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ABSTRACT 

The choice of gray gas absorption coefficient in the Rank Correlated Spectral Line Weighted-sum-of-gray-

gases (RC-SLW) model is investigated.  Several options are considered for specifying the gray gas absorption 

cross-section from the bounding supplemental absorption cross-sections, including that determined by 

inversion of the F-variable using Gauss Quadratures, the Geometric Mean of the bounding values, the 

Arithmetic Mean, and finally, a value determined from the weighting of the bounding supplemental 

absorption cross-sections using a variable f.  It is shown that an optimal value of the gray gas absorption 

coefficient can only be determined by accounting for the path length L.  However, test cases and 

theoretical confirmation reveal that the Geometric Mean of the bounding supplemental absorption cross-

sections for the gray gas absorption coefficient is the preferred method.  The Geometric Mean approach is 

also nominally twice as fast computationally as the Gauss Quadrature approach used in the original RC-SLW 

model formulation.  Therefore, this approach may be viewed as an enhancement to the model. 

 

Keywords 

Gas radiation; Rank Correlated SLW model 

 

1. INTRODUCTION TO SLW CORRELATED METHODS 

 The SLW method in its various forms, the Rank Correlated SLW method (RC-SLW), the Locally 

Correlated SLW method (LC-SLW), and the SLW Reference Approach (RA-SLW), are computationally 

efficient global methods for modelling of radiation transfer in non-uniform gaseous media.  Their 

description and detailed construction can be found elsewhere [Solovjov et al., 2017a; Solovjov et al., 2018; 

Webb et al., 2019].  The main idea behind the SLW method is representation of the continuous gas 

absorption spectrum by a histogram spectrum with just a few values of absorption coefficient (gray gas 

absorption coefficients) and their weights defined by their contribution to the total radiation transfer.  

Prediction accuracy using the model depends on the number of gray gases used. 

 Of the eight possible versions of the correlated SLW model [Solovjov et al., 2017a], it has been 

shown that only the RC-SLW spectral model does not require specification of a gas reference 

thermodynamic state for its construction.  Further, the RC-SLW model consists of the fewest steps in its 

construction.  However, it was discovered that despite the simplicity, robustness, and accuracy of the RC-

SLW model, the CPU time associated with its application is noticeably higher than that of the RA-SLW and 

LC-SLW methods [Badger et al., 2019].  Construction of the SLW models is based on application of the 
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Absorption-Line Blackbody Distribution function (ALBDF), which is calculated in advance from the high-

resolution gas absorption spectrum, and stored in tabulated form [Pearson et al., 2014]. Both the direct 

ALBDF and its inverse are used in construction of the spectral models. Inversion of the ALBDF stored in 

tabulated form using multi-linear interpolation requires about six times more CPU time than the calculation 

of the direct ALBDF. Because the RC-SLW method requires more calculations of the inverse ALBDF than 

other correlated SLW methods, the total CPU time associated with application of the RC-SLW method is 

greater. Discretization into gray gases in the RC-SLW spectral model is based on application of nodes and 

weights of Gauss-Legendre integral quadratures. The boundaries of the intervals defined by the weights 

and nodes are involved in calculating the local absorption cross-sections through inversion of the ALBDF.  

However, because the role of the quadrature weights and the nodes are different, modifications of the RC-

SLW method are explored here which reduce the number of inversions of the ALBDF, enhancing the 

computational efficiency of the RC-SLW method.  The effect of these modifications on the predictive 

accuracy is also investigated. 

 

Construction of the RC-SLW Model   

 SLW correlated methods are based on the assumption of correlated/comonotonic gas absorption 

cross-section in non-uniform medium [Webb et al., 2019].  The construction of the spectral model for the 

RC-SLW model has been described in detail elsewhere [Solovjov et al., 2017].  The details of construction of 

the original formulation of the RC-SLW model is shown graphically in Fig. 1.  The sequence of calculation 

steps for determining the gray gas absorption coefficients and corresponding gray gas weights for the RC-

SLW model may be summarized as follows: 

 

 

 

Figure 1. Construction of the original formulation of the RC-SLW model. 
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1) Define partition of the F-variable for the full range  0,1F  into supplemental reference values: 

 
0

1

0 and
j

j k

k

F F w


    (1) 

 , 1,2,...,j jF x j n    (2) 

where 0
j

x   are the positive abscissa (nodes) and , 1,2,...,
j

w j n  are the corresponding weights of 

the Gaussian-Legendre quadrature for integration over the interval  1,1 .  

2) Determine the local partition of the C-variable by inversion of the ALBDF: 

  , , , 0,1,...,loc

j j loc bC C F T j n    and   , , , 1,2,...,j j loc bC C F T j n    (3) 

3) Calculate the local gray gas coefficients:  

 , 1,2,...,loc loc

j jN Y C j n      (4)  

 where locN  is the local gas molar density. 

4) Determine the gray gas weights using the direct ALBDF at the local cross-sections 
loc

jC : 

    1, , , , , 1,2,...loc loc

j j loc loc j loc loca F C T F C T j n     (5) 

5) Finally, solve the local gray gas RTEs for the gray gas intensities Ij: 

 
 

          , 1,2,...,
j

j j j j b

I s
s I s s a s I T s j n

s
 


     

 (6) 

The total radiation intensities are then found by summation over all gray gases 
1

n

j

j

I I


 . 

