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Abstract

Automatic characterization of fluorescent labeling in intact mammalian tissues remains a

challenge due to the lack of quantifying techniques capable of segregating densely packed

nuclei and intricate tissue patterns. Here, we describe a powerful deep learning-based

approach that couples remarkably precise nuclear segmentation with quantitation of fluores-

cent labeling intensity within segmented nuclei, and then apply it to the analysis of cell cycle

dependent protein concentration in mouse tissues using 2D fluorescent still images. First,

several existing deep learning-based methods were evaluated to accurately segment nuclei

using different imaging modalities with a small training dataset. Next, we developed a deep

learning-based approach to identify and measure fluorescent labels within segmented

nuclei, and created an ImageJ plugin to allow for efficient manual correction of nuclear seg-

mentation and label identification. Lastly, using fluorescence intensity as a readout for pro-

tein concentration, a three-step global estimation method was applied to the

characterization of the cell cycle dependent expression of E2F proteins in the developing

mouse intestine.

Author summary

Estimating the evolution of protein concentration over the cell cycle is an important step

towards a better understanding of this key biological process. Unfortunately, experimental

designs to monitor proteins in individual living cells are expensive and difficult to set up.

We propose instead to consider 2D images from tissue biopsies as snapshots of cell popu-

lations to reconstruct the actual protein concentration evolution over the cell cycle. This

requires to accurately localize cell nuclei and identify nuclear fluorescent proteins. We

take advantage of the powerful deep learning technology, a machine learning approach
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Citation: Pécot T, Cuitiño MC, Johnson RH,

Timmers C, Leone G (2022) Deep learning tools

and modeling to estimate the temporal expression

of cell cycle proteins from 2D still images. PLoS

Comput Biol 18(3): e1009949. https://doi.org/

10.1371/journal.pcbi.1009949

Editor: Attila Csikász-Nagy, Pázmány Péter Catholic
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which has revolutionized computer vision, to achieve these challenging tasks. Addition-

ally, we have created an ImageJ plugin to quickly and efficiently annotate images or cor-

rect annotations, required to build training datasets to feed the deep convolutional neural

networks.

This is a PLOS Computational BiologyMethods paper.

Introduction

Automatic image analysis is at the core of human and animal tissue-based research. However,

quantitation of morphological features or fluorescent labeling in intact mammalian tissues still

remains a challenge. The densely packed nuclear aggregates that characterize many of these tis-

sues, the extensive variability across different tissue types, and the continuously increasing

number of imaging modalities are some of the many variables that make tissue biological

quantification an extremely difficult task. Over the last decade [1–4], deep learning has

brought artificial intelligence to the forefront of image-based decision making. In particular,

deep convolutional neural networks have demonstrated their superiority for image segmenta-

tion [1, 2]. These approaches have also outperformed the traditional approaches used in

microscopy, such as watershed for nuclei or cell segmentation [5–9]. However, this machine

learning-based approach requires large amounts of annotated data and new strategies have to

be developed to process highly complex biological objects acquired with different modalities

by considering small training datasets. In this paper, we propose a series of deep learning-

based approaches to precisely segment nuclei and to identify fluorescently labelled cells in

order to analyze the evolution of cell cycle dependent E2F protein concentration in mouse

tissues.

E2Fs are major regulators of the cell cycle. The members of this family of transcription fac-

tors are categorized into three subclasses in mammals: canonical activators (E2F1–3A/B),

canonical repressors (E2F4–6), and atypical repressors (E2F7–8) [10–13]. Adding to the body

of literature on E2F-dependent transcriptional activity in vivo, our lab previously provided

quantitative evidence on the temporal expression of representative activator (E2F3A), canoni-

cal repressor (E2F4) and atypical repressor (E2F8) family members during embryonic develop-

ment [14], all of which have been shown to be of major importance [15–18]. To establish the

temporal expression profiles of the three sentinel E2Fs, we used an E2F3A specific antibody

and generated MYC-tagged E2F4/E2F8 knock-in mice. In addition to fluorescence labeling of

E2F3A, E2F4 and E2F8, 5-ethynyl-2’-deoxyuridine (EdU) and Histone H3 S10 phosphoryla-

tion (pH3) were used to identify S, G2 and M phases. Images of eight different combinations

of markers were acquired from sections of the developing mouse intestine using confocal and

widefield microscopy (see S1 Fig). The data analysis pipeline consisted of i) nuclear segmenta-

tion with a deep learning approach [19], ii) nuclear marker identification by thresholding, and

iii) estimation of E2F concentrations over the cell cycle from 2D intensity histograms.

In this manuscript, we propose and evaluate alternative methods to quantify nuclear pro-

tein levels which result in an improved automated pipeline with greatly reduced requirement

for interactive manual corrections. Using a small training dataset composed of 2D still images

(with and without various forms of data augmentation), we first evaluate five different deep
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The training datasets for nuclei segmentation are

available at https://github.com/tpecot/

NucleiSegmentationAndMarkerIDentification/tree/

master/UNet/datasets/nucleiSegmentation_E2Fs

for the U-Net architecture and at https://github.

com/tpecot/NucleiSegmentationAndMarkerI

Dentification/tree/master/MaskRCNN/datasets/

nucleiSegmentation_E2Fs for the Mask R-CNN

architecture. The training datasets for nuclei

segmentation and marker identification are

available at https://github.com/tpecot/

NucleiSegmentationAndMarkerIDentification/tree/

master/InceptionV3/trainingData for the Inception-

V3 architecture. The images used for the evaluation

and the ground truth are available at the same

locations as the training datasets. The intensity

2D histograms used to estimate the E2Fs

accumulation over the cell cycle are

available at https://github.com/tpecot/

EstimationOfProteinConcentrationOverTime/tree/

master/data. Software availability The codes used

to train and process deep learning approaches for

nuclei segmentations and marker identification are

available at https://github.com/tpecot/

NucleiSegmentationAndMarkerIDentification.

Archived code at time of publication: https://doi.

org/10.5281/zenodo.4619243 [50] License:

GPL3 The Octave code used to estimate the

E2Fs accumulation over the cell cycle is

available at https://github.com/tpecot/

EstimationOfProteinConcentrationOverTime.

Archived code at time of publication: https://doi.

org/10.5281/zenodo.4639800 [51] License: GPL3

The Java code of the Annotater plugin and the

plugin are available at https://github.com/tpecot/

Annotater. Video tutorials to show how to use the

Annotater are available at the same location.

Archived code at time of publication: https://doi.

org/10.5281/zenodo.4639802 [52] License: GPL3.

Funding: This work was funded by a Chan

Zuckerberg Initiative (https://chanzuckerberg.com/)

DAF grant to T.P. (2019-198009), an NCI grant

(R50 CA211529) to C.T., Advancing a Healthier

Wisconsin Endowment to G.L. and a Dr. Glenn R.

and Nancy A. Linnerson Endowed Fund to G.L..

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009949
https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/UNet/datasets/nucleiSegmentation_E2Fs
https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/UNet/datasets/nucleiSegmentation_E2Fs
https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/UNet/datasets/nucleiSegmentation_E2Fs
https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/MaskRCNN/datasets/nucleiSegmentation_E2Fs
https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/MaskRCNN/datasets/nucleiSegmentation_E2Fs
https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/MaskRCNN/datasets/nucleiSegmentation_E2Fs
https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/MaskRCNN/datasets/nucleiSegmentation_E2Fs
https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/InceptionV3/trainingData
https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/InceptionV3/trainingData
https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/InceptionV3/trainingData
https://github.com/tpecot/EstimationOfProteinConcentrationOverTime/tree/master/data
https://github.com/tpecot/EstimationOfProteinConcentrationOverTime/tree/master/data
https://github.com/tpecot/EstimationOfProteinConcentrationOverTime/tree/master/data
https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification
https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification
https://doi.org/10.5281/zenodo.4619243
https://doi.org/10.5281/zenodo.4619243
https://github.com/tpecot/EstimationOfProteinConcentrationOverTime
https://github.com/tpecot/EstimationOfProteinConcentrationOverTime
https://doi.org/10.5281/zenodo.4639800
https://doi.org/10.5281/zenodo.4639800
https://github.com/tpecot/Annotater
https://github.com/tpecot/Annotater
https://doi.org/10.5281/zenodo.4639802
https://doi.org/10.5281/zenodo.4639802
https://chanzuckerberg.com/


learning strategies to segment nuclei in microscopic images of embryonic mouse intestinal epi-

thelium. We also design post-processing methods to improve nuclear segmentation. We then

propose another deep learning-based approach for identifying nuclear markers in the epithe-

lial cells and demonstrate the superiority of this method to the usual threshold based method

[20, 21]. Additionally, we create an ImageJ plugin [22, 23] named Annotater to specifically and

efficiently correct nuclear segmentation and marker identification, ensuring that nuclear fea-

tures are accurately quantified. Next, these image features extracted from 2D still images are

used to perform a temporal analysis of E2F protein concentration over the cell cycle. Based on

three mathematical assumptions grounded in cell biology, we initialize the temporal evolution

of E2F concentrations using a graph optimization method. Cell cycle markers are then used to

temporally register E2F proteins’ concentration with respect to cell cycle phase. The global esti-

mation of the protein concentration of E2F3A, E2F4 and E2F8 through the cell cycle is defined

as an assignment problem and solved with the Hungarian algorithm [24, 25]. This approach is

extensively evaluated with simulated data. Finally, we directly estimate the temporal evolution

of E2F concentrations without using marker identification. In addition, we evaluate the impact

of using different amount of images in the training datasets for nuclei segmentation on the

estimation of E2F concentrations over the cell cycle.

