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Abstract

The algorithm presented in this paper is an application of a general framework for morphological
processing of signals on weighted graphs. Here we apply it to images by defining what we call a
co-circularity graph. In this graph, the vertices are the pixels and the weighted edges depend on
a consistency criterion (co-circularity) between local orientations estimated from the structure
tensors. This graph induces anisotropic adaptive morphological operators which are related
both to anisotropic diffusion in images and path optimality in graphs. We present several
applications such as the enhancement of fibre-like structures, completion of interrupted edges
and the regularisation of gray-scale images. We also discuss the parameters setting depending
on the application.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Compilation and usage instruction are included in the README.txt file of the
archive.

Keywords: Mathematical morphology, Adaptive filtering, Tropical algebra, Structure tensors

1 Introduction

Mathematical morphology (MM) first arose as a branch of non-linear image processing [25] and since
then has been extended to a general mathematical framework based on lattice theory [2, 15, 22].
Its initial developments essentially concerned translation invariant operators, represented by kernels
called structuring elements.

The need to analyze and filter shapes without corrupting them naturally gave rise to the so called
adaptive or spatially variant mathematical morphology [6, 7, 15, 26], in which structuring elements
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could vary in space so as to adapt to the local structures of the images being processed. This
framework was applied to design edge-preserving filters in general [9, 10, 18, 33], but also showed
to be particularly relevant to the processing of thin anisotropic objects in images [29, 32], such as
vessels, fibers or roads in satellite images.

To specifically address the morphological filtering of thin elongated shapes, an alternative to
adaptive MM has been developed, known as the class of path-based morphological operators [14].
Path openings and closings consist in defining a graph on the pixels of an image and selecting
structures composed of pixels forming a path of sufficient length in the graph. This idea inspired
many subsequent refinements until recently [20, 21], when ranking the path openings responses in
several adjacency directions allowed to efficiently discriminate between truly anisotropic shapes and
blob-like shapes.

The method proposed in the present paper is at the intersection of these two classes of morpho-
logical approaches: adaptive mathematical morphology and path-based morphological operators. It
is an extension of previous work [3], where morphological operators for signal processing on graphs
were presented in a tropical algebraic framework. On the one hand, it relies on the definition of
space-varying structuring elements. On the other hand, these structuring elements are also local
adjacencies inducing a whole graph on the pixel of images, and the iterated morphological operators
can be easily interpreted in terms of paths, thanks to the tropical formulation. Compared to existing
adaptive morphological methods, this one offers an easy to handle formulation and a path interpreta-
tion, as well as a generalization to non-flat structuring elements (that is, the adjacency relationship
is not necessarily binary but can be weighted). Compared to existing path-based methods, which al-
ways define a priori the allowed sets of binary adjacencies, our approach adapts the graph definition
to each image without being slower.

In [3] it was already shown that, when applied to a specific kind of graphs defined on images,
here called co-circularity graphs, the proposed framework could be suited for adaptive morphological
filtering and enhancement of elongated structures in images. In particular, processing the anisotropy
image deduced from structure tensors is a new and original way to localize these structures. Exam-
ples of edge-preserving smoothing of images were also provided. The present paper aims at explaining
in all details this method based on co-circularity graphs, in order to ensure its reproducibility and
make it easier for users to handle. In Section 2 we recall important basic definitions of Mathematical
Morphology and present our general framework for morphological processing of signals on graphs.
Applied to co-circularity graphs, as defined in Section 3, it yields an efficient morphological algorith-
mic pipeline that we test and discuss in Section 4, before concluding. The corresponding pseudo-code
is provided in Appendix A.

2 Morphological operators for signals on graphs

2.1 Mathematical morphology on complete lattices

We propose to briefly recall the algebraic basis of mathematical morphology in complete lattices.

Definition 1 (Complete lattice). A complete lattice is a partially ordered set (L,≤) for which any
subset A ⊆ L has a least upper bound, also called supremum and noted

∨
A, and a greatest lower

bound, also called infimum and noted
∧
A.

Complete lattices are stable under two combinations: by supremum and by infimum. Hence, two
classes of morphisms naturally emerge: those commuting with the supremum and those commuting
with the infimum.
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Definition 2 (Dilation, Erosion). Let (L,≤) and (L′,≤′) be two complete lattices. A dilation is a
mapping δ : L → L′ such that for any index set I and any family (xi)i∈I ,

δ(
∨
i∈I

xi) =
∨′

i∈I
δ(xi).

Similarly, an erosion is a mapping ε : L′ → L such that for any family (xi)i∈I

ε(
∧′

i∈I
xi) =

∧
i∈I

ε(xi).

In these expressions,
∨

and
∧

(respectively
∨′ and

∧′) denote the supremum and infimum according
to ≤ (respectively ≤′).

It follows from the definition that dilations and erosions are increasing mappings. Dilations
and erosions are strongly related as they are adjoint to each other. More precisely, each dilation
δ : L → L′ has a unique adjoint erosion ε : L′ → L defined by

∀y ∈ L′, ε(y) =
∨
{x ∈ L, δ(x) ≤′ y}. (1)

Conversely, to each erosion ε : L′ → L corresponds a unique adjoint dilation δ : L → L′ defined by

∀x ∈ L, δ(x) =
∧′
{y ∈ L′, x ≤ ε(y)}. (2)

Such a pair of erosion and dilation forms an adjunction, which is characterized by the following
definition.

Definition 3 (Adjunction). Let (L,≤) and (L′,≤′) be two complete lattices, δ : L → L′ and ε :
L′ → L two mappings. The couple (ε, δ) is an adjunction if and only if for any x ∈ L and y ∈ L′,

δ(x) ≤′ y ⇐⇒ x ≤ ε(y).

Then we have the following result: if (ε, δ) is an adjunction, then δ is a dilation, ε is an erosion,
and they verify Equations (1) and (2). The notion of adjunction also helps to show that dilations
and erosions fix respectively the smallest and largest elements of lattices, that is: δ(

∧
L) =

∧′L′ and
ε(
∨′L′) =

∨
L.

Two other classes of lattice operators are very important in mathematical morphology: openings
and closings. They can be seen as non-linear projectors.

Definition 4 (Opening, Closing). Let L be a complete lattice. A mapping γ : L → L is an opening
if and only if it is increasing, anti-extensive and idempotent, that is, for any x, y ∈ L

• x ≤ y ⇒ γ(x) ≤ γ(y)

• γ(x) ≤ x

• γ ◦ γ(x) = γ(x).

Similarly, a mapping ϕ : L → L is a closing if and only if it is increasing, extensive and idempotent
(only the second property changes, that is x ≤ ϕ(x)).

3



Samy Blusseau , Santiago Velasco-Forero , Jesús Angulo , Isabelle Bloch

Hence, an opening γ projects the elements of L onto its set of invariants γ(L) = {γ(x), x ∈ L} =
{x ∈ L, γ(x) = x}. For each x ∈ L, γ(x) minimizes the “gap” between x and γ(L) in the sense:
γ(x) =

∨
{y ∈ γ(L), y ≤ x}. Similarly, ϕ(x) =

∧
{y ∈ ϕ(L), x ≤ y}. Note that γ(L) is closed under

supremum and ϕ(L) under infimum.
Another fundamental result based on the adjunction is the following: if (ε, δ) is an adjunction,

then γ = δ ◦ ε is an opening and ϕ = ε ◦ δ is a closing. What is more, we have δ ◦ ε ◦ δ = δ and
ε ◦ δ ◦ ε = ε which shows that the invariants of γ and ϕ are γ(L′) = δ(L) = {δ(x), x ∈ L} and
ϕ(L) = ε(L′) = {ε(y), y ∈ L′}. Furthermore, we shall remark that if a dilation δ and an erosion ε
form an adjunction and k ∈ N, then the iterated dilation δk = δ◦· · ·◦δ and the erosion εk = ε◦· · ·◦ε
form an adjunction as well, yielding a whole family of openings γk = δk ◦ εk and closings ϕk = εk ◦ δk
(which are different from iterations of γ and ϕ, of no interest as these are idempotent). It is easy to
show that the family of openings (γk)k≥1 is decreasing (that is, i ≤ j ⇒ γi ≥ γj), forming what is
called a granulometry, while (ϕk)k≥1 is increasing, forming an anti-granulometry. In the rest of the
paper, we will often omit the composition symbol ◦ between morphological operators, and note for
example γ = δε instead of δ ◦ ε.

