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Single-file transport, where particles diffuse in narrow channels while not overtaking each other,
is a fundamental model for the tracer subdiffusion observed in confined systems, such as zeolites
or carbon nanotubes. This anomalous behavior originates from strong bath-tracer correlations in
1D, which, despite extensive effort, have however remained elusive, because they involve an infinite
hierarchy of equations. Here, for the Symmetric Exclusion Process, a paradigmatic model of single-file
diffusion, we break the hierarchy and unveil a closed exact equation satisfied by these correlations,
which we solve. Beyond quantifying the correlations, the central role of this key equation as a novel
tool for interacting particle systems is further demonstrated by showing that it applies to out-of
equilibrium situations, other observables and other representative single-file systems.

INTRODUCTION

Single-file transport, where particles diffuse in narrow
channels with the constraint that they cannot bypass each
other, is a fundamental model [1, 2] for tracer subdiffusion
in confined systems. The very fact that the initial order is
maintained at all times leads to the subdiffusive behavior
⟨X2

t ⟩ ∝
√
t of the position of a tracer particle (TP) [3], in

constrast with the regular diffusion scaling ⟨X2
t ⟩ ∝ t. This

theoretical prediction has been experimentally observed by
microrheology in zeolites, transport of confined colloidal
particles, or dipolar spheres in circular channels [4–6].

The Symmetric Exclusion Process (SEP) is an essential
model of single-file diffusion. Particles, present at a den-
sity ρ, perform symmetric continuous-time random walks
on a one-dimensional infinite lattice with unit jump rate,
and with the hard-core constraint that there is at most
one particle per site (Fig. 1(a)). The SEP has become a
paradigmatic model of statistical physics and it has gen-
erated a huge number of works in the mathematical and
physical literature (see, e.g., Refs. [1, 2, 7, 8]). A major
recent advance has been achieved with the calculation
of the large deviation function of the position Xt of a
tracer in the long time limit [9, 10]. It gives access to all
the long-time cumulants of Xt, which are in particular
found to behave anomalously as

√
t [9, 11]. Similarly,

the cumulants of the time integrated current through the
origin Qt have been shown to also scale as

√
t, and the

large deviation function has been determined [8].
This collection of anomalous behaviors in the SEP orig-

inates from the strong spatial correlations in the single-
file geometry, which makes them determining quantities.
Even if this has been recognized qualitatively for long and
that the case of dense and dilute limits have been recently
studied [12], up to now there is no quantitative determi-
nation of the bath-tracer correlations at arbitrary density,

despite extensive effort. Indeed, although the SEP has
been studied for more than 40 years, analytic formulas
for these functions are still missing. The calculation of
these correlations in the SEP actually constitutes an open
many-body problem, which we solve here. More generally,
we put forward bath-tracer correlations as fundamental
quantities to analyze single-file diffusion, since we show
that they satisfy a strikingly simple exact closed equation.
The central role of this key equation as a novel tool for
interacting particle systems is further demonstrated by
showing that it applies to out-of equilibrium situations,
other observables and other representative single-file sys-
tems.

We consider a SEP of average density ρ, with a tracer,
of position Xt at time t, initially at the origin. The
bath particles are described by the set of occupation
numbers ηr(t) of each site r ∈ Z of the line at time t, with
ηr(t) = 1 if the site is occupied and ηr(t) = 0 otherwise
(see Fig. 1(a)). The statistics of the position of the tracer
is described by the cumulant-generating function, whose
expansion defines the cumulants κn of the position:

ψ(λ, t) ≡ ln
〈
eλXt

〉
≡

∞∑
n=1

λn

n! κn(t). (1)

Its evolution equation is given by (see Eq. (S20) in Sup-
plementary Information (SI)):

dψ
dt = 1

2
[
(eλ − 1)(1− w1) + (e−λ − 1)(1− w−1)

]
, (2)

where the generalized density profiles (GDP) generating
function is defined by

wr(λ, t) ≡ ⟨ηXt+reλXt⟩/⟨eλXt⟩. (3)

Note that, besides controlling the time evolution of the
cumulant-generating function, wr (together with ψ) com-
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FIG. 1. Models and bath-tracer correlations. (a) The
simple exclusion process (SEP). The tracer is located at posi-
tion Xt, and Qt is the integrated current of particles through
the origin up to time t (i.e. the total flux of particles between
sites 0 and 1). The occupation numbers of the sites are denoted
ηr. (b) In this article, we put forward bath-tracer correlations
⟨ηXt+reλXt ⟩/⟨eλXt ⟩ (or bath-current correlations in the case
of the integrated current Qt) as fundamental quantities to
analyze single-file diffusion, as they satisfy the simple closed
integral equation (6). Besides being key technical tools, α)
they characterize the bath-tracer coupling (see Eq. (4)), β)
they quantify the response of the bath of particles to the per-
turbation induced by the tracer (see item (iv) after Eq. (13))
and γ) in turn they control the large deviations of the subdif-
fusive motion of the tracer (see Eqs. (1), (2) and (13)). Other
representative models of single-file systems: (c) the Random
Average Process: at exponential times, particles on a line can
jump in either direction to a random fraction of the distance
to the next particle; (d) the Kipnis-Marchioro-Presutti model:
each site carries a continuous energy variable. At exponential
times, the total energy of two neighbouring sites is randomly
distributed between them.

pletely characterizes the joint cumulant-generating func-
tion of (ηXt+r, Xt) and thus the bath-tracer correla-
tions [12]. The GDP-generating function is therefore a key
quantity, and the next step consists in writing its evolution
equation from the master equation describing the system.
However, similarly to Eq. (2), it involves higher-order
correlation functions. In fact, we are facing an infinite hi-
erarchy of evolution equations, which is the rule for tracer
diffusion (and for other observables such as the integrated
current through the origin) in interacting particle systems
[9, 13–15], and whose closure has remained elusive up to
now. We provide below a closed equation which allows
the determination of the GDP-generating function in the
hydrodynamic limit (large time, large distance).

In this limit, the position of the tracer satisfies a large
deviation principle [9, 10, 16], which implies that the

cumulant-generating function scales as ψ ∼ ψ̂
√

2t. In
fact, this anomalous behavior originates from the more
general scaling form

wr(λ, t) ∼
t→∞

Φ
(
λ, v = r√

2t

)
≡

∞∑
n=0

λn

n! Φn(v) (4)

of the GDP-generating function, where the coefficient
Φn gives the large-scale limit of the joint cumulant
⟨ηXt+rX

n
t ⟩c of the tracer’s position Xt and the occu-

pation number ηXt+r measured in its frame of reference
(Fig. 1(b)). In the following, we will drop the argument
λ of Φ for convenience.

RESULTS

We report here (see Materials and Methods and Section
II.A of SI for details) that the two functions (rescaled
derivatives of the profiles)

Ω±(v) ≡ ∓2ψ̂ Φ′(v)
Φ′(0±) defined for v ≷ 0 (5)

are entirely determined by the closed Wiener-Hopf integral
equations [17] with a Gaussian kernel

Ω±(v) = ∓ω e−(v+ξ)2+ξ2
− ω

∫
R∓

Ω±(z)e−(v−z+ξ)2+ξ2
dz,

(6)
where ξ ≡ dψ̂

dλ and we have analytically continued Ω+ to
v < 0 and Ω− to v > 0. The parameter ω is determined
by the boundary conditions (see Eq. (5))

Ω+(0) = −Ω−(0) = −2ψ̂, (7)

so that the functions Ω±(v) are parametrized by ψ̂. At
this stage, the expression of ψ̂(λ) has not been determined
yet, but it can be obtained in the following way. First, Φ
is deduced by integration of Ω±, with

Φ(±∞) = ρ, (8)

by definition, and the boundary conditions

Φ′(0±)± 2 ψ̂

e±λ − 1Φ(0±) = 0. (9)

The resulting Φ are at this stage parametrized by ψ̂ and
λ. Then, by using the large time limit of Eq. (2),

1− Φ(0−)
1− Φ(0+) = eλ, (10)

ψ̂ can be written as a function of λ, and we finally obtain
the desired GDP-generating function Φ(λ, v).
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FIG. 2. SEP. Generalized density profiles (GDP) of order: (a) n = 1 and n = 3 at density ρ = 0.5. Solid lines: numerical
simulations at t = 3000. Dashed lines: theoretical predictions (equations (S79,S80) in SI); (b) n = 2 at densities ρ = 0.25, 0.5
and 0.75. Solid lines: numerical simulations at t = 3000. Dashed lines: theoretical predictions (equation (S79) in SI). Note
that, interestingly Φ2 exhibits a minimum at a distance v > 0 for ρ < 1/2, which disappears for ρ > 1/2. (c) GDP-generating
function (or equivalently, conditional profiles) obtained from the theoretical prediction (6) (dashed) compared to the numerical
resolution of the MFT equations (solid line) described in Section IV.B in SI. (d) Non-monotony of the conditional profiles Φ(0+)
in front of the tracer, as a function of the rescaled tracer’s position ξ, for different densities ρ.

DISCUSSION

Several comments are in order. (i) We show in SI
(Section I.E) that the boundary condition (9) is exact;
furthermore, we argue below that the bulk equation (6),
and thus the obtained GDP-generating function Φ, are
also exact. (ii) Importantly, the Wiener-Hopf equations
(6) can be solved explicitly in terms of the one-sided
Fourier transforms [17]:∫

R±
Ω±(v)eikvdv = ± (1− exp[−Z±]) , (11)

where

Z± ≡
1
2
∑
n≥1

(−ω
√
π e− 1

4 (k+2iξ)2)n

n
erfc

(
±
√
n

(
ξ − ik

2

))
.