Results

Mask R-CNN is the optimal deep learning approach for segmenting nuclei

in cross-sectional images of complex tissues

Over the last decade, deep learning has revolutionized computer vision [1–4]. Over the years,

several deep learning approaches have been successfully applied to segment cell nuclei [19, 26,

27]. More recently, the 2018 data science bowl [28] attempted to definitely solve this problem

in 2D by posing the challenge: Create an algorithm for automated nuclei detection. Although

impressive results were obtained for different light microscopy modalities and a variety of

nuclear stains [7], nuclear segmentation from complex tissues such as intestinal epithelium

still represents an unusually challenging problem. As is the case for most biological imaging

studies due to natural variability in the objects of interest that are captured using dissimilar

imaging modalities, no annotated data is available for this specific application. Consequently,

we set out with the goal of designing a robust approach that would lend itself to routine use in

the typical biology laboratory. We evaluated five different deep learning approaches for

nuclear segmentation: U-Net [27, 29], Inception-V3 [30], Mask R-CNN [31], Stardist [8] and

CellPose [9]. U-Net, perhaps the most-used deep convolutional neural network for biomedical

data, is composed of an encoder part, used to capture image features, and a decoder part to

estimate a class at each pixel of the input images. Inception-V3, which was designed to identify

objects in images, is a deep convolutional neural network that only estimates one class given

an input image. When using this architecture for nuclear segmentation, inputs are defined as

image patches and the output corresponds to the class at the patch center. Inception-V3 is

much slower than U-Net for both training and processing (S1 Table), as a decision is only

made for the central pixel of the input image patch, in contrast to a decision being made at

each pixel of the input image as it is in U-Net. For both U-Net and Inception-V3, three classes

are defined: inner nuclei, nuclei contours, and background [19, 32]. Individual nuclei are then

obtained by subtracting the nuclei contours from the inner nuclei (see Materials and methods).

To improve performance, we developed a post-processing method that we call corrected

watershed, wherein the results obtained with the U-Net or Inception-V3 network are com-

bined with those produced by the watershed method [5] (see Materials and methods). Mask

R-CNN, Stardist and Cellpose are instance segmentation approaches, i.e. they directly estimate
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individual objects. These three methods first extract image features using a backbone convolu-

tional neural network. Stardist identifies individual objects by predicting the distances to

object boundaries with a fixed set of rays, ending up with a set of polygons for a given input

image, corresponding to nuclei. Cellpose predicts an alternative representation of the nuclei

masks, the equilibrium distribution of a heat-diffusion simulation with a heat source placed at

the center of the mask. Mask R-CNN relies on a Region Proposal Network (RPN) to submit

subregions of the input image. A fully connected neural network then defines a class and a

bounding box for the input subregions, and a convolutional neural network generates a seg-

mentation mask for the same input subregions. With these three approaches, the output corre-

sponds directly to individual nuclei. The five approaches and their use are described in more

details in the Materials and methods. Pre-processing, normalization, optimization, data aug-

mentation, transfer learning and post-processing are summarized for each method in S2

Table. The number of images and nuclei used in the training and validation datasets are

shown in S3 Table. Two different modalities, confocal and widefield images are used in this

study, which allows us to test the genericity of the deep learning approaches for nuclei

segmentation.

As proposed by Caicedo et al. [32], we use the F1 score with respect to the Intersection over

Union (IoU) to compare performance of the three deep learning approaches (see Materials

and methods). There are two aspects to performance: 1) the ability to correctly identify all

nuclei in an image, which is the same as detecting the correct number of nuclei, and 2) the

accuracy of the nuclear contours created in the output. This second aspect of performance is

quantified by the F1 score over a range of IoU values. The IoU of two objects is the ratio of the

intersection to the union of their areas. With an IoU of at least 0.5 (within the range 0.5–1.0),

only two nuclei, one from the ground truth as determined by a pathologist and one estimated

with a given method, can be paired. The F1 score for an IoU equal to 0.5 can be used to assess

the ability of a method to accurately identify all nuclei. F1 scores for IoU thresholds in the

range 0.5–1.0 reflect the localization precision of the segmentation, which means the accuracy

of the defined nuclear contours.

The three instance segmentation approaches, i.e. Stardist, Cellpose and Mask R-CNN, show

similar performance (see S4–S6 Figs and S5 and S6 Tables), with a lower accuracy for Cellpose.

This approach has been designed to segment cells with cytoplasmic markers and is therefore

less efficient with nuclear markers. Stardist shows a slightly better F1 score for an IoU thresh-

old equal to 0.5 for confocal images than Mask R-CNN (0.864 vs 0.858), suggesting that a few

more nuclei are identified with Stardist. However, the F1 scores for higher thresholds of IoU

obtained with Mask R-CNN are clearly higher than those obtained with Stardist (IoU = 0.75,

0.458 vs 0.434 for confocal images and 0.460 vs 0.389 for widefield images). This demonstrates

that Mask R-CNN better localizes the nuclei areas than Stardist. Of note, while pooling

together confocal and widefield images leads to a better accuracy for all three methods, data

augmentation does not improve performance for Stardist and Cellpose while it clearly amelio-

rates Mask R-CNN precision. This could suggest that Stardist and Cellpose are more sensitive

to noise when the training dataset is small and the nuclei are densely packed.

In the following, only Mask R-CNN is compared to U-Net and Inception-V3. Fig 1 shows

the superiority of the Mask R-CNN method for both modalities. The results represent the best

performance of each deep learning method from among the algorithmic variants that invoke

combinations of transfer learning, data augmentation and watershed correction as discussed

below in connection with S2–S4 Figs. S5 and S6 Tables show the F1 score obtained with

IoU = 0.5 and IoU = 0.75 when considering all algorithmic variants for each method.

As shown in Fig 1a and 1b, and emphasized in the magnified images of Fig 1c and 1d, the

U-Net method produced the worst results. Data augmentation, a process that artificially and
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Fig 1. Comparison of U-Net, Inception-V3 and Mask R-CNN for nuclear segmentation. a-b F1 score for range of

IoU thresholds obtained with the U-Net, Inception-V3 and Mask R-CNN approaches for confocal a and widefield b

images. Lines correspond to average F1 score over the three tested images while the shaded areas represent the

standard error. c-d Segmented nuclei obtained with the U-Net (blue), Inception-V3 (green) and Mask R-CNN (cyan)

as well as the ground truth (red) for confocal c and widefield d images. White inset rectangles in top images are shown

at higher magnification below for the ground truth and each approach. In high-mag images, correctly identified nuclei

are outlined in red, incorrectly in green. Scale bar = 20μm.

https://doi.org/10.1371/journal.pcbi.1009949.g001
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massively increases the size of the training dataset by applying mathematical operations such

as adding noise and rotating or flipping the images (see Materials and methods), clearly

improves the segmentation accuracy (S2c and S2d Fig). However, pooling together confocal

and widefield images in the training dataset produces worse segmentation accuracy compared

to training on only confocal or only on widefield images. This demonstrates the inability of the

U-Net approach to generalize nuclear segmentation with a small training dataset.

In contrast, the Inception-V3 approach obtains better results when both modalities are

used in the training dataset (S3 Fig). While for Inception-V3 the training dataset was not

increased when applying data augmentation because the computation time is already long, the

high degree of overlap between input patches to which mathematical operations are applied

(see Materials and methods) produces an effect similar to data augmentation, explaining in

part the improved performance of the Inception-V3 approach relative to U-Net. Because

Inception-V3 estimates the class one pixel at a time, both training and processing are highly

compute intensive and not feasible in practice (S3d Fig). The proposed corrected watershed

post-processing improves the results obtained for both U-Net and Inception-V3 (S2e, S2f, S3e

and S3f Fig and S5 and S6 Tables).

The Mask R-CNN method obtains the best nuclear segmentation for both modalities (Fig

1), in large part due to the improvement realized through data augmentation and in a lesser

extent to the transfer learning from the coco dataset [33], (Fig 1a and 1b). Combining confocal

and widefield images in the training dataset improves the results, especially for confocal

images (S4c–S4e Fig). This demonstrates how Mask R-CNN can benefit from an increase in

training dataset size (from 4847/1619 nuclei in the training/validation dataset for confocal

images alone to 15541/4051 nuclei in the training/validation dataset when confocal and wide-

field images are pooled together) even if the data are not uniform, coming from different

sources. Of note, combined with massive data augmentation, transfer learning from the coco

dataset really improves accuracy when considering confocal images only (S4e Fig compared to

S4c Fig) or widefield images only (S4f Fig compared to S4d Fig), while it does not drastically

improve the accuracy when confocal and widefield images are pooled together (S4c–S4f Fig).

This suggests than considering images from different modalities has a similar effect for conver-

gence to a plateau with Mask R-CNN than transfer learning with a pre-trained model. More-

over, training and processing are fast (S4d Fig), and the results do not require any post-

processing. One limitation of the Mask R-CNN method compared with U-Net and Inception-

V3 is an inferior boundary localization accuracy for confocal images, as demonstrated by the

lower F1 scores for IoU threshold values greater than 0.75 (Fig 1a). Due to slightly larger

nuclear masks (cyan boundaries in Fig 1c), this limitation is more than compensated for by

Mask R-CNN’s higher true positive nuclei identification rate in most biological applications.

While the performance of Mask R-CNN is impressive, its accuracy is not perfect and may be

insufficient for many applications. Therefore, we designed the ImageJ plugin Annotater

(see Materials and methods), a tool that allows users to efficiently correct the nuclear

segmentation.

