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Abstract

In this paper, we state a maximal inequality for the partial sums of strongly mix-
ing sequences of Hilbert space valued random variables. This inequality allows to derive
the almost sure compactness of the partial sums divided by the normalizing sequence
(nloglogn)/2. As a consequence, we derive the compact law of the iterated logarithm
under the same condition than the one required in the real case, which is known to be
essentially optimal. An application to Cramér-von Mises statistics is given.
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1 Introduction

Having suitable upper bounds for the deviation of the maximum of partial sums of random
variables is a way to derive almost sure convergence results for the partial sums. For real valued
random variables, by using Bernstein blocking technique and coupling arguments allowing to
approximate the blocks by independent ones having the same law, Rio (1995, 2000) derived
some maximal inequalities which are closer to Fuk-Nagaev inequalities than to classical expo-
nential inequalities. Indeed, the upper bound depends on the strong mixing coefficient o of the
underlying sequence and for arithmetical rates of convergence of the strong mixing coefficients,
this upper bound also decreases arithmetically. For random variables taking values in a real
separable Hilbert space (H, || - [|i), Dedecker and Merlevede (2006) also used blocking techniques
and coupling arguments to get a similar upper bound than the one obtained by Rio but with
an other coefficient of dependence replacing the strong mixing one. Indeed, since the works of
Berbee (1979) and Riischendorf (1985), we know that the price to pay for replacing the initial
dependent sequence by an independent one having the same marginals, is exactly the value of
some dependence coefficients 7 having the coupling property for || - ||z (see for instance Lemma 1
in Dedecker and Merlevede (2006)). In the real case, this coupling coefficient 7 can be controlled
by the strong mixing one (see Remarks 2 and 3 in Dedecker and Merlevede (2006)). Unfortu-
nately if we deal with infinite dimensional spaces such a control cannot hold. As a matter of fact,
Dehling (1983) constructed examples of strongly mixing sequences of £2-valued random variables
X which cannot be approximated by independent random variables Y}, in any useful way. By
this we mean convergence of X — ¥} to zero in probability. Consequently, in order to get a
Fuk-Nagaev type inequality for the maximum of the partial sums of strongly mixing random
variables with values in an infinite dimensional space, some other ideas than approximations by
independent random variables are needed. In this paper, rather than using coupling arguments,
we use a martingale approximation of blocks. Obviously, the price to pay for such a technique is
the fact that Fuk-Nagaev type inequalities for martingales are valid but only with an appropriate
control of the conditional variance. Hence compared to the method using coupling arguments,
an additional term, namely the probability of deviation of the conditional variance, has to be
controlled. However as we shall see in the section 2.2, the maximal inequality gives a suitable
upper bound to derive the almost sure relative compactness of the partial sums normalized by
v/nloglogn which is one of the essential tool to derive the compact law of the iterated logarithm.
More precisely, we show that the compact law of the iterated logarithm holds for strongly mixing
sequences of Hilbert space valued random variables satisfying the same condition than the one
required by Rio (1995) in the real case, which is known to be essentially optimal. In this section,
we also provide an application to Cramér-von Mises statistics. All the proofs are postponed to
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Section 3.

2 Results

In this paper we deal with strongly mixing sequences of random variables defined on a probability
space (2, A, P), and taking their values in a real separable Hilbert space H with norm || - ||z
generated by an inner product < -,- >pg. Let us first recall the definition of the strong mixing
coefficient o introduced by Rosenblatt (1956): For any two ¢ algebras A and B, we define the
a-mixing coefficient by

a(A,B)= sup |P(ANB)-P(A)PB)|.

AcA,BeB
Let (X, k € Z) be a sequence of random variables defined on (2, A, P) with values in H.

This sequence will be called strongly mixing if

a(n) :=supa (My,Grin) = 0as n — oo, ol)

keZ

where M; 1= ¢(X;,t < j) and G; := 0(X;,1 > j) for j € Z.

2.1 A maximal inequality for Hilbert valued random variables

Before stating the maximal inequality proved in this paper, we shall introduce some notations.