Regarding iterated dilations and erosions, let us highlight two results that will matter in numerical
computations. First, for any dilation δ, whenever δk+1(x) = δk(x) there is no point computing further
iterations as we will get δk+q(x) = δk(x) for any q ∈ N, and the same holds for the erosion. This is
why in practice we will monitor changes after each iteration (see source code and Algorithms 2 and
3). Secondly, if in addition δ is extensive, like δW is, then its adjoint erosion ε is anti-extensive and
we have εδk(x) ≤ δk(x) on the one hand, and εδk(x) = εδk+1(x) = εδδk(x) = ϕδk(x) ≥ δk(x) on the
other hand. Therefore, εδk(x) = δk(x): it is not worth computing erosions of δk(x) either, and in
particular ϕk(x) = εkδk(x) = δk(x). Obviously, we have the analogous result γk(x) = δkεk(x) = εk(x)
whenever εk+1(x) = εk(x).

Openings and closings are only two examples (although the most used ones) of a broader set of
complete lattice endomorphisms, called morphological filters. A morphological filter on a complete
lattice L is an increasing and idempotent mapping from L into itself. It has been shown that many
morphological filters can be built by combining erosions and dilations, openings and closings [13, 26,
27]. A simple but useful kind of combinations yields the Alternating sequential filters.

Definition 5 (Alternating sequential filters (ASF)). Let (ξi)i∈N∗ an increasing family of filters and
(ψi)i∈N∗ a decreasing family of filters, such that ψ1 ≤ ξ1.

Then for any i ≥ 1, the operators

Mi = ψiξi . . . ψ2ξ2ψ1ξ1 Ni = ξiψi . . . ξ2ψ2ξ1ψ1

are filters, called Alternated sequential filters.

In particular, this applies to the decreasing family of openings (γk)k≥1 and increasing family of
closings (ϕk)k≥1 defined earlier, since γ1 ≤ ϕ1. Such ASF are known to be particularly suited for
image denoising.

2.2 Discrete max-plus algebra

Tropical algebra refers to the study of algebras where the sum operation is replaced by an idempotent
operator, namely max or min, and the product may be kept (“max/min-times algebras”) or replaced
by the sum (“max/min-plus algebras”). Here we will focus on the max-plus algebra before presenting
its links to weighted graphs and mathematical morphology.

We consider the set Rmax = R ∪ {−∞} equipped with the following two operations, for any
x, y ∈ Rmax:
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• “⊕”: x⊕ y = max(x, y)

• “⊗”: x⊗ y = x+ y

They are noted as special kinds of addition and multiplication for the properties they share with
the usual arithmetical operations: both are commutative and associative; ⊗ is distributive over ⊕;
operation ⊕ has a neutral element which is −∞ and is a null element for ⊗; the neutral element for
⊗ is 0. However one specificity of (Rmax,⊕,⊗) is the idempotency of ⊕ (max(x, x) = x), for which
it is called an idempotent semifield [19]2.

The set of matrices with elements in Rmax also has its natural “max-plus” counterpart of linear
operations, based on ⊕ and ⊗. Let A and B be two m×n and n×p matrices, respectively (m,n, p ∈
N∗). Then A⊗ B is the m× p matrix defined by (A⊗ B)ij = ⊕nk=1aik ⊗ bkj = max1≤k≤n(aik + bkj).
For two matrices of the same size we also have the ⊕ operation defined by (A ⊕ B)ij = aij ⊕ bij =
max(aij, bij). As for (Rmax,⊕,⊗), ⊗ and ⊕ are associative and ⊗ is distributive over ⊕. However
here ⊗ is non commutative and we do not have invertibility for ⊗ of any “non zero” matrix, i.e.
every matrix whose coefficients are not all −∞.

In the remaining of the paper we will note Ak the k-th power of a square matrix A in the max-plus
sense, for any integer k ≥ 0 (for k = 0, Ak is the max-plus identity matrix, for which aii = 0 and

aij = −∞ for i 6= j). The coefficients of the matrix Ak will be noted a
(k)
ij , and n denotes a positive

integer. Furthermore, for n ∈ N∗ we will denote by Matn(Rmax) the set of n×n square matrices with
coefficients in Rmax. The following definition sets the focus on a particular subset of Matn(Rmax),
that will be of particular interest to define morphological operators.

Definition 6 (Conservative morphological weight (CMW) matrix [3, 31]). A matrix W ∈Matn(Rmax)
is a conservative morphological weight matrix if −∞ ≤ wij ≤ 0 and wii = 0 for any (i, j), 1 ≤ i, j ≤
n.

This class of matrices is a subset of the doubly-0-astic matrices [8], which are matrices with non-
positive coefficients and at least one zero on each column and one on each row. We rather consider
conservative morphological weight matrices as they represent extensive morphological dilations and
anti-extensive erosions, which are more suited to our applications (see Section 4). In the rest of the
paper we will shorten the denomination in CMW matrices. Note that the max-plus product of CMW
matrices is a CMW matrix.

2.3 Operators on weighted graphs

Graphs with conservative morphological weights Let n ∈ N∗, W = (wij)1≤i,j≤n be a n × n
CMW matrix (see Definition 6) and let G(W ) = (V,E) be a weighted and directed graph containing n
vertices whose adjacency matrix is W . As the wij belong to R−max = R−∪{−∞}, here the convention
is that wij > −∞ if and only if (i, j) ∈ E. We now recall and adapt a few definitions from graph
theory (some can be found in [8]).

A path from vertex i to vertex j in G is a tuple of vertices γ = (q1, . . . , ql) such that q1 = i, ql = j,
and (qk, qk+1) ∈ E for 1 ≤ k ≤ l− 1. Then the length of the path, noted `(γ), is l− 1 (the number of

its edges). For k ≥ 1, Γ
(k)
ij denotes the set of paths from i to j in G of length k. We note Γ∗ij the set

of paths from i to j in G. Given the weight matrix W , the weight of a path γ = (q1, . . . , ql), noted
ω(γ), is the sum ω(γ) =

∑l−1
k=1 wqkqk+1

.
We will call optimal path, in a set of paths, a path that achieves the maximum weight among this

set, when the maximum exists. In particular, an optimal path from a vertex i to a vertex j is any
path γ∗ such that ω(γ∗) = max{ω(γ), γ ∈ Γ∗ij}. In our case the latter maximum exists as there is a

2This structure is also called a commutative belt with identity in [8].
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finite number of paths without circuit from a vertex to another and, since weights are non-positive,
paths with circuits are necessarily suboptimal.

The following results show some strong links between tropical algebra and graphs. They can be
found in various forms in the literature (e.g. [1, 5]) hence the proofs are omitted here. We recall that
the powers W k are intended in the max-plus sense (Section 2.2).

Proposition 1. Let W ∈Matn(Rmax) and k ∈ N∗. Then for any 1 ≤ i, j ≤ n,

1. w
(k)
ij > −∞ if and only if there is at least a path in G(W ) from vertex i to vertex j of length k;

2. w
(k)
ij is the maximal weight of the set of paths from vertex i to vertex j of length k.

In short, Proposition 1 can be simply written

w
(k)
ij = max

γ∈Γ
(k)
ij

ω(γ) (3)

with the convention max(∅) = −∞.
As said earlier, if W is a CMW matrix, then so is W k. Its corresponding graph G(W k) has the

same set of vertices as the original graph G(W ), but an edge exists between vertices i and j in G(W k)
whenever there is a path of length k from i to j in G(W ). The weight associated with this new edge

is w
(k)
ij = ω∗(Γ

(k)
ij ), the maximal weight for the paths from i to j of length k in G(W ).

Morphological operators In this section we link the max-plus product W ⊗ x (Section 2.2) to
morphological operators on a vector x supported by a graph G(W ) - meaning that each value xi is
supported by vertex i. This formulation generalizes many of the dilations and erosions defined on
graphs and in image processing applications.

For a fixed integer n ≥ 1, let 0 ≤ a < b ∈ R+ be two non-negative real numbers and L =
([a, b]n,≤) be the complete lattice equipped with the usual product partial ordering (Pareto ordering):
x ≤ y ⇐⇒ xi ≤ yi ∀i ∈ {1, . . . , n}. The supremum and infimum on L are induced by the Pareto

ordering: for a family (x(k))k∈K of L,
∨
k∈K x(k) is the vector y defined by yi =

∨
k∈K x

(k)
i , where K

is any index set.
We now introduce the morphological framework on L, based on the max-plus algebra. Let

W ∈Matn(Rmax) be a CMW matrix. Then the function δW defined by

δW :

{
L → L
x 7→ W ⊗ x,

(4)

which can be detailed by

∀i ∈ {1, . . . , n}, δW (x)i = (W ⊗ x)i = ⊕nj=1wij ⊗ xj =
∨

1≤j≤n

wij + xj, (5)

is an extensive morphological dilation on L. As such, δW has an adjoint erosion defined by Equa-
tion (1). To get an explicit expression, one can show that for any x,y ∈ L

δW (x) ≤ y ⇐⇒ ∀i ∈ {1, . . . , n}, xi ≤
∧

1≤j≤n

yj − wji.

