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ABSTRACT

This paper addresses the problem of source detection in
unknown chemical mixtures in the context of multimodal
measurements of spectral data. The proposed approaches
are based on supervised linear spectral unmixing under non-
negativity and sparsity constraints with adapted variants of
the orthogonal matching pursuit algorithm. Two detection
strategies are introduced: fusion of independent unimodal
detection results and fusion by a joint multimodal decom-
position and detection. Results are evaluated using a real
database of ion mobility mass spectrometry (IMMS) data.
A significant increase of the detection accuracy is obtained
using the joint decomposition based decision as compared to
the single modality detection results.

Index Terms— multimodal supervided spectral unmix-
ing, joint sparse recovery, signal separation, chemical mixture
analysis

1. INTRODUCTION

Source detection from spectral data is a signal process-
ing problem encountered in several applications of physi-
cal sensing. Typical examples include chemical substance
analysis [1] and hyperspectral imaging [2]. Single source
identification has been extensively studied and successfully
applied in various fields [3]. In the context of signal detec-
tion from spectral measurements, existing approaches are
mainly based on a spectral matching between the observed
data and the available library of known sources [4, 5]. Other
approaches explore a large amount of mixture data to iden-
tify the discriminant features that could be used by a binary
classifier [6]. However, in several chemical sensing applica-
tions, the measured data are assumed to be a linear mixture of
several sources and the most challenging problem lies in the
identification of the entire set of sources which are present in
the considered mixture [7, 8].

Multivariate analysis methods [9] and blind source sep-
aration algorithms has been already applied for this pur-
pose [10]. These techniques perform a joint estimation of the
source signals and their relative abundances in the mixture
data. However, defining the actual number of sources and

linking the estimated sources to meaningful physical com-
ponents may not be successful in all situations. The present
work proposes to narrow down the identification problem by
recording directly the set of target source spectra in order to
focus on the detection. The proposed processing pipeline is
therefore based on supervised regression techniques under
the constraint of non-negativity. The estimated mixing coeffi-
cients are then used by a binary classifier to deduce the subset
of the more likely present sources.

In the case where several mixture data, composed by the
same sources, are available it has proven useful to jointly pro-
cess these data using the multiple measurement formulation
of sparse recovery problem [11] or the simultaneous orthog-
onal matching algorithm (S-OMP) [12]. These studies focus
on the case where all the measurements are acquired using
the same modality and can be gathered in a single matrix with
a joint row sparsity hypothesis. This paper however is con-
cerned with the application cases where both the mixture and
the sources are observed with multiple measurement modali-
ties thus yielding multiple heterogeneous data. It is obviously
assumed that taking advantage of several modalities will im-
prove detection as it is the case with multiple measurement
from a single modality. However, existing methods have yet
to be adapted to take in account multimodality. The challenge
is to find an adequate fusion strategy to obtain accurate detec-
tion of the entire set of sources.

In that respect, the main concern of this paper is to pro-
pose two fusion strategies. The first strategy consists in in-
dependent processing of each modality data and fusion of the
detection using a voting scheme. The second adopted strat-
egy is to perform a joint sparse unmixing using a multimodal
greedy algorithm.

2. PROBLEM STATEMENT

Let us consider the case where L independent measurement
modalities are available. The measurement vector of the mix-
ture in the l-th modality is noted y(l) ∈ RMl , where Ml is the
length of the data vector in the l-th modality. The K spec-
tral sources are gathered in matrix S(l) =

[
s
(l)
1 , ..., s

(L)
K

]
∈

RMl×K . The measurement model is assumed to be a linear



mixing:

y(l) =

K∑
i=1

a
(l)
k s

(l)
k = S(l)a(l), (1)

where each mixing coefficient a(l)k depends on the abundance
of the k-th source in the mixture and on the sensitivity of the
l-th measurement modality to this source. Moreover, the mix-
ing coefficient vectors a(l) =

[
a
(l)
1 , ..., alK

]T
, for l = 1, ..., L

are linearly independent.
By assuming a dictionary of N > K known sources, the

identification of the sources which are present in the mixture
is achieved using a two step approach. In a first step, a spectral
unmixing is performed under the constraint of non-negativity
and sparsity [13, 14]. The estimated mixing coefficients are
then used in a second step to detect the sources which are
present in the mixture. The estimation of the mixing coeffi-
cients a(l) in each measurement modality, under the Gaussian
noise hypothesis, is performed according to:

â(l) = arg min
a(l)∈C

‖y(l) − S(l)a(l)‖22, for l = 1, . . . , L, (2)

where C denotes the constraint set on the coefficients and
S(l) ∈ RMl×N . In order to perform a joint estimation of
the mixing coefficients and the detection vectors, a greedy
algorithm, the non-negative orthogonal matching pursuit
(NNOMP), is used hereafter [15] and we propose its exten-
sion to the case of multimodal data, either by adding a fusion
stage after the decomposition in each modality or during the
source selection step in the joint multimodal decomposition.