Definition 1. For any nonnegative integrable random variable X, define the “upper tail” quan-
tile function Qx by @Qx(u) = inf{t > 0: P(X > t) < u}. Given a real separable Hilbert space
(H, || - ||lm), let (Xi)iez be a sequence of H-valued random variables. We write (X;) < X if there
exists a nonnegative random variable X such that Qx > supcg Q) xy|ja-

Theorem 1. Let (H, || - |lu) be @ real separable Hilbert space, Let {Xy}rez be a sequence of
centered random variables with values in H. Define the coefficients a(i) as in (2.1) and let
o Nu) = 3,00 Lucati). Let X be a nonnegative random variable such that (X;) < X. Let
Rx(u) = (a“‘_(u) An)Qx(u) and Hx(u) = Ry (w). Then, for any x > 0 and r > 1 and every

quantity s such that
[n/q)

> max Z]EHS.Q e 1ellf»

1<q<n

one has that

5. (% e e
P( sup ||Sk|m =4z) < 4 exp( —éih ( 12 )) +n {— + —T}] Qx(u)du,
1<k<n 8x 7 0

(e rs2

where h(u) := (1 4+ ) In(1 + u) — u.
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Remark 1. Since h(u) > uIn(l + w)/2, under the notation and assumptions of the above
theorem, we get that for any z > 0 and r > 1,

9gENT® 22 895, [fHxEA
P ISl > 4) < 4 (14 2)  +n(Z+ 25 [T ouwan, @2)
n 0

2
1<k<n TS

2.2 The compact law of the iterated logarithm in Hilbert space

In this section, we write Lu to denote logu for v > e and 1 otherwise. The function L(Lu) is
written LLu. Also for a sequence (z,) € Hand K C H, we denote d(z,,, K) = inf{||z,—y|u; v €
K} and C(z,) the set of the cluster points of (z,,) (that is all possible limit points of the sequence

(n))-

Definition 2. A nonnegative self adjoint operator A on a separable Hilbert space H will be
called an S(H)-operator if it has finite trace, i.e. for some (and therefore every) orthonormal
basis (Eg)igl of H, Eizl < A61,€1 >H< 00.

The following theorem shows that the compact law of the iterated logarithm holds for strongly
mixing sequences of Hilbert space valued random variables satisfying the same condition than
the one required by Rio (1995) in the real case, and which is known to be essentially optimal
according to Proposition 3 in Doukhan, Massart and Rio (1994).

Theorem 2. Let (H, || - ||lu) be @ real separable Hilbert space. Let (Xi)rez is a strictly stationary
sequence of centered random variables with values in H such that E(|Xp||%) < co. Define the
coefficients a(k) as in (2.1). Assume that the following condition is satisfied
olk)
Qg (W) du < 00 (2.3)
k>1
Then the operator A defined for any x and y in H by

Az,y) = E(< Xo,z >u< Xo,y >n) + 3 E(< Xo,z >u< Xy, y >n) (2.4)
k=1

00
e Z]E(( X(],’y >p< Xi, T >]}¢j)

k=1

is in S(H). In addition if K denotes the unit ball of the reproducing kernel Hilbert space asso-
ciated with A, then with probability one,

Sn Sn
Imd|——— , K| =0and(C | —— | = K
e ( V2nLLn ) ( v QN‘LL'H')
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Remark 2. Notice that Dedecker and Merlevede (2006, Theorem 3) obtained the conclusion of
the above theorem with the absolute regular coefficient 3 replacing the strong mixing one in the
condition (2.3) (see their condition (6.5)).

Remark 3. In view of applications, we mention that the couple of conditions

%
E(|| Xo||3") < o0, and > k*’a(k) < oo, for some § > 0
k=1
are sufficient for the validity of (2.3). This couple of conditions has to be compared with the
conditions required in Theorem 1 of Dehling and Philipp (1982). As a consequence of their
result, they derived the conclusion of Theorem 2 under the conditions that for 0 < § < 1 and
0<e<l1
E(||Xo|3) < +00 and a(n) = O(n~0+I0+2/0))

Theorem 2 then shows that for arithmetic decrease of the strong mixing coefficients, the compact
law of the iterated logarithm holds without the limitation 0 < § < 1. However, it still an open
question if the almost sure invariance principle holds under (2.3).

