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Abstract

In this paper, we State a maximal inequality for the partial sums of strongly mix-
ing sequences of Hilbert space valued random variables. This inequality allows to dérivé
the almost sure compactness of the partial sums divided by the normalizing sequence

(nloglogn)1'2. As a conséquence, we dérivé the compact law of the iterated logarithm
under the same condition than the one required in the real case, which is known to be
essentially optimal. An application to Cramér-von Mises statistics is given.
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1 Introduction
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Having suitable upper bounds for the déviation of the maximum of partial sums of random
variables is a way to dérivé almost sure convergence results for the partial sums. For real valued
random variables, by using Bernstein blocking technique and coupling arguments allowing to
approximate the blocks by independent ones having the same law, Rio (1995, 2000) derived
some maximal inequalities which are doser to Fuk-Nagaev inequalities than to classical expo-

nential inequalities. Indeed, the upper bound dépends on the strong mixing coefficient a of the
underlying sequence and for arithmetical rates of convergence of the strong mixing coefficients,
this upper bound also decreases arithmetically. For random variables taking values in a real
separable Hilbert space (H, || • Un), Dedecker and Merlevède (2006) also used blocking techniques
and coupling arguments to get a similar upper bound than the one obtained by Rio but with
an other coefficient of dependence replacing the strong mixing one. Indeed, since the works of
Berbee (1979) and Rüschendorf (1985), we know that the price to pay for replacing the initial
dépendent sequence by an independent one having the same marginals, is exactly the value of
some dependence coefficients t having the coupling property for || • ||n (see for instance Lemma 1
in Dedecker and Merlevède (2006)). In the real case, this coupling coefficient r can be controlled
by the strong mixing one (see Remarks 2 and 3 in Dedecker and Merlevède (2006)). Unfortu-
nately if we deal with infinité dimensional spaces such a control cannot hold. As a matter of fact,
Dehling (1983) constructed examples of strongly mixing sequences of £2-valued random variables
Xk which cannot be approximated by independent random variables Yk in any useful way. By
this we mean convergence of Xk — Yk to zéro in probability. Consequently, in order to get a

Fuk-Nagaev type inequality for the maximum of the partial sums of strongly mixing random
variables with values in an infinité dimensional space, some other ideas than approximations by
independent random variables are needed. In this paper, rather than using coupling arguments,
we use a martingale approximation of blocks. Obviously, the price to pay for such a technique is
the fact that Fuk-Nagaev type inequalities for martingales are valid but only with an appropriate
control of the conditional variance. Hence compared to the method using coupling arguments,
an additional term, namely the probability of déviation of the conditional variance, has to be
controlled. However as we shall see in the section 2.2, the maximal inequality gives a suitable
upper bound to dérivé the almost sure relative compactness of the partial sums normalized by
y/n log logn which is one of the essential tool to dérivé the compact law of the iterated logarithm.
More precisely, we show that the compact law of the iterated logarithm holds for strongly mixing
sequences of Hilbert space valued random variables satisfying the same condition than the one

required by Rio (1995) in the real case, which is known to be essentially optimal. In this section,
we also provide an application to Cramér-von Mises statistics. Ail the proofs are postponed to
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Section 3.

2 Results

In this paper we deal with strongly mixing sequences of random variables defined on a probability
space (fl, .4., P), and taking their values in a real separable Hilbert space El with norm || • ||n
generated by an inner product < -, • >m- Let us first recall the définition of the strong mixing
coefficient a introduced by Rosenblatt (1956): For any two a algebras A and B, we define the
a-mixing coefficient by

a(A, B) = sup |P(j4 D B) - P(A)P(£) |.
AeA,BeB

Let (Xk, k e Z) be a sequence of random variables defined on (fl, A, P) with values in El.
This sequence will be called strongly mixing if

a(n) := supa (.M*,, Ç/fc+n) -*• 0 as n —9 oo, (2.1)
fe€z

where M.j := a(Xi,i < j) and G* cr(Xi,i > j) for j G Z.

2.1 A maximal inequality for Hilbert valued random variables
Before stating the maximal inequality proved in this paper, we shall introduce some notations.

