where the

largest intersection occurs if any, that is, the largest solution of δφ(B) = 1 − δ + δB, provided this

solution is larger than B̂ (recall that this is the argmax of φ), and set B̃ = B̂ otherwise.
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Motivated by the previous subsection, consider the programme P(B):

max
v,BI

{

(1− δ)

∫ v

v
(κ− ṽ) dF (ṽ) + δF (v)φ(BI ) + δF (v)φ

(

B

δ
− 1− δ

δ

∫ v

v
(v − ṽ) dF (ṽ)

)}

such that

min{δφ(BI), 1 − δ + δBI} ≥ (1− δ)

(

p+ v −
∫ v

v
(v − ṽ) dF (ṽ)

)

+B ≥ δBI , (43)

over v, s.t. B ≥ (1 − δ)
∫ v
v (v − ṽ) dF (ṽ) (a nonempty set as this lower bound is 0 for v = v). We

note that, given that φ is increasing in B over [0, B̂], and given that the left-hand inequality of

(43) is slack for B ≤ B̂, we always have BI ≥ B̂ (unless the right-hand inequality of (43) binds).

Similarly, because φ is decreasing in B over [B̂, B], and because decreasing B relaxes the left-hand

inequality for B > B̃, it holds that B ≤ B̃. Accounting for the right-hand inequality of (43), we

have established:

Claim 9. It holds that

BI ∈
[

min
{

(1 − δ)(p+ v)/δ, B̂
}

, B̃
]

.

Depending on the ordering between the bounds that appear in Claim 9, up to four regions can

occur.52

Claim 10. For all B ∈ [0, B], BO ≤ B, and the inequality is strict if, and only if, B /∈ {0, B}.

Hence, BO may be as low as 0 (when B = 0) or as high as B (when B = B). To establish this

claim, we distinguish the four regions of values of B, and prove the result region by region (Claims

11, 12, 13 and 14).

Definition 1. Let:

BL denote the subset of B := [0, B] such that, in the solution to P(B),

min
{

δφ(BI), 1− δ + δBI
}

> (1− δ)

(

p+ v −
∫ v

v
F (ṽ) dṽ

)

+B,

i.e., BI = B̂;

BM denote the subset of B such that

δφ(BI) > 1− δ + δBI = (1 − δ)

(

p+ v −
∫ v

v
F (ṽ) dṽ

)

+B,

i.e., BI ∈ (B̂, B̃);

52Plainly, if the left-hand side of (43) binds, the R.H.S. does not, and vice-versa.
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BH denote the subset of B such that

δφ(BI) = 1− δ + δBI = (1 − δ)

(

p+ v −
∫ v

v
F (ṽ) dṽ

)

+B,

i.e., BI = B̃.

BLL denote the subset of B such that

δBI = (1− δ)

(

p+ v −
∫ v

v
F (ṽ) dṽ

)

+B,

i.e., q = 0 and BI = B
δ + 1−δ

δ

(

p+ v −
∫ v
v (v − ṽ) dF (ṽ)

)

.

Because φ is continuous on its domain (as a concave function), the maximum theorem applies,

and so the sets BL,BM ,BH must be unions of intervals (with BH being closed).

Claim 11. The set BL is a subset of [0, B̂] (hence BI ≥ B for any B ∈ BL), and BO < B whenever

B > 0. The function φ is differentiable and strictly concave over any interval in BL. The cutoff v

and the continuation payoff BO are increasing in B over any such interval.

Proof. Consider an interval of values in BL. We first prove that φ cannot be affine on an interval

that contains BO for some B in that interval. Suppose otherwise, i.e., φ(B) = aB + b on this

interval. By the envelope, we then have φ′(B) = a = F (v)φ′(BO) = F (v)a, and so either v = v or

a = 0. The former is impossible given Claim 6.

If a = 0, then B̂ must be in this interval, and the objective rewrites φ(B̂) = maxv
∫ v
v (κ−ṽ) dF (ṽ),

implying

φ(B̂) =

∫ κ∧v

v
(κ− ṽ) dF (ṽ),

which is on the boundary of the feasible payoff set (this is the maximum feasible value of φ),

requiring a constant value, namely BO = BI = B, which means that the buyer behaves myopically,

a contradiction. So, BO and B never lie on a segment of φ that would be affine, for B ∈ BL. That

is, if B ∈ BL, and B > BO, then ∂φ(B) > ∂φ(BO) (where ∂φ is the set of subgradients of φ). This

implies that φ is strictly concave over any interval contained in VL.

Next, we show that φ is differentiable over any such interval. Fix B ∈ BL, ϵ > 0 such that

[B − ϵ, B + ϵ] ∈ BL. Let v refer to the maximizer of P(B). For ϵ ∈ (0, ϵ), let also vϵ solve

B + ϵ

δ
− 1− δ

δ

∫ vϵ

v
F (ṽ) dṽ =

B

δ
− 1− δ

δ

∫ vϵ

v
F (ṽ) dṽ.