Example 1. Cramér-von Mises statistics. Let (X;);ez be a strictly stationary sequence of real-
valued random variables with common distribution function F, and let ax (i) be the sequence
of strong mixing coefficients defined by (2.1) associated to the sequence (X;);ez. Let F), be
the empirical distribution function F,(f) = n~' 31 Iy,<;. Let p be a o-finite measure on R.
Suppose that F satisfies

(P@)Pu(dt) + [ (1= PO () < oo. 25)

R_ Ry

Under this assumption, the process {t — F,(t) — F(#),t € R} may be viewed as a random
variable with values in the Hilbert space L%(p). Let |||z, be the L?-norm with respect to j,

and define 1
Dali) = ( [ 1Fa(t) = POPu@0) " = I1Fo = Fluzg.

When p = dF, D2(1) is known as the Cramér-von Mises statistics, and is commonly used for
testing goodness of fit. We refer to the paper of Dedecker and Merlevede (2006, page 201) where
D,,(p) is rewritten as the supremum of the empirical process over a particular class of functions.
We now define

Fy(w) = ([0, z]) if 2.2 0, Fu(z) = —p([z,0]) if z < 0 and ¥, = +/|F.(X0)].

Let Z; = {t — Ix,<, — F(t),t € R} which belongs to L?(xt) as soon as (2.5) holds. Notice that
the strong mixing coefficient az(k) associated with the sequence (Z;);cz is bounded by ey (k).
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Also, we have that || Z;|li2q) < +/[F.(Xi)] + Ev/|F.(X;)|. Hence applying Theorem 2 to the
variables Z;, we derive the following proposition:

Proposition 1. If (2.5) holds and if

ax (k)
Z/ Qf:ﬂ(u)du < 00, (2.6)
k=10
then
lim sup —LDH(,{;) =/ p(A) almost surely, (2.7)

o0 2LLn
where p(A) is the spectral radius of A, that is p(A) = sup,.<1 < ¥, A(Y) >u, where A s defined
by

for (£.9) inL20) x L), A(F9) = [ [ £(6)9)C(s. Olatyutas)
with C(s,t) = F(t A s) — F(£)F(s) + 235, (P(Yo < £, Yi < 5) — F(£)F(s)).
We would like to mention that in case where F}, is Lipschitz, then (2.7) has been obtained by

Dedecker and Merlevede (2006) but with \/ax (k) replacing ax (k) in the condition (2.6), which

is clearly more restrictive.

3 Proofs

3.1 Proof of Theorem 1

Let g be a positive integer and M > 0. Define the random .variables U; = S;; — Sj;—, for
1 << [n/q]. Let

U: = U,:]I”fri la<2gM and U:’ = U‘r][HU.IIH>2q.’U . (31)
With these notations, it is clear that U; = U/ + U!". Let now py(x) = (|x| — M),. We first show
that

j n
sup [[Sklla < sup || D Uillu+aM +2> our([| Xelln) - (32)

1<k<n 1<i<n/el o =

To prove (3.2), it suffices to notice that, if the maximum of

Sk|lm is obtained in kp, then for

Jo = [ko/dl,
Jjo Jo ko
sup |Selle < 1) Ulllw+ > N0 Ia+ > Xl (3.3)
1< =1 = k=qjo+1
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Notice now that
ko ko

D Xkl < (ko —gio)M + > onr(l| Xills) - (34)

k=qjo+1 k=qjo+1

On the other hand, using the fact that |z|I(|z| > 24) < 2(|z| — A), we get that

_,' 0

Z Ul < 22 par (|Uillw) -

Then by convexity of the function ¢,us, we derive that

qj0

§:HVWH<QEIWHHXMH (3.5)

Starting from (3.3) and using (3.4) and (3.5), we get (3.2).

Setting now for all i > 1, FV = o(Xj,j < ig), we define a qequeuce (01')1‘.21 as follows: for all
i 21, Upiy = Uy — B(Uj;_y|FY, _yy_,) and Uy = Uy, — E(UL|FY,_,,) . Notice that ((}})@1. is
a sequence of martingale differences with respect to (F7). Substituting the variables U; to the
initial variables, in the inequality (3.2), we derive the following upper bound

J J
max || Skl < ¢M + max H E Ugi“ 4+  max ” E Us;_y '
1<k<n 2<2j<[n/q]ll £ - H 1<2j—-1<[n/q] H
= :

[n/q]

+§jHU’ U\M+2§:pu|xwm

Since ||U!||lu < 2¢M almost surely, it follows that |U;||g < 4¢M almost surely. Then applying