 The possible modifications of the RC-SLW model explored in this study are centered on the 

determination of the gray gas absorption coefficient (or gray gas absorption cross-section) jC  outlined in 

step (2).  In principle, rather than the nodal value xj used in the Gauss-Legendre quadrature, any arbitrary 

value Fj may be chosen in the interval of supplemental values 1jF   and jF .  The corresponding gray gas 

absorption cross-section Cj is then be determined by inverting the ALBDF at this arbitrary value Fj.  

Alternatively, jC  may be chosen as some weighted average of the local supplemental absorption cross 

sections 1jC   and jC , bypassing the need to invert the ALBDF altogether.   Modifications to the original 

formulation of the RC-SLW Model are investigated through four possible approaches, outlined here. 

 

Gauss Quadrature (Original Formulation) 
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 As outlined previously, in the original formulation of the RC-SLW method, the local value of the 

gray gas absorption cross-sections 
jC  are calculated using the inverse ALBDF at the nodes of the Gaussian 

Quadratures (GQ) 
jF as 

 , ,loc

j j loc bC C F T                                                                                                                             (7) 

In the Gauss Quadrature Approach, three inversions of the ALBDF are required for each gray gases.  In 

practice, this may be reduced to two since the inversion of jF  to find 
jC  has already been done for the 

next gray gas.  The Gauss Quadrature approach will serve as the basis for comparison of the other 

modification approaches described next. 

 

Geometric Mean 

 The second approach involves calculation of the local value of the gray gas absorption cross-

sections 
jC as the Geometric Mean (GM) of the bounding supplemental local absorption cross-sections 

loc

jC which are determined at step (2) of construction of the RC-SLW spectral model  

1

loc loc

j j jC C C                                                                                                                                (8) 

The Geometric Mean approach avoids the additional inversion of the ALBDF at the nodal value xj required 

in the original Gauss Quadrature formulation of the RC-SLW model.  

 

Arithmetic Mean 

Another possible way to calculate the local values of absorption cross-sections 
jC  as the Arithmetic Mean 

(AM) of the bounding supplemental absorption cross-sections 
loc

jC  as 

 1 2loc loc

j j jC C C                                                                                                                         (9) 

Similar to the Geometric Mean approach, calculating the gray gas absorption cross-section using the 

Arithmetic Mean avoids the additional inversion of the ALBDF at nodal value xj required in the original RC-

SLW model Gauss Quadrature formulation. 

 

Variable Interval Fraction 

 One may designate an arbitrary value of Fj as a fraction f of the interval between the bounding 

supplemental ALBDFs from 1jF   to jF .   The local absorption cross-section in the corresponding range 
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1

loc loc

j j jC C C    for the entire interval of gray gas absorption cross-sections may be determined using the 

set of cross-sections m

jC   

1

loc m loc

j j jC C C   ,  0,1,...,m M    (10) 

This set of cross-sections is convenient to generate using the Variable Interval Fraction approach by a 

uniform subdivision of the gray gas interval 1j j jF F F      

 1

m

j j j j

m
F F F F

M
      (11) 

where M is the number of points in the interval subdivision, or more simply in terms of the interval fraction 

f 

 1 1

f

j j j jF F f F F       (12)                                      

For a uniform subdivision in the interval 1

loc m loc

j j jC C C   , the fraction becomes f m M .  Then the 

local absorption cross-sections of the gray gas are found using the Inverse ALBDF as 

 , ,m m

j j loc bC C F T                                                                                                                         (13) 

 , ,f f

j j loc bC C F T                                                                                                                         (14) 

This subdivision of the gray gas intervals is shown graphically in Fig. 2, where it is seen that the value of the 

local absorption cross-section 
j

C  can lie anywhere between -1

loc

j
C  and 

loc

j
C .  This defines the magnitude of 

the histogram absorption spectrum (shaded by the darkest gray in the figure).  The choice of different 

absorption cross-sections f

jC  yields a different shape of the histogram absorption spectrum in the SLW 

model construction.  The lowest values of  f

jC  (for f  0) reduce or eliminate the peaks of the spectral 

lines, giving greater weight to the wings of the spectral lines.  
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Figure 2. Partition of the local C-variable into the set of supplemental absorption cross-sections 
j

C for use 

in finding the gray gas absorption cross-section (absorption coefficient). 

 

The ALBDF variable Fj thus varies continuously in the interval as a function of the interval fraction f.  Once a 

value of the interval fraction f has been selected, the value of Fj is used in the inversion of the ALBDF to 

determine Cj.  This Variable Interval Fraction approach requires the additional inversion of the ALBDF and 

thus represents no improvement in computational efficiency relative to the original formulation of the RC-

SLW model.  However, this Variable Interval Fraction approach will permit the systematic exploration of a 

possible optimal value of the absorption cross-section.  

 

  

2. RC-SLW MODEL PREDICTIONS 

 Three test cases with large gas temperature variation are used here to compare the performance 

of the different approaches outlined in the foregoing section for evaluating the gray gas absorption cross-

section. These test cases consider both emission-dominated and absorption-dominated scenarios in the gas 

medium.  For the emission-dominated cases, the volume-average gas emission (volume-average of the 

product of the Planck mean absorption coefficient and the blackbody emission at the gas temperature) 

exceeds the volume-average gas absorption (volume-average of the product of the Planck mean absorption 

coefficient and the blackbody emission at the wall temperature), and the reverse is true for the absorption-

dominated case.  In most cases, emission-dominated scenarios are those for which the gas temperature is 

higher than that of the walls, and absorption-dominated cases are for those situations where the walls are 

hotter than then gas.   