(12)
(iii) As a byproduct, our approach yields the cumulant
generating function ψ̂ (or equivalently the large deviation
function of the tracer’s position),

ψ̂ = − 1
2
√
π

Li 3
2
(−
√
πω), Liν(x) ≡

∑
n≥1

xn

nν
, (13)

which is shown in SI (Section II.E) to be identical to the
exact expression obtained using the arsenal of integrable
probabilities in [9, 10]. (iv) Additionally, we obtain a full
characterization of the spatial bath-tracer correlations and
in particular analytical expressions of the Φn by using
the procedure described above (see Section II.C of SI for
explicit expressions, which extend at arbitrary density the
expressions given in [12] in the dilute (ρ→ 0) and dense
(ρ→ 1) limits, and Fig. 2(a) and (b) for comparison with
numerical simulations). (v) Our approach also provides
the conditional profiles ⟨ηXt+r|Xt = x⟩ defined as the
average of the occupation of the site Xt + r given that
the tracer is at position x. Indeed, in the hydrodynamic
limit, ⟨ηXt+r|Xt = x⟩ ∼

t→∞
Φ(λ∗, v) where v = r/

√
2t, λ∗

is defined by ξ(λ∗) = dψ̂
dλ (λ∗) = x/

√
2t and Φ is the

GDP-generating function determined above. While the
(unconditional) profiles ⟨ηXt+r⟩ are flat, the conditional
profiles allow to probe the response of the bath of par-
ticles to the perturbation created by the displacement
ξ of the tracer: in particular, for ξ > 0, it leads to an
accumulation of bath particles in front of the tracer and a
depletion behind (see Fig. 2(c)), quantified by the simple
conservation relation∫ +∞

0
(Φ(v)− ρ)dv −

∫ 0

−∞
(Φ(v)− ρ)dv = ρξ, (14)

which is a consequence of (11,12). Another striking feature
is the non-monotony of the conditional profile Φ(λ∗, 0+)
in front of the tracer as a function of the rescaled position
of the tracer ξ(λ∗), see Fig. 2(d). Surprisingly, Φ(λ∗, 0+)
does not saturate to 1 as ξ → +∞, but instead returns
to its unperturbed value ρ, which results from a global
displacement of bath particles induced by the tracer.

Importantly, Equation (6) describes several other sit-
uations of physical relevance. (i) First, it applies to the
out-of-equilibrium situation of an initial step of density ρ+
for x > 0 and ρ− for x < 0, with the tracer initially at the
origin. This paradigmatic setup has attracted a lot of at-
tention [8–10, 18, 19] since it remains transient at all times
and never reaches a stationary state. The GDP-generating
function Φ is obtained from the solution (11) by following
the procedure described above, upon only changing the
boundary condition (8) into Φ(±∞) = ρ±. Again, we
recover the results of [9, 10] on the cumulant generating
function ψ̂. Additionally, we obtain the complete spatial
structure of the bath-tracer correlations (see Fig. 3(a) and
Section II.D.1 of SI for explicit expressions). (ii) Second,
and strikingly, it also gives access to the statistics of other
observables, as exemplified by the case of the integrated
current through the origin Qt (see Section II.D.3 of SI
for the application to the generalized current, which is
an extra observable), defined as the total flux of particles
between sites 0 and 1 during a time t. This quantity
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FIG. 3. Extensions: (a) The out of equilibrium situation of an initial step density. (b) Another observable, the current
through the origin. (c),(d) Other representative single-file systems: the KMP model (c) and the RAP (d). The dashed lines
correspond to the predictions obtained from the central equation (6). (a) GDPs at order n = 1 and n = 2 for the SEP with
a step initial density ρ− = 0.7 and ρ+ = 0.2 at t = 1500 with 2000 sites. (b) GDPs for the current ⟨ηrQn

t ⟩c in the SEP for
a density ρ = 0.5 at t = 900, for orders n = 1 and n = 3 (the profile for n = 2 is zero). (c) KMP model (D(ρ) = 1/2 and
σ(ρ) = ρ2) for ρ = 1. (c1)-(c3) First three orders of the GDPs at t = 900 and 500 sites. (c4) GDP-generating function (d)
RAP for ρ = 1 (for a uniform jump distribution, D(ρ) = 1/(4ρ) and σ(ρ) = 1/ρ). (d1)-(d3) First three orders of the GDPs at
t = 4000 with 5000 particles (solid lines). (d4) GDP-generating function compared to the numerical resolution of the MFT
equations (solid line).

has been the focus of many studies, both in the context
of statistical physics [8, 13, 18, 20, 21] and mesoscopic
transport [22–24], in particular in the nonequilibrium sit-
uation ρ− ≠ ρ+ [8, 18]. Note that while the statistics of
tracer diffusion and integrated current are easily related
in the case of quenched initial conditions [25], the rela-
tion is more entangled for the annealed case considered
here due to the fluctuations of the initial condition. The
quantities introduced previously (1-3) on the example of
tracer diffusion are naturally adapted by substituting Qt
for Xt. The corresponding profiles ΦQ are then obtained
as a particular case of Equation (6) by setting ξ = 0, com-
pleted by modified boundary conditions (9,10) derived
from the microscopic model (see Section II.D.2 of SI). In
particular, the resulting Eq. (13) gives back the exact
cumulant generating function of Qt obtained in [8] by
Bethe ansatz, since in this case we find that

ωQ
√
π = ρ−(1−ρ+)(eλ−1)+ρ+(1−ρ−)(e−λ−1), (15)

which coincides with the single parameter involved
in [8, 18]. Additionally, the ΦQ determined here provides
the associated spatial structure (see Fig. 3(b) and Section
II.D.2 of SI for explicit expressions). These profiles have
been introduced and studied numerically in [26] for an in-
finite system (see also [14] for a finite system between two
reservoirs), but no analytical expressions were available
until now. (iii) Finally, beyond the SEP, it applies to other
representative single-file systems of interacting particles
with average density ρ (see also [12], which is however
limited to the calculation of the first order Φ1). Such
systems can be described at large scale by two quantities:
the diffusivity D(ρ) and the mobility σ(ρ) [27]. The case
of the SEP considered above corresponds to D(ρ) = 1/2
and σ(ρ) = ρ(1 − ρ). Equation (6) (with adaptations
of equations (9,10) given in Section III.C of SI) more
generally applies to single-file systems with D(ρ) = 1/2,
σ′′(ρ) constant and σ(0) = 0, by replacing the −ω that
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multiplies the integral in (6) by ωσ′′(ρ)/2. Important
cases covered by our approach include (see Fig. 1 for
definitions and Sections III.D and III.E of SI for explicit
expressions): (a) the model of hard Brownian particles
(σ(ρ) = ρ) for which the GDP-generating function of [12]
is recovered; (b) the Kipnis-Marchioro-Presutti (KMP)
model [28] (σ(ρ) = ρ2, see Fig. 3(c)), which describes sit-
uations as varied as force fluctuations in packs of granular
beads [29], the formation of clouds and gels, self-assembly
of molecules in organic and inorganic materials and dis-
tribution of wealth in a society (see [30] and references
therein). (c) the Random Average Process (RAP), which
appears in a variety of problems such as force propagation
in granular media, models of mass transport or models
of voting systems [29, 31–33]. Although σ′′(ρ) is not con-
stant in this case, the GDP-generating function can be
deduced from our results thanks to a mapping between
tracer diffusion in the RAP and the integrated current in
the KMP model [34] (see Fig. 3(d)).

We finally argue that the central equation (6) is exact
for the following reasons. (i) We show in SI (Section IV)
that the Macroscopic Fluctuations Theory (MFT) [35]
can be used to determine perturbatively the first coeffi-
cients Φn analytically. These coefficients computed up
to order n = 5 (which is the highest order for which we
managed to determine the integrals involved) coincide
with those obtained by our approach. Furthermore, the
agreement holds also non-perturbatively in λ, as displayed
in Fig. 2(c) and Fig. 3(c4),(d4) where the numerical solu-
tion of the MFT equations is compared to the analytical
solution (11,12). Moreover, and as mentioned above, the
exact expression of the cumulant generating functions
of (ii) the tracer position of [9] and (iii) the integrated
current of [8] are contained in our approach, including
the case of an initial step of density.

All together, we have determined analytically the spa-
tial correlations in the SEP, which allowed us to fully
quantify the response of the bath to the perturbation
induced by a tracer. Besides being paramount physi-
cal observables, these correlations have been shown to
be fundamental technical quantities, since they satisfy a
strikingly simple closed equation and control large devi-
ations in single-file diffusion. This very same equation
applies to a variety of situations involving single-file trans-
port, which makes it a novel and promising tool to tackle
interacting particle systems.

MATERIALS AND METHODS

Analytical calculations for the SEP

Details on analytical calculations are provided in SI.
We sketch here the main steps that led to the closed
equation (6) for the SEP. The starting point is a master
equation describing the time evolution of the complete

system (bath and tracer in the SEP), from which we
obtain the time evolution of the cumulant generating
function ψ and the GDP-generating function (3). The
main difficulty is that the latter involves higher-order
correlation functions.

The next step consists in using the scaling (4) of the
GDP-generating function and ψ(λ, t) ∼ ψ̂(λ)

√
2t to derive

the hydrodynamic limit of the problem (details given in
Section I.E of SI). The obtained bulk equation, valid at
arbitrary density, is still not closed. We explain in SI
that a closed equation obeyed by Φ has to satisfy the
following constraints: (i) it must reduce to the known
equations obtained in the limits of high and low density
in [12]; (ii) it should also reproduce, as a byproduct,
the cumulants of the tracer’s position derived recently
in [9, 10]; (iii) additional constraints concern the way the
different parameters appear in the equation (see Section
II.A of SI for details); (iv) finally, the equation we write
should have a "proper scaling" with time determined in
Section I.E of SI.