Lemma 1 of the appendix with y = 2s2, we derive that

n?

a2 2xqM
P(K?jlg}ri/q ZDEI” >3-) s 2 xp( ("l[}Qh( a2 ))
[ln/ql/2] .
+P( > E(|0xllEIF i) = 252). (3.7)

i=1

Now notice that

E(|02&1 Fai-1y) = B8 F5-1) — IEU| i)l < ENU G F—)

Then it follows that

[[n/q/2] > [[n/q)/2]
P( > E(|0ullflFainy) = 252) < P( §: E(|U5illfl Foizry) = 253) - (3.8)

=t
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Since Y2 g (U |2) < Sl ["""]"Q]E (|Usi]|Z) < 82, we clearly get from Markov's inequality
that

(in/q)/2) 1 [[n/ql/2)
P( Z E([|Uz: 18l F3izry) = 253 S—z Z E|E(|Us; I3l F3ti-1y) — ENUsillzal - (3.9)

i=1 i=1

Then starting from (3.7) and using (3.8) and (3.9), we get that

52 2xqM
>z) < i el
ZU“ 5) 2‘”‘"( S(qM)ﬂh( ))
|l
ta Z EE(| Uzl F3-1y) — ENUIIEl - (3.10)

i=1

( max
2<2j<[n/q]

Obviously similar computations allow to treat the quantity maxj<g;—1<(n/q) NN HH, Hence

we get that
52 2xqM
|l >2z) <4 —_ ] :
(z<%§[§m}“z HH 1<2j— 1<[n/q]“ZU2 lH r) exp( 8(gM)? 1( 52 ))
1 [n/d] ‘
+5 > EIE(||U; || M-2q) — ENU il
n o=

where we recall that M, = o(X;,j < k). Setting A; := ||U!||4 — E||U/||3, we have that
E[E(|U; Il M i-20) — E(IUS ]
= E{ (4| Mg_a0) (TE(A M) 2 0) = L(EA M) <0)) |
= B{ 4;(1E(41 Mi-2)) 2 0) — IE(AIM2) < 0) .

Hence using Rio’s covariance inequality (1993) and the fact that || A;[| < 2 x (2¢M)?, we derive
that

E[E(| U M-zq) — E(IUE] < 4 O"(E')chu)du
< 32(gM)?a(q) . (3.11)
It follows that
i i
(ocl2 P ol 2 O 2 22 51

52 2xqM 32ngM
<4 -t ) M o (313
<o (~grairt () + S M. 19



55

Now by using Markov’s inequality, we get that

[n/q)
B> Ivi- UHHHZW (1Xklln) > z)
i=3
[n/q]
w1 (3 B Ml + 23 Eom (1Xcl))
=1 k=1

Since for every 1 > 1, U/ = U; — U/, we get that
E||E(U;| M i-2)q)llm < EIE(Ui| M)l + E|UY ||a,

which implies using Inequality (3.5) that

[n/q] [n/q]
Z]E”]E (Uil Mi-230)lm < ZE”E(U [Mi—2)¢)lu + QZ]E@M (| X ll)
i=1 i=1 k=1

Now

iq
E[EUiMandlu < D  E[EX;Me_zg)llu
d={i=1)g+1

Next we write that

E[E(X;|Mi-2)¢) |l

Il

E(X;|Mi_2))
B < EX Mg, =)
< EXIM-20): 1508 Mool

& Rex E(X;|Mi-2))

e 314
7 TECK M) I )

(Interpret 0/0 to be 0.)
Inequality (3.14) together with the covariance inequality stated in Lemma 2 in Merlevede,
Peligrad and Utev (1997), then entails that for all i > 1,

i a(j—(i-2)q)
EIEUiMaq)la < 18 3 f Qx(w)du
J=(i-1)g+1
a(qg)
< 18¢ Qx(u)du. (3.15)
0
It follows that
[n/q] alg)
18n 2
P(ZHU’_U||H+2Zwu|xulm>z) < =2 [ Qx(u)du (3.16)
0

n

4
hy Z]Ew: (Xl -
R 1
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Then starting from (3.6), if ¢ and M are chosen in such a way that ¢M < x, we derive from
(3.12) and (3.16) that

i 2zqM 32ngM
P(11;1@1||Sk\|m2413) < dexp (_S(QM)zh( 2 ))+ o Ma(q)

18n (@ 4 )
i Qux (u)du + ;ZE@M(\|XK.\|H), (3.17)
2l k=1

Now choose v = Hx(z/r), g = o *(v) and M = Qx(v). Then we have that
gM = Rx(v) = Rx(Hx(z/r)) S z/r < =z.

