## **Supporting information**

## Alteration of Birnessite Reactivity in Dynamic Anoxic/Oxic Environments

Qinzhi Li<sup>a</sup>, Dieter Schild<sup>b</sup>, Mathieu Pasturel<sup>c</sup>, Johannes Lützenkirchen<sup>b</sup> and Khalil Hanna<sup>a,d,\*</sup>

<sup>a</sup>Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR6226, F-35000 Rennes, France <sup>b</sup>Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), P.O. Box 3640,

<sup>c</sup>Univ. Rennes, CNRS, ISCR – UMR 6226, F-35000, Rennes, France

D-76021 Karlsruhe, Germany.

<sup>d</sup>Institut Universitaire de France (IUF), MESRI, 1 rue Descartes, 75231 Paris, France.

\*Corresponding author: K Hanna, +33 2 23 23 80 27; khalil.hanna@ensc-rennes.fr

**Table S1.** Atomic concentrations by XPS survey scans for pristine birnessite and samples after reacted with OFL and different Mn(II) concentrations. 345  $\mu$ M acid birnessite; 10  $\mu$ M OFL; 10 mM NaCl; 0, 50, 200  $\mu$ M Mn(II); 48 h reaction time; pH 8 (± 0.1).

|                      | C (%) | O (%) | Mn (%) | K (%) | N (%) | Na (%) |
|----------------------|-------|-------|--------|-------|-------|--------|
| Acid birnessite      | 27.3  | 44.9  | 20.9   | 6.9   | BDL   | BDL    |
| $N_2_0 \mu M Mn(II)$ | 27.6  | 44.6  | 20.4   | 7.0   | 0.5   | BDL    |
| O2_0µM Mn(II)        | 24.3  | 43.3  | 17.5   | 6.1   | BDL   | 8.7    |
| N2_50µM Mn(II)       | 21.3  | 49.5  | 23.1   | 5.4   | BDL   | 0.7    |
| O2_50µM Mn(II)       | 24.6  | 44.6  | 24.6   | 6.2   | BDL   | BDL    |
| N2_200µM Mn(II)      | 20.9  | 52.6  | 26.5   | BDL   | BDL   | BDL    |
| O2_200µM Mn(II)      | 21.2  | 50.5  | 28.3   | BDL   | BDL   | BDL    |

BDL: below the detection limit (0.1%).

**Table S2.** Mn  $2p_{3/2}$  XPS fitted parameters for pristine birnessite and samples after reacted with OFL and different Mn(II) concentrations. 345  $\mu$ M acid birnessite; 10  $\mu$ M OFL; 10 mM NaCl; 0, 50, 200  $\mu$ M Mn(II); 48 h reaction time; pH 8 (± 0.1).

| Sample  |                     | Acid<br>birnessite | 0μM Mn(II)<br>N2 | 0μM Mn(II)<br>O2 | 50µM Mn(II)<br>N2 | 50µM Mn(II)<br>O2 | 200µM Mn(II)<br>N2 | 200µM Mn(II)<br>O2 |
|---------|---------------------|--------------------|------------------|------------------|-------------------|-------------------|--------------------|--------------------|
|         | AOS                 | 3.87               | 3.70             | 3.65             | 3.63              | 3.60              | 3.40               | 3.33               |
| Mn(II)  | Binding energy (eV) | 640.1              | 640.3            | 640.4            | 640.7             | 640.9             | 641.1              | 641.4              |
|         | Area (%)            | 1.0                | 6.4              | 5.5              | 6.9               | 5.6               | 17.5               | 9.2                |
| Mn(III) | Binding energy (eV) | 642.4              | 642.3            | 642.3            | 642.4             | 642.4             | 642.1              | 642.3              |
|         | Area (%)            | 10.7               | 16.8             | 24.3             | 23.1              | 29.6              | 25.0               | 48.4               |
| Mn(IV)  | Binding energy (eV) | 643.0              | 643.0            | 643.0            | 643.1             | 643.1             | 642.6              | 643.0              |
|         | Area (%)            | 88.3               | 76.8             | 70.2             | 70.0              | 64.8              | 57.5               | 42.4               |

**Table S3.** O 1s XPS fitted parameters for pristine birnessite and samples after reacted with OFL and different Mn(II) concentrations. 345  $\mu$ M acid birnessite; 10  $\mu$ M OFL; 10 mM NaCl; 0, 50, 200  $\mu$ M Mn(II); 48h reaction time; pH 8 (± 0.1).