Following these ideas and constraints, we obtain a first
closed equation which holds at lowest orders in λ, see (S40)
in SI, which properly reproduces the known cumulant κn
for n ≤ 6. This equation is conveniently rewritten by
introducing the new functions Ω±(v) defined by Eq. (5).
Extension of this equation to arbitrary order in λ and
then its resummation yields the closed equations (S48,S49)
of SI. Several technical steps detailed in Section II.A of
SI allow us to finally transform them into the closed
Wiener-Hopf integral equation (6), which is our central
result.

Numerical simulations for the SEP

The numerical simulations of the SEP are performed on
a periodic ring of size N , with M = ρN particles at aver-
age density ρ. The particles are initially placed uniformly
at random. The jumps of the particles are implemented
as follow: one picks a particle uniformly at random, along
with one direction (left and right with equal probabilities).
If the chosen particle has no neighbor in that direction,
the jump is performed, otherwise it is rejected. In both
cases, the time of the simulation is incremented by a
random number picked from an exponential distribution
of rate N . We keep track of one particle (the tracer)
and compute the moments of its displacement and the
generalized density profiles. The averaging is performed
over 108 simulation.

Extensions

Analytical (Section III of SI) and numerical (Section
V of SI) extensions (other systems than the SEP, other
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observables, nonequilibrium situations), following these
lines, are described in SI.
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I. GENERAL EQUATIONS AND HYDRODYNAMIC LIMIT

In this Section, we mostly recall the equations and results obtained in [1] in order to provide a self-contained
document. We additionally introduce in Section I C the conditional profiles discussed in the main text after Eq. (13).

A. Master equation of the SEP

We consider the symmetric exclusion process (SEP) with a tracer at position X. We denote the configuration of
the system by η = {ηr}r∈Z with ηr ∈ {0, 1} the occupation number of site r by the bath particles (ηr = 1 if site r is
occupied, 0 otherwise). At time t, the system is characterized by a probability law P (X, η, t).

We initially start from the equilibrium distribution of the occupations, and the tracer at the origin (with the
convention that the site occupied by the tracer is empty of bath particles):

P (X, η, 0) = δX,0δη0,0
∏
r∈Z∗

δηr,γr
, (S1)

where γr are independent Bernouilli variables with parameter ρ (density of the system) and the site 0 is treated
independently because it is occupied by the tracer, and not a bath particle.

The probability P (X, η, t) obeys the following master equation,

∂tP (X, η, t) = 1
2

∑
r ̸=X,X−1

[
P (X, ηr,+, t)− P (X, η, t)

]
+ 1

2
∑
µ=±1

{
(1− ηX)P (X − µ, η, t)− (1− ηX+µ)P (X, η, t)

}
, (S2)

where ηr,+ is the configuration η in which the occupations of sites r and r+1 are exchanged. The first term corresponds
to the jumps of the bath particles while the second one takes into account the displacement of the tracer.

B. Observables and large-times scalings

We consider the cumulant-generating function of the displacement of the tracer,

ψ(λ, t) ≡ ln
〈
eλXt

〉
. (S3)

At large time t, it scales as
√
t [2, 3],

ψ(λ, t) ∼
t→∞

ψ̂(λ)
√

2t , ψ̂(λ) =
∑
n≥1

κn
λn

n! , (S4)

where κn is the nth cumulant of the tracer’s position (rescaled by
√

2t). We also consider the generalized profiles,

wr(λ, t) ≡
⟨ηXt+reλXt⟩
⟨eλXt⟩

. (S5)

Their expansion in powers of λ gives the cross-cumulants ⟨ηXt+r X
n
t ⟩c between the occupations and the position of the

tracer. At large time, they satisfy a diffusive scaling,

wr(λ, t) ∼
t→∞

Φ
(
v = r√

2t
, λ

)
, Φ(v, λ) =

∑
n≥1

Φn(v)λ
n

n! . (S6)

This scaling is based on observations originating from numerical simulations. In addition it is compatible with the
known scaling of the cumulant generating function (S4).

Finally, we consider the “modified centered correlations”,

fµ,r(λ, t) ≡
〈
(1− ηXt+µ)ηXt+reλXt

〉
⟨eλXt⟩

−

{
(1− wµ)wr−µ if µr > 0 ,
(1− wµ)wr if µr < 0 ,

(S7)
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At large time, the leading term is in t−1/2 and the sub-leading term in t−1 with the same diffusive scaling as for the
profiles,

fµ,r(λ, t) = 1√
2t
Fµ

(
v = r√

2t
, λ

)
+ 1

2tGµ
(
v = r√

2t
, λ

)
+O(t−3/2) . (S8)

This scaling ansatz relies again on numerical observations.

C. Equivalent description: large deviations and conditional profiles

Alternatively, we can also consider the distribution of the position Xt of the tracer at time t, which satisfies a large
deviation principle [2–4],

P(Xt = x) ≃
t→∞

e−
√

2tϕ(ξ) , ξ = x√
2t
, (S9)

where ψ is the large deviation function. The moment generating function of the position of the tracer is the Laplace
transform of the distribution. We can show that these functions are simply related by writing〈

eλXt
〉

=
∑
x

eλxP(Xt = x) . (S10)

Using the scaling form (S9), and taking the continuous limit, we have the following integral representation for large t:〈
eλXt

〉
≃
∫

dξ e
√

2t(λξ−ϕ(ξ)) . (S11)

The integral can be estimated with a saddle point approximation, which gives〈
eλXt

〉
≃ e

√
2t(λξ∗−ϕ(ξ∗)) , ϕ′(ξ∗) = λ . (S12)

The two functions ϕ and ψ̂ are thus related by a Legendre transform

ψ̂(λ) = λξ∗(λ)− ϕ(ξ∗(λ)) , ϕ′(ξ∗(λ)) = λ , (S13)

or equivalently,

ϕ(ξ) = λ∗(ξ)ξ − ψ̂(λ∗(ξ)) , ψ̂′(λ∗(ξ)) = ξ . (S14)

In this language, it is natural to introduce the conditional profiles

⟨ηXt+r|Xt = x⟩ = P(ηXt+r = 1|Xt = x) (S15)

which give the probability that a site located at a distance r from the tracer is occupied, given that the tracer is located
at x. We can show the equivalence between the generalised profiles (S5) and the conditional profiles (S15) by writing

wr(λ, t) =
〈
ηXt+reλXt

〉
⟨eλXt⟩

=

∑
x

eλxP(ηXt+r = 1|Xt = x)P(Xt = x)∑
x

eλxP(Xt = x)
. (S16)

Defining the large t asymptotic form of the conditional profiles as

P(ηXt+r = 1|Xt = x) ≃
t→∞

Φ̃
(
ξ = x√

2t
, v = r√

2t

)
, (S17)

we obtain

wr(λ, t) ≃ Φ(λ, v) =

∫
dξ Φ̃(ξ, v) e

√
2t(λξ−ϕ(ξ))∫

dξ e
√

2t(λξ−ϕ(ξ))
≃ Φ̃(ξ∗(λ), v) , (S18)

or equivalently,

Φ̃(ξ, v) = Φ(λ∗(ξ), v) . (S19)

These two functions being equivalent, we will drop the variables λ and ξ and simply denote them both by Φ(v).
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D. Equations at arbitrary time

Using Eqs. (S2), one obtains the following equations for the time-evolution of the cumulant-generating function and
of the generalized profiles.

∂tψ = 1
2
{

(eλ − 1)(1− w1) + (e−λ − 1)(1− w−1)
}
, (S20)

∂twr = 1
2∆wr −Bν∇−νwr + 1

2
∑
µ=±1

(
eµλfµ,r+µ − fµ,r

)
(r ̸= ±1) (S21)

∂tw±1 = 1
2∇±w±1 +B±w±1 + 1

2
(
e±λf±1,±2 − f∓1,±1

)
(S22)

where ν is the sign of r, the gradients are ∇µur = ur+µ − ur, ∆ur = ur+1 − 2ur + ur−1 and

B± = ∂tψ

e±λ − 1 . (S23)

In addition, the generalized profiles at large distance are equal to the density: limr→±∞ wr = ρ.

E. Hydrodynamic equations at large time

Using the scalings of Section I B into the equation (S20), we first obtain at order 0 in t,

(eλ − 1)(1− Φ(0+)) + (e−λ − 1)(1− Φ(0−)) = 0 , (S24)

which we can rewrite as

1− Φ(0−)
1− Φ(0+) = − eλ − 1

e−λ − 1 = eλ . (S25)

Similarly, using these same scalings into (S21), we first obtain at order 1/
√
t,

F−1(v) = eλF1(v) , (S26)

as well as the following hydrodynamic equations for the generalized profiles at order 1/t,

Φ′′(v) + 2(v + bν)Φ′(v) + C(v) = 0 , bν = ν
ψ̂

eνλ − 1 (S27)

C(v) = (eλ − 1)F ′
1(v) +

∑
µ=±1

(eµλ − 1)Gµ(v) , (S28)

with ν the sign of v. Finally, using the scalings of Section I B into Eq. (S22), we obtain the boundary condition

Φ′(0±)± 2ψ̂
e±λ − 1Φ(0±) = 0 , (S29)

which is completed by a second boundary condition at infinity,

Φ(v) −−−−−→
v→±∞

ρ . (S30)

We stress that these equations are exact in the hydrodynamic limit considered here.