Définition 1. For any nonnegative intégrable random variable X, define the “upper tail” quan-
tile function Qx by Qx(u) = inf {t > 0 : P (X > t) < u}. Given a real separable Hilbert space

(El, || • ||n), let (Xi)i€z be a sequence of El-valued random variables. We write (Xj) -< X if there
exists a nonnegative random variable X such that Qx > supfcgZ Quelle-
Theôrem 1. Let (El, || • ||h) be a real separable Hilbert space, Let {X^këi be a sequence of
centered random variables with values in El. Define the coefficients a(i) as in (2.1) and let
a~l(u) = )Ci>o • Let X be a nonnegative random variable such that (Xf) -< X. Let
Rx(u) = (û!_1(u) A n)Qx(u) and Hx(u) = Rff(u). Then, for any x > 0 and r > 1 and every
quantity s^ such that

[n/q]

P > jjP 51 E\\Si* ~ 56-i)9IIh .l<g<n • ^
i=l

one has that

P( sup \\Sk\\m > 4x)
l<k<n

< 4exp 8x2

2x2 f22 32x
+ n{— + —1 x rsi E

Hx(x/r)

Qx(u)du,

where h(u) := (1 + u) ln(l + u) — u.
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Remark 1. Since h(u) > wln(l + u)/2, under the notation and assumptions of the above
theorem, we get that for any x > 0 and r > 1,

( sup ||S* Un
l<k<n

>4x) < 4 , 2x2\ r/8 f 22 32x -,1 H m ) + n{ 1 g"}rs„ ) x rsz

rHx(x/r)
Qx{u)du, (2.2)

2.2 The compact law of the iterated logarithm in Hilbert space

In this section, we write Lu to dénoté log u for u > e and 1 otherwise. The function L(Lu) is
written LLu. Also for a sequence (xn) G El and K C El, we dénoté d(xn, K) = inf{||xn—y||n; y G
K} and C(xn) the set of the cluster points of (xn) (that is ail possible limit points of the sequence

(xn))•

Définition 2. A nonnegative self adjoint operator A on a separable Hilbert space El will be
called an <S(EI)-operator if it has finite trace, i.e. for some (and therefore every) orthonormal
basis (e*)/>i of El, Yli>i < ^euei >h< oo.

The following theorem shows that the compact law of the iterated logarithm holds for strongly
mixing sequences of Hilbert space valued random variables satisfying the same condition than
the one required by Rio (1995) in the real case, and which is known to be essentially optimal
according to Proposition 3 in Doukhan, Massart and Rio (1994).

Theorem 2. Let (H, || • ||h) be a real separable Hilbert space. Let (Xk)kez Is a strictly stationary
sequence of centered random variables with values in El such that E(||Ao||h) < oo. Define the
coefficients a(k) as in (2.1). Assume that the following condition is satisfied

x—\ fa^
H / Qlx0\\K(u)du< 00 • ' (2-3)
*:>i

Then the operator A defined for any x and y in H. by
OO

A(x,y) = E(< Xo,x >h< Xo,y >n) + ^^E(< Xq,x >h< Xk, y >h) (2.4)
k= 1

OO

+ ^^E(< Xq,y >h< Xk,x >h)
fc=i

is in S(El). In addition if K dénotés the unit bail of the reproducing kernel Hilbert space asso-
ciated with A, then with probability one,

lim d ( :, K ) = 0 and C f ^n........ j =J K.
»-«> \V2nLLn J \y/2nLLn)
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Remark 2. Notice that Dedecker and Merlevède (2006, Theorem 3) obtained the conclusion of
the above theorem with the absolute regular coefficient (3 replacing the strong mixing one in the
condition (2.3) (see their condition (6.5)).

Remark 3. In view of applications, we mention that the couple of conditions
OO

E(||X0||^+<5) < oo, and ^ k2^sa(k) < oo, for some ô > 0
fc=î

are sufficient for the validity of (2.3). This couple of conditions has to be compared with the
conditions required in Theorem 1 of Dehling and Philipp (1982). As a conséquence of their
resuit, they derived the conclusion of Theorem 2 under the conditions that for 0 < ô < 1 and
0 <£ < 1

E(\\XoCs) < +oo and a(n) 1 0(n“^1+£^1+2^).
Theorem 2 then shows that for arithmetic decrease of the strong mixing coefficients, the compact
law of the iterated logarithm holds without the limitation 0 < ô < 1. However, it still an open

question if the almost sure invariance principle holds under (2.3).