|                   | Sample              | Acid<br>birnessite | 0μM Mn(II)<br>N2 | 0μM Mn(II)<br>O2 | 50µM Mn(II)<br>N2 | 50µM Mn(II)<br>O2 | 200µM Mn(II)<br>N2 | 200µM Mn(II)<br>O2 |
|-------------------|---------------------|--------------------|------------------|------------------|-------------------|-------------------|--------------------|--------------------|
| Olatt             | Binding energy (eV) | 530.2              | 530.1            | 530.0            | 530.1             | 530.1             | 529.8              | 530.0              |
|                   | Area (%)            | 87.5               | 88.5             | 90.1             | 88.4              | 87.3              | 49.5               | 65.2               |
| O <sub>ads</sub>  | Binding energy (eV) | 531.7              | 531.5            | 531.5            | 531.5             | 531.6             | 531.0              | 531.1              |
|                   | Area (%)            | 10.0               | 8.3              | 7.0              | 8.7               | 9.0               | 37.8               | 26.9               |
| O <sub>surf</sub> | Binding energy (eV) | 532.7              | 532.6            | 532.7            | 532.6             | 532.6             | 531.9              | 532.2              |
|                   | Area (%)            | 2.5                | 3.2              | 2.9              | 2.9               | 3.7               | 12.7               | 7.9                |



Figure S1. XRD and SEM images of the synthesized birnessite.



Figure S2. Zeta potential of acid birnessite samples.  $MnO_2 = 0.2 \text{ g L}^{-1}$  (2.3 mM); I = 0.1, 0.01, 0.001 M NaCl.



Figure S3. Fitting of Mn 2p<sub>3/2</sub> XPS high resolution spectra of the synthesized acid birnessite.



**Figure S4.** Removal kinetics of OFL at three pH values 4.0, 6.0, 8.0 ( $\pm$  0.1), and three MnO<sub>2</sub> concentration: 173, 345, 870  $\mu$ M (or 15, 30, 75.6 mg/L); 10  $\mu$ M OFL; 10 mM NaCl; under anoxic (N<sub>2</sub>) and oxic (O<sub>2</sub>) conditions.



**Figure S5.** (a) Chemical speciation of OFL *vs* pH. (b)  $pK_{as}$  of OFL ( $pK_{a,1} = 6.08$  and  $pK_{a,2} = 8.25$ ) at infinite dilution were obtained from conditional  $pK_a$  values and the Davies equation. 10 mM NaCl.



**Figure S6.** Proposed oxidation pathway of OFL as analyzed by LC/MS. Product of m/z = 279 was classified as the M-69 because of its structural similarity to the M-69 product of CIP (Zhang and Huang, 2005).



**Figure S7.** Removal kinetics of OFL in the presence of oxygen and ethanol at pH 8 ( $\pm$  0.1). 345  $\mu$ M acid birnessite; 10  $\mu$ M OFL; 10 mM NaCl; 10 mM ethanol.



**Figure S8.** Removal kinetics of pipemidic acid (PIP) under oxic and anoxic conditions at pH 8 ( $\pm$  0.1). 20  $\mu$ M PIP; 870  $\mu$ M acid birnessite; 10 mM NaCl; 0,100  $\mu$ M Mn(II); 48 h. The R represents the Mn(II)/MnO<sub>2</sub> molar ratio.



**Figure S9.** UV-Vis spectra during reaction under anoxic and oxic conditions at pH 8 ( $\pm$  0.1). 345  $\mu$ M acid birnessite;10  $\mu$ M OFL;10 mM NaCl; 200  $\mu$ M Mn(II); 1 mM sodium pyrophosphate.



**Figure S10.** Fitting of O 1s XPS high resolution spectra of pristine  $MnO_2$  and samples treated with Mn(II) and OFL under oxic and anoxic condition. The R represents the  $Mn(II)/MnO_2$  molar ratio. 345  $\mu$ M acid birnessite; 10  $\mu$ M OFL; 10 mM NaCl; 0, 50, 200  $\mu$ M Mn(II); 48 h reaction time; pH 8 (±0.1).



Figure S11. SEM images for samples after reaction with OFL and different Mn(II) concentrations. 345  $\mu$ M acid birnessite; 10  $\mu$ M OFL; 10 mM NaCl; 50, 200  $\mu$ M Mn(II); 48 h reaction time; pH 8 (±0.1).

## References

Zhang, H., Huang, C., 2005. Oxidative Transformation of Fluoroquinolone Antibacterial Agents and Structurally Related Amines by Manganese Oxide. Environ. Sci. Technol. 39, 4474-4483.