F. Known results on the GDP generating function

In this Section, we focus on the bulk equation (S27). We recall here the results of [1] both in the high and low
density regimes, in which this equation simplifies. This will be the starting point to tackle the arbitrary density case.
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1. High density

In the high density limit ρ→ 1, we define

Φ̌(v) = lim
ρ→1

Φ(v)
1− ρ . (S31)

In this limit, the higher order correlations C(v) can be neglected, and the bulk equation (S27) becomes [1]

Φ̌′′(v) + 2vΦ̌′(v) = 0. (S32)

2. Low density

In the opposite limit of low density, ρ→ 0, one should keep z = ρr and τ = ρ2t constant. With these scalings, we
define

Φ̂(v, λ̂) = lim
ρ→0

Φ(v, λ = ρλ̂)
ρ

, β(λ̂) = lim
ρ→0

±b±(λ = ρλ̂)
ρ

= lim
ρ→0

ψ̂(ρλ̂)
ρλ̂

. (S33)

In this limit, the bulk equation (S27) is not closed. In [1], a closure relation was found, which gives

Φ̂′′(v) + 2(v + ξ)Φ̂′(v) = 0, (S34)

with ξ the (rescaled) derivative of the cumulant-generating function with respect to its parameter,

ξ ≡ β + λ̂
dβ
dλ̂

= d
dλ̂

(λ̂β) . (S35)

3. Lowest order

At order 1 in λ, the equation (S27) is also closed [1]

Φ′′
1(v) + 2vΦ′

1(v) = 0, (S36)

and its solution gives

Φ1(v ≷ 0) = ±1− ρ
2 erfc |v|. (S37)

II. SEP AT ARBITRARY DENSITY

A. A closed integral equation

The bulk equation (S27), valid at arbitrary density, is not closed: in addition to the functions ψ̂ and Φ(v) of interest,
it involves the unknown function C(v). We thus look for a closed equation for Φ, aiming to extend the bulk equations
obtained at high density (S32) and low density (S34) to arbitrary density. More precisely, we guess that this closed
equation is of the form

Φ′′(v) + 2(v + ξ)Φ′(v) = ? , (S38)

with a right hand side to be determined, and which vanishes in both limits ρ→ 0 and ρ→ 1. For this equation to be
closed, ? should be expressed in terms of Φ(v) and the parameters λ and ξ only. Furthermore, we should also have
? = 0 at order 1 in λ, because of (S36). We thus expect that, at order n, the r.h.s. ? will act as a source term

for the determination of Φn, by involving only the profiles Φm with m < n. Furthermore, the resulting equation,
combined with the boundary conditions (S25,S29,S30), should also reproduce the cumulants of the tracer’s position
obtained recently in [2, 3]. An interesting feature of these cumulants is that they involve nontrivial factors

√
2 (for the
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fourth cumulant κ4) and
√

3 (for κ6), which cannot be produced by products or derivatives of Φ1 (S37). These factors
can however be obtained by considering half-convolutions of Φ1 with itself, such as∫ ∞

0
dz Φ′

1(v + z)Φ′
1(−z) = (1− ρ)2

√
2π

e− v2
2 erfc

(
v√
2

)
. (S39)

We also have some constraints on how the different parameters (λ, ψ̂ and ξ) should appear in the desired equation.
For instance, λ is explicitly involved in the hydrodynamic equations of Section I E only through expressions of the
form e±λ − 1, so we expect that only these kind of expressions appear. In the low density equation (S34), ψ̂ does not
appear explicitly, only its derivative ξ = dψ̂

dλ is involved, so we expect the same to happen at arbitrary density.
Finally, the equation we write should have a "proper scaling" with time. Indeed, the bulk equation (S27) (which we

aim to replace) is obtained by expanding at order 1/t the microscopic equation (S21), so it should be the same for this
new equation. For instance, the functions Φ, Φ′ and Φ′′ are respectively of orders t0, t−1/2 and and t−1. The scaling
argument v = r/

√
2t is of order t−1/2, and the same scaling holds for ξ. One can thus check that, with these scalings,

the l.h.s. of Eq. (S38) indeed has the correct scaling 1/t. The same should hold for the r.h.s. ? .
Following these ideas and constraints, we obtained that the equation (valid for v > 0)

Φ′′(v) + 2(v + ξ)Φ′(v) = e−λ − 1
Φ(0−)

∫ ∞

0
dz Φ′′(−z)Φ′(v + z) + 2ξ e−λ − 1

Φ(0−)

∫ ∞

0
dz Φ′(−z)Φ′(v + z)

+ (eλ − 1)(e−λ − 1)
Φ(0+)Φ(0−)

∫ ∞

0
dz
∫ ∞

0
dz′ Φ′′(−z − z′)Φ′(z + v)Φ′(z′)

− (e−λ − 1)2

Φ(0−)2

∫ ∞

0
dz
∫ ∞

0
dz′ Φ′′(z + z′ + v)Φ′(−z)Φ′(−z′)

+ 2ξ (eλ − 1)(e−λ − 1)
Φ(0+)Φ(0−)

∫ ∞

0
dz
∫ ∞

0
dz′ Φ′(−z − z′)Φ′(z + v)Φ′(z′)

− 2ξ (e−λ − 1)2

Φ(0−)2

∫ ∞

0
dz
∫ ∞

0
dz′ Φ′(z + z′ + v)Φ′(−z)Φ′(−z′) + · · · , (S40)

properly reproduces the known cumulant κn for n ≤ 6. The equation for v < 0 is deduced from the symmetry
Φ(−v, λ) = Φ(v,−λ). This leads us to introduce the two functions

Ω+(v) = eλ − 1
Φ(0+)Φ′(v) = −2ψ̂ Φ′(v)

Φ′(0+) for v > 0 , (S41a)

Ω−(v) = e−λ − 1
Φ(0−) Φ′(v) = 2ψ̂ Φ′(v)

Φ′(0−) for v < 0 , (S41b)

so that (S40) takes the more compact form

Ω′
+(v) + 2(v + ξ)Ω+(v) =

∫ ∞

0
dz Ω′

−(−z)Ω+(v + z) + 2ξ
∫ ∞

0
dz Ω−(−z)Ω+(v + z)

+
∫ ∞

0
dz
∫ ∞

0
dz′ Ω′

−(−z − z′)Ω+(z + v)Ω+(z′) + 2ξ
∫ ∞

0
dz
∫ ∞

0
dz′ Ω−(−z − z′)Ω+(z + v)Ω+(z′)

−
∫ ∞

0
dz
∫ ∞

0
dz′ Ω′

+(z + z′ + v)Ω−(−z)Ω−(−z′)− 2ξ
∫ ∞

0
dz
∫ ∞

0
dz′ Ω+(z + z′ + v)Ω−(−z)Ω−(−z′) + · · · (S42)

We can rewrite this expression in terms of the matrix operator L defined as

L =
(

L++ L+−
L−+ L−−

)
, (S43)

with

(L++f)(v) =
∫ ∞

0
dz Ω−(−z)f(v + z) , (L+−f)(v) =

∫ ∞

0
dz Ω+(v + z)f(−z) , (S44a)

(L−+f)(v) = −
∫ ∞

0
dz Ω−(v − z)f(z) , (L−−f)(v) = −

∫ ∞

0
dz Ω+(z)f(v − z) . (S44b)
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Applying this operator to the column vector (Ω+ 0)T, we get

L

(
Ω+
0

)
=


∫ ∞

0
dz Ω−(−z)Ω+(v + z)

−
∫ ∞

0
dz Ω−(v − z)Ω+(z)

 , (S45)

whose first component appears in our equation (S42). Applying L 2 to the same vector, we get for the first component,∫ ∞

0
dz
∫ ∞

0
dz′ Ω+(z + z′ + v)Ω−(−z)Ω−(−z′)−

∫ ∞

0
dz
∫ ∞

0
dz′ Ω−(−z − z′)Ω+(z + v)Ω+(z′) , (S46)

which corresponds to the next terms in Eq. (S42). Finally, after some integration by parts, and using that

Ω+(0) = −Ω−(0) , (S47)

we can write (S42) as

2vΩ+(v) + (∂v + 2ξ)
[
(1 + L )−1

(
Ω+
0

)
(v)
]

1
+ Ω+(v)

[
(1 + L )−1

(
Ω+
0

)
(0)
]

1
= 0 . (S48)

Similarly, the equation for v < 0 takes the form

2vΩ−(v) + (∂v + 2ξ)
[
(1 + L )−1

(
0

Ω−

)
(v)
]

2
+ Ω−(v)

[
(1 + L )−1

(
0

Ω−

)
(0)
]

2
= 0 . (S49)

In order to simplify these equations, we introduce another set of functions M±,± defined by

(1 + L )−1
(

Ω+ 0
0 Ω−

)
=
(
M++ M+−
M−+ M−−

)
. (S50)

Expanding the above expression in powers of L , we notice that

Ω+(v) = M++(v)−M+−(v) , Ω−(v) = M−−(v)−M−+(v) . (S51)

Using these results, we can rewrite the equations (S48,S49) as

(∂v + 2(v + ξ) +M++(0))M++ = (2v +M++(0))M+− , (S52)

(∂v + 2(v + ξ) +M−−(0))M−− = (2v +M−−(0))M−+ . (S53)

We can obtain a closed system of equations for M by rewriting (S50) as

L

(
M++ M+−
M−+ M−−

)
+
(
M+− M+−
M−+ M−+

)
= 0 , (S54)

where the operator L can be written in terms of M only by using (S51). The two columns are identical, therefore this
only gives two equations, which are