Note also that Qu,, (1x.lx) = SUP(Qx.x — M,0). Then we get that

> Bou(IXil) = 3 [ (Qurana(®) — Qux(wadu <7 [ (@ulu) — Qx0)du. (319
k=1 k=10 0

In addition, the choice of ¢ implies that a(g) < v and Ma(g) < vQx(v). Hence the inequality
is obtained by taking into account (3.18) in (3.17) with the fact that ¢gM < x/r. B

3.2 Proof of Theorem 2
The theorem will follow from Item II of Theorem 3.1 in Kuelbs (1976) if we can prove that
1) there exists a mean zero gaussian measure v with covariance function A,

2y P(u] : lim sup % = éupyeK < z,Y>H ) =1forany z € H

and that
3) the sequence {S,/vnLLn,n > 1} is almost surely relatively compact in H.

In what follows we prove these three points.

1) The central limit theorem in H. According to Theorem 4 in Merlevede, Peligrad and Utev
(1997), the condition (2.3) implies that the sequence n="/%S,, converges in distribution to A/(0, A)
where the operator A € S(H) is defined by (2.4).

2) The LIL for the finite-dimensional laws. Since for any z € H, | < Xy, z >g | < ||z|lul|Xo|lm,
the condition (1.3) in Rio (1995) is satisfied under (2.3). Hence for any z € H, Theorem 2 in
Rio (1995) entails that

limn~'Var(< S, = >g) = o2 € [0,00] (3.19)
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and g
5 < O, T >H
]P’(w slimsup —— = ) — il 3.20
vonLIn D)
Now from the central limit theorem in H, we get that necessarily
de =~/ N2 2)=sup <29 >5. (3.21)

yeK

3) The sequence {S,/vnLLn,n > 1} is almost surely relatively compact in H. To prove this
step, we first prove that under the conditions of Theorem 2, one has that

lim sup NSulle <8VV as., (3.22)

noo V2nLLn
where V = E|| Xolf + 23,5, |E < Xo, Xi >u |.

Notice that if V' equals to zero then necessarily E|| X, (|5 = 0 implying that for all i, X; = Og
almost surely (since the variables are centered). Hence in this case (3.22) is trivial. Hence, we
assume now that V' > 0.

To prove (3.22), it suffices to show that

Z n'P ( sup ||Skllg = 8V 2VnLLn) =lcoy (3.23)
1<k<n

n=1

and after to apply Borel-Cantelli Lemma (see for instance Stout (1974), Chapter 5). With this
aim, we proceed as in Rio (2000, page 89).

Notice first that by the covariance inequality stated in Lemma 2 in Merlevéde, Peligrad and
Utev (1997), we get for any ¢ > 0, that |E < Xo, X; > | < 18 f;m ¥ xole (@)du. Hence, if we
set s2 =3 3", [E < X;, X; >u |, under Condition (2.3) and by stationarity, we get that

lim n~'s; = E| Xolli +2 ) |E < Xo, Xi >u | =V > 0. (3.24)
i>1
To show (3.23), we shall apply Theorem 1 with » = 8LLn and z, = 2v/2VnLLn. Set y, =
T — @\/ﬁ(LLn)*”z and notice that Vn = z2/r. Applying Inequality (2.2) and setting
Q(u) = Qxgpu(v), R(u) = Rjxyjs(w) and H(u) = Hjx,).(w), one gets that

Zn”P( sup ||Skllm > 8v2VnLLn)
= 1sksn

2 H{yn)
3—(1+V'—;)/ Qu)du.  (3.25)
x Sp 0

n

<43 a7l (14 fzv;—;)‘“’” Ry

n=>1 n=1
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By taking into account (3.24), the first series in the right-hand side is obviously convergent. To
study the second one, we use (3.24) and we notice that u < H(y,) <= y, < R(u), then

Zi Q(u)I(u < H(yn))du =V~ /Qu Z—]ly,,(Ru)))du.