It follows from this and from Equation (1) that the erosion εW adjoint to δW is defined for y ∈ L by

∀i ∈ {1, . . . , n}, εW (y)i =
∧

1≤j≤n

yj − wji, (6)
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which can also be written

εW (y) = −[W T ⊗ (−y)]. (7)

We have now the basic morphological operators to process a signal x ∈ L supported by a graph

G(W ), with W a n × n CMW matrix. Letting Ni =̇
{
j ∈ {1, . . . , n}, (i, j) ∈ E

}
denote the set

of neighbours of vertex i in G(W ) and Ňi =̇
{
j ∈ {1, . . . , n}, i ∈ Nj

}
, the dilation and erosion of

Equations (4) and (7) (or equivalently Equations (5) and (6)) can be written for 1 ≤ i ≤ n

δW (x)i =
∨
j∈Ni

(
xj + wij

)
, εW (x)i =

∧
j∈Ňi

(
xj − wji

)
. (8)

At this point one should remember that the wij are non positive. The closer wij is to 0, the more
likely vertex j is to contribute to the sup (resp. the inf) in the dilation (resp. erosion) of vertex i.
Conversely, the closer wij is to −∞, the more likely vertex j is to be irrelevant in these computations.
In fact, the supremum can be taken over Ni in the dilation because wij = −∞ if j /∈ Ni, and the
same holds for the erosion.

Note that Equation (8) generalizes many adjunctions in image processing. For example, setting
wij = log(1Bj(i)) with Bj a set representing a structuring element at pixel j, we get the usual flat
dilation and erosion. If the family (Bj)1≤j≤n is not translation invariant, we get the so called adaptive
morphology framework [6, 7, 15, 26]; if Bj is not a spatial neighbourhood of j, we get the typical non-
local operators [23, 30]. In general, the formulation of Equation (8) defines non-flat, adaptive and
possibly non-local morphological operators, and the structuring function at each pixel j is contained
in the j-th column of matrix W , that we will note W·j.

It is also worth noticing, especially for numerical computing purposes, that in a CMW matrix W ,
a coefficient wij ≤ a− b is equivalent to wij = −∞ in the sense that the corresponding morphological
operators defined in Equations (5) and (6) are unchanged. Indeed, since for any 1 ≤ i, j ≤ n we
have wii = 0 and xj ∈ [a, b], any term xj +wij is not greater than a if wij ≤ a− b, and therefore not
greater than xi + wii = xi. Hence it cannot contribute to the supremum in Equation (5), just like if
we had wij = −∞. The same reasoning can be done for the erosion. This is why in practice we can
consider that j ∈ Ni if and only if wij > a− b, as will be done in the source code provided with this
paper.

Finally, from the adjunction (εW , δW ), many other operators can be derived, as described in
Section 2.1. In particular, we have the corresponding opening γW = δW εW and closing ϕW = εW δW .
Furthermore, as said in Section 2.1 the iterated dilation δkW = δW ◦ · · · ◦ δW and the erosion εkW =
εW ◦ · · · ◦ εW form an adjunction. The associativity of the max-plus product ⊗ yields the following
result for these iterated dilation and erosion.

Proposition 2. Let W be a CMW matrix, and k ∈ N. Then δkW = δ(Wk) and εkW = ε(Wk).

This also implies the semigroup property δ(Wk)δ(W l) = δ(Wk+l), and an easy writing for δkW and
εkW :

δkW (x)i = max
j∈N k

i

(
xj + w

(k)
ij

)
, εkW (x)i = min

j∈Ň k
i

(
xj − w(k)

ji

)
(9)

where N k
i is the set of neighbours of vertex i in G(W k) or, equivalently, the set of vertices in G(W )

that can be reached from i through a path of length k; and as before, Ň k
i =

{
j ∈ {1, . . . , n}, i ∈ N k

j

}
.

Because of Proposition 2, it becomes natural to note γWk = δkW ε
k
W and ϕWk = εkW δ

k
W the openings

and closings based on the adjoint iterated dilations and erosions. We shall now draw a link between
path openings and γWk in the next paragraph.
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Path interpretation of openings γWk We may first recall the definition of a path opening [14]
on x ∈ L induced by a graph G represented by W and for a path length k ∈ N∗. For i ∈ {1, . . . , n},
let us note Pki the set of paths of length at least k and passing through i in G. Then the path opening

Π
(k)
W for a path length k is defined by

Π
(k)
W (x)i =

∨
{t ∈ [a, b],∃p ∈ Pki ,∀l ∈ p, xl ≥ t}. (10)

with the convention that ∨{∅} = a. Therefore, for t ∈ (a, b], Π
(k)
W (x)i is larger than t if and only

if vertex i belongs to a path of length at least k such that x takes values greater than t along that
path:

Π
(k)
W (x)i ≥ t ⇐⇒ ∃p ∈ Pki , such that ∀l ∈ p, xl ≥ t. (11)

Let us now give a similar formulation for γWk . We can focus on γW since what follows holds
for any CMW matrix, so we can replace W by W k later on. As pointed out in Section 2.1, for any
x ∈ L, γW (x) is the best under-approximation of x by an invariant of γW , that is to say by some
dilated element. Indeed, as γW = δW εW , recall that γW (L) = δW (L). Formally,

γW (x) =
∨
{y ∈ δW (L),y ≤ x}. (12)

This point of view will help in the path interpretation. First, γW (x) is the dilation δW (u) of some
element u (actually, we know u = εW (x)), that is to say the max-plus product W ⊗u, which in turn
is the sup-combination of the columns of W vertically translated:

W ⊗ u = ⊕nj=1uj ⊗W·j =
∨

1≤j≤n

uj +W·j. (13)

Secondly, this sup-combination is as close to x as possible, but is smaller than x. Recalling that
each column W·j represents the neighbourhood Ňj, or equivalently the structuring element associated
with pixel j, we get that γW (x) is composed as follows: for each j, lift the structuring element Ňj
vertically as high as possible as long as it remains under x. Then take the upper envelope of these
lifted structuring elements.

In the case where W is binary, that is to say wij = 0 if j ∈ Ni and −∞ otherwise, then the
structuring elements Ňj are flat, and γW (x) is an under-approximation of x by a superposition of
flat regions, corresponding to the lifted Ňjs. Therefore if γW (x)i ≥ t for some vertex i and value
t ∈ [a, b], then there is a whole neighbourhood Ňj to which i belongs, for which this also holds:
∀l ∈ Ňj, γW (x)l ≥ t. Since x ≥ γW (x), we also get that x must be larger than t over Ňj. As we
will see in Proposition 3, the converse is also true, and we get the following characterization:

γW (x)i ≥ t ⇐⇒ ∃j ∈ Ni, such that ∀l ∈ Ňj xl ≥ t. (14)

Now, replacing W by W k, for some integer k ≥ 1, on the left hand side of Equation (14) leads to
change Ni and Ňj for N k

i and Ň k
j on the right hand side. Hence γWk(x)i ≥ t if and only if there is

a vertex j ∈ N k
i such that for all paths of length k ending in j (including the one linking i to j) x

is greater than t along these paths. We can write, in the binary case:

γWk(x)i =
∨
{t ∈ [a, b],∃j ∈ N k

i , ∀l ∈ Ň k
j , xl ≥ t}. (15)

This is theoretically stronger than a path opening of length k. However, here paths may contain
cycles whereas usually path openings are computed in acyclic graphs. Note in particular that every
vertex is its own neighbour as W is a CMW matrix, and therefore even if the longest acyclic path
from i to j is shorter than k, we still have i ∈ Ň k

j . Yet in practice, like in the experiments of Section 4

8
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using the graphs defined in Section 3, most vertices l ∈ Ň k
j , belong to an acyclic path of length k

ending in j. This can be observed in results images like in Figures 8 and 9, where large flat regions
appear, corresponding to a bundle of paths.

In the general case, where W is a CMW matrix but no longer binary valued, Equation (14) takes
the following formulation, proven in Appendix B.