M+−(v) = −
∫ ∞

0
dz [M++(v + z)M−−(−z)−M+−(v + z)M−+(−z)] , for v > 0 , (S55)

M−+(v) =
∫ ∞

0
dz [M−−(v − z)M++(z)−M+−(z)M−+(v − z)] , for v < 0 . (S56)

In order to proceed further, it is instructive to look for a perturbative solution of these equations. By definition (S41),
Ω± (and thus M±,±) is small when ψ̂ is small. We find that the solutions of (S52,S53,S55,S56) at first orders in λ can
be conveniently expressed as

M++(v) =
(
−ω eξ

2
)

Ω(1)
+ (v) + 2

(
−ω eξ

2
)2

Ω(2)
+ (v) + 3

(
−ω eξ

2
)3

Ω(3)
+ (v) +O(ω4) , (S57a)

M+−(v) =
(
−ω eξ

2
)2

Ω(2)
+ (v) + 2

(
−ω eξ

2
)3

Ω(3)
+ (v) +O(ω4) , (S57b)
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where we introduced the parameter ω defined from ψ̂ as

ω = 2ψ̂ +
√

2π ψ̂2 + 2π
9 (9− 4

√
3)ψ̂3 +O(ψ̂4) ⇒ ψ̂ = ω

2 −
√
π

4
√

2
ω2 + π

6
√

3
ω3 +O(ω4) (S58)

and

Ω(1)
± (v) = ±e−(v+ξ)2

, (S59a)

Ω(2)
± (v) = ±1

2

√
π

2 e− 1
2 (v+2ξ)2

erfc
(
± v√

2

)
, (S59b)

Ω(3)
± (v) = ± π

4
√

3
e− 1

3 (v+3ξ)2

[
erfc

(
±
√

2
3v
)

+ erfc
(
± v√

6

)
− 4T

(
v√
3
,
√

3
)]

, (S59c)

with T the Owen’s T-function defined as [5]

T(h, a) = 1
2π

∫ a

0

e− h2
2 (1+x2)

1 + x2 dx . (S60)

This leads us to write the general form as

M++(v) =
∑
n≥1

n
(
−ω eξ

2
)n

Ω(n)
+ (v) , M+−(v) =

∑
n≥2

(n− 1)
(
−ω eξ

2
)n

Ω(n)
+ (v) , (S61)

so that, from (S51),

Ω+(v) =
∑
n≥1

(
−ω eξ

2
)n

Ω(n)
+ (v) , (S62)

and similarly for Ω−. Plugging these expressions into (S55), we obtain

Ω(n)
+ (v) = −

n−1∑
p=1

∫ ∞

0
dz Ω(p)

+ (v + z)Ω(n−p)
− (−z) . (S63)

Multiplying by (−ωeξ2)n and summing over n, we get

Ω+(v)−
(
−ω eξ

2
)

Ω(1)
+ (v) = −

∫ ∞

0
dz Ω+(v + z)Ω−(−z) . (S64)

From the expression of Ω(1)
+ (S59a), this becomes

Ω+(v) + ω e−(v+ξ)2+ξ2
+
∫ ∞

0
dz Ω+(v + z)Ω−(−z) = 0 , (S65)

and similarly we obtain the equation for Ω− from (S56):

Ω−(v)− ω e−(v+ξ)2+ξ2
−
∫ ∞

0
dz Ω−(v − z)Ω+(z) = 0 . (S66)

Equations similar to (S65,S66) can be found in Ref. [6]. In this paper, the authors show that these two coupled
equations are equivalent to the two independent linear equations

Ω+(v) = −ω e−(v+ξ)2+ξ2
− ω

∫ 0

−∞
dz Ω+(z) e−(v−z+ξ)2+ξ2

, (S67)

Ω−(v) = ω e−(v+ξ)2+ξ2
− ω

∫ ∞

0
dz Ω−(z) e−(v−z+ξ)2+ξ2

, (S68)

which correspond to the Eq. (6) given in the main text. These equations give Ω± for all v ∈ R (including the analytic
continuations of Ω+ to v < 0 and Ω− to v > 0 which both appear explicitly in the integrals).
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B. Solution

Equations similar to (S67,S68) are solved in [7], but restricted to v > 0, and with Ω±(∓v) = 0 for v < 0. We can
nevertheless use these results to express Ω± in this domain. The results are given in terms of the one-sided Fourier
transforms:

Ω̂(+)
± (k) =

∫ ∞

0
dv Ω±(v) eikv , Ω̂(−)

± (k) = −
∫ 0

−∞
dv Ω±(v) eikv . (S69)

From Ref. [7], we obtain the Fourier transforms of the analytic continuations of Ω±:

Ω̂(−)
+ (k) = 1− exp

1
2
∑
n≥1

(−ω
√
π e− 1

4 (k+2iξ)2)n

n
erfc

(
−
√
n

(
ξ − ik

2

)) , (S70a)

Ω̂(+)
− (k) = 1− exp

1
2
∑
n≥1

(−ω
√
π e− 1

4 (k+2iξ)2)n

n
erfc

(√
n

(
ξ − ik

2

)) . (S70b)

We can obtain the Fourier transforms on the original functions by taking the Fourier transform of (S67), which gives

Ω̂(+)
+ (k) = K̂(k) + Ω̂(−)

+ (k)(1− K̂(k)) , with K̂(k) = −ω
√
π e− 1

4 (k+2iξ)2
. (S71)

We finally obtain ∫ ∞

0
Ω+(v)eikvdv = 1− exp

[
−Z+

(
ω, ξ − ik

2

)]
, (S72)

∫ 0

−∞
Ω−(v)eikvdv = exp

[
−Z−

(
ω, ξ − ik

2

)]
− 1 , (S73)

where we have introduced

Z±(ω, ξ) = 1
2
∑
n≥1

(−ω
√
π eξ2)n

n
erfc

(
±
√
nξ
)
. (S74)

We can obtain the values of Ω±(0) = ∓2ψ̂ from these expressions. We set k = is in (S67) and let s→∞, this gives

Ω+(0) = −2ψ̂ = 1√
π

Li 3
2
(−ω
√
π) , (S75)

which expresses ψ̂ in terms of ω. Note that this expression is consistent with the first orders obtained previously (S58).

C. Expansion in λ

1. Computation of the cumulants

Plugging the expansion of ψ̂ (S4) into (S75), we can deduce the expansion of ω in powers of λ, in terms of
the cumulants κn. Combining the solution (S72) (for k = 0) with the definition of Ω+ (S41), and the boundary
condition (S29), we obtain

1− exp

−1
2
∑
n≥1

(−ω
√
π eξ2)n

n
erfc

(√
nξ
) = (eλ − 1)ρ− Φ(0+)

Φ(0+) . (S76)
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Since ξ = dψ̂
dλ , this equation gives Φn(0+) in terms of the cumulants κj for j ≤ n. We can proceed similarly for Φn(0−)

using (S73). Finally, using the last relation (S25), we can determine the cumulants κn and thus Φn(0±). Due to the
symmetry v → −v with λ→ −λ, all the odd order cumulants vanish. For the even order ones, we get for instance,

κ2 = 1− ρ
ρ
√
π
, (S77)

κ4 = (1− ρ)
π3/2ρ3

(
12(1− ρ)2 − π(3− 3(4−

√
2)ρ+ (8− 3

√
2)ρ2)

)
, (S78)

κ6 = (1− ρ)
π5/2ρ5

(
30π

(
2
(

9
√

2− 20
)
ρ2 +

(
60− 18

√
2
)
ρ− 15

)
(1− ρ)2

− π2
(

8
(
−17 + 15

√
2− 5

√
3
)
ρ4 +

(
480− 300

√
2 + 80

√
3
)
ρ3

+5
(
−114 + 45

√
2− 8

√
3
)
ρ2 − 45

(√
2− 6

)
ρ− 45

)
+ 1020(1− ρ)4

)
, (S79)

which coincide with the cumulants obtained from the CGF computed in [2]. This is expected because the equation (S40)
has been constructed in order to reproduce these cumulants. We have further checked with Mathematica, up to n = 10,
that the next cumulants κn obtained by our procedure also coincide with those obtained from [2]. This provides a
nontrivial validation of our integral equations (S67,S68).