1
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loc

jC

-1

loc

jC

 locC 

f

jC

F
0

jF 1jF 

f
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 loc bC F, ,T


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SLW spectral model
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 Consider radiative transfer in a plane-parallel layer bounded by black walls and filled with a mixture 

of water vapor and carbon dioxide (remainder nitrogen).  RC-SLW model and line-by-line benchmark 

solutions were carried out with the Multi-Layer analytical method [Solovjov and Webb, 2008] using 100 

spatial increments in the layer.  The SLW multiplication approach was used for modeling the gas mixture as 

a single gas [Solovjov et al., 2000], and the ALBDF tabulated in Pearson et al. [2014] was used.  In all test 

cases studied here, the blackbody source temperature was taken as the volume-average temperature of 

the medium, Tb = Tave.  Predictions were made for the three test cases using the Gauss Quadrature, 

Geometric Mean, Arithmetic Mean, and Variable Interval Fraction approaches for calculating the gray gas 

absorption cross-section.  Results were generated for different number of gray gases, n, in the spectral 

model, and for different values of the interval fraction f used in the Variable Interval Fraction approach. 

 The temperature and gas species mole fraction profiles for Test 1 and Test 2 are given by  

     min max min sin /T x T T T x L      (15a) 

     
2H O min max min sin /Y x Y Y Y x L     (15b) 

   
2 2CO H O 2Y x Y x   (15c) 

where the values of Tmin, Tmax, Ymin, and Ymax are specified for the test cases.  Hereafter, the Total Relative 

Error is defined as the local absolute error relative to the line-by-line benchmark solution integrated over 

the layer width, normalized by the integrated total flux divergence for the benchmark prediction. 

 

Test 1  In this test case the following of parameters are used:  L = 1 m, Tmin = 500 K, Tmax = 2000 K, 

max minT T  = 1500 K, Ymin = 0.2, max minY Y  = 0.2.  The predicted local total radiative flux divergence using 

the GQ, GM, AM, and f = 0 approaches defined above for determining the gray gas absorption coefficient 

for n = 25 gray gases is shown in Fig. 3a.  The figure also shows the line-by-line (LBL) benchmark solution.  

Figure 3b shows the dependence of the Total Relative Error on the value of interval fraction f used to 

determine the gray gas absorption coefficient for the number of gray gases ranging from n = 5 to 25, and 

Fig. 3c illustrates the dependence of the predictive accuracy on the number of gray gases for the GQ, GM, 

AM, and f = 0 approaches. 
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Figure 3.  Predictions for Test 1:  a) Total divergence of the net radiative flux for n = 25, b) Total Relative 

Error as a function of interval fraction f, and c) Total Relative Error as a function of number of gray gases n. 

 

Figure 3a reveals that all methods yield reasonable engineering accuracy in the prediction of the local 

radiative flux divergence.  Some modest error in the GQ, GM and AM predictions is noted in the center of 

the layer where the highest temperatures are found.  Quite surprisingly, the prediction for f = 0 is nearly 

indistinguishable from the line-by-line benchmark solution.    
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 Figure 3b shows generally that the Total Relative Error for all values of f decreases as the number of 

gray gases is increased.  This is to be expected, since an increase in n captures more accurately the 

variations in the gas absorption spectrum.  Figure 3b also reveals, generally, that the maximum total error 

occurs for f = 0 and f = 1, corresponding to 1j jC C   and j jC C , respectively.  A local minimum in the 

error is noted at some intermediate value of f for all values of n studied, and that intermediate value is 

observed to be approximately f < 0.4.  The value of the interval fraction f at which the total error reaches its 

minimum is dependent on the number of gray gases used, and that value of f decreases with increasing n.  

The figure shows, further, that as n is increased, the dependence of the Total Relative Error on f decreases.  

Indeed, predictions (not shown here) reveal that for n > 100 the total error is virtually independent of f.  

This is to be expected, since for n  , the RC-SLW method approaches its continuous limit given by the 

Generalized SLW model [Solovjov et al., 2016], and the difference between the bounding supplemental 

gray gas absorption coefficients vanishes 1 0j jC C   .  Therefore, the value of loc

jC   1j jC C  . 

 Figure 3c reveals that the accuracy of the approach to determining the gray gas absorption cross-

section is quite sensitive to the value of gray gas absorption coefficient in the interval 
1,j jC C

 
   used in 

the predictions.  Consistent with the results of Fig. 3a, the f = 0 predictions (for which 
1j jC C  ) in Fig. 3c 

show a decrease in error with increasing n for n < 25 gray gases.  The Total Relative Error for the Gauss 

Quadrature, Geometric Mean, and Arithmetic Mean approaches show little dependence on n for n > 8 - 10.  

The value of minimum error for n   is subject to the correlated spectrum assumption underlying the RC-

SLW method.  Also shown in Fig. 3c are predictions for n = 128 gray gases for the GQ, GM, AM, and f = 0 

approaches.  These predictions reveal that all methods for calculating the gray gas absorption cross-section 

approach the same Total Relative Error as n  .  For this test case, nearly line-by-line accuracy is achieved 

(with Total Relative Error < 1%) for f = 0 at n  2, but the error increases as n is further increased (shown by 

the data for n = 128).  This indicates that the f = 0 approach exhibits a local minimum in Total Relative Error 

with increasing n, similar to the Geometric Mean Approach (for which the minimum total error occurs for n 

 6 – 7).  Interestingly, the Geometric Mean approach yields accuracy for n  6 that rivals that of the f = 0 

approach for n = 25.  This non-monotonic dependence of total error on number of gray gases for the RC-

SLW model, particularly at low values of n, has been reported previously [Webb et al., 2018].   