Proposition 3 (Path interpretation of γWk). For any x ∈ L, i ∈ {1, . . . , n} and t ∈ [a, b]:

γW (x)i ≥ t ⇐⇒ ∃j ∈ Ni, such that ∀l ∈ Ňj xl ≥ t− wij + wlj. (16)

We easily check that Proposition 3 applied to the binary case, where wij = 0 = wlj for j ∈ Ni
and l ∈ Ňj, yields Equation (14). Again, we can replace W by W k for some integer k ≥ 1, and
accordingly change Ni and Ňj for N k

i and Ň k
j . Compared to Equation (14), the additional terms

−wij +wlj quantify the strength of the connections of vertices in Ňj to vertex j. The stronger these
connections (that is, the closer the weights are to zero) the tighter the constraint on the values of x
over Ňj and therefore the flatter x on Ňj. An example of comparison between openings γW (x) in
the binary and non-binary cases is given in Figure 9, where x is an anisotropy image (see Sections 3
and 4.1). We see on these examples that in the non binary case, flat zones are replaced by quasi-flat
zones. As corollary of Proposition 3, we conclude this section by the path formulation of γWk in the
general case:

γWk(x)i =
∨
{t ∈ [a, b],∃j ∈ N k

i , ∀l ∈ Ň k
j , xl ≥ t− w(k)

ij + w
(k)
lj }. (17)

3 Co-circularity graphs on grayscale images

In this section we introduce a class of graphs on images, based on the co-circularity of the struc-
ture tensors principal directions. Then the morphological operators defined in Section 2.3 will be
of particular interest for the detection and enhancement of elongated shapes, as demonstrated in
Section 4.

3.1 Structure tensors

We use structure tensors [11, 12, 17] to estimate locally the main direction of anisotropic objects at
different scales. Structure tensors can be seen as a second order local approximation of an image
and as such they provide more than a local dominant direction: they also indicate the degree of
anisotropy of the local structures.

Given an image f , the field T0 of scale zero structure tensors maps each pixel (x, y) to the
symmetric positive semidefinite matrix with rank ≤ 1,

T0(x, y) = ∇f(x, y) · ∇f(x, y)T . (18)

The gradient ∇f(x, y) is an eigenvector of T0(x, y) with ||∇f(x, y)||2 as corresponding eigenvalue,
and 0 is the other eigenvalue. The eigenline associated with the smallest eigenvalue is therefore
orthogonal to the gradient ∇f(x, y). Then for σ > 0 the structure tensor Tσ is the smoothed version

Tσ = Gσ ∗ T0 (19)

9
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(a) (b) (c)

Figure 1: (a) A grayscale image, (b) its structure tensors Tσ for σ = 3 pixels and (c) the corresponding
anisotropy image. In (b) an ellipse is plotted every 15 pixels in both directions.

where Gσ is the σ-scale Gaussian kernel. Note that, for any u = (x, y), Tσ(u) is a weighted sum
of tensors T0(·) with positive weights, and is therefore a positive semi-definite matrix that can be
represented by the ellipse

E (σ)
u = {v ∈ R2, vTTσ(u)v ≤ 1} (20)

(see Fig. 1(b)). We note 0 ≤ λ
(σ)
2 (u) ≤ λ

(σ)
1 (u) the eigenvalues of Tσ(u) and (e

(σ)
1 (u), e

(σ)
2 (u)) an

associated basis of orthogonal eigenvectors. The second eigenvector e
(σ)
2 (u) indicates a direction

associated to a low variation of image intensity at pixel u (it is roughly orthogonal to the gradient).
It corresponds to the large axis of the ellipse representing Tσ(u). We note

θ(σ)(u) = arg(e
(σ)
2 (u)). (21)

From the tensor field Tσ we can build the anisotropy image

I(σ)
a =

λ
(σ)
1 − λ

(σ)
2

λ
(σ)
1 + λ

(σ)
2

. (22)

Then for any u, 0 ≤ I
(σ)
a (u) ≤ 1, and the closer I

(σ)
a (u) to 1, the more Tσ(u) is anisotropic (see

Figures 1 and 2). As illustrated by Figure 2, increasing σ smoothes the local estimation of anisotropy
and main orientations.

3.2 Co-circularity

Given two points u1, u2 ∈ R2 and two angles θ1, θ2 we say that (u1, θ1) and (u2, θ2) are co-circular
if there is a circle (with possibly infinite radius) tangent in u1 and u2 to the lines directed by the
vectors [cos(θ1), sin(θ1)]T and [cos(θ2), sin(θ2)]T , respectively. Figure 3 (left) shows a set of vectors
ui+[cos(θi), sin(θi)]

T , i ≥ 1 that are co-circular to the central horizontal vector u0+[cos(θ0), sin(θ0)]T ,
with u0 = (0, 0) and θ0 = 0 rad. In practice, co-circularity between (u1, θ1) and (u2, θ2) can be tested
as follows. Let vi = [cos(θi), sin(θi)]

T , i = 1, 2, d = u2−u1
||u2−u1||2 and v′1 = 2(v1 · d)d− v1 (that is, v′1 is

simply the mirror symmetric of v1 with respect to the line directed by d). Then (u1, θ1) and (u2, θ2)
are co-circular if and only if v′1 and v2 are colinear, that is to say if and only if |v′1 · v2| = 1. This is
illustrated in Figure 4. Note that the co-circularity condition does not depend on ||u2 − u1||.

In order to deal with real data where perfect co-circularity almost never occurs, we define a
relaxed condition up to an angular precision α ∈ [0, π

2
). The new condition becomes

(u1, θ1) and (u2, θ2) α-co-circular ⇐⇒ |v′1 · v2| ≥ cos(α), (23)

10
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Figure 2: Anisotropy images (top row) associated with smoothed structure tensors Tσ (bottom row,
subsampled every 15 pixels) for several values of σ. From left to right, σ = 1, 3, 5, 7 pixels. The
grayscale input image is the one shown in Figure 1 (a).

Ladder

Figure 3: Left: a set of elements (u, θ) co-circular to the central element (u0, θ0) where u0 is the
origin and θ0 = 0 rad; Right: the elements from the left hand image that comply with the additional
conic condition to avoid ladder configurations.

as |v′1 · v2| is the absolute value of the cosine of the angle between the unitary vectors v′1 and v2.
From now on we will note

(u1, θ1) ∼α (u2, θ2)

when (u1, θ1) and (u2, θ2) are α-co-circular, as defined by Equation (23). Note that this relation is
symmetric.

We use co-circularity as a mathematical criterion to model the Gestalt good continuation grouping
law [16]. In other words, a list of couples (ui, θi), i ≥ 0 such that (ui, θi) is co-circular to (ui+1, θi+1)
is supposed to draw a (subsampled) smooth trajectory. As we can see on Figure 3 (left), the co-
circularity criterion alone allows to chain elements in ladder configurations, which do not comply
with the good continuation law. For this reason, when defining a graph on pixels based on local
orientations, we will add what we call a conic condition on the adjacency of two vertices. Namely,
for (u2, θ2) to be a neighbour of (u1, θ1) these couples should be co-circular and u2 should lie within

11
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Figure 4: Configuration where (u1, arg(v1)) and (u2, arg(v2)) are co-circular. Angles with equal
absolute values are represented with same colors and, where there is a possible ambiguity, they are
marked by the same short segment.

the double cone noted C(u1, θ1, β) pointing at u1, of axis the direction defined by θ1 and of fixed solid
angle β ∈ [0, π

2
) (see Figure 3, right). Formally,

u2 ∈ C(u1, θ1, β) ⇐⇒ |d · v1| ≥ cos(β). (24)

3.3 Co-circularity graphs

With the concepts of Sections 3.1 and 3.2, we can now define a graph on the pixels of an image,
basing the adjacency relationship on co-circularity and structure tensors at a certain scale σ > 0.

Given a W × H grayscale image I with values in [0,M ], M > 0, and a scale σ > 0, we define
a graph G = (V,E) containing n = W · H vertices, each vertex corresponding to one pixel. By
convention, we associate the pixel of coordinates (r, c), 0 ≤ r ≤ W − 1, 0 ≤ c ≤ H− 1, to the vertex
of index r ×W + c. Therefore, to each vertex i, 0 ≤ i ≤ n − 1 can be associated the attributes of
the corresponding pixel, and in particular its coordinates ui = (ri, ci) = (bi/Wc, i − bi/Wc) as well

as the main orientation θ
(σ)
i = θ(σ)(ui) of the structure tensor Tσ(ui), as defined by Eq. (21). The

edges between vertices are defined based on these two attributes, as follows.
We represent G by its adjacency matrix W = (wij)1≤i,j≤n, using the convention of Section 2.3:

vertex j is neighbour of i if and only if wij > −∞. Then we propose two alternatives to define the
edges weights: the first one, where each weight wij can only take its value in {0,−∞}, induces what
we call a binary-weighted graph; the second one, where each weight wij ∈ [−∞, 0], induces a non
binary-weighted graph.