Deep learning improves identification of fluorescent nuclear markers

After completion of nuclei segmentation with the DAPI channel, it is possible to use the fluo-

rescence in the other channels to extract information of interest about the cells. E2Fs positive/

negative status can be evaluated that way, as well as EdU and pH3 patterns. EdU and pH3 are

cell cycle markers that show evolving patterns along the cell cycle [14]. EdU is diffuse during

first half of S phase and becomes punctate during second half of S phase. pH3 is first punctate

during second half of S phase and G2, and becomes diffuse during mitosis. Typically, a
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thresholding procedure is applied to identify nuclear markers [20, 21], but this approach is not

always accurate, especially when different patterns of fluorescence over a wide range of intensi-

ties are involved as is the case for EdU and pH3 (see diffuse and punctate patterns in Fig 2). To

improve accuracy, we tested a deep learning approach for nuclear marker identification. As

the goal is not to identify regions but to make a decision for each nucleus regarding the pres-

ence/absence of an E2F or the diffuse/punctate/absence of EdU or pH3, the instance segmenta-

tion and U-Net approaches are not suitable. In contrast, with an input defined as an image

patch centered on each nucleus, the Inception-V3 architecture is appropriate to decide about

the presence, potentially in diffuse or punctate state, or absence of a marker. In addition to

data augmentation, we also define a so-called pixel-based training dataset (as opposed to

nuclei-based training dataset) that includes the input patches centered at each pixel belonging

to the nuclei (see Materials and methods). This strategy has a similar effect to data augmenta-

tion, as it drastically increases the training dataset. Although DAPI staining is different from

Fig 2. Comparison between Inception-V3 and manual thresholding for marker identification. a-b Top rows (images): examples of

E2F3A-, E2F8- and E2F4-positive and -negative nuclei, as well as EdU- and pH3-negative, diffuse and punctate nuclei in a confocal

and b widefield images. Bottom rows (bar graphs): Accuracy obtained with the Inception-V3 and manual thresholding approaches for

marker identification of E2F3A, E2F8, E2F4, EdU and pH3 in a confocal and b widefield images.

https://doi.org/10.1371/journal.pcbi.1009949.g002
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the nuclear markers used to identify the E2Fs, EdU and pH3, the images are acquired simulta-

neously, so the image features captured by the Inception-V3 method for nuclear segmentation

are potentially meaningful to identify nuclear markers. Consequently, we also perform transfer

learning from the nuclear segmentation (see Materials and methods). To easily set the thresh-

old for marker identification, we designed an interface in the Annotater that we used to obtain

the results shown in Fig 2 for manual thresholding.

As shown in Fig 2, compared to manual thresholding, the Inception-V3 approach provides

better performance for each marker in both modalities. Manual thresholding achieves a rela-

tively good performance for E2F3A and E2F8 identification in both modalities, and for pH3 in

confocal images. The latter might appear surprising, but the two different patterns for pH3 in

confocal images are different enough to allow a strategy based on the thresholded area in the

nuclei (see Materials and methods) to lead to satisfying results (Fig 2a). However, the results

for E2F4, Fig 2b, are not as good: Because E2F4 is also cytoplasmic, the extra-nuclear fluores-

cence confounds the thresholding decision. Finally, thresholding clearly fails to identify the

two different patterns (diffuse, punctate) of EdU in images from both modalities as well as the

patterns of pH3 in widefield images. In contrast, the Inception-V3 approach yields accuracies

greater than 90% for all markers except E2F4 (89%) (Fig 2). As shown in S7 Table, the use of

the pixel-based training datasets does not significantly improve marker identification for con-

focal images, but does improve performance on E2F3A, E2F4 and pH3 markers in widefield

images (see S8 Table). Additionally, the transfer learning from the nuclear segmentation

slightly improves the results for all markers in both modalities. Computation (after training) is

fast because only one decision is made per nucleus (S9 Table). Overall, this study demonstrates

the remarkable accuracy of the deep learning-based approach in identifying cells that are posi-

tive for the tested nuclear markers, not only when the marker is both nuclear and cytoplasmic,

but also when it exhibits different labeling patterns, such as diffuse and punctate. Given such a

high level of accuracy, correcting the results with the Annotater plugin takes only a short time.

Estimation of E2F accumulation over the cell cycle from 2D still images

Estimating cell cycle progression is an important biological question and can be answered by

using images [34, 35]. Unfortunately, these machine learning approaches require annotated

data to be processed. Without training data, the most straightforward way to assess the evolu-

tion of a protein’s concentration over the cell cycle would be to monitor the expression level in

every cell through all phases of the cycle. However, this is not possible in the proliferative tissue

of a living animal. Instead of observing one cell, we propose to observe a large population of

cells, each corresponding to a snapshot characterizing the cell state at a particular time during

the cell cycle, and to reconstruct protein concentration as a function of time in the cell cycle by

combining all these snapshots. As fluorescence intensity is proportional to protein concentra-

tion [36, 37], we define quantized levels of intensity for E2Fs (see S7 Fig and Materials and

methods). In each individual image, we measure the average fluorescence intensity for each

positive cell. Within each image, the range of intensity from the lowest average intensity to the

highest is divided into bins that define the levels of intensity. On the other hand, EdU and pH3

markers are defined by their diffuse and punctate states, which change as a function of cell

cycle phase. As shown in our previous work [14], EdU shows a diffuse pattern during the first

half of S phase and a punctate pattern during the second half of S phase. pH3 shows a punctate

pattern during the second half of S phase and G2 and a diffuse pattern during mitosis. These

two markers allow us to register E2Fs expression with respect to the cell cycle. We propose to

globally estimate the E2F concentration’s evolution over the cell cycle in three steps: i) initiali-

zation, ii) cell cycle registration and iii) global optimization. In this paper, as in our previous
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manuscript [14], the phrase “protein accumulation” is synonymous with “protein concentra-

tion” and connotes this balance between production and degradation, regardless of whether

the protein concentration is increasing or decreasing. Also in this paper, the fluctuation over

time of a quantity such as fluorescence intensity or protein accumulation is referred to as “evo-

lution,” which is therefore synonymous with “time course.”

We use the term “initialize” to mean creation of a first estimate of protein accumulation

over the cell cycle: a graph of fluorescence intensity vs. time. To initialize all combinations of

markers from the images (see S1 Fig), we make three fundamental assumptions:

1. The number of cells in a given phase of the cell cycle is proportional to the duration of that

phase.

2. Temporal evolution of protein accumulation is similar in all observed cells (there are no

subpopulations with different cell cycle evolution).

3. Concentrations of E2Fs evolution can be represented by concave downward parabolas, i.e.
they increase from 0 to their maximum and then decrease from this maximum to 0.

These assumptions are validated by the following biological statements:

1. Proliferation in intestinal epithelium is asynchronous, so each cell cycle phase is observed at

a frequency proportional to its duration.

2. All cells in intestinal epithelium are proliferating and undergo cell cycle at a uniform rate.

3. Cell cycle-regulated proteins first accumulate over time and are then degraded.

We use 2D histograms to initialize protein accumulation (S8 Fig and Materials and meth-

ods). In these histograms, the first axis corresponds to the intensity of an E2F, while the second

axis corresponds to either another E2F intensity or the states of EdU or pH3 staining. From

these histograms, we define graphs with costs associated with edges reflecting the possible

intensity/pattern transitions of the E2Fs, EdU and pH3. The sequence of edges that goes

through all vertices with minimum cost is used to initialize the evolution of protein accumula-

tion over time (S9 Fig and Materials and methods). The initializations obtained for all eight dif-

ferent combinations of markers are shown in S10 Fig. As EdU and pH3 labeling patterns with

respect to the cell cycle are known, we then register E2Fs with respect to EdU and pH3 through

a circular permutation (see Materials and methods). We use the same approach to refine EdU

labeling during the cell cycle (see Materials and methods). The protein accumulations after reg-

istration are shown in S11 Fig. We finally model the global estimation of E2F accumulation

over the cell cycle as an assignment problem. We use the Hungarian algorithm [24, 25] to suc-

cessively estimate the individual accumulation of each E2F over the cell cycle given the EdU

and pH3 patterns as constraints (see Materials and methods). We also add a local constraint to

only allow growing substitutions for E2Fs (see Materials and methods). The final result is

shown in Fig 3, depicting the successive waves of E2F3A, E2F4 and E2F8 over the cell cycle.

We then simulate data to evaluate the validity of our approach (see Materials and methods).

In summary, E2F3A and E2F8 are randomly generated to have a concentration that shows a

concave downward parabola representation while E2F4 is randomly generated to have a con-

centration that shows two successive concave downward parabola representations, with ran-

dom durations for each intensity level for all three E2Fs. EdU and pH3 are also randomly

generated to show a succession of punctate/diffuse or diffuse/punctate patterns. Noise is ran-

domly added to corrupt from 0% to 50% of temporal bins. For each set of parameters, 5 differ-

ent simulations are randomly generated. The performance is evaluated by measuring the mean

squared error (MSE) between the generated and estimated concentrations of E2Fs, EdU and
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pH3. A first set of simulations estimates the influence of the number of samples, correspond-

ing to the number of mice, and shows that the MSE drastically decreases from 1 sample to 2

samples (see S12 Fig), suggesting that 3 mice for E2F3A, E2F8, EdU and pH3, and 2 mice for

E2F4 should lead to a satisfying estimation. A second set of simulations evaluates the influence

of the number of bins used for time. As shown in S13 Fig, the MSE is low for a range of 20 to

100 bins and drastically increases for 125 bins, validating the choice of 100 bins for time. A last

set of simulations estimates the impact of the number of bins used for intensity. The MSE is

quite stable for a range of 2 to 5 bins but ramps up with 10 bins (see S14 Fig). This confirms

our choice to use 4 bins, which is also widely used in both diagnostic pathology and biomedical

research [38, 39]. Fig 4 summarizes the evaluation with simulations when considering the

same parameters (number of samples, intensity and time bins) than those used for real data

with up to 50% of the simulated data corrupted with noise.