The estimated set of non-zero mixing coefficients in the
different modalities are then used to retrieve the detection
vector d = [d1, ..., dN ]T ∈ {0, 1}N where for i = 1, ..., N ,
di = 1 when the source i is estimated present in the mixture
and di = 0 otherwise.

3. MULTIMODAL DECISION FUSION

The proposed detection pipeline consists in firstly performing
a sparse spectral unmixing, in each modality independently,
under the constraint of non-negativity by using a greedy ap-
proach. Then, the resulting detection vectors d(l) correspond-
ing to the detected sources in different modalities are fused
using a decision fusion scheme based on a multiple voting
strategy.

3.1. Step 1: single modality spectral unmixing

Sparse spectral unmixing is performed using a greedy ap-
proach based the non-negative matching pursuit algorithm [16,
15]. The inputs of this algorithm are the measurement vec-
tor y(l) ∈ RMl , the source matrix s(l) ∈ RMl×N and
K, the expected number of sources (sparsity level). The
outputs after K iterations are: the list of detected sources,
Γ
(l)
K ⊂ {1, ..., N}, their mixing coefficients a

(l)
K ∈ RK and

the decomposition residual r(l)K ∈ RMl .
The NNOMP procedure is initialized with the initial support
Γ
(l)
0 = {∅}, r(l)0 = y(l) and the set of candidate sources

Λ
(l)
0 = {1, ..., N}. Each iteration k = 1, . . . ,K proceeds

with four steps:

1. Detection of the index of the source the mostly corre-
lated to the current residual according to:

p
(l)
k = arg max

j∈Λ(l)
k

〈
s
(l)
j , r

(l)
k

〉
, (3)

where 〈·, ·〉 denotes the scalar product.

2. Incorporation of the detected source index p(l)k in Γ
(l)
k−1

and its removal from Λ
(l)
k .

3. Estimation of the mixing coefficients of the detected
sources:

â
(l)
k = min

a≥0
‖y(l) − F

(l)
k a‖22 (4)

where F (l)
k is the matrix formed by the selected sources

(columns of indexes Γ(l)
k in S(l)). This minimization is

performed using the NNLS algorithm [17].

4. Update of the residual according to:

r
(l)
k+1 = y(l) − F

(l)
k â

(l)
k (5)

This iterative process is run until the identification of K
sources. It can also be stopped when adding a new source
does not yield a sufficient decrease of the relative residual
norm:

‖rk‖ − ‖rk+1‖
‖|rk‖

< ε, (6)

where ε > 0. This stopping rule allows an unsupervised as-
sessment of the source number. Finally, the detection vec-
tor d(l) in each modality is obtained from the list of selected
atoms:

∀i ∈ {1, . . . , N}, d
(l)
i =

{
1 if i ∈ Γ

(l)
K

0 otherwise
(7)

3.2. Step 2: decision fusion by majority voting

Fusion at the decision level is subsequently obtained by us-
ing a Majority Voting (MV) scheme [18, 19]. Given the L
detection vectors d(1), ...,d(L) obtained using the method de-
scribed above 3.1, a voting score v is defined as:

v =
1

L

L∑
l=1

d(l), (8)

The fused detection vector is then obtained by:

∀i ∈ {1, ..., N}, dfus
i =

{
1 if vi ≥ 1

2

0 otherwise
(9)



More sophisticated fusion approaches of decision fusion [20,
21] can also be envisaged to account for the detection relia-
bility in each measurement modality.

4. FUSION BY JOINT MULTIMODAL UNMIXING

The sparse multimodal unmixing aims at jointly recovering
a set of mixing coefficients vectors {a(l) ∈ RN , l ∈, ..., L}
solution to the set of problems:

a(l) = arg min
a∈ΓK

‖y(l) − S(l)a‖22 for l = 1, . . . , L.

where ΓK corresponds to the set defined by the K detected
sources. Consequently:

ΓK ,

{
i ∈ {1, ..., N};∃l ∈ {1, ..., L}, a(l)i 6= 0

}
. (10)

It can be highlighted here that the main difference with the
single modality spectral unmixing is that the list of selected
sources is common to all measurement modalities. The esti-
mation of this list can also be performed using a greedy ap-
proach similar to the case of the MMV formulation of the
non-negative sparse recovery [12, 22]. However, since the
decomposition is performed on measurement data acquired
in different modalities, and hence different dictionaries, an
adaptation of the source selection strategy is proposed.

The main steps of the joint unmixing algorithm:

1. In order to select the same source for all the modalities
at each iteration, a global correlation criterion is com-
puted according to:

J
(
S

(1)
k , . . . ,S

(l)
k

)
,

L∑
l=1

αkl max
{〈

s
(l)
j , r

(l)
k

〉
, 0
}
,

(11)
where the weighting coefficients αkl allow to control
the balance between the correlation measures in differ-
ent measurement modalities. A simple weighting strat-
egy would be to choose these weights according to

αkl =
1∥∥r(l)k

∥∥ .
Alternately, to the original S-NNOMP approach, these
coefficients combine normalized correlation scores in
different modalities which is not affected by the differ-
ent scaling of the data in the measurement modalities.
This method is referred to as Multimodal Non-negative
OMP (MM-NNOMP). A possible extension of the ap-
proach would concern the search of the optimal set of
weights allowing to optimize the detection accuracy.