Binary-weighted graph In this case, the definition of the co-circularity graph requires four pa-
rameters:

• a scale σ > 0

• an angular precision α ∈ [0, π
2
) to relax the co-circularity constrain,

• an angle β ∈ [0, π
2
) to define the conic condition,

• a positive integer p defining a (2p+ 1)× (2p+ 1) square neighbourhood.

12
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Then for two vertices i and j, 0 ≤ i, j ≤ n− 1, the edge weight wij is defined by

wij =

{
0 if (ui, θ

(σ)
i ) ∼α (uj, θ

(σ)
j ) and uj ∈ C(ui, θ(σ)

i , β) ∩ S(ui, p)
−∞ otherwise,

(25)

where S(ui, p) is the (2p+ 1)× (2p+ 1) square centered on ui, and the α-co-circularity and the conic

condition uj ∈ C(ui, θ(σ)
i , β) are defined as in Equations (23) and (24) respectively, replacing indices

1 and 2 by i and j. More precisely:

vi = [cos(θ
(σ)
i ), sin(θ

(σ)
i )]T , vj = [cos(θ

(σ)
j ), sin(θ

(σ)
j )]T

d =
uj−ui
||uj−ui||2 , v′i = 2(vi · d)d− vi

(ui, θ
(σ)
i ) ∼α (uj, θ

(σ)
j ) ⇐⇒ |v′i · vj| ≥ cos(α),

uj ∈ C(ui, θ(σ)
i , β) ⇐⇒ |d · vi| ≥ cos(β),

uj ∈ S(ui, p) ⇐⇒ ||ui − uj||∞ ≤ p.

(26)

Non binary-weighted graph This alternative is meant to avoid the parameter α. Instead of
setting a minimum threshold on the co-circularity precision, we ensure that wij decreases as this
precision decreases. Formally,

wij =

{
M · log (|v′i · vj|) if uj ∈ C(ui, θ(σ)

i , β) ∩ S(ui, p)
−∞ otherwise,

(27)

using the definitions of Equations (26).

Remarks on the symmetry of W Note that in the binary case and for α = 0 (perfect co-
circularity), the adjacency relationship is symmetric, that is: wij = 0 ⇐⇒ wji = 0, and therefore
wij = wji. However, for α > 0 this is not the case anymore. Indeed, although the α-co-circularity
remains symmetric, α-co-circular configurations exist where the conic condition is fulfilled in one
direction only, as shown in Figure 5. For the same reason, in the non-binary case wij 6= wji as soon

as uj ∈ C(ui, θ(σ)
i , β) and ui /∈ C(uj, θ(σ)

j , β), or vice versa (for two pixels i and j which are close
enough, that is ||ui − uj||∞ ≤ p).

In the binary case and for α ≤ β (which is a natural choice) we can show that the probability of

wij 6= wji for random, independent and uniformly distributed θ
(σ)
i and θ

(σ)
j , is low (typically, lower

than 0.01 for α ≤ π
20

). In practice, where θ
(σ)
i and θ

(σ)
j are correlated (even more so as σ increases),

the observed frequency of wij 6= wji is even lower, by an order of magnitude at least.
In the non-binary case, wij 6= wji might occur more often but in practice when one of the weight

equals −∞, then its symmetric also has a low value and is unlikely to contribute to the morphological
operators (which is our final aim).

Therefore, in Algorithm 1, and more precisely in the ComputeAdjacencyMatrix function we
always assume the adjacency matrix to be symmetric, which allows to test adjacency between pairs
of pixels only once. In practice, this means that when browsing the image pixel by pixel, we need not
examine the whole (2p + 1) × (2p + 1) square neighbourhood S(ui, p) around each pixel i. Instead,
we can restrict ourselves to examine only a subregion R(ui, p) covering half of that square - and
excluding ui, as we already know that i is its own neighbour in the graph (wii = 0). Formally, for
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Figure 5: An example where w12 = 0 whereas w21 = −∞. Indeed, (u1, arg(v1)) ∼α (u2, arg(v2))
since |v′1 · v2| = cos(α

2
) ≥ cos(α), and u2 ∈ C(u1, arg(v1), β) but u1 /∈ C(u2, arg(v2), β).

each pair of pixels i, j ∈ {0, . . . , n − 1}, j 6= i, with coordinates ui = (ri, ci) and uj = (rj, cj), the
definition of the subregion R must fulfil the following condition:

||ui − uj||∞ ≤ p ⇐⇒
{
uj ∈ R(ui, p)
ui /∈ R(uj, p)

or

{
ui ∈ R(uj, p)
uj /∈ R(ui, p)

(28)

which means that testing the adjacency for every ui and uj ∈ R(ui, p) ensures that every pair such
that ||ui − uj||∞ ≤ p is tested once and only once. Many definitions are possible for R(ui, p), and
they are all independent from the way we browse the pixels of the image. Here we choose to define

R(ui, p) =
(

[ri − 1, ri + p]× [ci, ci + p]
)
∪
(

[ri − p, ri]× [ci + 1, ci + p]
)
, (29)

as illustrated on Figure 6. From this drawing, one can check that condition (28) is fulfilled.

Figure 6: Illustration of the region R(ui, p) ⊂ S(ui, p) for a pixel position ui and a size parameter
p = 2.
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Remarks on the extension to higher dimensions Co-circularity graphs based on structure
tensors can be generalized to scalar data defined on n-dimensional grids, and in particular in three
dimensions. Indeed, zero-scale structure tensors can be computed from the n-dimensional gradient
and regularized with an isotropic Gaussian blurring in n dimensions. Then the main direction vi

is determined by the normalized eigenvector associated with the smallest eigenvalue (without the
necessity to define an angle) just like in two dimensions, and the anisotropy image can be defined as

in Equation (22), replacing λ
(σ)
2 and λ

(σ)
1 by the smallest and second smallest eigenvalues (λ

(σ)
n and

λ
(σ)
n−1). Finally, the co-circularity can also be defined through scalar products as in Equation (26),

except that an additional condition is necessary to test that d is in the plane defined by vi and vj.

In this section we have built co-circularity graphs represented by CMW adjacency matrices. In
the next one we show the results of applying the corresponding morphological operators, as defined
in Section 2 by Equation (8), to grayscale images.

4 Applications

Before showing experimental results, let us detail in Algorithms 2 and 3 (see Appendix A) the
implementation of the morphological operators of Equation (8), in the setting of Section 3 where the
matrix W is sparse (and symmetric). Algorithms 1, 2 and 3 are the fundamental bricks for all the
morphological processing presented hereafter.

4.1 Processing of anisotropy images

As shown in Section 3.1, Figures 1 and 2, anisotropy images are bright wherever an elongated shape
is present in the corresponding original image. Therefore, bright pixels highlight macroscopic objects
of interest such as vessels, as well as local anisotropic shapes caused by noise or less relevant objects.
However, significant elongated shapes have an additional characteristic: the local orientations of the
pixels composing them vary smoothly over large elongated neighbourhoods. Hence, when connecting
these pixels in the co-circularity graph and applying iterated erosions εkW , as defined in Section 2.3
and with W the adjacency matrix of the graph, bright pixels belonging to relevant shapes tend to
darken much later than those caused by noise (see Figure 8, top row).

Indeed, recall that εkW roughly consists in assigning to each pixel the minimum value over an
extended neighbourhood in the co-circularity graph (at least in the binary case, and the non-binary
case can be interpreted in terms of soft neighbourhoods). For pixels belonging to relevant objects like
vessels, these neighbourhoods are precisely designed to match the underlying elongated shapes, even
when k is large (see Figure 7). As these regions are consistently highly anisotropic, their minimum
value is likely to be high. By contrast, for a pixel in the background (that is, outside any object of
interest), large neighbourhoods tend to be more isotropic and are more likely to include dark pixels
(see one such example in Figure 7).

After the erosion εkW of the anisotropic image, for k large enough, background pixels should result
dark and brighter pixels should be found mainly in large anisotropic shapes. Therefore, subsequently
applying the dilation δkW allows us to recover most of the vessel shape. Indeed, this dilation can be
seen as the diffusion of large values over the neighbourhoods induced by the graph, and for pixels
within the vessels the neighbourhoods almost do not intersect the background. This can also be read
in the light of the path interpretation given at the end of Section 2.