2. Computation of the generalized profiles

Having determined Φn(0±) and κj for j ≤ n, and thus Φ′
n(0±) from the boundary condition (S29), we can express

Φ′(v) in terms of Ω±(v). Expanding the explicit solutions (S72,S73) in powers of ω and computing the inverse Fourier
transform, we recover the expansion (S62) with Ω(n)

± (v) given by (S59) for n ≤ 3, but we can also access higher orders
via an inverse Fourier transform. Having expressed ω in terms of the cumulants determined previously via (S75), we
thus have the expansion of Φ′(v) in powers of λ. After integration, we obtain in particular

Φ0(v) = ρ , (S80a)

Φ1(v) = 1− ρ
2 erfc(v) , (S80b)

Φ2(v) = (1− ρ)(1− 2ρ)
2ρ erfc(v)− 2

π

(1− ρ)2

ρ
e−v2

, (S80c)

Φ3(v) = (1− ρ)2(3 + π)ρ2 − (12 + π)ρ+ 6 + πρ(1− ρ)
2πρ2 erfc(v)

+ 3(1− ρ)2 2(1− ρ)v −
√
π(1− 2ρ)

π3/2ρ2 e−v2
− 3(1− ρ)2

4ρ erfc
(
v√
2

)2
, (S81)

Φ4(v) = (1− ρ)(1− 2ρ)24(1− ρ)2 − π(3(1− 2ρ)2 + 4(1− ρ)(1− 2ρ) + 18ρ(1− ρ)− 4)
2πρ3 erfc(v)

+ 4(1− ρ)2 3
√
π(1− ρ)(1− 2ρ)v − 4(1− ρ)2(4 + v2) + π(5(1− ρ)(1− 2ρ) + 3(1 +

√
2)ρ(1− ρ)− 2)

π2ρ3 e−v2

+ 12
√

2(1− ρ)3

πρ2 e− v2
2 erfc

(
v√
2

)
− 3(1− ρ)2(1− 2ρ)

2ρ2 erfc
(
v√
2

)2
. (S82)
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Φ5(v) = −
(1− ρ)

(
π2ρ4 + 440(1− ρ)4 + 30π

(
2ρ
((

2
√

2− 3
)
ρ− 2

√
2 + 6

)
− 3
)

(1− ρ)2)
240π2ρ4 erfc(v)

+ (1− ρ)2

24π5/2ρ4

[
4
√
π(1− ρ)2 (19ρ+ (4ρ− 2)v2 − 11

)
+ 12π

(
ρ
((

2
√

2− 5
)
ρ− 2

√
2 + 8

)
− 2
)

(1− ρ)v

−3π3/2(1− 2ρ)
(

2ρ
((√

2− 3
)
ρ−
√

2 + 5
)
− 3
)

+ 4(1− ρ)3v
(
2v2 + 27

)]
e−v2

+ (1− ρ)3 (
√
π(1− 2ρ)− 2(1− ρ)v)
2
√

2π3/2ρ3
e− v2

2 erfc
(
v√
2

)
+

(1− ρ)2 (π (2ρ2 − 4ρ+ 1
)
− 12(1− ρ)2)

32πρ3 erfc
(
v√
2

)2

− (1− ρ)3

4
√

3π ρ2

∫ +∞

v

dz e− z2
3

[
erfc

(√
2
3z
)

+ erfc
(
z√
6

)
− 4T

(
z√
3
,
√

3
)]

, (S83)

with the Owen-T function defined in (S60).

3. Conservation relation

Using the results above, the conservation relation∫ ∞

0
(Φ(v)− ρ)dv −

∫ 0

−∞
(Φ(v)− ρ)dv = ρξ (S84)

holds up to O(λ6), and non perturbatively in λ (numerically).

D. Extensions

1. Step density profile

Our formalism can be extended to the case of an initial step density ρ− for v < 0 and ρ+ for v > 0, by only changing
the boundary condition at infinity (S30) into Φ(±∞) = ρ±. Unlike the constant density case, the odd order cumulants
do not vanish here. We can still apply the procedure described in Section II C, which gives that κ1 is solution of

ρ−

1 +
√
π κ1eκ2

1 erfc(−κ1)
= ρ+

1−
√
π κ1eκ2

1 erfc(κ1)
, (S85)

and the higher order cumulants are expressed in terms of κ1. For instance,

κ2 = κ2
1

(
2πe2κ2

1κ1 erfc
(√

2κ1

)
+

4πe2κ2
1κ1ρ+

(
ρ2

+ − 3ρ−ρ+ + 2ρ−
)

(ρ− − ρ+)3 −
√

2π
)
, (S86)

These expressions coincide with those given in [2]. We additionally obtain the profiles Φn(v), for instance

Φ0(v) = ρ+

2 erfc(−v − κ1) + ρ−

2 erfc(v + κ1) , (S87)

Φ1(v) = 2
√
πeκ2

1κ1ρ− (1− ρ+)− (ρ−ρ+)2

2 (ρ− − ρ+) erfc (κ1 + v)

−
e−(κ1+v)2

(
4
√
πe2κ2

1κ3
1

(
(ρ− − ρ+)3 erfc

(√
2κ1
)

+ 2ρ+
(
ρ2

+ + ρ− (2− 3ρ+)
))
− 2
√

2κ2
1 (ρ− − ρ+)3

)
2 (ρ− − ρ+)2

+ 1
2
√
πeκ

2
1κ1 (ρ+ − ρ−)

(
4T
(√

2κ1,
κ1 + v

κ1

)
− 4T

(
2κ1 + v,

v

2κ1 + v

)
+ erfc

(
2κ1 + v√

2

)
− erfc (κ1)

)
. (S88)

for v > 0 and κ1 > 0.
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2. Another observable: the current through the origin

We now consider another observable, which is the flux of particles through the origin during a time t [8, 9], which
we can write as

Qt =
∑
r≥1

(ηr(t)− ηr(0)) . (S89)

We consider the cumulant generating function

ψQ(λ) =
√

2t ψ̂Q = ln
〈
eλQt

〉
, (S90)

and the generalised profiles for the current

wQ;r(t) =
〈
ηr eλQt

〉
⟨eλQt⟩

. (S91)

And for large t, we have

wQ;r(t) ≃
t→∞

ΦQ(v) =
∑
n≥0

ΦQ;n(v)λ
n

n! , v =
r − 1

2√
2t

. (S92)

We still define the functions Ω±(v) as

Ω±(v) = ∓2ψ̂Q
Φ′
Q(v)

Φ′
Q(0±) . (S93)

It can be checked that these functions again verify the integral equations (S67,S68), but with ξ = 0:

Ω+(v) = −ωQ e−v2
− ωQ

∫ 0

−∞
dz Ω+(z) e−(v−z)2

, (S94)

Ω−(v) = ωQ e−v2
− ωQ

∫ ∞

0
dz Ω−(z) e−(v−z)2

, (S95)

which still imply that

ψ̂Q = − 1
2
√
π

Li 3
2
(−ωQ

√
π) . (S96)

In order to obtain the boundary conditions satisfied by Φ, we write the time evolution of the CGF from the master
equation,

∂t ln
〈
eλQt

〉
= 1

2

[
(eλ − 1)

〈
η0(1− η1)eλQt

〉
⟨eλQt⟩

+ (e−λ − 1)
〈
η1(1− η0)eλQt

〉
⟨eλQt⟩

]
. (S97)

We proceed similarly for the generalized profiles

∂twQ;0 = (e−λ − (e−λ − 1)wQ;0)
∂t ln

〈
eλQt

〉
e−λ − 1 + wQ;−1 − wQ,0

2 , (S98)

∂twQ;1 = (eλ − (eλ − 1)wQ;1)
∂t ln

〈
eλQt

〉
eλ − 1 + wQ;2 − wQ;1

2 . (S99)

Taking the hydrodynamic limit, we get at leading order

(eλ − 1)ΦQ(0−)(1− ΦQ(0+)) + (e−λ − 1)ΦQ(0+)(1− ΦQ(0−)) = 0 , (S100)
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Φ′
Q(0−) = 2ψ̂Q

(
1

1− eλ − ΦQ(0−)
)
, Φ′

Q(0+) = −2ψ̂Q
(

1
1− e−λ − ΦQ(0+)

)
. (S101)

These boundary conditions, combined with the solution of the equations (S94,S95) yield

ωQ
√
π = ρ−(1− ρ+)(eλ − 1) + ρ+(1− ρ−)(e−λ − 1) . (S102)

With (S96), this allows us to recover the result of Derrida and Gerschenfeld [8, 9] on the cumulant generating function
ψ̂. Additionally, we obtain the profiles ΦQ;n(v). For instance

ΦQ;1(v) = ρ(1− ρ)
2 erfc(v) , (S103a)

ΦQ;2(v) = ρ(1− ρ)(1− 2ρ)
2 erfc(v) , (S103b)

ΦQ;3(v) = ρ(1− ρ)(1− 3ρ+ 3ρ2)
2 erfc(v)− 3ρ

2(1− ρ)2

4 erfc
(
v√
2

)2
. (S103c)

3. Another observable: a generalized current

For a given position x, we consider the generalized current

Jt(x) =
∑
r≥1

(ηr+x(t)− ηr(0)) (S104)

studied in [2, 3]. It measures the difference between the number of particles on the positive axis at t = 0 and the
number of particles at the right of x at time t. In this Section, we show that the cumulant generating function of the
generalized flux which has been recently computed in [2, 3] can be retrieved from our approach.