2. Once the index of the mostly correlated source across
all modalities is identified, the estimation of the mixing

coefficients of the selected sources {F (1)
k , ...,F

(L)
k }

such that ∀ l ∈ {1, ..., L}, F (l)
k = {S(l)

j ; j ∈ Γk}, is
performed using the NNLS algorithm.

3. The residual vector in each modality is updated as in
Equation (5).

4. The average relative variation of the residual norm is
used as a stopping criterion of the iterative process:

1

L

L∑
m=1

∣∣||r(m)
k || − ||r(m)

k+1||
∣∣

||r(m)
k ||

< ε. (12)

Finally, the detection vector dfus is obtained in the same
way as in Equation (7).

5. EXPERIMENTAL RESULTS

A real database of 85 lubricant mixtures containing between
5 an 7 components randomly taken from a set of 20 chemi-
cal components has been designed. The abundance of each
source is taken randomly. The spectral mixture data are ac-
quired using an ion mobility mass spectrometer [23]. This
device records spectral measurements of ion mobility spec-
tra, mass spectra with two ionization mode modes: positive
(POS) and negative (NEG). Therefore, four one-dimensional
spectra have been recorded for each mixture and each source.
Those modalities are called hereafter M1, M2, M3 and M4,
corresponding to positive and negative mass spectra and pos-
itive and negative ion mobility spectra, respectively. Figure 1
illustrates the spectra of one source in the four modalities.

Fig. 1. Source C16 in the four measurement modalities.



5.1. Analysis of the detection accuracy

Figure 2 shows the Receiver Operating Characteristic (ROC)
of the detection in the four modalities and for both fusion
strategies. It has been obtained for different predefined val-
ues of K ∈ {1, ..., N}.

Fig. 2. Comparison of unidimensional OMP vs. fusion meth-
ods for predefined number of iterations

It can be noted that the MM-NNOMP outperforms all the
single modalities as well as the voting scheme strategy. The
best accuracy reached by the MM-NNOMP method has been
obtained for K = 6 which is very close to the average value
of the number of components in the mixtures (K̄ = 5.72 com-
ponents). For each modality, the value of K giving the best
detection accuracy are shown in Table 1. The detection ac-
curacy of the joint unmixing is better than the fusion of the
independent detection in the different modalities.

Table 1. Performance for optimal values of K
M1 M2 M3 M4 MM MV

K 6 7 8 8 6 6
acc (%) 77.6 79.5 66.1 67.0 81.4 80.5

5.2. Estimation of the number of sources

In real applications, the number of sources present in the mix-
ture is generally unknown. The detection algorithms therefore
need an automated value of the stopping threshold ε allowing
the estimation of the number of components. Each method
has been run for different values of ε in the range of [0, 1]
and the corresponding ROC curves are reported in Figure 3.
Once again, one can notice that the joint unmixing leads to the
best performance. Moreover, the area under curve (AUC) of
the MM-NNOMP approach controlled by the relative residual
norm is higher than when the algorithm is controlled by the
number of components.

Fig. 3. Comparison of unidimensional OMP vs fusion meth-
ods with relative residual norm convergence criterion

For each method, the optimal value of ε corresponds to
the ROC curve point which is the closest to the ideal point
(1,0). The corresponding accuracy and the average number of
detected sources are shown in Table 2. Adopting the relative
residual norm variation as a stopping criterion leads to a better
estimation of the source number. This stopping strategy is
adequate for automated estimation of the unknown number of
sources.

Table 2. Performance for optimal values of ε
M1 M2 M3 M4 MM

εopt 10−4 10−5 9 · 10−6 2 · 10−6 8 · 10−3

Kaverage 5.87 5.33 6.79 6.65 5.55
acc (%) 74.4 81.0 66.5 69.7 81.4

6. CONCLUSION

Two strategies for multimodal supervised mixture analysis
have been proposed in this work. The joint spectral unmix-
ing method (MM-NNOMP) was found to lead to better de-
tection performance as compared to the decision fusion ap-
proach using majority voting scheme. It was shown that ac-
counting for the multimodality outperformed the best of the
unimodal detection schemes and therefore was able to take
advantage from the complementarity of the multiple measure-
ments. Subsequent tuning of the stopping criterion of the
greedy algorithm allowed a successful automated detection
of the number of components. Future work will be directed
at setting optimized tuning multimodal source selection crite-
rion involved in the MM-NNOMP, the proposal of adapted
weighted majority voting schemes for the detection fusion
and a complete comparison with respect to alternative ap-
proaches of source detection in spectral mixtures, including
more recent approaches based on deep neural networks.
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