The results of openings γWk = δkW ε
k
W are shown in the bottom row of Figure 8 and in Figure 9.

As we see in these examples the remaining bright pixels after filtering indicate the presence of a
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vessel. We shall note that large (quasi) flat regions follow geodesic paths, as predicted by the path
interpretation of γWk .

Applying a threshold to these outputs can already produce a fairly accurate mask of the vessels in
the input image, and further processing may improve it. To conclude this section, in Figures 7 and 9
one may notice little difference between binary-weighted and non binary-weighted graphs. This will
be discussed in more detail in Section 4.3.

(a) (b) (c) (d)

Figure 7: (a) Input image I with five pixels i1, i2, . . . , i5 marked as the center of the white squares.

(b) A representation of the structure tensors Tσ for σ = 5. The corresponding anisotropy image I
(σ)
a

is shown in Figure 8 (a). (c) and (d): The neighbourhoods N k
i1
, . . . ,N k

i5
with k = 10, in the binary (c)

and non-binary (d) cases. In both cases the co-circularity graph was obtained with the parameters
σ = 5, p = 7, β = π

6
and α = π

20
in the binary case.

4.2 Processing of original images

The morphological operators presented earlier, when applied to the original input image rather than
the anisotropy one, show regularization properties: we observe a simplification of images with large
flat areas, while most edges and elongated shapes are preserved. In Figures 10 and 11 we show the
results of alternating sequential filters Mk defined by

Mk = γkϕk . . . γ2ϕ2γ1ϕ1 (30)

where we omitted W in the notations: γi = γW i = δiW ε
i
W and ϕi = ϕW i = εiW δ

i
W for 1 ≤ i ≤ k.

Whereas Figure 10 illustrates well the regularization property, Figure 11 shows that more textured
regions without particular anisotropy can be significantly modified and some objects may disappear
or have their aspect drastically changed. The overall result can be seen as the application of an
impressionist painting-like style to the original image.

Another interesting application is the completion of interrupted edges in images, as shown in
Figure 12. When two elongated shapes are in good continuation, like in the case of an edge which
has been partially occluded, an anisotropic closing (for bright structures on a dark background) or
an opening (for dark structures on a bright background) can fill the gap between the two adjacent
extremities. To achieve this, the parameters σ and p must be adapted to the gap to bridge. Moreover
if the distance separating the elements to join is large compared to their size, this completing effect
may not be achievable by one closing, no matter its size (this might be clear from the interpretation
of parameters provided in the next section). However, it is possible to compute a new graph from
the output image, where extremities have been brought a little closer, and apply a new closing based
on the new graph. Such iterations are obviously more computationally expensive.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Erosions and openings of an anisotropy image. (a) Anisotropy image I
(σ)
a computed

from the input (e) for σ = 5. (b-d) From left to right: erosions εkW (I
(σ)
a ) for k = 1, 5, 10, with a

binary-weighted co-circularity graph. (f-h) From left to right: openings γWk(I
(σ)
a ) = δkW ε

k
W (I

(σ)
a ) for

k = 1, 5, 10, with the same binary-weighted co-circularity graph. The graph was obtained with the
parameters σ = 5, p = 7, β = π

6
and α = π

20
.

4.3 Discussion

On the choice of σ. Roughly speaking, the scale parameter σ rules the size of the window over
which we average zero-scale structure tensors T0 to obtain Tσ. Therefore, the correlation between two
structure tensors Tσ(ui) and Tσ(uj) increases with σ, while it decreases with the distance between ui
and uj. As a consequence, the larger σ the more likely it is that neighbouring tensors have similar
orientations, and hence that every tensor has a co-circular one in its close neighbourhood, that is,
even with a small value of p. This is a desirable property as the effect of the morphological operators
depends on the degree of connectivity of the vertices in the co-circularity graph. For example, in the
case of edge completion, σ must be large enough to ensure that the tensors near the middle point
between the extremities to join are roughly co-circular to the latter (provided, obviously, that p is
also large enough for the extremities neighbourhoods to cover the middle point).

On the other hand, σ should not exceed too much the dimensions of the objects of interest in the
image (e.g. the width of vessels). If it does, the local anisotropy values and orientations carried by
the structure tensors are not representative of underlying real objects. Typically, a too large value
for σ would diffuse the anisotropy and orientation of a vessel far away from its boundaries.

Regarding the effect of σ on the operators activity, we shall notice that in general, for a fixed
image and set of other parameters, the adjacency matrix does not increase with σ and neither does
it decrease. This means that there is no inclusion relationship between the neighbourhoods N σ1

i and
N σ2
i of the same pixel (or vertex) i for σ1 < σ2. What is more, there is no ordering relationship
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Figure 9: Openings of anisotropy images. Top row, from left to right: input image, anisotropy image
I

(σ)
a with σ = 5, openings γWk(I

(σ)
a ) = δkW ε

k
W (I

(σ)
a ) for k = 15 in the binary and non-binary case.

The co-circularity graphs were obtained with the parameters σ = 5, p = 7, β = π
6

and α = π
20

in the
binary case. The bottom row follows the same pattern with a different input image and parameters:
k = 5, σ = 2, p = 3, β = π

6
and α = π

12
.

Figure 10: Left: input image, crop of a high resolution eye fundus. Right: result of an alternating
sequential filters Mk with k = 3 (see Eq. (30)), based on a binary-weighted co-circularity graph whith
parameters σ = 5, p = 7, β = π

6
and α = π

20
. With the same parameters, the result with a non

binary-weighted graph is very similar.

between their surfaces - or integral in the non binary case, that we define as

A(i,W ) =
n−1∑
j=0

wij. (31)

In practice we observe that when p is large enough, a small σ leads to neighbourhoods that are not
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Figure 11: Left: input image. Right: result of an alternating sequential filters Mk with k = 5 (see
Eq. (30)), based on a non binary-weighted co-circularity graph with parameters σ = 2, p = 3 and
β = π

6
.

Figure 12: Input image and three closings ϕWk = εkW δ
k
W for k = 1, 2, 3 and W the adjacency matrix

of the binary-weighted co-circularity graph obtained with parameters σ = 4, p = 7, β = π
6

and
α = π

20
.

smaller but can be less accurate with respect to underlying elongated shapes, as shown in Figure 13.
This is due to the fact that with a small σ and a large p it is more likely that neighbouring pixels be
co-circular by chance and not because they belong to the same structure.

On the choice of p. The parameter p determines the square window around a pixel i, from which
candidates to be neighbours in the co-circularity graphs will be chosen. As such, it is the strongest
constraint on the connectivity of the graph, although we just saw that this also depends on σ. In
binary weighted graphs, the smaller p the more chances to find an isolated vertex or a small connected
component that is disconnected from the rest of the graph, causing artifacts in the output of the
morphological operators. This is even more so as σ is small. By contrast, when p is small, increasing
σ can reduce this risk by increasing the correlation between neighbour orientations. However, if σ
needs to be increased a lot, it might not be suited to the dimensions of the relevant objects in the
image. Therefore in practice, in the occurrence of artifacts such as in Figures 14 and 15, increasing
p is more efficient to make them disappear. Note that these artifacts are very unlikely with non
binary-weighted graphs, as the disconnections observed in binary weighted graphs are replaced by
weak connections, for which the graph is usually connected.

The effect of p on the operators activity is more straightforward, as the adjacency matrix increases
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Figure 13: Left: Crop of the input image of Figure 7, with a pixel i marked as the centre of the
white square. Centre: Neighbourhood N k

i in the non binary-weighted co-circularity graph with
k = 15 and parameters σ = 5, p = 7 and β = π

6
. Right: Neighbourhood of the same pixel in the non

binary-weighted graph with same parameters except σ = 2. As we can see the two neighbourhoods
are not ordered and the one for σ = 2 is less accurate with respect to the underlying vessel shape.

with p, everything else being fixed.

On the choice of α and β. The angle β ruling the conic condition quantifies how much you allow
elongated structures to “turn” on a maximal distance of p. Therefore, it determines the maximal
curvature of shapes that operators will preserve and enhance. Increasing β increases the operators
activity as the adjacency matrix increases with β. In practice, for all the applications presented here,
we always used the same value β = π

6
, which works fine. Other tested values showed that the method

is quite robust with respect to the choice of β, as different values did not bring significant changes.

The angle α, which is used only to build binary-weighted graphs, is a precision tolerance quantify-
ing how much we can stick to co-circularity. As such, it should be increased to process low resolution
or noisy images, where there is more uncertainty on the estimation of local orientations. Like β and
p, increasing α increases the operators activity. In our experiments, we almost always used α = π

20

except for the low resolution eye fundus, for which we preferred α = π
12

as α = π
20

generated more
artifacts.