Example 1. Cramér-von Mises statistics. Let (AT*)^z be a strictly stationary sequence of real-
valued random variables with common distribution function F, and let ax(i) be the sequence
of strong mixing coefficients defined by (2.1) associated to the sequence (A,)ie^. Let Fn be
the empirical distribution function Fn(t) = n~l WxMt ■ Let n be a er-finite measure on R.
Suppose that F satisfies

/JR-
(F(t))2[x(dt) + (1 — F(t))2/j,(dt) < oo. (2.5)

Under this assumption, the process {t —> Fn(t) — F(t),t G R} may be viewed as a random
variable with values in the Hilbert space L2(/i). Let ||.||l2(/*) be the L2-norm with respect to /i,
and define

Dn(v) = (J |Fn(t) - F(t)\2n(dtŸ) ' = \\Fn - F||L2(m) .
When /j — dF, D^(n) is known as the Cramér-von Mises statistics, and is commonly used for
testing goodness of fit. We refer to the paper of Dedecker and Merlevède (2006, page 201) where
Dn(fji) is rewritten as the supremum of the empirical process over a particular class of functions.
We now define

F^x) = //([0, æ[) if x > 0 , F^x) = -fi([x, 0[) if x < 0 and = ^|FM(X0)|.
Let Zi = {t —> — € R} which belongs to L2(/i) as soon as (2.5) holds. Notice that
the strong mixing coefficient otz{k) associated with the sequence (Zi)iez is bounded by o.x(k).
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Also, we hâve that ||^||l2(^) < ^/|F#1(ATi)| + ’E^/\FIÂ(Xi)\. Hence applying Theorem 2 to the
variables Zi, we dérivé the following proposition:

Proposition JL. If (2.5) holds and if

r<xx{k)

Qv^vfdu < oo,
fc>i

(2.6)

then

lim sup
2LLn

almost surely, (2.7)

where p(A) is the spectral radius of A, that is p(A) = pipfâijPf < y, A(y) >H, where A is defined
by

for (f,g) in L2(/r) x L2(p), A(f,g) = ff f(s)g(t)C(s,t)iJ,(dt)iJ,(ds),
with C(s, t) = F(t A s) — F(t)F(s) + 2 Z)jfe>iOP’Q'o < i, 1* < s) — F(t)F(s)).

We would like to mention that in case where is Lipschitz, then (2.7) has been obtained by
Dedecker and Merlevède (2006) but with y/ax(k) replacing aix(k) in the condition (2.6), which
is clearly more restrictive.

3 Proofs

3.1 Proof of Theorem 1

Let q be a positive integer and M > 0. Define the random variables Ui = Siq — Siq-q for
1 < i < [:n/q]. Let

U'i = UilWiU<2qM and Uf = Uil\\ui\\n>2qM ■ (3.1)

With these notations, it is clear that Ui = U[ + Uf. Let now (Pm(%) — (læl — M)+. We first show
that

| n
sup \\Sk\\m < sup Wÿ^U-Wn + qM+ 2y2ipM(\\Xk\\m). (3.2)

l<k<n 1 <j<[n/q] M k=1

To prove (3.2), it sufïices to notice that, if the maximum of HS^Hh is obtained in k0, then for
3 o = [ko/q],

3 o 30 fco

sup ||5*;||h < || + Y2 Bill + -Y2 (3-3)l<k<n . , . , ; -,i~ “ 1=1 1=1 k=qj 0+1



53

Notice now that
ko kp

y: \\Xk\\m < (ko - qjo)M + ^ ^m(||^A:||h) • (3-4)
k=qjo+l k=qjo+l

On the other hand, using the fact that |x|l(|x| > 2A) < 2(|x| — A)+, we get that
JO JO

EK'ii»£2E ||h) •
i=l i=l

Then by convexity of the function <pqM, we dérivé that
JO gJO

^2 \\U"\\w. < 2y^</?M(||^A;||H) • (3.5)
i=1 /c=l

Starting from (3.3) and using (3.4) and (3.5), we get (3.2).
Setting now for alli > 1, — a(Xj,j < iq), we define a sequence (Ui)i> i as follows: for ail
i > 1, Ü2i-i = U'2i_x - E(C/2i_iand ^2* = ^ _ E(C72il^2(i-i)) • Notice that (£/*)*>!- is
a sequence of martingale différences with respect to ). Substituting the variables Ui to the
initial variables, in the inequality (3.2), we dérivé the following upper bound

max ||5fc||e < + max
l<fc<n 2<2j<[n/g] ■1 + max

Ih l<2j-l<[n/ç]