 Table 1 summarizes the Total Relative Error for the four different approaches used in Test 1 with 

number of gray gases n = 5 and 25.  Consistent with the results shown in Fig. 3, the accuracy of the f = 0 

approach increases as n increases from 5 to 25 gray gases.  As noted previously, the dependence of the 

accuracy on the value of f is expected to decrease as the number gray gases increases.  Among all of the 

approaches studied for determining jC , the Arithmetic Mean approach yields generally the worst 

accuracy, with Total Relative Error that can exceed 10%.  The Geometric Mean approach yields arguably the 

best overall accuracy over the range of n explored, and is particularly accurate for a small number of gray 

gases.  The Geometric Mean approach is thus particularly attractive for engineering radiative transfer 

predictions, where a small number of gray gases would likely be employed. 

 

Table 1 
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Total Relative Error, %, for the four different approaches used in Test 1 for calculating the gray gas 

absorption coefficient, GQ, GM, AM, and f = 0. 

Approach n = 5 n = 25 n = 128 

Gaussian Quadrature 5.1 5.2 5.2 

Geometric Mean 3.4 4.8 5.1 

Arithmetic Mean 13.9 5.4 5.2 

f = 0 22.0 1.7 4.0 

 

Test 2  The second test is identical to the first with the exception that a larger gas temperature variation is 

imposed in the layer.  The following parameters are used for Test 2:  L = 1 m, Tmin = 500 K, Tmax = 2500 K, 

max minT T  = 2000 K, Ymin = 0.2, max minY Y  = 0.4.  Results are shown in Fig. 4.  The predicted local total 

radiative flux divergence using the GQ, GM, AM approaches, and the prediction with f = 0 for n = 25 is 

shown in Fig. 4a, along with the LBL solution.  Figure 4b shows the dependence of the Total Relative Error 

on the interval fraction f used to determine the gray gas absorption coefficient for a range of n, and Fig. 4c 

illustrates the dependence of the predictive accuracy on the number of gray gases for the GQ, GM, AM, and 

f = 0 approaches.  Behavior similar to that observed in Fig. 3 for Test 1 is also found in the predictions for 

Test 2, with very little increase in error despite the significantly larger imposed gas temperature difference 

in the layer.  Figure 4c again confirms that predictions for all methods (GQ, GM, AM, and f = 0) approach 

the same Total Relative Error as n increases, and that both the Geometric Mean and f = 0 approaches 

exhibit a local minimum in the total error dependence on n.   For this test case, the local minimum in error 

for f = 0 occurs for n  23 gray gases. 

 Table 2 summarizes the Total Relative Error for the four different approaches used in Test 2 with n 

= 5 and 25.  As with Test 1, and consistent with the results shown previously in Fig. 4, the zero interval 

fraction f = 0 approach yields improved accuracy as n increases (and would be expected to be entirely 

independent of f as n  ).  The agreement with the line-by-line benchmark for f = 0 is remarkable, given 

the wide variation in gas temperature.  As with Test 1, the Geometric Mean approach yields perhaps the 

best overall accuracy over the range of n explored. 

 The following general observations may be made relative to the emission-dominated cases of Test 

1 and Test 2.  It is seen that the accuracy of the prediction is sensitive to the choice of the gray gas interval 

fraction f.  For n = 5, the minimum error is obtained for an approximate value f = 0.4 in Test 1, and f = 0.35 

in Test 2. With an increase in the number of gray gases, the predictive accuracy becomes less dependent on 

the value of f.   

                  



 

 

“The Choice of Optimal Absorption Coefficient...,” by Webb et al. 11 

 

Figure 4.  Predictions for Test 2:  a) Total divergence of the net radiative flux for n = 25, b) Total Relative 

Error as a function of interval fraction f, and c) Total Relative Error as a function of number of gray gases n. 

 

The results of the foregoing tests reveal, surprisingly, that the prediction accuracy using f = 0 surpasses that 

of all other approaches, and the prediction becomes almost indistinguishable from the LBL solution at 

intermediate values of n, even for the extreme temperature difference of Test 2,  max minT T  = 2000 K.  It 

must be acknowledged, however, that this observation cannot be generalized for all possible prediction 

scenarios.   
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Table 2 

Total Relative Error, %, for the four different approaches used in Test 2 for calculating the gray gas 

absorption coefficient, GQ, GM, AM, and f = 0. 

Approach n = 5 n = 25 n = 128 

Gaussian Quadrature 7.7 7.0 7.0 

Geometric Mean 4.5 6.5 6.9 

Arithmetic Mean 14.5 7.2 7.0 

f = 0 22.3 1.9 5.7 

 

For the small number of gray gases used in practical engineering calculations, the error prediction in the 

Arithmetic Mean approach for determining the absorption cross-section is very large, and it falls with an 

increase of the number of gray gases, approaching the error found for the Gaussian Quadrature and 

Geometric Mean approaches.  Finally, the results of Tests 1 and 2 suggest that the predictive accuracy using 

the Geometric Mean approach for determining the gray gas absorption cross-section yields the best 

accuracy for a small number of gray gases, and in general, (for these test cases studied) yields more 

accurate predictions than using the more computationally costly Gauss Quadrature approach of the original 

RC-SLW model formulation for any number of gray gases. 

 

Test 3  In contrast to the previous two test cases where gas emission was dominant relative to absorption, 

Test 3 presents a case where gas absorption is dominant in the radiative transfer.  The following hyperbolic 

temperature and mole fraction profiles are imposed in the layer for Test 3: 

 
3

min max max min 2
1

2 2

T T T T x
T x

L

   
   

 
  (16a) 

  
2

3

min max max min
H O

2
1

2 2

Y Y Y Y x
Y x

L

   
   

 
  (16b) 

   
2 2CO H O 2Y x Y x ,  0 x L    (16c) 

For this test case the maximum temperature is at the boundary, x = 0.  The following parameters were used 

in Test 3:  L = 2 m, Tmin = 500 K, Tmax = 2500 K, max minT T  = 2000 K, Ymin = 0.2, Ymax = 0.4, max minY Y  = 0.2.  