On the choice between binary or non binary-weighted graphs. In Figures 7, 9 and 10 we
emphasized the similarity of the results obtained with binary and non binary weighted graphs. This
is true in particular for α = π

20
and the specific choice we made for a hidden parameter in the non-

binary method: the value M in (27), which is the maximum possible pixel value (M = 255 for 8-bits
images). A different constant could be chosen but this would have little effect provided we choose a
constant with the same order of magnitude.

Indeed qualitatively, in both binary and non binary cases, the edge weight wij is a function of an
angle αij, the angle between the vectors v′i and vj - see Equations (25), (26) and (27). The smaller
this angle, that is to say the closer we are to co-circularity between i and j, the closer to zero and
the more similar the weights in the binary and non-binary case. Since the weights that contribute
the most to the results of the morphological operators are precisely those close to zero, it is not
surprising that binary and non-binary co-circular graphs yield similar results in many cases.

The main difference appears precisely where configurations deviate from co-circularity and the
larger weights are not so close to zero. As we saw, this creates isolated connected components and
artifacts in the binary case, whereas it does not happen in the non binary case where disconnections
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Figure 14: Illustration of the influence of parameter p on artifacts and operators activity. All images
are binary-weighted erosions of the anisotropy image Iσa with σ = 5 (shown in Figure 8), but the
parameter p is different between the top row (p = 3) and the bottom row (p = 7). Top row: εkW (Iσa )
for k = 5, 20, 70. We see that the evolution is very slow, showing a weak activity of the erosions,
and that artifacts appear because of many isolated connected components. Bottom row: εkW (Iσa )
for k = 2, 5, 10. The evolution is quicker and no artifacts appear. Except for p and k, all other
parameters are the same: σ = 5, β = π

6
and α = π

20
.

are replaced by soft weak connections. Therefore, opting for the non binary weighted graph is a good
way to avoid artifacts without the need to adjust the other parameters, e.g. increasing p.

The disadvantage of the non binary formulation is that it is more expensive computationally than
the binary one. Although the theoretical complexity is the same, as we will see next, the matrix W
is less sparse. As a consequence, more values are assigned when computing the matrix, and more
comparisons are made in the application of the morphological operator. This is why we often work
with the binary formulation in practice, especially with large images, unless we do not quickly find
satisfactory parameters, which avoid artifacts and fit the physical reality of underlying objects.

On the complexity of Algorithms 1, 2 and 3. Given an image with n pixels, the computation
of the adjacency matrix representing the co-circularity graph (Algorithm 1) consists in testing, for
every pixel, its adjacency with the pixels composing its (2p + 1) × (2p + 1) square neighbourhood.
As this test requires a number of operations upper-bounded by a constant independent from n and
p, the complexity of Algorithm 1 is O(np2).

The computation of the dilation δW (I) (Algorithm 2) is linear in the number of finite coefficients
in the sparse matrix W , which is at most n(2p+ 1)2. Hence the complexity of the dilation is at most
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Figure 15: Illustration of artifacts due to a small value of p. Top row, from left to right: Crop of
the input image of Figure 7, with a pixel i marked as the centre of the white square; Neighbourhood
N k
i in the binary-weighted co-circularity graph with k = 10 and parameters σ = 5, p = 5, β = π

6
and

α = π
20

; Same, but with p = 7. When p = 5, N k
i is restricted to only one pixel other than i. Bottom

row, from left to right: crop of the anisotropy image for σ = 5, and openings γWk with k = 10
using the two different co-circularity graphs (p = 5 and p = 7). The weak connectivity of pixel i
when p = 5 causes an artifact which is not present when p = 7. Note that for p = 5 the parameter
σ needs to be considerably increased before artifacts disappear.

O(np2). The complexity of the erosion (Algorithm 3) is the same.
Therefore, the complexity of computing the adjacency graph and then applying morphological

operators based on iterated erosions and dilations is O(np2). As we pointed out earlier, in practice
the non binary case is more expensive, as it is closer to the worst case, than the binary one.

On the limitations of the approach. The main drawback of the approach presented in this paper
is that it is mono-scale, and therefore not well suited for images where elongated shapes appear at
very different scales. Multi-scale adaptations can be thought of, as for example by replacing the
one-scale adjacency matrix Wσ by the supremum of adjacency matrices over a range of scales Σ,
W =

∨
σ∈Σ Wσ. When processing the anisotropy image, the latter could also be replaced by an

integration of anisotropy images of different scales, for example by supremum.
Another limitation is that the method relies on an estimation of local orientations, which becomes

inaccurate when the image resolution decreases. Therefore, our approach seems more suited to high
resolution images.

Finally, so far this framework only allows processing grayscale images. While this might be
sufficient for shape analysis, it would be highly desirable to extend the framework to colour images
for the regularization and style application aspects.
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5 Conclusion

We presented in this paper in full detail an algorithm for morphological anisotropic processing of
grayscale images, which had only been briefly introduced in previous work. In the present extension,
several examples of applications, a discussion on the parameters and the release of the source code
are meant to provide a thorough understanding of the method and help users make the best of it
in practical cases as well as in methodological studies. Furthermore, besides recalling the tropical
formulation of adaptive non-flat morphological operators introduced earlier, here we added a new
theoretical contribution through the interpretation of openings in terms of paths in a graph. Finally,
we pointed out several tracks to extend and improve our approach.
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A Pseudo-code

Pseudo-code Source code Souce file
Algorithm 1, ImageToGraph() image to cocircularity graph() cocircularity graphs.cpp

ComputeAdjacencyMatrix() compute adjacency matrix() cocircularity graphs.cpp

TestAdjacency() test adjacency() cocircularity graphs.cpp

Algorithm 2, Dilation() dilate max plus symmetric() max plus operators.cpp

Algorithm 3, Erosion() erode max plus symmetric() max plus operators.cpp

Gradient() lin grad gray() structure tensors.cpp

StructureTensors0() structure tensors0() structure tensors.cpp

SmoothStructureTensors() smooth structure tensors() structure tensors.cpp

DiagonalizeStructureTensors() diagonalize structure tensors() structure tensors.cpp

GaussianBlur() gaussian filter() structure tensors.cpp

Table 1: Correspondance between pseudo-code and source code.

Algorithm 1: ImageToGraph(I, σ, p, cos α, cos β, bin)

Input: A two dimensional array I representing a grayscale image of width W and height H; a
positive real number σ representing the standard deviation of the isotropic Gaussian
kernel; a positive integer p defining a (2p+ 1)× (2p+ 1) square neighbourhood; the
cosine of an angle α ∈ [0, π

2
) representing the angular precision to relax the

co-circularity constraint; the cosine of an angle β ∈ [0, π
2
) to define the conic condition;

a boolean bin to indicate if the graph should be binary-weighted (bin = True) or
non-binary weighted (bin = False).

Output: A two dimensional array I
(σ)
a representing the anisotropy image ; a symmetric sparse

matrix W representing the adjacency matrix of the graph.
dIx, dIy ← Gradient(I); /* Compute gradient, see Appendix A. */

a0, b0, c0 ← StructureTensors0(dIx, dIy); /* Compute T0; see Eq. (18) and Appendix A. */

aσ, bσ, cσ ← SmoothStructureTensors(a0, b0, c0, σ); /* Compute Tσ; see Eq. (19) and

Appendix A. */

I
(σ)
a ,v← DiagonalizeStructureTensors(aσ, bσ, cσ); /* Anisotropy and local orientations; see

Appendix A. */

W ← ComputeAdjacencyMatrix(v, p, cos β, bin, cos α); /* Adjacency matrix. */

return I
(σ)
a ,W ;
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Function ComputeAdjacencyMatrix(v, p, cos β, bin, cos α)

Input: A list v = (vi)0≤i≤n−1 of n =W ·H unitary vectors representing the main orientations
at each pixel of a W ×H image; a positive integer p defining a (2p+ 1)× (2p+ 1)
square neighbourhood; the cosine of an angle β ∈ [0, π

2
) to define the conic condition;

a boolean bin to indicate if the graph should be binary-weighted (bin = True) or
non-binary weighted (bin = False); the cosine of an angle α ∈ [0, π

2
) representing the

angular precision to relax the co-circularity constrain (binary case, used only if
bin = True).