I [n/q]

HH

HiP4n»K ^mGI^He) • (3.6)

Since ||C/Y||h < 2qM almost surely, it follows that ||[/7;||h < 4qM almost surely. Then applying
Lemma 1 of the appendix with y .=? 2s%, we dérivé that

Pf max ||Vî/J| >x) < 2exp (-
' 2<2j'<[n/g] 11 11M ~ J ~ 8(qM)2 \ S2n J

[N/?l/2]

j,r;tP( E E(fellâl^i-i)) > 2»y • (3.7)

Now notice that

MteiJ = glMlSMW g KHMllî < ■

Then it follows that

[[n/q\/2] [[n/q]/2]

E E(lfelli|Jw-i)) I■ < p( E ■WflMM > 24). (3.8)
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Since J2i=i9]/2] Ei.\\U2iWn) < Yh=i]/2] Edl^ille) < 4‘» we clearly get from Markov’s inequality
that

{[n/q]/2] 1 [[«/<?]/2]
p( B AMbmbNWH E <3-9)

pî i=i

Then starting from (3.7) and using (3.8) and (3.9), we get that

max > Ü2
2<2j<[n/ç]llf—'

> < 2exp
8(çM):

{{n/q}/2}

E
î=i

(3.10)

Obviously similar computations allow to treat the quantity maxi<2j-i<[n/q] Z)i=i ^2i-i • Hence
we get that

1 max
\ 2<2j<[n/q] IS? + max

Ih 1<2j—l<[n/ç] I

3
MlüMIaf2xqM \

+4 È eie(iic/;iimIM((-2),) -Htsai,
n i=1

where we recall that M.k = cr(Xj,j < k). Setting := ||t/i||e — E||C//||h, we hâve that

E|E(||C/;iÊ|jM(i_2),) - E(||£/'||||
= E{E(Ai|M(i_2)9)(l(E(A|A^(i-2)9) > 0) - l(E(4|-M(i-2)9) < 0))}
= E{X(lJp^fU)5i > 0) - l(E(A|^(i-2)g)) < 0))} .

Hence using Rio’s covariance inequality (1993) and the fact that ||^4i||oo < 2 x (2qM)2, we dérivé
that

f>a(q)

MiinMIIftBBfflirm\mm\ <4/ Q\Ai\(u)du

It follows that

max
■ 2<2j<[n/q\

3 ..3

/ Ü2i\\ + maxII H l<2j-l<[n/g]

< 32(qM)2a(q).

3
_ Il N

>2z)13 IIh /

(3.11)

(3.12)

< 4 exp ( — (3'13)
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Now by using Markov’s inequality, we get that

[«/?]

53 ipK—Mi ^ 53 —

\n/q] n

<rE-1(^E||E(t/;|M((_2),)||H + 2^
i=l fc=l

Since for every * > 1, U[ = [7* — U", we get that

E||E(C/?|A'f(i_2)î)||H ^ nmUi\M(i-2)q)\\n + E||ü?'||„ ,

which implies using Inequality (3.5) that

[n/q] [n/q] n

^E||E(l7;pK(i_2)5)||„ < ^E||E(£7i|A1((_2),)||H + 2^E^Mdl^fclIn) j
i=1 i=1 k=1

Now

Next we write that

E||E([/ipW<i..2)î)||„< Y, EllEWIMi-2>«)lli
j=(i-l)q+l

EHEWIAWIIh -

= E < Xj, >M (3.14)
||E(Xj|Af„_2),)||I1

(Interpret 0/0 to be 0.)
Inequality (3.14) together with the covariance inequality stated in Lemma 2 in Merlevède,
Peligrad and Utev (1997), then entails that for ail i > 1,

*9 ra(j-(i-2)q)

E||E(üi|M(<_2),)||H < 18 53 / Qx(u)du
j=(i-l)q+l 0

< 18g / Qx{u)du.
J0

It follows that

[n/q\

EK-^IIh + 2E V’Mdl-^fc > X <
18n I Qx{u)du

(3.15)

(3.16)

4— YE<pM(\\Xk\\m)
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Then starting from (3.6), if q and M are chosen in such a way that qM < x, we dérivé from
(3.12) and (3.16) that

-(mgJI&IlKÏ4*) 1 4exp(-5^fc(^))+H^Ma(9)
+ -

18n fil
Qx(u)du-\—^E^M(ll^fcllii) • (3-17)

Now choose v = Hx (x/r), q — a. 1(v) and M — Qxiy)- Then we hâve that

çM?|= Rxiy) = Rx(Hx{x/r)) < x/r < x.