Fig 3. Estimation of E2Fs evolution over the cell cycle. Temporal evolution of E2F3A, E2F8 and E2F4 protein

accumulation, as well as EdU and pH3 patterns over the cell cycle in mouse intestinal epithelium.

https://doi.org/10.1371/journal.pcbi.1009949.g003
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Estimation of E2F accumulation over the cell cycle with respect to nuclei

segmentation

In the previous section, we used the marker identification to identify negative cells for E2Fs

and the two patterns for EdU and pH3. We now want to assess if this step is required or not.

Fig 5a shows the estimation of E2Fs concentration when considering only positive/negative

states for EdU and pH3. While the estimated concentration slightly changes, especially the sec-

ond peak of E2F4, the successive waves of E2Fs are preserved in time. This opens the possibil-

ity to a more direct concentration estimation where a nuclei segmentation is performed first

and the intensity is then binned into four levels for E2Fs channels and two levels for EdU and

pH3 (see Materials and methods). Fig 5b depicts the estimated concentrations for E2Fs with a

manual segmentation for nuclei. The estimated concentrations are more degraded than with a

better estimation of EdU and pH3 states, but E2Fs still show 4 successive peaks which are tem-

porally well estimated, with the exception of the first E2F4 peak which is slightly delayed. This

approach allows to evaluate the impact of nuclei segmentation on the concentration estimation

over the cell cycle. We estimate the E2Fs concentration with the nuclei segmentation obtained

for the confocal images with a Mask R-CNN model trained with the widefield images and a

manual segmentation for the widefield images (see Fig 5c), and conversely (see Fig 5d). These

estimations are actually close to the one obtained with manual segmentation, i.e. a degraded

accuracy as shown in Fig 5e, but a well estimated temporality for the successive waves of E2Fs

concentrations. This illustrates the robustness of our approach with respect to nuclei segmen-

tation to temporally estimate the waves of E2Fs over the cell cycle.

Fig 4. Evaluation of the estimation of protein concentration over the cell cycle on simulated data. Mean squared error

between the estimated and simulated concentrations of E2F3A, E2F8, E2F4, EdU and pH3 when corrupting up to 50% of

the simulated data with noise and considering 3 samples for E2F3A, E2F8, EdU and pH3, 2 samples for E2F4, 100 bins for

time and 4 bins for intensity. The lines correspond to the average mean squared error while the areas represent the standard

error.

https://doi.org/10.1371/journal.pcbi.1009949.g004
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Fig 5. Estimation of E2Fs accumulation over the cell cycle without marker identification with respect to nuclei

segmentation. Temporal evolution of E2F3A, E2F8 and E2F4 protein accumulation over the cell cycle in mouse

intestinal epithelium, by considering positive/negative states for EdU and pH3 a, by only considering intensity for

E2Fs, EdU and pH3 with a manual segmentation for nuclei b, with a nuclei segmentation obtained for the confocal

images with a Mask R-CNN model trained with the widefield images and a manual segmentation for the widefield

images c, and with a nuclei segmentation obtained for the widefield images with a Mask R-CNN model trained with

the confocal images and a manual segmentation for the confocal images d.

https://doi.org/10.1371/journal.pcbi.1009949.g005
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Discussion

This study demonstrates that the Mask R-CNN approach, coupled with transfer learning and

data augmentation, can produce highly accurate nuclear segmentation of fluorescent images,

even in a complex tissue such as the intestinal epithelium, by considering a small training data-

set. Outstanding segmentation results are achieved for different imaging modalities, notably

including widefield fluorescence microscopy, a ubiquitous imaging mode in cell biology

research labs that produces challenging images of low sharpness and poor boundary definition.

This is of major interest, as segmentation is a key task in image analysis of mammalian tissues

where variability across tissue types is high and the number of modalities large and ever

increasing. Therefore, the quest for comprehensive training datasets will be long and biology

laboratories need efficient strategies to process their own images. In this context, the Incep-

tion-V3 approach also obtains satisfactory segmentation accuracy, but the computation time,

especially for training, represents a major limitation. Though the U-Net approach has demon-

strated its utility in many biomedical studies, it is unable to generalize the ability to segment

nuclei when the images are acquired with different modalities.

Our results also attest to the superiority and efficiency of the deep learning approach for

identifying the presence and state of nuclear markers. As the goal is to make a decision for each

cell, the Inception-V3 architecture is well adapted to the task, computation time not being the

issue that it is for nuclear segmentation. Considering pixel-based input patches improves per-

formance if the training dataset is small. Moreover, transfer learning from nuclear segmentation

improves marker identification. This is explained by the fact that image features that are

suited for nuclear segmentation are also meaningful for identifying nuclear markers. This is an

interesting observation, as the same strategy could be used in an n-steps pipeline analysis.

Indeed, a deep learning classifier could be trained for the first analysis applied to a particular

dataset, the resulting parameters used to initialize the classifier for the second analysis, and

so on.

While deep learning approaches for both nuclear segmentation and nuclear marker identi-

fication show high accuracy, some level of discrepancy between desired and actual results is

expected. Thus, it is important to allow the user to correct the results if higher accuracy is

required. This need for interactive post-processing of the results motivated us to design and

implement the ImageJ plugin Annotater. This plugin can be used to annotate data from

scratch or to perform corrections. While Annotater could be used to obtain perfect accuracy

even without prior automated segmentation and marker identification, starting from a

good estimate markedly speeds up the process. For instance, delineating the boundaries of all

nuclei in an image of the intestinal epithelium may take a trained user 1–1.5 hours whereas

any user can correct the results obtained with the Mask R-CNN approach in less than five

minutes.

We present a novel and powerful method to estimate temporal phenomena using quantitative

analysis of 2D still images. Specifically, we showed how the time-variant concentrations of intra-

nuclear proteins can be qualitatively obtained from snapshot images of cell populations of rea-

sonable size (for example, FFPE images of hundreds of epithelial cells as we analyzed in this

study). Compared to alternative methods like single-cell analysis of individual living cells, the

method we put forward here potentially allows easier and less expensive experimental designs for

many applications in which dynamic protein expression information is required. In this particu-

lar case, a smart initialization based on biologically relevant assumptions coupled with a global

optimization approach enabled estimation of E2F accumulation over the cell cycle. We also dem-

onstrate that this approach is robust to nuclei segmentation and does not require a marker iden-

tification to provide a good temporal estimation of the successive E2Fs waves of concentration.
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Materials and methods

Mouse models

The E2f4myc/myc and E2f8myc/myc were generated using standard homologous recombination

cloning techniques as described in [14]. E2f4myc/myc, E2F8myc/myc and wild type controls were

maintained on a mixed background (FVB/NT, 129v/Sv, C57BL/6NT). Tissues were collected

from E13.5 intestinal epithelium.

Ethics statement

Mouse usage and protocols were approved by the Institutional Animal Care and Use Commit-

tee at the Ohio State University and Medical University of South Carolina. Mice were housed

under normal husbandry conditions (five or less animals per cage) in a vivarium with a

12-hour light/dark cycle.

Immunostaining

Immunostaining was performed on a Bond Rx (Leica) or Ventana Discovery ULTRA (Roche)

autostainer as per manufacturer’s instructions as previously described [40, 41]. Primary anti-

bodies and dilutions used in this study were as follows: pH3-S10 (Millipore; 06–570, 1:250),

E2f3a (Millipore; 05–551, 1:100) and Myc-tag (Cell Signaling Technology; 2278, 1:100). EdU

staining was performed following the manufacturer’s protocol (Life Technologies; C10337).

Image acquisition

Widefield micrographs were collected using a Nikon Eclipse Ni-U microscope with a DS-Qi2

camera and NIS-Elements Advanced Research software. Confocal micrographs were collected

using the Olympus FV 1000 Filter Confocal system in the Campus Microscopy and Imaging

Facility at the Ohio State University.

Nuclei segmentation

The five deep learning approaches were coded in Python with the Python libraries numpy

[42], tensorflow [43], PyTorch [44], keras [45], scipy [46] and scikit-image [47]. The code with

the parameters used to train and process all experiments presented in this manuscript is avail-

able at https://github.com/tpecot/NucleiSegmentationAndMarkerIDentification/tree/master/.

It was written with jupyter notebooks and widgets in order to be used by biologists. Video

tutorials are also available on the same web page.

Training dataset. The training dataset for nuclei segmentation consisted of twelve confo-

cal and forty-five widefield 512 x 512 images annotated by a moderately-skilled researcher.

Four different training datasets were used to evaluate the deep learning approaches and are

summarized in S3 Table For the Inception-V3 approach, training and validation datasets were

pulled together to obtain the input patches. Ninety percent of image patches were used for

training and ten percent of image patches were used for validation.

U-Net. As the U-Net approach estimates a class at each pixel, three classes were defined to

allow separating nuclei as proposed in [19]: inner nuclei, nuclei contours and background. To

facilitate nuclei separation, the nuclei contours in the training dataset were dilated [19]. To

reduce memory usage and limit over-fitting, the imaging field for images in the training data-

set was set to 256 x 256 by randomly cropping the 512 x 512 input images. These cropped

images were then normalized with a 1–99 quantile. A root mean square prop was used to esti-

mate the parameters of the deep convolutional neural network by minimizing a weighted cross

entropy loss to handle class imbalance for 100 epochs. The weights associated with each class
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were defined from the training dataset as their inverse proportion. A data augmentation to

increase the training dataset by a factor of 100 was processed before normalization with the

imgaug python library [48] and included flipping, rotation, shearing, blurring, sharpness and

brightness modifications, noise addition, intensity inversion and contrast modifications.

Inception-V3. The same three classes were defined and the nuclei contours were dilated

for the Inception-V3 approach as for the U-Net approach. The imaging field was set to 65 x 65

pixel image patches, large enough to include at least one nucleus as suggested in [19]. For each

image patch, only the class of the central pixel was trained or processed. The training images

were normalized by dividing the intensity at each pixel by the median intensity over the image

and by subtracting at each pixel the average intensity of a 65 x 65 neighborhood around it. To

obtain a balanced training dataset, the same number of input image patches were defined for

each class. A stochastic gradient descent was used to estimate the parameters of the deep con-

volutional neural network by minimizing a categorical cross entropy for 15 epochs. A modifi-

cation of the input image patches was processed after normalization with the imgaug python

library [48] and included the same image transformations that were used for the U-Net

approach.