Predictions are shown Fig. 5.  Unlike the trends observed for Tests 1 and 2, Fig. 5a shows that the 

predictions for Test 3 using the GQ, GM, AM, and f = 0.45 approaches using n = 25 gray gases are very close 
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to each other except at the right boundary.  Consequently, none of the approaches for choosing the gray 

gas absorption coefficient considered adds significantly to the accuracy of the conventional Gauss 

Quadrature RC-SLW prediction except for a very small number of gray gases, n.  The Total Relative Error for 

this test case, shown in Fig. 5b, is significantly higher for all approaches than for Tests 1 and 2.  The reduced 

accuracy of the RC-SLW model in general for absorption-dominated scenarios has been documented 

previously [Solovjov et al., 2017b].  As seen in Fig. 5b, the local minimum in Total Relative Error as a 

function of f appears at the same value of f ( 0.45) for all values of n.  Further, Fig. 5b shows that the total 

error is nearly independent of interval fraction f for n = 25.  Figure 5c reveals that the Total Relative Error in 

the Gauss Quadrature and f = 0.45 Test 3 predictions is nearly independent of the number of gray gases, as 

is that of the Arithmetic Mean and Geometric Mean predictions for n > 7.  The Arithmetic Mean exhibits 

the largest error and the greatest dependence on the number of gray gases. Finally, the results of Test 3 

reveal that for an increase in the number of gray gases, the influence of the choice of local absorption 

cross-section decreases.  
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Figure 5.  Predictions for Test 3:  a) Total divergence of the net radiative flux for n = 25, b) Total Relative 

Error as a function of interval fraction f, and c) Total Relative Error as a function of number of gray gases n. 

 

 Table 3 summarizes the Total Relative Error for the four different approaches used in Test 3 with n 

= 5 and 25.  In contrast to the results of Tests 1 and 2, the four different approaches yield nearly the same 

accuracy with both n = 5 and 25.  For this absorption-dominated case, it appears that no enhancement to 

the RC-SLW model accuracy can be achieved with any of the approaches for calculating the gray gas 

absorption coefficient.  The relatively poorer accuracy and generally different behavior in Test 3 compared 

to Tests 1 and 2 is centered on the dominance of local gas absorption relative to gas emission in this 
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problem.  Indeed, as stated previously, the RC-SLW model in its original formulation is also seen to yield 

somewhat reduced accuracy in this problem, which has been observed previously [Solovjov et al., 2020].   

 

Table 3 

Total Relative Error, %, for the four different approaches used in Test 3 for calculating the gray gas 

absorption coefficient, GQ, GM, AM, and f = 0.45. 

Approach n = 5 n = 25 

Gaussian Quadrature 11.2 10.0 

Geometric Mean 14.0 9.7 

Arithmetic Mean 26.2 10.1 

f = 0.45 10.6 9.9 

 

 The total CPU time for the simulations of Test 1 is shown in Fig. 6 for the Gauss Quadrature, 

Geometric Mean, and Arithmetic Mean approaches.  The CPU time for the f = 0 approach (not shown) is 

nominally the same as that for the Arithmetic Mean approach.  The CPU time results for Tests 2 and 3 are 

virtually the same as for Test 1.   

 

Figure 6.  Total CPU time Test 1 as a function of number of gray gases for the Gauss Quadrature, Geometric 

Mean, and Arithmetic Mean approaches. 
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It is noted in Fig. 6 that the computation time for the Geometric Mean and Arithmetic Mean approach is 

significantly lower than that for the Gauss Quadrature approach used in the original formulation of the RC-

SLW model.  This is the result of eliminating the need for the additional inversion of the ALBDF of the nodal 

value xj required in the original RC-SLW model formulation Gauss Quadrature approach.  As stated, the 

ALBDF inversion is one of the most computationally costly steps in the RC-SLW spectral model construction.  

Figure 6 shows that the computational savings for the Geometric Mean and Arithmetic Mean approaches is 

nearly a factor of two.  This finding is significant given that the prediction of radiation transfer is invariably 

the most computationally demanding transport solution in a coupled modeling scenario.  Thus, it appears 

that the Geometric Mean approach is preferable both from an accuracy perspective (at least for a small 

number of gray gases) and from the computation time perspective. 

 

 

3. ESTIMATING THE OPTIMAL VALUE OF THE GRAY GAS ABSORPTION COEFFICIENT 

 The results of the test cases shown in the foregoing section demonstrate generally a decrease in 

the Total Relative Error for the prediction of the radiative net flux divergence with an increase in the 

number of gray gases.  In addition, the predictions for Tests 1 and 2 reveal a reduction of the optimal 

interval fraction f with an increase of number of gray gases.  This corresponds to the minimum Total 

Relative Error in the prediction of total flux divergence, while the optimal value of interval fraction for n = 5 

is f = 0.4 in Test 1 and f = 0.35 for Test 2.  There is a theoretical foundation for these observations, which is 

now developed. 