&
Lt nz1

Since the general term of the above series is equivalent to (8nV LLn)~'/2, there exists a constant
C > 0 such that: @n(yn < R(u)) < CR(u). It follows that
n=>1 n
1 y n(k)
f Q(u)( n.'E[(yﬂ<Ru) du<C'f (u)Q(u du*(*Zf
0 751 n k>1

which ends the proof of (3.23), and then of (3.22).

We turn now to prove that the sequence {S,/vnLLn,n > 1} is almost surely relatively
compact in H. With this aim, we argue as page 698 in Dehling and Philipp (1982, proof of their
theorem 1), with the help of (3.22). Let {e;,7 > 1} be a complete orthonormal basis for H. We

write for each k € Z
N

XPZ<XL,€, >me; and Py(Xi) =Y < Xi e >mes.

i>1 i=1
Applying (3.22) to the sequence {Xj — Py (Xy), k € Z}, we get that with probability one
: | >k (X — Pr (X))l
lim su -t < 8/ Vn
Eg VanLIn
where VN = E“XU el PN{XD)H]?-][ + 22121 ‘E S XO = PN(X()),XL‘ o PN(XJ >H t But b_‘y’ using
Lemma 2 in Merlevede, Peligrad and Utev (1997), we have that

> |E < Xo — Py(Xo), X; — Px(X;) >u | < 182[ Q%o P oy (20)

i=0 20
Noticing that for any u € [0, 1], QF v, _p. (xoy (¥) < Qﬁxuuﬂ(u) and that limy_, QﬁXO—PN(XU)”M =
0, we get by using (2.3) and the Lebesgue dominated Theorem that for each p > 0 there is an
No(p) such that for all N > Ny(p),
Vv < p.
Hence with probability one,
| 2ok (Xk = Pn(Xi)) I

lim su < 8/p. 3.26
n—-:x)p \% 2nLLn i ﬁ ( )
i i 2 k=1 Prio(e) (Xi) 7T, _
Now applying again (3.22), we get that the sequence {7 n > 1} is with probabil-
( ) ¢ v2nLln .

ity one relatively compact. This fact combining with (3.26) establishes the almost sure relative
compactness of {S,/vnLLn,n > 1}.
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4 Appendix

In this section, we state a modified version of a result given in Pinelis (1994, Theorem 3.4).

Lemma 1. Let (H, ||-||u) be a real separable separable Hilbert space. Let {d;, F;};>1 be a sequence
of H-valued martingale differences with ||d;||la < c. Set M; = ¥ d;. Then for all z,y > 0,

i
P ( sup. 1M s > . Z]E I l121F5—1) < y) < 2Zexp (—C%h(—yn)) :
=1
where h(u) = (14 u)In(1 + u) — w.
Proof of Lemma 1. First, given A > 0, we set for all j > 1,
e; = E(e*M4lE — 1 — X||d;|lu|Fj-1), Go = 1 and G; = cosh(X||M;]|a)/TE_,(1 + &;) .

Now using the fact that for all j € [1,n], I_,(1 +¢;) < II%,(1 + &;), we derive that

P ( aup [|M;]|lu = =, Z]E |} ”H‘}- )

=1

1<5<n

<P ( sup G; > cosh(Ax)/TIL, (1 + e;) Z (s3] F5=1) < y) (4.1)

Now because the function g(u) := u=2(e* — 1 — u) for u # 0, g(0) = % is increasing in u € R,
and since ||d;||m < ¢, we easily infer that

e i — Bt
I, (1+€) < exp (6—22E(|dju%.|fj_l)) ' (42)

j=1

Starting from (4.1) and using (4.2), we get that

P ( stp (MGl = o ZE ld; 17 F-1) < )

=1
¢—1—Ac
< ]P’( sup G; = cosh(Azx)exp ( — Y % e—zc)) ‘ (4.3)
1<j<n ¢
But since {G;, F;} is a positive supermartingale (see Pinelis (1994) page 1685), it follows from
(4.3) and the maximum inequality (see Stout (1974), page 299) that

1 e*—1-2Xc
P sup [| M)l = I‘,ZE ldl&lF) <y | < mexp(y 5 T)

=il
Now the result follows from the fact that coshu > €*/2 and the minimization in .

Acknowledgments. I am indebted to J. Dedecker for the interesting discussions allowing
some improvements in this paper.
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