Output: A sparse symmetric n× n matrix W .
W ← −∞; /* Initialize all coefficients to −∞. */

for c← 0 to H− 1 do
for r ← 0 to W − 1 do

i← r ×W + c;
foreach (r′, c′) in R(ui, p) /* R(ui, p) as defined in Eq. (29). */ do

j ← r′ ×W + c′;
Wij ← TestAdjacency(ui,vi, uj,vj, cos β, bin, cos α);
Wji ← Wij;

end

end

end
return (W );

Algorithm 2: Dilation(I,W )

Input: A W ×H grayscale image I; a sparse n× n matrix W , where n =W · H.
Output: The dilated image Idil and a boolean variable change indicating if I 6= Idil

(change = True) or I = Idil (change = False)
Define T := {(i, j, w), wij = w > −∞};
Idil ← copy(I);
foreach (i, j, w) ∈ T do

(ri, ci)← (bi/Wc, i− bi/Wc);
(rj, cj)← (bj/Wc, j − bj/Wc);
if Idil[ri, ci] < I[rj, cj] + w then

Idil[ri, ci]← I[rj, cj] + w;
change = True;

end

end
return Idil, change
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Algorithm 3: Erosion(I,W )

Input: A W ×H grayscale image I; a sparse n× n matrix W , where n =W · H.
Output: The eroded image Iero and a boolean variable change indicating if I 6= Iero

(change = True) or I = Iero (change = False)
Define T := {(i, j, w), wij = w > −∞};
Iero ← copy(I);
foreach (i, j, w) ∈ T do

(ri, ci)← (bi/Wc, i− bi/Wc);
(rj, cj)← (bj/Wc, j − bj/Wc);
if Iero[ri, ci] > I[rj, cj]− w then

Iero[ri, ci]← I[rj, cj]− w;
change = True;

end

end
return Iero, change

Function TestAdjacency(u1,v1, u2,v2, cos β, bin, cos α)

Input: Two pixel positions u1 = (r1, c1) and u2 = (r2, c2) and two unitary vectors
v1 = [cos(θ1), sin(θ1)] and v2 = [cos(θ2), sin(θ2)] representing the main orientations at
pixels u1 and u2 respectively; the cosine of an angle β ∈ [0, π

2
) to define the conic

condition; a boolean bin to indicate if the graph should be binary-weighted
(bin = True) or non-binary weighted (bin = False); the cosine of an angle α ∈ [0, π

2
)

representing the angular precision to relax the co-circularity constrain (binary case,
used only if bin = True).

Output: An adjacency weight w associated to
(

(u1, θ1), (u2, θ2)
)

, as defined by Eq. (25)-(27).

w ← −∞;
d← u2−u1

||u2−u1||2 ; /* See Figure 4. */

if |d · v1| ≥ cos β /* Conic condition (Eq. (24)). */ then
v′1 ← 2(v1 · d)d− v1; /* See Figure 4. */

if bin then
resp← 1[cos α,1](|v′1 · v2|); /* Binary case. */

else
resp← |v′1 · v2|; /* Non-binary case. */

end
w ←M · log(resp); /* M being the maximal possible image intensity. */

end
return w ;
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Function Gradient(I)

Input: A two dimensional array I representing a grayscale image of width W and height H.
Output: Two arrays dIx and dIy representing the two components of the gradient ∇I at each

pixel.
/* Compute dIx */

for i← 0 to H− 1 do
dIx[i, 0]← I[i, 1]− I[i, 0] ; /* Case j = 0. */

dIx[i,W − 1]← I[i,W − 1]− I[i,W − 2] ; /* Case j =W − 1. */

for j ← 1 to W − 2 do
dIx[i, j]← 0.5× (I[i, j + 1]− I[i, j − 1]);

end

end
/* Compute dIy */

for j ← 0 to W − 1 do
dIy[0, j]← I[1, j]− I[0, j] ; /* Case i = 0. */

dIy[H− 1, j]← I[H− 1, j]− I[H− 2, j] ; /* Case i = H− 1. */

for i← 1 to H− 2 do
dIy[i, j]← 0.5× (I[i+ 1, j]− I[i− 1, j]);

end

end
return dIx, dIy;

Function StructureTensors0(dIx, dIy)

Input: Two arrays dIx and dIy representing the two components of the gradient ∇I of a
grayscale image I of width W and height H.

Output: Three arrays a0, b0 and c0 representing the components that fully determine the

2× 2 symmetric tensor T0 =

(
a0 c0

c0 b0

)
, at each pixel, as defined by Equation (18).

for i← 0 to H− 1 do
for j ← 0 to W − 1 do

a0[i, j]← dIx[i, j]
2;

b0[i, j]← dIy[i, j]
2;

c0[i, j]← dIx[i, j]× dIy[i, j];
end

end
return a0, b0, c0;
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Function SmoothStructureTensors(a0, b0, c0, σ)

Input: A positive real number σ representing the standard deviation of the isotropic
Gaussian kernel ; Three arrays a0, b0 and c0 representing the components of a 2× 2

symmetric tensor T0 =

(
a0 c0

c0 b0

)
, at each pixel.

Output: Three arrays aσ, bσ and cσ representing the components that fully determine the

2× 2 symmetric tensor Tσ =

(
aσ cσ
cσ bσ

)
as defined by Equation (19).

aσ ← GaussianBlur(a0, σ);
bσ ← GaussianBlur(b0, σ);
cσ ← GaussianBlur(c0, σ);
return aσ, bσ, cσ;

Function DiagonalizeStructureTensors(a, b, c)

Input: Three arrays a, b and c representing the components of a W ×H array T containing

2× 2 symmetric tensors T =

(
a c
c b

)
.

Output: An array Ia representing the anisotropy image associated to the input structure
tensors, as defined by Equation (22), of width W and height H; a set v of
normalized (or null) vectors corresponding to the second eigenvectors of the input
structure tensors.

for i← 0 to H− 1 do
for j ← 0 to W − 1 do

∆← (a[i, j]− b[i, j])2 + 4c[i, j]2;
Trace← a[i, j] + b[i, j];

λ1 ← 0.5× (a[i, j] + b[i, j] +
√

∆);

λ2 ← 0.5× (a[i, j] + b[i, j]−
√

∆);
if Trace = 0 then

Ia[i, j]← 0;
else

Ia[i, j]← 1− 2 λ2
Trace

;
end
x1 ← 2c[i, j];

x2 ← b[i, j]− a[i, j]−
√

∆;

norm ev ←
√
x2

1 + x2
2;

if norm ev > 0 then
vx[i, j]← x1

norm ev
;

vy[i, j]← x2
norm ev

;

else
vx[i, j]← 0;
vy[i, j]← 0;

end

end

end
return Ia,v;
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Function GaussianBlur(I, σ)

Input: A two-dimensional array I of width W and height H; a positive real number σ
representing the standard deviation of an isotropic Gaussian kernel

Output: A two dimensional array Iout representing the smoothed version of I, obtained by
convolution with the Gaussian kernel

ρ← d2σe; /* Radius that defines the size of the kernel: (2ρ+ 1)× (2ρ+ 1) */

/* Convolution along the width (rows, or x dimension) */

for i← 0 to H− 1 do
for j ← 0 to W − 1 do

sumV ← 0; /* To store the dot product between kernel and neighbourhood. */

sumK ← 0; /* To store the sum of the kernel weights. */

for k ← −ρ to ρ do
if 0 ≤ j + k ≤ W − 1 then

valK ← exp
(
− k2

2σ2

)
;

sumV ← sumV + I[i, j + k]× valK;
sumK ← sumK + valK;

end

end

IX [i, j]← sumV
sumK

;

end

end
/* Convolution along the height (colmuns, or y dimension) */

for i← 0 to H− 1 do
for j ← 0 to W − 1 do

sumV ← 0; /* To store the dot product between kernel and neighbourhood. */

sumK ← 0; /* To store the sum of the kernel weights. */

for k ← −ρ to ρ do
if 0 ≤ i+ k ≤ H − 1 then

valK ← exp
(
− k2

2σ2

)
;

sumV ← sumV + IX [i+ k, j]× valK;
sumK ← sumK + valK;

end

end

Iout[i, j]← sumV
sumK

;

end

end
return Iout;
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B Proof of Proposition 3

The proof is the direct application of the definitions of Equation (8):

γW (x)i ≥ t ⇐⇒ δW εW (x)i ≥ t ⇐⇒
∨
j∈Ni

εW (x)j + wij ≥ t

⇐⇒ ∃j ∈ Ni, εW (x)j ≥ t− wij
⇐⇒ ∃j ∈ Ni,

∧
l∈Ňj

xl − wlj ≥ t− wij
⇐⇒ ∃j ∈ Ni,∀l ∈ Ňj xl ≥ t− wij + wlj.
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