U-Net and Inception-V3 post-processing. For both U-Net and Inception-V3

approaches, nuclei were obtained by subtracting the nuclei contours from the inner nuclei. Let

us define Sc = {Sc(x)}x2O where Sc(x) denotes the nuclei contour score obtained with the U-Net

or the Inception-V3 approach at pixel x, and O is the regular grid of pixels in the image.

Similarly, we define Sn = {Sn(x)}x2O the inner nuclei score at each pixel x. The nuclei compo-

nent N = {N(x)}x2O is defined as:

NðxÞ ¼ SnðxÞ � ScðxÞ: ð1Þ

This nuclei component is then thresholded to define a binary image Nb:

NbðxÞ ¼
1 if NðxÞ > 0;

0 otherwise:

(

ð2Þ

The individual nuclei are defined as the connected components of the binary image Nb. This

leads to an under segmentation when contours between touching nuclei are not well esti-

mated. Consequently, we propose to apply the watershed algorithm [5] on the nuclei compo-

nent N and to take advantage of the nuclei contour score Sc obtained from the U-Net or

Inception-V3 output to refine the segmentation. Let us define W = {W(x)}i2O the result of the

watershed algorithm applied to the inverse intensity of the nuclei component N prealably con-

volved with a Gaussian filter of kernel size 2.5 for U-Net and 3.5 for Inception-V3. From W, a

set of K new nuclei separations fSðkÞgk¼1;...;K is obtained. A score Sw = {Sw(k)}k=1,. . .,K is defined

for each new separation SðkÞ as follows:

SwðkÞ ¼
X

x2SðkÞ

ScðxÞ � SnðxÞ: ð3Þ

All nuclei separations SðkÞ such that Sw(k)> 0 are used to separate the nuclei obtained as the

connected components of the binary image Nb.

Mask R-CNN. Version 2.1 of Mask R-CNN [31] was used in this study. The backbone

network was defined as the Resnet-101 deep convolutional neural network [49]. We used the

code in [7] to define the only class in this study, i.e. the nuclei. A data augmentation to increase

the training dataset by a factor of 100 was processed before normalization with the imgaug

python library [48] and included resizing, cropping, flipping, rotation, shearing, blurring,

sharpness and brightness modifications, noise addition, intensity inversion and contrast
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modifications. Transfer learning with fine-tuning from a network trained on the coco dataset

[33] was also applied. In the first epoch, only the region proposal network, the classifier and

mask heads were trained. The whole network was then trained for the next three epochs.

Stardist. Version 0.7.1 of Stardist [8] was used in this study. The backbone network was

defined as a U-Net [27]. 512 x 512 input images were normalized with a 1–99 quantile. The

data augmentation proposed by the authors was used to increase the training dataset. The

whole network was trained for 400 epochs.

Cellpose. Version 0.6.5 of Cellpose [9] was used in this study. The backbone network was

defined as a U-Net [27]. 512 x 512 input images were normalized with a 1–99 quantile. A data

augmentation to increase the training dataset was processed before normalization with the

imgaug python library [48] and included flipping, rotation, shearing, blurring, sharpness and

brightness modifications, noise addition, intensity inversion and contrast modifications. The

whole network was trained for 400 epochs.

A summary of all the different steps used for each deep learning approach is available in S2

Table. The time computation for training and processing each individual method is shown in

S1 and S4 Tables.

Evaluation. As proposed by Caicedo et al. [32], we used the F1 score with respect to the

Intersection over Union (IoU) to compare the three deep learning approaches. We evaluated

three different images for both confocal and widefield modalities annotated by a pathologist (a

high-skilled researcher). Let OGT = {OGT(e)}e=1,. . .,n be the set of n ground truth nuclei, as

defined by the pathologist, and OE = {OE(e)}e=1,. . .,m be the set ofm estimated nuclei with a

deep learning approach. The IoU defined between the truth nucleus OGT(e1) and the estimated

nucleus OE(e2) was defined as:

IoUðOGTðe1Þ;OEðe2ÞÞ ¼
OGTðe1Þ \ OEðe2Þ

OGTðe1Þ [ OEðe2Þ
: ð4Þ

An IoU(OGT(e1), OE(e2)) equal to 0 implies that OGT(e1) and OE(e2) do not share any pixel

while an IoU(OGT(e1), OE(e2)) equal to 1 means that OGT(e1) and OE(e2) are identical. An

IoU(OGT(e1), OE(e2)) equal to 0.5 ensures that IoU(OGT(e1), OE(e3)) < 0.5, 8e3 6¼ e2 as a nucleus

cannot share half of its area with more than one nucleus. Consequently, the F1 score for a

given IoU threshold t> 0.5 can be defined as:

F1ðtÞ ¼
2� TPðtÞ

2� TPðtÞ þ FNðtÞ þ FPðtÞ
; ð5Þ

where

TPðtÞ ¼
X

e12f1;...;ng;e22f1;...;mg

1ðIoUðOGTðe1Þ;OEðe2ÞÞ > tÞ; ð6Þ

FNðtÞ ¼
X

e12f1;...;ng

1ðIoUðOGTðe1Þ;OEðe2ÞÞ < tÞ; 8e2 2 f1; . . . ;mg; ð7Þ

FPðtÞ ¼
X

e22f1;...;mg

1ðIoUðOGTðe1Þ;OEðe2ÞÞ < tÞ; 8e1 2 f1; . . . ; ng; ð8Þ

and

1 Cð Þ ¼
1 if C is true;

0 otherwise:

(

ð9Þ
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With a threshold t = 0.5, this metric gives the accuracy of a method to identify the correct

number of nuclei, while with thresholds in the range 0.5 − 1, it evaluates the localization accu-

racy of the identified nuclear contours.

Marker identification

Training dataset

As Mask R-CNN and U-Net are not suited for the task, the Inception-V3 method was used for

marker identification. The training dataset consisted of eight confocal images for E2F3A, five

confocal images for E2F8, four confocal images for EdU, three confocal images for pH3,

twenty-one widefield images for E2F3A and fifteen widefield images for E2F8, E2F4, EdU and

pH3, all annotated by a moderately-skilled researcher. Ninety percent of image patches were

used for training and ten percent for validation. Two training strategies were designed to

define the input image patches: The first only considered image patches centered at each

nucleus center, while the second strategy included image patches centered at each pixel in the

segmented nuclei, drastically increasing the amount of training data.

Inception-V3

Two classes (positive and negative) were defined for the E2Fs, while three classes (diffuse,

punctate and negative) were defined for EdU and pH3. As for nuclei segmentation, the imag-

ing field was set to 65 x 65 pixel image patches to ensure inclusion of at least one entire

nucleus. The training image patches were normalized by subtracting at each pixel the average

intensity in a 65 x 65 neighborhood. Intensities were not divided by the median intensity over

the image as they were for nuclei segmentation because the median can be equal to zero for

sparse markers such as pH3. To obtain a balanced training dataset, the same number of input

image patches was defined for each class. A stochastic gradient descent was used to estimate

the parameters of the deep convolutional neural network by minimizing a categorical cross

entropy for 10 epochs. To increase the size of the nuclei-based training dataset 100-fold, a data

augmentation that included flipping, rotation, shearing, blurring, sharpness and brightness

modifications, noise addition, inversion and contrast modifications was performed after nor-

malization with the imgaug python library [48]. A transfer learning with fine-tuning from the

Inception-V3 network trained for nuclei segmentation on confocal and widefield images was

performed on the pixel-based training dataset. In the first epoch, only the last layer of the net-

work was trained. The whole network was then trained for the next five epochs.

Thresholding

Marker identification was also evaluated when thresholding marker intensity in the nuclei

with the ImageJ plugin Annotater. For E2Fs, nuclei with more than thirty-five percent of their

area above a manually defined threshold were considered positive. For EdU, nuclei with more

that seventy percent of their area above a manually defined threshold were considered diffuse,

while nuclei with more than fifteen percent but less than seventy percent of their area above

the same threshold were considered punctate. For pH3, nuclei with more that ninety percent

of their area above a manually defined threshold were considered diffuse, while nuclei with

more than ten percent but less than ninety percent of their area above the same threshold were

considered punctate.

Evaluation

Evaluation was performed using three confocal and three widefield images for E2F3A and

E2F8, using three widefield images for E2F4, and using two confocal and three widefield
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images for EdU and pH3. All the images used for evaluation were annotated by a moderately-

skilled researcher. The nuclei locations were known and only their class (positive/negative or

diffuse/punctate/negative) was evaluated. Let CGT = {CGT(e)}e=1,. . .,n be the ground truth class

for the n nuclei and let CE = {CE(e)}e=1,. . .,n be the estimated class for each nucleus. Class esti-

mation accuracy is then defined as:

accuracy ¼
TP
n
; ð10Þ

where

TP ¼
Xn

e¼1

1ðCGTðeÞ ¼ CEðeÞÞ: ð11Þ

ImageJ plugin Annotater

We developed the plugin entitled Annotater to draw nuclear contours manually to define

training datasets and to interactively correct deep learning-based nuclei segmentations. This

plugin also provides for manual characterization of markers associated with nuclei and a

thresholding tool for specifying an intensity threshold and the proportion of pixels in a nucleus

above that threshold that defines a positive nucleus. Finally, Annotater can generate images in

which segmented nuclei and marker characterization are overlaid on the input image and can

extract nuclear features as defined in the Set Measurements window in ImageJ. The java code

of the plugin is available at https://github.com/tpecot/Annotater/tree/master/src/main/java/

edu/musc/tsl and the plugin is available at https://github.com/tpecot/Annotater. Video tuto-

rials showing how to use the plugin are available at https://github.com/tpecot/Annotater.