One subtlety is that at t = 0 the observable J0(x) ̸= 0, which results in additional difficulties due to the contribution
of this (random) initial value. To circumvent this difficulty, we consider the observable Jt(xt), with xt = ⌊ξ

√
2t⌋ the

integer part of ξ
√

2t, which now verifies J0(x0) = 0. The time evolution of the cumulant generating function of this
observable combines two contributions: the jumps of xt at times tn = (n/ξ)2/2 and the evolution at xt fixed between
two jumps. Combining these two contributions, it can be shown that, for large t,

∂t ln
〈

eλJt(xt)
〉

= 1
2

[
(eλ − 1)

〈
ηx(1− ηx+1)eλJt(xt)〉〈

eλJt(xt)
〉 + (e−λ − 1)

〈
ηx+1(1− ηx)eλJt(xt)〉〈

eλJt(xt)
〉 ]

+ ξ√
2t

ln[1+(e−λ−1)wJ;1(t)],

(S105)
where we have used that the jumps occur with density ξ/

√
2t, and defined

wJ;r(x, t) =
〈
ηx+r(t)eλJt(xt)〉〈

eλJt(xt)
〉 . (S106)

Similarly, we obtain that the profiles satisfy

∂twJ;0 = (e−λ − (e−λ − 1)wJ;0)
∂t ln

〈
eλJt(xt)〉− ξ√

2t ln[1 + (e−λ − 1)wJ;1(t)]
e−λ − 1

+ wJ;−1 − wJ;0

2 + ξ√
2t

(
e−λwJ;1

1 + (e−λ − 1)wJ;1
− wJ;0

)
, (S107)

and an analogous expression holds for wJ;1. For large times, we have the scalings

ln
〈

eλJt(xt)
〉
≃
√

2t ψ̂J(λ, ξ) , wr(t) ≃
t→∞

ΦJ
(
v =

r − 1
2√

2t
, ξ, λ

)
, (S108)

which we will denote by ΦJ(v) for simplicity. Using these scalings, we get from (S105,S107):

(eλ − 1)ΦJ(0−)(1− ΦJ(0+)) + (e−λ − 1)ΦJ(0+)(1− ΦJ(0−)) = 0 , (S109)
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Φ′
J(0±) = ∓2Ψ

(
1

1− e∓λ − ΦJ(0±)
)
, Ψ = ψ̂J − ξ ln[1 + (e−λ − 1)ΦJ(0+)] . (S110)

If we define

Ω±(v) = ∓2Ψ Φ′
J(v)

Φ′
J(0±) , (S111)

the solution of the integral equations (S67,S68) combined with the boundary conditions gives

ωJ
√
πeξ

2
= ρ−(1− ρ+)(eλ − 1) + ρ+(1− ρ−)(e−λ − 1) , (S112)

and we obtain for the cumulant generating function of Jt(xt):

ψ̂J(λ, ξ) = − 1
2
√
π

Li 3
2
(−ωJ

√
π) + ξ ln[1 + (e−λ − 1)ΦJ(0+)] , (S113)

which we can combine with the expression of ΦJ(0+) obtained by integration of Ω+ to obtain

ψ̂J(λ, ξ) = ξ ln[1 + (e−λ − 1)ρ+]−
∑
n≥1

(−ωJ
√
πeξ2)n

2n

(
e−nξ2

√
nπ
− ξ erfc(

√
nξ)
)
, (S114)

which coincides exactly with the expression obtained in [2, 3]. This supports the exactness of our main equa-
tions (S67,S68), along with the definition (S111) of Ω± in this case.

E. Comparison with Imamura et al for the position of the tracer

1. Obtaining the cumulant generating function of the tracer’s position from the generalized current

We have shown in Section II D 3 that our main equations (S67,S68) allow to recover the cumulant generating function
ψ̂J (S114) of the generalized current Jt (S104) recently obtained by Imamura et al in [2, 3]. In these papers, the
authors deduce from this result the cumulant generating function ψ̂ of the position of the tracer as follows.

First, taking a Legendre transform, one gets the distribution of the current Jt(x), which takes the form

P(Jt(x) = J) ∼
t→∞

e−
√

2t φJ (ξ,j) , with j = J√
2t
, ξ = x√

2t
, (S115)

where

φJ(ξ, j) = χ∗(ξ, j)j − ψ̂J(χ∗(ξ, j), ξ) , ∂ψ̂J
∂χ

∣∣∣∣∣
χ=χ∗

= j , ψ̂J(χ, ξ) = lim
t→∞

1√
2t

ln
〈

eχJt(x)
〉
. (S116)

We have replaced the parameter λ in (S114) by χ to avoid confusion with the argument λ of ψ̂(λ). Second, using that
the number of particles to the right of the tracer is conserved, the position Xt of the tracer verifies Jt(Xt) = 0. The
distribution of the position of the tracer can therefore be obtained as

P(Xt = x) = P(Jt(x) = 0) ∼
t→∞

e−
√

2t φJ (ξ,0) . (S117)

Finally, taking a Legendre transform of φJ(ξ, 0) yields the cumulant generating function ψ̂ of Xt. Having recovered
the expression of ψ̂J (S114) derived in [2, 3], we have therefore the same cumulant generating function ψ̂ of Xt as [2, 3]
from the procedure above.

2. An alternative parametrization for the cumulant generating function

Additionally, we have obtained an alternative parametrization of the cumulant generating function of Xt, which
takes the simple form (S75) in terms of the parameter ω. This parameter is deduced from ρ and λ as follows.
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Using the relation (S29) between Φ′(0±) and Φ(0±), combined with the solutions (S72,S73) we obtain the relation (S76)
which allows to determine Φ(0+), and a similar one for Φ(0−). Combining these results with (S25), we obtain the first
equation

2(coshλ− 1) = ρ(eλ − 1)2

eλ − e−Z+(ω,ξ) + ρ(e−λ − 1)2

e−λ − e−Z−(ω,ξ) , (S118)

which relates ξ and ω to ρ and λ.
The second equation needed to fully determine ξ and ω is the relation ξ = dψ̂

dλ . Using this expression in (S118),
together with (S75), we obtain a nonlinear differential equation, whose solution yields ψ̂(λ).

A more convenient parametrization can be obtained by using the conservation relation (S84) instead of ξ = dψ̂
dλ .

Combined with the solutions (S72,S73), this equation can be rewritten as

ξ = 1
2∂ξ ln

∣∣∣(eλ − e−Z+(ω,ξ)
)(

e−λ − e−Z−(ω,ξ)
)∣∣∣ , (S119)

which can be written as an algebraic equation using the expression of Z± (S74).
To summarize, given λ and ρ, the parameters ξ and ω are obtained by solving (S118) and (S119). The cumulant

generating function ψ̂(λ) is then straightforwardly deduced from (S75). Furthermore, since the large deviations function
ϕ(ξ) of the tracer’s position is deduced from ψ̂ by the Legendre transform (S14), we straightforwardly obtain from this
parametrization that ϕ(ξ) = λξ − ψ̂(λ). This is an alternative route to the one followed in [2, 3]. We have checked
numerically that the two parametrizations give the same result, validating our approach.

F. Comparison with Derrida et al for the current through the origin

Combining our intermediate results (S96,S102) on the current through the origin Qt, we obtain the cumulant
generating function

ψ̂Q(λ) = lim
t→∞

1√
2t

ln
〈
eλQt

〉
= − 1

2
√
π

Li 3
2

(
−ρ−(1− ρ+)(eλ − 1)− ρ+(1− ρ−)(e−λ − 1)

)
, (S120)

which is the result of [8, 9]. This gives another validation of our approach.

III. EXTENSION TO OTHER SINGLE-FILE SYSTEMS

A. Description of single-file systems in terms of two transport coefficients

In the language of fluctuating hydrodynamics [10], a single-file system can be described at large distance and large
time by a fluctuating density field ρ(x, t) that is shown to obey the following equation,

∂tρ(x, t) = ∂x

[
D(ρ(x, t))∂xρ(x, t) +

√
σ(ρ(x, t))η(x, t)

]
, (S121)

where η(x, t) is a normalized Gaussian white noise uncorrelated in space and time. The quantities D(ρ) and σ(ρ) were
first defined from the microscopic details of a lattice gas [10]. It is nevertheless more intuitive to define them for a
system of size L between two reservoirs at densities ρa and ρb [11]. The number of particles transferred from left to
right at time t is denoted by Qt and is shown to satisfy

lim
t→∞

⟨Qt⟩
t

= D(ρ)
L

(ρa − ρb) if (ρa − ρb) is small, lim
t→∞

〈
Q2
t

〉
t

= σ(ρ)
L

if ρa = ρb = ρ. (S122)
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We list below the expressions of D(ρ) and σ(ρ) for a few models considered here.

Model D(ρ) σ(ρ)

Symmetric exclusion process [12] D0 2D0ρ(1− ρ)

Hard Brownian particles [12] D0 2D0ρ

Kipnis-Marchioro-Presutti [13] D0 σ0ρ
2

Random average process [14, 15] µ1

2ρ2
1
ρ

µ1µ2

µ1 − µ2

D0 is the diffusion coefficient of an individual particle, σ0 = 2aD0 with a the lattice constant of the KMP model [13],
and µk are the moments of the probability law of the jumps in the RAP [15].

We are interested in the position Xt of the tracer, which we can define as [16]∫ Xt

0
ρ(x, t)dx =

∫ ∞

0
(ρ(x, t)− ρ(x, 0)) dx , (S123)

by expressing that the number of particles to the right of the tracer is conserved. We define the associated cumulant
generating function and the generalized profiles

ψ(λ) = ln
〈
eλXt

〉
, wr(λ, t) =

〈
ρ(Xt + r, t)eλXt

〉
⟨eλXt⟩

. (S124)

We will also consider the current through the origin, which is expressed as

Qt =
∫ ∞

0
(ρ(x, t)− ρ(x, 0)) dx , (S125)

and the associated profiles

ψQ(λ) = ln
〈
eλQt

〉
, wQ;r(λ, t) =

〈
ρ(r, t)eλQt

〉
⟨eλQt⟩

. (S126)

B. Mapping the RAP to the KMP model

The random average process [14, 17, 18] consists of particles on an infinite line, placed at positions xk(t) with initial
density ρ. The particles are allowed to move to a random fraction of the distance to the next one, either to the left or
to the right with rate 1

2 . Only the first two moments µ1 and µ2 of the distribution of this random fraction are relevant
in the hydrodynamic limit, in which the system is described by the coefficients D(ρ) and σ(ρ) given in the table above.

