Journal Articles Journal of Robotics, Networking and Artificial Life Year : 2018

A Metaheuristic Approach for Parameter Fitting in Digital Spiking Silicon Neuron Model

Abstract

DSSN model is a qualitative neuronal model designed for efficient implementation in digital arithmetic circuit. In our previous studies, we developed automatic parameter fitting method using the differential evolution algorithm for regular and fast spiking neuron classes. In this work, we extended the method to cover low-threshold spiking and intrinsically bursting. We optimized parameters of the DSSN model in order to reproduce the reference ionic-conductance model.
No file

Dates and versions

hal-03632176 , version 1 (06-04-2022)

Identifiers

  • HAL Id : hal-03632176 , version 1

Cite

Takuya Nanami, Filippo Grassia, Takashi Kohno. A Metaheuristic Approach for Parameter Fitting in Digital Spiking Silicon Neuron Model. Journal of Robotics, Networking and Artificial Life, 2018, 5 (1), pp.32-36. ⟨hal-03632176⟩
12 View
0 Download

Share

More