Plainly, vϵ is a differentiable function of ϵ, with

dvϵ

dϵ
=

1

(1 − δ)F (vϵ)
.
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Since vϵ is feasible at B + ϵ, for small enough ϵ, we have

φ(B + ϵ)− φ(B)

≥ (1− δ)

∫ vϵ

v
(κ− ṽ) dF (ṽ) + δ(F (vϵ)− F (v))

(

φ(B̂)− φ

(

B

δ
− 1− δ

δ

∫ v

v
F (ṽ) dṽ

))

,

and so

lim inf
ϵ↓0

φ(B + ϵ)− φ(B)

ϵ
≥

(

(1 − δ)(κ− v) + δ

(

φ(B̂)− φ

(

B

δ
− 1− δ

δ

∫ v

v
F (ṽ) dṽ

)))

f(v)

(1 − δ)F (v)
.

By a similar argument,

lim sup
ϵ↓0

φ(B) − φ(B − ϵ)

ϵ
≤

(

(1 − δ)(κ− v) + δ

(

φ(B̂)− φ

(

B

δ
− 1− δ

δ

∫ v

v
F (ṽ) dṽ

)))

f(v)

(1 − δ)F (v)
.

By concavity, lim infϵ↓0
φ(B+ϵ)−φ(B)

ϵ ≤ lim supϵ↓0
φ(B)−φ(B−ϵ)

ϵ , and so these inequalities must be

equalities, yielding that φ is differentiable at B.

Note that the maximality at the optimal v of the objective implies

0 = (1− δ)(κ− v)f(v) + δf(v)(φ(B̂)− φ(BO))− (1− δ)F (v)F (v)φ′(BO).

Hence, if v < κ, it must be that BO < B̂, since φ(B̂)− φ(BO) ≥ 0. Note that, by the envelope,

φ′(B) = F (v)φ′

(

B

δ
−

1− δ

δ

∫ v

v
F (ṽ) dṽ

)

. (44)

Hence, B ≥ B̂ implies BO > B, and so BO > BI , hence v < 1 − p < κ, a contradiction. Hence,

BL ⊂ [0, B̂], and BO < B.

Claim 12. Consider values of B in BH . It holds that BO ≤ B is increasing in B, with B < B ⇒
BO < B; in fact, B −BO is decreasing in B, with B −BO = 0 as B = B (which is in BH). Also,

v is decreasing over BH . The function φ is differentiable over any interval in BH .

Proof. Since 1 − δ + δB̃ = (1 − δ)
(

p+ v −
∫ v
v F (ṽ) dṽ

)

+ B, then if B1, B2 ∈ BH , and B1 > B2,

then v1 < v2, showing that v is decreasing. A simple calculation shows that

B −BO = −1− δ

δ

(

(1− δ)(1 − p− v) + δṼ − δ

∫ v

v
F (ṽ) dṽ

)

,

and since the R.H.S. increases in v, and so decreases in B, B−BO decreases as well. If B = B ∈ BH ,

it must be that BO = B, for otherwise increasing BO without changing v would lead to an increase
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in B, a contradiction by definition of B. The proof that φ is differentiable mimics the earlier proof

of differentiability (see Claim 12) and is therefore omitted.

Claim 13. The set BM is a subset of [0, B̃]. Further, BO < B < BI , with BI − BO (and so v)

decreasing in B. The function φ is differentiable on any interval in BM .

Proof. Differentiability is shown as before.

We first show that φ cannot be affine over any interval that contains B, as well as either the

corresponding BO or BI . Note that, by the envelope theorem,

φ′(B) = F (v)φ′(BI) + F (v)φ′(BO),

and so if φ is affine on an interval that contains either BO or BI , it must also contain the other

possible continuation payoff.

Now, suppose for the sake of contradiction that φ(B) = aB+ b on such an interval that we take

to be maximal.

Recall that, by definition of this region,

BI =
B

δ
− 1− δ

δ

∫ v

v
F (ṽ) dṽ +

1− δ

δ
(p+ v − 1).

Hence, φ(B) is given by (the maximum over v of)

φ(B) = aB + b = (1− δ)

∫ v

v
(κ− ṽ) dF (ṽ) + δF (v)φ(BI ) + δF (v)φ

(

BO
)

= (1− δ)

∫ v

v
(κ− ṽ) dF (ṽ) + δb+ a

(

B − (1− δ)

∫ v

v
F (ṽ) dṽ

)

+ (1− δ)aF (v)(p + v − 1),

and so

b =

∫ v

v
(κ− a(1− p)− (1− a)ṽ) dF (ṽ),

a differentiable function of v maximized when

v =
κ− a(1 − p)

1− a
,

which is constant.53 Hence, BI − BO = 1−δ
δ (p + v − 1) is also constant, and from the definition of

BI and BO, BI −B and BO −B are strictly increasing in B for constant v. By maximality of the

interval, either (in fact, both) difference must be positive at the lower extremity of the interval, and

negative at the upper extremity, a contradiction.