Note also that Q<pM(\\xk\\m) = sup((5||xfc||H - M,0). Then we get that
Tl 71 n\ ny

y^Etp^dlXfclDHix ' / (Q||xfc||H(w) - Qx{v))+du <n (Qx{u) - Qx{v))du. (3.18)
k=î k=îJo Jo

In addition, the choice of q implies that a(q) < v and Ma(q) < vQx(v). Hence the inequality
is obtained by taking into account (3.18) in (3.17) with the fact that qM < x/r. ■

3.2 Proof of Theorem 2

The theorem will follow from Item II of Theorem 3.1 in Kuelbs (1976) if we can prove that

1) there exists a mean zéro gaussian measure v with covariance fonction A,

2) P^iu : limsup ^nLLn = suPÿ6i<r < xi U >h ) = 1 for any i£l
and that

3) the sequence {Sn/VnLLn, n > 1} is almost surely relatively compact in H.

In what follows we prove these three points.

1) The central limit theorem in H. According to Theorem 4 in Merlevède, Peligrad and Utev
(1997), the condition (2.3) implies that the sequence n~l^Sn converges in distribution to A/"(0, A)
where the operator A € 5(JH) is defined by (2.4).

2) The LIL for the finite-dimensional laws. Since for any x G H, | < Xo,x >e | < ||^||h||-^o||h)
the condition (1.3) in Rio (1995) is satisfied under (2.3). Hence for any x G H, Theorem 2 in
Rio (1995) entails that

limn 1-Var(< Sn,x >e) = G [0,oo[ (3.19)
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and

pfio : limsup = \ _ (3.20)
' y 2nLLn '

Now from the central limit theorem in H, we get that necessarily

crx = y/A(x,x) = sup <x,y>m • (3.21)
yeK

3) The sequence {Sn/VnLLn, n > 1} is almost surely relatively compact in El. To prove this
step, we first prove that under the conditions of Theorem 2, one has that

lim sup —< üW a.s., (3.22)
n—kx> V 2\TlLIjTl

where V = E||X0||| + 2 |E < X0, X{ >m |.
Notice that if V equals to zéro then necessarily E||Xo||^ = 0 implying that for ail i, Xi ='0in

almost surely (since the variables are centered). Hence in this case (3.22) is trivial. Hence, we
assume now that V > 0.

To prove (3.22), it suffices to show that

n_1P ( sup ll-Sfellm > 8\/2VnZZn) <oo, (3.23)
feï \l<k<n J

and after to apply Borel-Cantelli Lemma (see for instance Stout (1974), Chapter 5). With this
aim, we proceed as in Rio (2000, page 89).

Notice first that by the covariance inequality stated in Lemma 2 in Merlevède, Peligrad and
Utev (1997), we get for any i > 0, that |E < XQ,Xi >H | < 18 Æ® Q^Xoy(u)du. Hence, if we
set = |i)P| YT= i |E < XhXj >h h under Condition (2.3) and by stationarity, we get that

lim n-'sl = E||Xo|Ê + 2y;|E<Xo,Xi>1H| = F>0. (3.24)n^°° m

To show (3.23), we shall apply Theorem 1 with r = 8LLn and xn = 2y/2VnLLn. Set y„j|j
xn/r = :^^/n(LLn)~1/2 and notice that Vn — x\jr. Applying Inequality (2.2) and setting
Q(u) = Q||x0||h(«), R(u) = R\\x0\Uu) and H(u) = h\\x0\\m(u)> one ëets that

y-'n-1P( sup H'S'jtllH > 8\/2VnLLn)

< 4 V'n-^1+ 2V"-j) iin + y^— (1 + ^/3’) / Q{u)du. (3.25)
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By taking into account (3.24), the first sériés in the right-hand side is obviously convergent. To
study the second one, we use (3.24) and we notice that u < H(yn) yn < R(u), then

[ Q{u)l(u < H(yn))du = V~l f Q(u)ÇY^—l(yn<R(u)Ÿ)du.
n> 1 Xn v'° | n> 1 U

Since the general term of the above sériés is équivalent to (8riVLLn)~1'2, there exists a constant
C > 0 such that: ^ ^1 [yn < R(u)) < CR{u). It follows that

n>l Sn

PQ(u)(V' (yn <B <C f R(u)Q{u)du = cy fak Q2{u)du.J« K^sn > h f^Jo
which ends the proof of (3.23), and then of (3.22).