 One can apply the Generalized SLW approach [Solovjov et al., 2016] which permits the description 

of the SLW method in terms of the absorption coefficient because the detailed analysis in terms of 

absorption cross-section is not needed in further derivation.  Using the original notation F for the 

Absorption Line Blackbody Distribution Function F-variable, 0 1F  , the partition of F into its 

supplemental values jF  for 1,2,...,j n  defines the gray gases, 1j jF F F   .  Following the usual 

construction of the RC-SLW model, the local supplemental gray gas absorption coefficients are calculated 

with the help of the inverse ALBDF at the local thermodynamic state  
2 2H O CO, , ,P T Y Y   and at some 

blackbody source temperature bT  as the value of the cumulative k-distribution function  

   , , , ,j j b j bk k F T NY C F T   , 1,2,...,j n    (17) 

The local supplemental values of the F-variable are then calculated using the ALBDF at the local 

thermodynamic state  and the local blackbody source temperature Tb = T as 

 , ,loc

j jF F C T , 1,2,...,j n   (18) 

which are used for calculation of the local gray gas weights 

1

loc loc

j j ja F F    , 1,2,...,j n     (19) 
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To complete the construction of the RC-SLW spectral model the local values of the gray gas absorption 

coefficients j  must be defined.  In the original version of the RC-SLW model, they are calculated using the 

nodes of the Gauss-Legendre quadratures jF  as 

   , , , ,j j b j bF T NY C F T     , 1,2,...,j n   (20) 

As stated previously, because this calculation requires inversion of the ALBDF, it is more computationally 

costly.  One possibility to avoid this additional inversion of the ALBDF is to calculate the gray gas absorption 

coefficients from the bounding local supplemental absorption coefficients already defined using the 

Geometric Mean approach as 

1j j j                                                                                                                                        (21)                                                                          

Consider the total transmissivity of a gas isothermal homogeneous layer of thickness L.  For simplicity, to 

avoid confusion between F and Floc and the too-frequent use of the superscript loc, one can rename the 

local values Floc as G.  To further simplify, one may omit from the notation the dependence on  and Tb in 

 , , bF T  , and use the continuous representation of the total transmissivity using the Generalized SLW 

method as [Solovjov et al., 2016]   

   
1

0

G L
L e dG





                                                                                                                             (22) 

Then the generalized SLW representation of the transmissivity is 

   

1
1

j

j

G
n

G L

j G

L e dG










    (23) 

For simplicity, one can write 

 1 1, ,j jG F C T    (24) 

 , ,j jG F C T    (25) 

Now consider the transmissivity of the jth gray gas term 

   

1

j

j

G

G L

j

G

L e dG







    (26) 

According to the Mean Value Theorem, there exists a value GL such that    

     

1

1

j

L

j

G

G L G L

j j

G

e dG G G e
 



 

      (27) 

Then 
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 

 
 

11

1
j

L

j

G

G L G L

Gj j

e e dG
G G

 



 






                                                                                                    (28) 

Now consider the graphical interpretation shown in Fig. 7.  The corresponding value of the local jth gray gas 

absorption coefficient is 

 

                         

Figure 7. The local gray gas absorption coefficient based on transmissivity of the gas layer (noting that  = 

NYC). 

 

 , ,j LG T                                                                                                                                 (29) 

Consider the gray gas transmissivity averaged over the interval 1j jG G   

       11

1 11 1

1 1
j j

jj

j j

G G
G G LG LG L

j j j jG G

e dG e e dG
G G G G

  

 

    

 


    

                                

     1

1
1

1

1
ln 1 1

G j
G G Lj

j
j j G j

G L e dG
G G

e

 


    





 
            


                                                                           (30) 

Now denote a variable   

   1

11

1
1

j

j

j

G
G G L

j j G

e dG
G G

 






  
 



   
                                                                                                     (31) 



F
0

 bF, ,T 

1

1j 

1
G

 G, ,T 

j

1jG  jG
1jF jF

LG

j

P , j

1j j ja G G  
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Following the derivation of André [2018], it is seen that with a sufficient number of gray gases (or the 

practically irrelevant case of vanishing L), the term    1jG G L  
 
   is small, and consequently, the 

value of   0.  The linear approximation near 0 can then be used, namely  ln 1     , yielding 

 
 

   

 
1

1
1

11

1

1
1

1

1

G j
G G Lj

j j
j j G jj

j

G G L e dG
G G G LG L

j j G

e dG e e
G G

 


 

    







 
        




 

    (32) 

With an increase in the number of gray gases and for moderate gas pathlengths, the difference between 

the gray gas absorption coefficients at the interval boundaries vanishes, yielding    1 0j jG G    ,  

Then, Eq. (32) reduces to  

       1

1 11 1

1
exp

j j

j j

j j

G G

G L G LG L

j j j jG G

L
e dG G dG e e

G G G G

 
 

 

 

 

 
    

   
   (33) 

This result confirms, not surprisingly, that the dependence of the optimal value LG  on the interval fraction 

f thus vanishes for n  .  This finding is consistent with the predictions for all three test cases presented 

previously (Figs. 3 – 5), where the dependence of the Total Relative Error on f was found to decrease with 

an increase in the number of gray gases.   