53The case in which v = v because κ−a(1−p)
1−a > v is analogous.
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Next, we show that BO ≤ B ≤ BI , with at least one strict inequality. By maximality of v, we

must have

0 = (1− δ)(κ− v) + (1− δ)F (v)F (v)
(

φ′(BI)− φ′(BO)
)

+ δf(v)
(

φ(BI)− φ(BO)
)

.

If BI < BO then v < 1 − p < κ, as well as φ′(BI) − φ′(BO) ≥ 0 and φ(BI) − φ(BO) ≥ 0 (since

BI ≥ B̂). Hence, all three terms on the right are positive, a contradiction. Hence, BI ≥ BO, and

given the envelope theorem, namely,

φ′(B) = F (v)φ′(BI) + F (v)φ′(BO), (45)

and concavity of φ (with the property that φ is not affine on any subinterval), B ∈ [BO, BI ]. Finally,

those three values cannot be equal, as v would remain constant over time, a contradiction. But if

two are distinct, then again, given that φ is not affine on any subinterval containing B and either

BI or BO, the three subgradients must be distinct, implying that BO < B < BI .

We note that B ≥ B̃ ⇒ BI ≤ B immediately implies that B cannot belong to BM for B ≥ B̃;

recall also from Claim 11 that B ≥ B̂ ⇒ B /∈ BL; hence, for all B ≥ B̃, B ∈ BH .

Claim 14. The set BLL is a subset of [0, B̂]. Further, BO < B < BI for B > 0. The function φ is

differentiable on any interval in BLL.

Proof. Differentiability is shown as before. We note that, from the definition of BLL, it holds that

BI =
B

δ
+

1− δ

δ

(

p+ v −
∫ v

v
(v − ṽ) dF (ṽ)

)

>
B

δ
,

so that BI > B, and given that BI < B̂, it follows that BLL ⊆ [0, B̂]. By the envelope theorem,

over any interval in BLL, it holds that

φ′(B) = F (v)φ′(BI) + δF (v)φ′(BO),

with, by Claim 6, v > v, and so F (v) > 0. Ruling out that φ is affine over an interval containing

B and BI given B (and strict concavity) follows exactly the same steps as in Claim 13. Hence we

must have BO < B.

C.3 Asymptotic Behavior
Claim 15. For any initial condition B0 ∈ (0, B], the Markov chain {Bn : n ∈ N} defined by

Bn+1 =

⎧

⎨

⎩

BI
n with prob. F (vn),

BO
n with prob. F (vn),

where vn, BI
n, B

O
n solve P(Bn), is such that

lim sup
n→∞

Bn = B̃, lim inf
n→∞

Bn = 0.
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Proof. As is clear from Claim 12, min{BI
n, B

O
n } < Bn,min{BI

n, B
O
n } ≤ B̃ if Bn ∈ BH (and recall

that both BI
n, B

O
n have positive probability). Hence, BH is exited almost surely whenever visited.

Further, for Bn ∈ BL ∪ BM , consider the (stopped) Markov chain {B̌n+m : m ∈ N} defined by

B̌n = Bn, B̌n+m+1 = Bn+m+1 if Bn+m ∈ BL ∪ BM , = Bn+m if Bn+m ∈ BH . We note that, by the

envelope theorem, there exists a selection of ∂φ(B̌n+m) that is a martingale. While it is not bounded

(since φ(B)/B → +∞ as B → 0), it is bounded below (because BL ∪BM ⊂ [0, B̃) " [0, B])). Hence

it converges to a limit φ′(B∞) with finite expectation. This limit cannot be achieved for B → 0

(again, since φ(B)/B → +∞ as B → 0). Because as shown in Claims 11 and 13, φ is not affine on

any interval that would contain both some value Bn+m and its continuation payoff Bn+m+1, it must

be that Bn+m converges, and this limit is in BH , i.e., the region BL ∪ BM , whenever visited, must

be eventually exited again also.

Because BO < B for every B in BL ∪ BM ,54 and the event that the continuation payoff is

BO has probability bounded away from 0, and because BI = B̃ for every B ∈ BH (and BI is

the continuation payoff with probability bounded away from 0 for B bounded away from 0), the

conclusion follows.

54And B − BO is bounded away from 0 if B is bounded away from 0; if not, by the maximum
theorem, there would exist B > 0 such that BO = B.
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