E2Fs accumulation over the cell cycle from 2D still images

Data. As fluorescence intensity is proportional to protein concentration [36, 37], E2Fs

nuclear accumulation over the cell cycle can be estimated from the intensity levels observed in

the nuclei. To minimize the effects of noise while still being able to observe fluorescence fluctu-

ations, we decided to define four levels of intensity, which is widely used in both diagnostic

pathology and biomedical research [38, 39]. In the previous section about marker identifica-

tion, positive and negative cells were manually selected to define the training and evaluation

datasets. By definition, negative cells do not express proteins and were consequently assigned

an intensity equal to 0. Then, for each individual image, the average fluorescence intensity for

each positive cell was processed and the range of average intensities from the lowest to the

highest was binned into three to define levels 1 to 3. Defining these levels from the range of

average intensity observed in positive nuclei amounts to normalizing intensity over the images.

S7a and S7b Fig shows the E2F8 channel for a confocal and a widefield image where the posi-

tive E2F8 nuclei are overlaid as orange circles while negative E2F8 nuclei are overlaid as red

circles. The corresponding histograms for the average E2F8 intensity observed in nuclei are

shown in S7c and S7d Fig. The colors in these histograms correspond to the E2F8 levels used

to estimate the concentration evolution over the cell cycle. The intensity minimum and maxi-

mum for each level are different for the two images as they depend on the lowest and highest

nuclear average intensities, which are different from one image to the other. However, for a

given image, the level width is the same for levels 1 to 3. Additionally, some E2F8 negative

nuclei show an average nuclear intensity similar to the one observed in nuclei with an intensity

level of 1 (bars that are blue and yellow). This happens for nuclei with non-specific E2F8

PLOS COMPUTATIONAL BIOLOGY Estimation of the temporal expression of cell cycle proteins from 2D still images

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009949 March 14, 2022 18 / 29

https://github.com/tpecot/Annotater/tree/master/src/main/java/edu/musc/tsl
https://github.com/tpecot/Annotater/tree/master/src/main/java/edu/musc/tsl
https://github.com/tpecot/Annotater
https://github.com/tpecot/Annotater
https://doi.org/10.1371/journal.pcbi.1009949


intensity. On the other hand, the state of EdU and pH3 markers for each nucleus was already

known from the marker identification as being diffuse, punctate or negative.

More formally, let us define ICh1e 2 f0; 1; 2; 3g the average intensity in Ch1 for nucleus e 2
{1, . . ., n} in an image with n nuclei, where Ch1 is a channel corresponding to E2F3A, E2F8 or

E2F4. Similarly, ICh2e 2 f0; 1; 2; 3g is the average intensity in Ch2 for nucleus e if Ch2 is E2F4

or E2F8 and ICh2e 2 f0; diffuse; punctateg is the state of nucleus e if Ch2 is EdU or pH3. The

estimation of fluorescence accumulation over the cell cycle is performed in 3 steps: i) initializa-

tion, ii) registration with respect to cell cycle, iii) global optimization.

Initialization. Let us define h(ICh1 = u1, ICh2 = u2) the number of nuclei for which the

intensity in Ch1 is equal to u1 and the intensity or state in Ch2 is equal to u2:

hðICh1 ¼ u1; ICh2 ¼ u2Þ ¼
Xn

e¼1

1ðICh1e ¼ u1Þ1ðI
Ch2
e ¼ u2Þ: ð12Þ

We can now define H ¼ fHðICh1 ¼ u1; ICh2 ¼ u2Þgu1¼f0;1;2;3g;u2¼f0;1;2;3g or u2¼f0;diffuse;punctateg
the 2D

intensity histogram as follows:

H ICh1 ¼ u1; ICh2 ¼ u2ð Þ ¼
hðICh1 ¼ u1; ICh2 ¼ u2Þ

n
: ð13Þ

An example of a 2D histogram of E2F3A intensity and pH3 patterns is shown in S8a Fig.

According to our first and second assumptions, i.e. time depends on the proportion of cells in

the images and temporal evolution of protein accumulation is similar in all observed cells, 2D

intensity histograms provide the proportion of nuclei for combination of E2Fs intensities or

E2Fs intensity and EdU/pH3 patterns. For example, in the image considered to build the histo-

gram shown in S8a Fig, thirty-four percent of nuclei have an intensity of 2 for E2F3A and are

negative for pH3. Combining these proportions allows to define the evolution of the intensity/

state of the channels over the cell cycle. We propose to initialize the evolution of fluorescence

over the cell cycle through a graph optimization procedure. Let us define a graph GðE;VÞ with

jVj vertices corresponding to the different non-zero proportions of markers from a 2D histo-

gram and jEj edges between neighbor vertices in the same histogram. For instance, in S8a Fig,

there are nine vertices fVE2F3A¼0;pH3¼negative;VE2F3A¼1;pH3¼negative; . . . ;VE2F3A¼0;pH3¼diffuseg represented

as circles and twenty-two edges fEðVE2F3A¼0;pH3¼negative ! VE2F3A¼1;pH3¼negativeÞ; . . . ;

EðVE2F3A¼0;pH3¼diffuse ! VE2F3A¼0;pH3¼punctateÞg represented as unidirectional arrows. A cost

PðEðVv1
;Vv2
ÞÞ is then assigned to each edge. From [14], we know that EdU is diffuse during

the first half of S phase and then punctate during the second half of S phase. It implies that:

PðEðVG¼u;EdU¼negative;VG¼u;EdU¼diffuseÞÞ ¼ 0;

PðEðVG¼u;EdU¼diffuse;VG¼u;EdU¼punctateÞÞ ¼ 0;

PðEðVG¼u;EdU¼punctate;VG¼u;EdU¼negativeÞÞ ¼ 0;

ð14Þ

while

PðEðVG¼u;EdU¼diffuse;VG¼u;EdU¼negativeÞÞ ¼ 1;

PðEðVG¼u;EdU¼punctate;VG¼u;EdU¼diffuseÞÞ ¼ 1;

PðEðVG¼u;EdU¼negative;VG¼u;EdU¼punctateÞÞ ¼ 1;

ð15Þ

where G 2 {E2F3A, E2F8, E2F4} and u 2 {0, 1, 2, 3}. From [14], we also know that pH3 is first
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punctate during the second half of S phase and G2 and then diffuse during mitosis, so

PðEðVG¼u;pH3¼negative;VG¼u;pH3¼punctateÞÞ ¼ 0;

PðEðVG¼u;pH3¼punctate;VG¼u;pH3¼diffuseÞÞ ¼ 0;

PðEðVG¼u;pH3¼diffuse;VG¼u;pH3¼negativeÞÞ ¼ 0;

PðEðVG¼u;pH3¼punctate;VG¼u;pH3¼negativeÞÞ ¼ 1;

PðEðVG¼u;pH3¼diffuse;VG¼u;pH3¼punctateÞÞ ¼ 1;

PðEðVG¼u;pH3¼negative;VG¼u;pH3¼diffuseÞÞ ¼ 1;

ð16Þ

where G 2 {E2F3A, E2F8, E2F4} and u 2 {0, 1, 2, 3}. Finally, the evolution of E2Fs intensity

needs to verify our third assumption, i.e. concentrations of E2Fs are concave downward parab-

olas, which explains why edges exist only between neighboring vertices in the 2D histograms:

PðEðVG¼u1 ;M¼s
;VG¼u2 ;M¼s

ÞÞ ¼
0 if ju1 � u2j ¼ 1;

1 otherwise;

(

ð17Þ

where G 2 {E2F3A, E2F8, E2F4}, u1 2 {0, 1, 2, 3}, u2 2 {0, 1, 2, 3},M 2 {EdU, pH3} and

s 2 {negative, punctate, diffuse}. The evolution of the fluorescence is initialized as the

sequence of edges that goes through all vertices with a minimum cost. For instance, the only

sequence of edges with a cost equal to 0 in the 2D histogram shown in S8a Fig is

fVE2F3A¼0;pH3¼negative;VE2F3A¼1;pH3¼negative;VE2F3A¼2;pH3¼negative;VE2F3A¼3;pH3¼negative;

VE2F3A¼3;pH3¼punctate;VE2F3A¼2;pH3¼punctate;VE2F3A¼1;pH3¼punctate;VE2F3A¼0;pH3¼punctate;VE2F3A¼0;pH3¼diffuseg.

This sequence corresponds to the evolution of E2F3A and pH3 shown in S8b Fig.

We know that E2F4 shows two waves of expression over the cell cycle [14], but a sequence

of edges over a 2D histogram cannot reflect two downward parabolas. Consequently, splitting

vertex(ices) is necessary. A cost of 1 is associated to each vertex splitting and added to the total

cost. The split vertices give rise to multiple vertices containing equal proportion. For combina-

tions of E2Fs with EdU as well as combinations of two different E2Fs, vertex splitting can also

be required and may lead to E2Fs evolutions that do not look exactly like downward parabolas.

This phenomenon arises from slight errors in nuclear intensity measurements, most likely due

to image noise. A 2D histogram for the combination of E2F3A and E2F4 is shown in S9a Fig,

the sequence of edges over this histogram for which vertices were split is shown in S9b Fig and

the corresponding evolution of E2F3A and E2F4 is shown in S9c Fig.