 The optimal value of LG  in the limit of very large path length L may also be identified.  Beginning 

with Eq. (28), the objective is to find the asymptotic limit of LG  for L  .  Normalizing the variable of 

integration, Eq. (28) may be written as 

     

1

1

1 0

1
j

L

j

G

G L G L X L

j j G

e e dG e dX
G G

  



  



 
     (34) 

The integral on the right-hand side of Eq. (34) may be written as a weighted sum (as, for example, a Lobatto 

quadrature in which the endpoint weight 0w  is not null): 

   maxmin

1

0 1

10

i

n
X LX L LL

n i

i

e dX w e w e w e
   





     (35) 

where  min 1jG    and  max jG  .  Equation (35) may be written as 

        minmax minmin

1

1
0

10 00

1 iL

n
X LLG L X L L n i

i

w w
e e dX w e e e

w w

          



 
    

 
  (36) 

Operating on the left-hand and right-hand sides of the equality in Eq. (36) by –ln (negative of the natural 

logarithm) and dividing by L yields: 

        minmax min1
min 0

10 0

1 1
1 i

n
X LLn i

L

i

w w
G ln w ln e e

L L w w

  
 

  



 
     

 
  (37) 

In the limit as L  , Eq. (37) yields 
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  minlim L
L

G 


   (38) 

Thus, for very large pathlength the optimal absorption coefficient is the minimum value in the interval  

   1L jG G   , and this limit is independent of the number of gray gases used.  This limiting behavior 

will be confirmed through alternate analysis in a section to follow. 

 

Bounds for the Optimal Gray Gas Absorption Coefficient   

 Although it was shown in the previous section that the dependence of optimal gray gas absorption 

coefficient in the interval 1j j j      on interval fraction f decreases with an increase in the number of 

gray gases n, it would be useful to identify bounds on the optimal value in this interval for finite number of 

gray gases.  Indeed, it is possible to determine theoretically the bounds on the optimal gray gas coefficient 

in this interval.  Consider the jth gray gas transmissivity of the pathlength L averaged over the interval 

1j jG G G     

   1 G LG

G

L e dG
G









    (39) 

The reordered absorption coefficient    , ,G G T    is a strictly increasing function of G  from 

 1jG   to  jG .  Therefore, for a given pathlength L   

     11 jG LG LG

G

L e dG e
G


 



 
     (40) 

This result is illustrated graphically in Fig. 8, where 
 1jG L

e
 

 is plotted a function of  and G along with the 

relevant distributions  , , bF T   and  , ,G T  .   
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Figure 8.  The bounds of the local gray gas absorption coefficients. 

 

Let LG  be the solution of the following implicit equation (which also has a unique solution) 

   LG LG L e



             (41) 

At this point it is useful to recall a mathematical statement termed Jensen’s Inequality for a convex function 

  [Råde and Westergren, 1999]  

   
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 
 
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     (42) 

The exponential function    G L
G e





  is a convex function with respect to the variable G, as seen in Fig. 

8.  Thus, for the continuous function    G L
f G e


  Jensen’s inequality yields 
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In Eq. (43), GP is the solution of the implicit equation 

   P

G

G G G dG 


     (44) 

and 

  P

G

G dG 


             (45) 

is the jth gray gas Planck mean absorption coefficient. According to the Intermediate Value Theorem, Eq. 

(45) for a monotonic function  G  has a unique solution.  Here, we designate  LG  as the value of the 

gray gas absorption coefficient which yields an exact value of the gray gas transmissivity  G L   for the 

interval 
1j jG G G   .  Then, combining Eqs. (40), (43), and (45), and taking into account the 

monotonicity of the exponential function, bounds for the optimal value of the gray gas absorption 

coefficient are obtained 

     1j L PG G G                 (46) 

Therefore, the proper choice of the gray gas absorption coefficient j  should be in the interval defined by 

the inequality of Eq. (46).  One can confirm with a representative example that the Geometric Mean 

   1GM j jG G    used to determine the gray gas absorption coefficient satisfies this criterion, but 

the Arithmetic Mean does not.  Indeed, in general,  

       1 1 / 2GM j j j j AMG G G G      
    
           (47) 

Consider the model spectrum reordered absorption coefficient  G with a log-uniform dependence on 

the variable G  typical for the real absorption coefficients 
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  

, 1j jG G G      (48) 

for which the analytical calculations can be performed.  Now, assume arbitrarily a decade increment 

between the gray gases (which is reasonably representative of actual RC-SLW calculations) 

   110j jG G     (49) 

Then the upper bound for the optimal local absorption coefficient is  
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        (50) 

and the local absorption coefficients determined with the Geometric Mean and the Arithmetic Mean are 
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     1 13.16GM j j jG G G              (51) 

     1 1/ 2 5.5AM j j jG G G    
   
          (52) 

Therefore, in this example, comparison of values in Eqs. (49) – (52) yields 

     1j GM P AM jG G G                  (53) 

This finding is significant, as it defines for the first time the bounding interval for the gray gas absorption 

coefficient that provides greatest accuracy in RC-SLW model predictions.  According to Eq. (53) the use of 

the Geometric Mean absorption coefficient GM  always falls within the bounds identified theoretically for 

the optimal gray gas coefficient.  Further, it is seen that the Arithmetic Mean Absorption coefficient AM  is 

always outside the bounds for the optimal absorption coefficient (for finite number of gray gases, since all 

approaches converge to the same gray gas absorption coefficient as n  ).  Therefore, the Geometric 

Mean GM  is the preferred choice for the local gray gas absorption coefficient in RC-SLW modeling, and the 

Arithmetic Mean AM  cannot be recommended.   

 It may also be shown from Eqs. (46) and (53) that the optimal value of the RC-SLW model gray gas 

absorption coefficient always corresponds to an interval fraction f < 0.5 in the supplemental ALBDF interval 

1jF   to jF .  These conclusions are consistent with the principal findings in the predictions of Tests 1 – 3:  i) 

The Geometric Mean approach for determining the gray gas absorption coefficient, GM , is significantly 

more accurate than the Arithmetic Mean, AM , for any number of gray gases; and ii) The optimal value of 

the gray gas absorption coefficient is always found for a fraction f < 0.5 in the interval 1jF   to jF .  In the 

next section a more precise estimate of the local absorption coefficient with respect to the optimal value 

 LG  will be explored. 