We turn now to prove that the sequence {Sn/VnLLn, n > 1} is almost surely relatively
compact in H. With this aim, we argue as page 698 in Dehling and Philipp (1982, proof of their
theorem 1), with the help of (3.22). Let {ei,i > 1} be a complété orthonormal basis for H. We
write for each k EZ

Xk = < Xk, ei >e ej and TW(Xfc)t=g^ < Xk, §* >e ■

i> 1 i=l

Applying (3.22) to the sequence {Xk — PN{Xk),k E Z}, we get that with probability one

«~~T11 a-l(x* ~ p*(Xt))llH i
n—*oo y 2ïlLLïl

where VN = E||X0 - PN(X0)||h g^jB| |E < X0 - PN(Xo),Xi - PN(Xi) >H j. But by using
Lemma 2 in Merlevède, Peligrad and Utev (1997), we hâve that

y |E < X0 - Pn{Xo), ^ - PN(Xi) >H
i>0

< 18mm
.•sn J 0

Q\x0-Pat(^o)||h (u)du.

Noticing that for any u E [0,1], <2|*0-pn(x0)||h(u) < gfS© and that =
0, we get by using (2.3) and the Lebesgue dominated Theorem that for each p > 0 there is an

Nq(p) such that for ail N > No(p),
Vn < p.

Hence with probability one,

lim sup
XX=îPOs ~ •FW(Xfe))||H I 8 y/p- (3.26)

v2nLLn

p^j (Xjç)
Now applying again (3.22), we get that the sequence { —k=1. N-— , n > 1 > is with probabil-1 \j2nLLn >
ity one relatively compact. This fact combining with (3.26) establishes the almost sure relative
compactness of {Snj\fnLLn, n > 1}.
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4 Appendix
In this section, we state a modified version of a resuit given in Pinelis (1994, Theorem 3.4).
Lemma 1. Let (H, ||-||h) be a real separable separable Hilbert space. Let {djbe a sequence

of W-valued martingale différences with \\dj|[e < c. Set Mj = 1 dj. Then for ail x,y > 0,

p ^ *»èE(iidjiiHi'^-1) - yj - 2exp (_^(y)) ’
where h{u) := (1 + u) ln(l + u) — u.

Proof of Lemma 1. First, given A > 0, we set for ail j > 1,

ej = E(eA"^lH - 1 - A||dJ||:-:|^_i), Go = 1 and Gj = cosh(A||Mj||H)/n^1(l + et).
Now using the fact that for ail j G [1, n], IIj=1(l + ef) < II"=1(1 4- ef), we dérivé that

P [ sup ||M,-||e > < y)
< P ( sup Gj > cosh(Aa;)/n”=1(l +ej),< y J (4.1)mËË U J

Now because the function g(u) := u 2(e“ — 1 — u) for u^O, g(0) := | is increasing in u G M,
and since ||4,||h < e, we easily infer that

n?,,(l + e<) < exp (eA° j Ac ■ (4.2)
Starting from (4.1) and using (4.2), we get that

P ( sup IIMj-IIh > < y)V1^ frf J
( / | —I \

< P I sup Gj > cosh(A:r) exp ( — y x — ) J . (4.3)
\l<j<n C- J

But since (Gj,^)} is a positive supermartingale (see Pinelis (1994) page 1685), it follows from
(4.3) and the maximum inequality (see Stout (1974), page 299) that

/ n
s \ \ eAcSl — Ac

P sup||M,-||h > x,2jE(||ddlHl^-i) < y < V exv{y x â ) ■
yi<7<7i ._i J COSll^AX) C

Now the resuit follows from the fact that cosh u > e“/2 and the minimization in A.

Acknowledgments. I am indebted to J. Dedecker for the interesting discussions allowing
some improvements in this paper.
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