By applying this cost minimization to all images, initializations for the eight different com-

binations of markers and averaged for each mouse are obtained. These initializations are

shown in S10 Fig. From these initializations, eight couples of marker sequences are defined:

finitXEdU� E2F3A
i ðcÞ;initXE2F3A� EdU

i ðcÞgc¼1;...;B;

finitXpH3� E2F3A
i ðcÞ;initXE2F3A� pH3

i ðcÞgc¼1;...;B;

finitXEdU� E2F8
i ðcÞ;initXE2F8� EdU

i ðcÞgc¼1;...;B;

finitXpH3� E2F8

i ðcÞ;initXE2F8� pH3

i ðcÞgc¼1;...;B;

finitXEdU� E2F4
i ðcÞ;initXE2F4� EdU

i ðcÞgc¼1;...;B;

finitXpH3� E2F4

i ðcÞ;initXE2F4� pH3

i ðcÞgc¼1;...;B;

finitXE2F3A� E2F8
i ðcÞ;initXE2F8� E2F3A

i ðcÞgc¼1;...;B;

finitXE2F3A� E2F4
i ðcÞ;initXE2F4� E2F3A

i ðcÞgc¼1;...;B;

ð18Þ
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where initXM1� M2
i ðcÞ provides the level of fluorescence or pattern for markerM1 2 {E2F3A,

E2F8, E2F4, EdU, pH3} when combined with markerM2 2 {E2F3A, E2F8, E2F4, EdU, pH3}

for mouse i at time c,M1 6¼M2, and B is the number of time bins used to quantize the cell

cycle: 100 bins in practice. The goal is to estimate the sequence for each of these couples of

combinations.

Registration. As EdU and pH3 expression patterns with respect to the cell cycle are

known, E2Fs are first registered with respect to these two markers. We know that pH3 is dif-

fuse during mitosis. Consequently, this pattern is considered as the reference and each initiali-

zation of any combination with pH3 ends with a diffuse pH3 pattern corresponding to the end

of the cell cycle. This implies that the pH3 sequences are known and defined as XG� pH3

i for each

mouse i. A circular permutation is operated next to estimate the XEdU� Gi where G 2 {E2F3A,

E2F8, E2F4} as follows:

min
f0� XEdU� Gi ;0� XG� EdUi g

XNG

j¼1

k0� XG� EdU
i � XG� pH3

j k
2

2
;

subject to 0� XG� EdUi ðcÞ¼initXG� EdUi ðc � qÞ; q 2 f1; . . . ;Bg;

8i 2 f1; . . . ;NGg;8G 2 fE2F3A; E2F8;E2F4g;

ð19Þ

where NG = 3 for E2F3A and E2F8, NG = 2 for E2F4, and 0� XG� EdUi ðc � qÞ¼initXG� EdUi ðB � ðc �
qÞÞ if (c − q) is negative. We solve this optimization problem by computing

PNG
j¼1
k

0� XG� EdU
i �

XG� pH3

j k
2

2
for all possible shifts c = {1, . . ., B}. The solution corresponds to the shift c that gives

the minimum sum. To better estimate EdU and initialize E2Fs, we now use the E2Fs expres-

sion:

min
f0XEdU� G1

i ;0XG1� EdU
i g

XNG1

j¼1

k0XG1� EdU
i � XG1� pH3

j k
2

2
þ

XNG2

j¼1

k0XEdU� G1

i � 0XEdU� G2

j k
2

2
þ

XNG3

j¼1

k0XEdU� G1

i � 0XEdU� G3

j k
2

2
;

subject to 0XEdU� G1
i ðcÞ¼ 0� XEdU� G1

i ðc � qÞ; q 2 f1; . . . ;Bg; 8i2f1; . . . ;NG1
g

where {G1, G2, G3} are successively {E2F3A, E2F8, E2F4}, {E2F8, E2F3A, E2F4} and {E2F4,

E2F8, E2F3A}, NGi = 3 if Gi is E2F3A or E2F8 and NGi = 2 if Gi is E2F4. Again, we solve this

optimization problem by computing the distances (20) for all possible shifts c = {1, . . ., B} and

obtain the solution with the minimum value. Now, the temporal evolutions of EdU XEdU� G
i and

pH3 XpH3� G
i are known for each mouse i and each genotype G 2 {E2F3A, E2F8, E2F4}. This

implies that EdU and pH3 evolutions will not change but can be permuted for a given state of

EdU or pH3. The E2Fs concentrations and patterns for EdU and pH3 after registration are

shown in S11 Fig.

Assignment problem. Now that EdU and pH3 are known, we define the estimation of

E2Fs as an assignment problem where the goal is to find the permutations for each XG� M
i ;G 2

fE2F3A;E2F8;E2F4g andM 2 {EdU, pH3} such that E2Fs accumulation over time are the

most similar across data while EdU and pH3 are already known. We model this estimation as
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an assignment problem and define the following square cost matrices:

CostððzÞXG1� M1
i ðc1; c2ÞÞ ¼

XNG1

j¼1

kðz� 1ÞXG1� M1

i ðc1Þ�
ðzÞXG1� M2

j ðc2Þk
2

2
þ

XNG2

j¼1

kðz� 1ÞXG1� M1

i ðc1Þ�
ðzÞXG1� G2

j ðc2Þk
2

2
þ

XNG3

j¼1

kðz� 1ÞXG1� M1

i ðc1Þ�
ðzÞXG1� G3

j ðc2Þk
2

2
þ

kðzÞXM1� G1
i ðc1Þ � XM1� G1

i ðc2Þk1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc1 � c2Þ
2

q

z
; 8i 2 f1; . . . ;NG1g;

ð20Þ

where the ℓ1 norm is used to ensure that EdU and pH3 states stay the same over the cell cycle,

{G1, G2, G3} are successively {E2F3A, E2F8, E2F4}, {E2F8, E2F3A, E2F4} and {E2F4, E2F8,

E2F3A}, NGi = 3 if Gi is E2F3A or E2F8 and NGi = 2 if Gi is E2F4, {M1,M2} are successively

{EdU, pH3} and {pH3, EdU}, z corresponds to the iteration of the algorithm and:

CostððzÞXE2F3A� G1
i ðc1; c2ÞÞ

¼
X3

j¼1

fkðz� 1ÞXE2F3A� G1

i ðc1Þ�
ðz� 1ÞXE2F3A� EdU

j ðc2Þk
2

2
þ

kðz� 1ÞXE2F3A� G1
i ðc1Þ�

ðz� 1ÞXE2F3A� pH3

j ðc2Þk
2

2
gþ

XNG1

j¼1

fkðz� 1ÞXG1� E2F3A
i ðc1Þ�

ðz� 1ÞXG1� EdU
j ðc2Þk

2

2
þ

kðz� 1ÞXG1� E2F3A
i ðc1Þ�

ðz� 1ÞXG1� pH3

j ðc2Þk
2

2
gþ

XNG2

j¼1

kðz� 1ÞXE2F3A� G1

i ðc1Þ�
ðz� 1ÞXE2F3A� G2

j ðc2Þk
2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc1 � c2Þ
2

q

z
; 8i 2 f1; . . . ;NG1g;

ð21Þ

where {G1, G2} are successively {E2F8, E2F4} and {E2F4, E2F8}, NGi = 3 if Gi is E2F8 and NGi =

2 if Gi is E2F4. Each one of these five minimizations is processed one after another for itera-

tions z = {1, . . ., B} by using the Hungarian algorithm [24, 25]. In Eq (20), the three first lines

reflect the goal to have a given E2F accumulation over the cell cycle as similar as possible when

combined with EdU, pH3 or another E2F; the fourth line corresponds to the constraint that

EdU and pH3 are known and their state over the cell cycle cannot change, even though there

can be permutations for a given state; and the last line defines a local constraint that forces per-

mutations to be restricted in time for the first iterations and allows them to grow when itera-

tions get larger. The latter constraint is used because the data is well initialized so the final

estimation should not permute points directly all over the cell cycle. Eq (21) takes into account

the differences between E2F3A accumulation over the cell cycle when combined with any

marker or any other E2F, with the same constraint as in Eq (20). Finally, a spline fitting is

applied to each of the E2Fs across all experiments to get a final accumulation over the cell

cycle, which is shown in Fig 3. The code with the parameters used to estimate E2Fs
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accumulation over the cell cycle after initialization is available at https://github.com/tpecot/

EstimationOfProteinConcentrationOverTime.

Simulated data. We generated simulations to evaluate the accuracy of the temporal esti-

mation of protein concentration. For each simulation, the following concentrations are gener-

ated:

yE2F3Aji 2 f0; . . . ; nbIg; i 2 f0; . . . ; nbTg; j 2 f0; . . . ; nbSg;

yE2F8ji 2 f0; . . . ; nbIg; i 2 f0; . . . ; nbTg; j 2 f0; . . . ; nbSg;

yE2F4ji 2 f0; . . . ; nbIg; i 2 f0; . . . ; nbTg; j 2 f0; . . . ; nbS2
g;

yEdUji 2 f0; diffuse; punctateg; i 2 f0; . . . ; nbTg; j 2 f0; . . . ; nbSg;

y
pH3j
i 2 f0; punctate; diffuseg; i 2 f0; . . . ; nbTg; j 2 f0; . . . ; nbSg;

ð22Þ

where nbI is the number of bins for intensity, nbT is the number of bins for time and nbS is the

number of samples for E2F3A, E2F8, EdU and pH3 while nbS2
is the number of samples for

E2F4, corresponding to mice in our study. YE2F3A and YE2F8 are simulated as concentrations

starting at intensity 0 to nbI, and then back to 0 with a duration for each intensity bin ran-

domly generated between 1 and 2

3�nbI
� nbT to ensure that the concentration is shorter that the

simulation. The starting point for these concentrations is also randomly generated. YE2F4 is

simulated as two waves of concentrations starting at intensity 0 to nbI, and then back to 0 with

a duration for each intensity bin randomly generated between 1 and 1

3�nbI
� nbT to ensure that

both waves can fit in the simulation duration. The starting point for both waves are randomly

generated, with the constraint that the second wave starts after the first one ends. YEdU and

YpH3 are simulated as successive diffuse and punctate patterns for EdU and successive punctate

and diffuse patterns for pH3, with a duration for each pattern randomly generated between 1

and 2

3�nbI
� nbT. The starting point for these markers is also randomly generated, with the con-

straint that pH3 starts after EdU. To evaluate the robustness of our approach, noise was ran-

domly added to affect a range from 0% to 50% of corrupted time bins. In addition, five

different simulations were randomly generated for each set of parameters. The performance

was evaluated by measuring the mean squared error (MSE) between the generated and esti-

mated concentrations of E2Fs, EdU and pH3.