 

Relationship Between GL and the Geometric Mean   

 From Eq. (28), the value of the absorption coefficient which yields the exact jth gray gas 

transmissivity of the pathlength L is 

   
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j j G

G e dG
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





 
  

  
           (54) 

One can now denote the ratio of the maximum value to the minimum value of the absorption coefficient in 

the jth gray gas interval    1 ,j jG G 
 
 

 as 

   1j jr G G      (55) 

Then the assumed log-uniform variation Eq. (48) of the reordered absorption coefficient in this interval is 

written as 
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The Planck mean gray gas absorption coefficient from Eq. (44) is 
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One may now denote the fraction of the interval    1 ,j PG G 
 
 

 for the bounds of the exact value 

 LG  estimated by the inequality of Eq. (46) as a function of the pathlength L for different values of r as 

   
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The local gray gas absorption coefficient obtained as the Geometric Mean of the values 
1jG 
 and 

jG  is 

then  

     1 1GM j j jG G G r                 (59) 

Now let the interval fraction    1 ,j PG G 
 
 

 associated with the absorption coefficient calculated as 

the Geometric Mean of the gray gas interval boundary values be  
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                      (60) 

Note that this ratio does not depend on pathlength L.  A comparison of fL and fGM as a function of the 

pathlength L for different values of the ratio r is shown in Fig. 9. In generating this figure, values of  P
G  

were fixed for all curves.  The value of  P
G  was then determined from Eq. (57) for a given r, following 

which  j
G  was calculated from Eq. (55).  It may be noted that an increase in the number of gray gases 

corresponds to a decrease in the ratio    1j jr G G   .  As seen in Fig. 9, as L  , the variable 

interval fraction corresponding to optimal accuracy approaches f = 0, regardless of the interval fraction 

ratio r used (or alternatively, regardless of the number of gray gases used).  For more practical finite values 

of L (i.e., L neither very large nor very small), Fig. 9 shows that the Geometric Mean provides a value of the 

local gas absorption coefficient which is always within the bounds defined by Eq. (46) for any value of the 

ratio    1j jr G G   .  The value of gray gas absorption coefficient based on the Geometric Mean is 

thus always acceptable, with good accuracy confirmed by the test cases presented previously.  Further, the 

results of Fig. 9 confirm the theoretical result derived previously that that the optimal gray gas absorption 

coefficient approaches the minimum value in the interval 
1L jG G   corresponding to f = 0 as L   for 

any value of r (i.e., any number of gray gases).  However, it must be emphasized that for finite pathlengths 

of interest in most engineering problems, Fig. 9 shows that the optimal value of gray gas absorption 

coefficient depends on L.  This dependence on pathlength makes determination of the optimal gray gas 
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absorption coefficient difficult to generalize.  Because the Geometric Mean GM  always lies in the bounds 

identified for the optimal gray gas absorption coefficient, it is therefore preferable among all approaches 

explored, but cannot be considered as the choice yielding exact results for all possible scenarios.  This 

analysis also reveals that further improvement of the RC-SLW spectral model should include consideration 

of the pathlength L in determining the gray gas absorption coefficient.  Finally, note that the exact choice of 

the absorption coefficient  LG  is exact only for prediction of the gray gas transmissivity.  It is not 

necessarily the best choice for prediction of the total divergence of the net radiative flux. 

 

Figure 9.  The interval ratios Lf  and GMf  as a function of the pathlength L for different values of the ratio 

r. 

 

 As it follows from this analysis, assuming gray gas coefficients independent of L is probably not 

optimal, and further, using the minimum value 1j jC C   is only applicable for very large system physical 

lengths.  The Geometric Mean approach is the preferred method, since it provides overall the best accuracy 

at the lowest computational cost.  There remains the potential to find an optimum value of the local gray 

gas absorption coefficient for prediction of the total divergence of the net radiative flux.  
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4. CONCLUSIONS 

 The sensitivity of the choice of gray gas absorption coefficient in the Rank Correlated SLW model 

has been explored.  Several options were considered for specifying the gray gas absorption cross-section 

from the bounding supplemental absorption cross-sections, including i) that determined by inversion of the 

F-variable using Gauss Quadratures, ii) the Geometric Mean of the bounding values, iii) the Arithmetic 

Mean, and finally, iv) a value determined from the weighting of the bounding supplemental absorption 

cross-sections using a variable interval fraction f.  It is shown theoretically that an optimal value of the gray 

gas absorption coefficient can only be determined by accounting for the path length L.  However, theory 

also shows that the optimal choice of gray gas absorption coefficient is always found for an interval fraction 

f < 0.5.  Predictions for test cases presented here, confirmed by theoretical foundation, indicates that 

application of the Geometric Mean of the bounding supplemental absorption cross-sections for the gray 

gas absorption coefficient is the preferred choice for determining the absorption coefficient compared to 

the alternatives.  In general, this approach results in improved accuracy of prediction of the total 

divergence of the net radiative flux, and reduces the computation time for construction of the spectral 

model by a nominal factor of two.  The Geometric Mean approach can therefore be considered as an 

enhancement of the original RC-SLW model formulation.  Finally, it is found that for finite number of gray 

gases, the use of the Arithmetic Mean for calculating the gray gas absorption coefficient is outside the 

bounds of optimal gray gas absorption coefficient, leading to inaccuracies in the prediction of the local flux 

divergence.  Therefore, the Arithmetic Mean approach is not recommended for use. 
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