Three different scenarios were designed to evaluate the performance of our approach. In a

first set of experiments, the number of samples was evaluated and defined as {n1 = 1; n2 = 1},

{n1 = 2; n2 = 2}, {n1 = 3; n2 = 2}, {n1 = 3; n2 = 3} and {n1 = 5; n2 = 5}, with nbI = 4 and nbT =

100. The results are shown in S12 Fig. Then, the influence of the number of time bins was esti-

mated by considering nbT = {20, 50, 75, 100, 125, 150, 200} with {n1 = 3; n2 = 2} and nbI = 4.

The results are shown in S13 Fig. Finally, the impact of the number of intensity bins was evalu-

ated by defining nbI = {2, 3, 4, 5, 10, 20} with {n1 = 3; n2 = 2} and nbT = 100. The results are

shown in S14 Fig.

Supporting information

S1 Fig. Example images. One example for each combination of markers and modality for

fluorescence images used in the study. The combination of markers, number of images of each

type, modality, and number of mice used in the study are shown on top of the images. Note

the small size of the training set. Scale bar = 20μm.

(TIF)
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S2 Fig. Evaluation of U-Net for nuclei segmentation. F1 score for multiple IoU thresholds

obtained with the U-Net approach by trainig on confocal, half or all widefield images, and on

confocal and widefield images without data augmentation or post-processing a-b, with data

augmentation c-d, with data augmentation and corrected watershed postprocessing e-f. The

lines correspond to the average F1 score while the areas represent the standard error.

(TIF)

S3 Fig. Evaluation of Inception-V3 for nuclear segmentation. F1 score for multiple IoU

thresholds obtained with the Inception-V3 approach by trainig on confocal, half or all wide-

field images, and on confocal and widefield images without data augmentation or post-

processing a-b, with data augmentation c-d, with data augmentation and corrected watershed

postprocessing e-f. The lines correspond to the average F1 score while the areas represent the

standard error.

(TIF)

S4 Fig. Evaluation of Mask R-CNN for nuclear segmentation. F1 score for multiple IoU

thresholds obtained with the Mask R-CNN approach by trainig on confocal, half or all wide-

field images, and on confocal and widefield images without data augmentation but with trans-

fer learning a-b, without transfer learning but with data augmentation c-d, with data

augmentation and transfer learning e-f. The lines correspond to the average F1 score while the

areas represent the standard error.

(TIF)

S5 Fig. Evaluation of Stardist for nuclear segmentation. F1 score for multiple IoU thresholds

obtained with the Stardist approach by trainig on confocal, half or all widefield images, and on

confocal and widefield images without data augmentation a-b and with data augmentation

c-d. The lines correspond to the average F1 score while the areas represent the standard error.

(TIF)

S6 Fig. Evaluation of Cellpose for nuclear segmentation. F1 score for multiple IoU thresh-

olds obtained with the Cellpose approach by trainig on confocal, half or all widefield images,

and on confocal and widefield images without data augmentation a-b and with data augmen-

tation c-d. The lines correspond to the average F1 score while the areas represent the standard

error.

(TIF)

S7 Fig. Examples of intensity binning for E2F8. a-b E2F8 channel of a confocal a and a wide-

field b image. E2F8 positive nuclei are overlaid as orange circles while E2F8 negative nuclei are

overlaid as red circles. Scale bar = 20μm. c-d Histograms of the E2F8 intensity observed in the

nuclei shown in images a (c) and b (d). The 3 levels of intensity used for concentration estima-

tion are displayed with different colors.

(TIF)

S8 Fig. Initialization of E2F3A and pH3 over time. a 2D histogram of E2F3A intensity and

pH3 patterns. b Initialization of E2F3A and pH3 over time from the 2D histogram shown in a.

(TIF)

S9 Fig. Initialization of E2F3A and E2F4 over time. a 2D histogram of E2F3A and E2F4

intensity. b Modified 2D histogram of E2F3A and E2F4 intensity with vertex splitting and set

of edges giving the minimum cost. c Initialization of E2F3A and E2F4 over time from the set

of edges shown in b.

(TIF)
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S10 Fig. Initialization of E2Fs with respect to EdU and pH3. a-b Initialization of E2F3A

with respect to a EdU (n = 3) and b pH3 (n = 3). c-d Initialization of E2F8 concentration with

respect to c EdU (n = 3) and d pH3 (n = 3). e-f Initialization of E2F4 concentration with

respect to e EdU (n = 2) and f pH3 (n = 2). g-h Initialization of E2F3A concentration with

respect to g E2F8 (n = 3) and h E2F4 (n = 2). For all curves, the E2Fs intensity for the different

mice are represented as curves with different line styles while EdU and pH3 are shown above

the E2Fs curves, with solid lines corresponding to diffuse states and dashed lines correspond-

ing to punctate states.

(TIF)

S11 Fig. Initialization of E2Fs evolution over the cell cycle. a Temporal evolution of E2F3A

over the cell cycle after registration between EdU and pH3 (n = 6). b Temporal evolution of

E2F8 over the cell cycle after registration between EdU and pH3 (n = 6). c Temporal evolution

of E2F4 over the cell cycle after registration between EdU and pH3 (n = 4). For all curves, the

E2Fs intensity for the different mice are represented as curves with different line styles while

EdU and pH3 are shown above the E2Fs curves, with solid lines corresponding to diffuse states

and dashed lines corresponding to punctate states.

(TIF)

S12 Fig. Evaluation of the influence of the number of samples over the estimation of pro-

tein concentration over the cell cycle on simulated data. Mean squared error between the

estimated and simulated concentrations of E2F3A a, E2F8 b, E2F4 c, EdU d and pH3 e by con-

sidering different numbers of samples when corrupting up to 50% of the simulated data with

noise. n1 corresponds to the number of samples for E2F3A, E2F8, EdU and pH3 while n2 is the

number of samples for E2F4. The lines correspond to the average mean squared error while

the areas represent the standard error.

(TIF)

S13 Fig. Evaluation of the influence of the number of time bins over the estimation of pro-

tein concentration over the cell cycle on simulated data. Mean squared error between the

estimated and simulated concentrations of E2F3A a, E2F8 b, E2F4 c, EdU d and pH3 e by con-

sidering different numbers of time bins when corrupting up to 50% of the simulated data with

noise. The lines correspond to the average mean squared error while the areas represent the

standard error.

(TIF)

S14 Fig. Evaluation of the influence of the number of intensity bins over the estimation of

protein concentration over the cell cycle on simulated data. Mean squared error between

the estimated and simulated concentrations of E2F3A a, E2F8 b, E2F4 c, EdU d and pH3 e by

considering different numbers of intensity bins when corrupting up to 50% of the simulated

data with noise. The lines correspond to the average mean squared error while the areas repre-

sent the standard error.

(TIF)

S1 Table. Time computation for training nuclei segmentation models. Computation time

needed to train the five different deep learning approaches on the four training datasets with a

GeForce RTX 2080 with Max-Q design. CF stands for confocal images, WF half stands for half

the widefield images, WF stands for widefield images and CFWF stands for confocal and wide-

field images.

(TIF)
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S2 Table. Training strategies for nuclei segmentation. Pre-processing, normalization, opti-

mization method, data augmentation, transfer learning and post-processing used to train the

five deep learning approaches.

(TIF)

S3 Table. Training data summary. Number of images and nuclei in the four different training

and validation datasets. CF stands for confocal images, WF half stands for half the widefield

images, WF stands for widefield images and CFWF stands for confocal and widefield images.

(TIF)

S4 Table. Time computation for processing nuclei segmentation. Computation time needed

to process the five different deep learning approaches on the four training datasets with a

GeForce RTX 2080 with Max-Q design.

(TIF)

S5 Table. Evaluation of deep learning approaches for nuclei segmentation in confocal

images. F1 score obtained for IoU = 0.5 and IoU = 0.75 when segmenting nuclei in confocal

images with U-Net, Inception-V3, Mask R-CNN, Stardist and Cellpose. DA stands for data

augmentation, PP stands for post-processing, TL stands for transfer learning and IoU stands

for intersection over union.

(TIF)

S6 Table. Evaluation of deep learning approaches for nuclei segmentation in widefield

images. F1 score obtained for IoU = 0.5 and IoU = 0.75 when segmenting nuclei in widefield

images with U-Net, Inception-V3, Mask R-CNN, Stardist and Cellpose. DA stands for data

augmentation, PP stands for post-processing, TL stands for transfer learning and IoU stands

for intersection over union.

(TIF)

S7 Table. Performance of Inception-V3 for marker identification with confocal images.

Inception-V3 accuracy and standard error with and without transfer learning for marker iden-

tification of E2F3A, E2F8, EdU and pH3 in confocal images. DA stands for data augmentation.

(TIF)

S8 Table. Performance of Inception-V3 for marker identification with widefield images.

Inception-V3 accuracy and standard error with and without transfer learning for marker iden-

tification of E2F3A, E2F8, E2F4, EdU and pH3 in widefield images. DA stands for data aug-

mentation.

(TIF)

S9 Table. Time computation for training and processing marker identification. Computa-

tion time needed to train and process Inception-V3 for marker identification with a GeForce

RTX 2080 with Max-Q design. DA stands for data augmentation.

(TIF)
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