This model can be mapped onto the Kipnis Marchioro Presutti model [19, 20], which describes a one dimensional
lattice where each site contains an energy εk = xk − xk−1 [21]. At random times, the total energy of two neighbouring
sites is randomly redistributed on these sites. In the hydrodynamic limit, we can replace the discrete index k by a
continuous variable z and consider the density of the spacings (or energies) ν(z, t), which averages to 1/ρ. This system
is then described by D(ν) = µ1/2 and σ(ν) = µ1µ2ν

2/(µ1 − µ2) [15]. The displacement of the tracer particle (initially
at the origin) is then given by

x0(t) =
∫ 0

−∞
(ν(z, t)− ν(z, 0))dz = −Qt[ν] , (S127)

where Qt[ν] is the current through the origin in the KMP model. The cumulant generating function of the tracer’s
position in the RAP is thus directly related to the one of the current in the KMP model:

ψ(RAP)(λ, t) = ln
〈

eλx0(t)
〉

= ln
〈
e−λQt

〉
= ψ

(KMP)
Q (−λ, t) . (S128)
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This connection further extends to the generalized density profiles associated to these two observables. In order to
show it explicitly, it is more convenient to use the conditional profiles discussed in Section I C. We consider for the
RAP the mean density conditioned on the tracer’s position

⟨ρ(y + x0(t), t)|x0(t) = x⟩ ≃
t→∞

Φ̃(RAP)
(
v = y√

t
, ξ = x√

t

)
. (S129)

Similarly, for the KMP model, we introduce the mean density conditioned on the value of the current

⟨ν(z, t)|Qt[ν] = Q⟩ ≃
t→∞

Φ̃(KMP)
Q

(
u = z√

t
, q = Q√

t

)
. (S130)

Since ν(z, t) is the spacing between the particles labelled by z and ρ(x, t) the density of particles at position x, the two
conditional profiles are related by

Φ̃(RAP)(v(u), ξ) = 1
Φ̃(KMP)
Q (u,−ξ)

, (S131)

where v(u) is the position of the particle labelled by u, in the reference frame of the tracer particle. It can be obtained
by writing that

xk(t)− x0(t) =
∫ k

0
ν(z, t)dz (S132)

from the definition of ν(z, t). Taking the average, conditioned on x0(t) = −Qt[ν] = ξ
√
t, we obtain

v(u) =
∫ u

0
Φ̃(KMP)
Q (u′,−ξ)du′ . (S133)

Equations (S131,S133) give a parametric expression for the conditional profiles of the RAP. An analogous parametrization
is given in [21] for the average density in the presence of a biased tracer, but without conditioning (in our case, this
would correspond to a flat density profile). Similarly to the demonstration of Section I C, we can show that these
profiles are equivalent to the joint cumulants generating functions (S124,S126),

wx(λ, t) =
〈
ρ(x+ x0(t), t)eλx0(t)〉〈

eλx0(t)
〉 ≃

t→∞
Φ(RAP)(v, λ) = Φ̃(RAP)(v, ξ∗) , ξ∗ = dψ̂(RAP)

dλ , (S134)

wQ;z(λ, t) =
〈
ν(z, t)eλQt[ν]〉〈

eλQt[ν]
〉 ≃

t→∞
Φ(KMP)
Q (v, λ) = Φ̃(KMP)

Q (v, ξ∗) , ξ∗ =
dψ̂(KMP)

Q

dλ . (S135)

Therefore, we finally have the parametrization

Φ(RAP)(v(u), λ) = 1
Φ(KMP)
Q (u,−λ)

, v(u) =
∫ u

0
Φ(KMP)
Q (u′,−λ)du′ . (S136)

Expanding this expression in powers of λ, we can obtain the profiles Φ(RAP)
n (v) of the RAP from those associated with

the flux in the KMP model. This is done in Section III E below.

C. Modified equations for the GDP-generating function

All the models discussed in this paper (including the RAP via the mapping to the KMP model) are described by
the situation D(ρ) = D0 with σ′′(ρ) constant and σ(0) = 0, so we restrict ourselves to this case.
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1. For the position of the tracer

At large times, the cumulant generating function of the tracer’s position scales as

ψ(λ, t) ∼
t→∞

ψ̂(λ)
√

4D0t , (S137)

and the GDP generating function (S124) as

wr(λ, t) ∼
t→∞

Φ
(
v = r√

4D0t
, λ

)
. (S138)

We still define the functions Ω±(v) as

Ω±(v) = ∓2ψ̂ Φ′(v)
Φ′(0±) . (S139)

Our main equation becomes

Ω±(v) = ∓ω e−(v+ξ)2+ξ2
+ σ′′(0)

4D0
ω

∫
R∓

Ω±(z) e−(v−z+ξ)2+ξ2
dz , (S140)

with ξ = dψ̂
dλ , and the boundary conditions

Φ′(0±)∓ ψ̂ σ
′′(0)

2D0

Φ(0±)

e∓ σ′′(0)λ
4D0 − 1

= 0 , 2σ′(0) + σ′′(0)Φ(0+)
2σ′(0) + σ′′(0)Φ(0−) = e

σ′′(0)λ
4D0 . (S141)

The solution of the integral equation (S140) can be easily deduced from (S72,S73). In particular, we get from the
expression of Ω+(0) that

ψ̂ = 2D0

σ′′(0)
√
π

Li 3
2

(
σ′′(0)

√
π

4D0
ω

)
. (S142)

2. For the current through the origin

Our results on the tracer’s position can be extended to the current through the origin (S125), generalizing the
discussion of Section II D 2 to more general single file systems. The cumulant generating function scales as

ψQ(λ, t) = ln
〈
eλQt

〉
∼

t→∞
ψ̂Q(λ)

√
4D0t , (S143)

and the GDP generating function (S126) as

wQ;r(λ, t) ∼
t→∞

ΦQ
(
v = r√

4D0t
, λ

)
. (S144)

Defining again Ω± as in (S93), these functions satisfy (S140) with ξ = 0 and ω replaced by ωQ, which is related to ψ̂Q
by

ψ̂Q = 2D0

σ′′(0)
√
π

Li 3
2

(
σ′′(0)

√
π

4D0
ωQ

)
. (S145)

The boundary conditions now become

Φ′
Q(0±) = ∓2ψ̂Q

(
σ′(0)
2D0

1

1− e∓ σ′(0)
2D0

λ
+ σ′′(0)

4D0
ΦQ(0±)

)
,

ΦQ(0+)(2σ′(0) + σ′′(0)ΦQ(0−))
ΦQ(0−)(2σ′(0) + σ′′(0)ΦQ(0+)) = e

σ′(0)
2D0

λ . (S146)

D. Profiles and cumulants for the KMP model

Applying the procedure described above in Section II C to the case of the KMP model, with D(ρ) = D0 and
σ(ρ) = σ0ρ

2, we can obtain the cumulants and profiles for this model.
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1. For the position of the tracer

For the tracer’s position, we obtain for instance at first orders

κ
(KMP)
2 = σ0√

2πD0
, κ

(KMP)
4 =

(
12 +

(
3
√

2− 8
)
π
)
σ3

0

4
√

2π3/2D
5/2
0

, (S147)

and the associated profiles

Φ(KMP)
1 (v) = ρσ0

4D0
erfc(v) , (S148a)

Φ(KMP)
2 (v) = ρσ2

0
4D2

0

(
erfc(v)− 2

π
e−v2

)
, (S148b)

Φ(KMP)
3 (v) = ρσ3

0
32D3

0

(
2
(

1 + 6
π

)
erfc(v)− 24

√
π − v
π3/2 e−v2

+ 3 erfc
(
v√
2

)2
)
. (S148c)

2. For the current through the origin

In the case of the current, we obtain the general expression of the cumulant generating function

ψ̂
(KMP)
Q (λ) = D0√

πσ0
Li 3

2

((
σ0ρλ

2D0

)2
)
, (S149)

which coincides with the one given in [9], and also the profiles

Φ(KMP)
Q;1 (v) = ρ2σ0

4D0
erfc(v) , (S150a)

Φ(KMP)
Q;2 (v) = ρ3σ2

0
4D2

0
erfc(v) , (S150b)

Φ(KMP)
Q;3 (v) = 3ρ4σ4

0
32D3

0

(
2 erfc(v) + erfc

(
v√
2

)2
)
. (S150c)

E. Profiles and cumulants for the RAP

We straightforwardly obtain the cumulant generating function ψ̂(RAP) of the position of a tracer in the RAP from
the one of the current in the KMP model (S149) via the relation (S128), which yields

ψ̂(RAP)(λ) = lim
t→∞

1√
4D(ρ)t

ψ(RAP)(λ, t) = ρ(µ1 − µ2)
2µ2
√
π

Li 3
2

((
µ2λ

ρ(µ1 − µ2)

)2
)
. (S151)

Similarly, the profiles for the RAP can be deduced from the one associated with the current in the KMP model (S150)
by setting D0 = µ1/2 and σ0 = µ1µ2/(µ1 − µ2), and using the parametrization (S131). This gives

Φ(RAP)
1 (v) = µ2

2(µ1 − µ2) erfc(v) , (S152a)

Φ(RAP)
2 (v) = µ2

2
2πρ(µ1 − µ2)2

(
π erfc(v)2 − 2π

(
1 + v

e−v2

√
π

)
erfc(v)− 2e−v2

+ 2e−2v2

)
, (S152b)

Φ(RAP)
3 (v) = 3

4π2
µ3

1
ρ2(µ1 − µ2)3

(
π2 erfc(v)3 − π2

(
4 + 2v(3− v2)√

π
e−v2

)
erfc(v)2

+ (2π2 + 2π(3− 2v2)e−2v2
+ 2π(2v2 + 4

√
πv − 3)e−v2

) erfc(v)

+ 2
√
πve−3v2

− 4(2π +
√
πv)e−2v2

+ 2(4π +
√
πv)e−v2

)
. (S152c)
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IV. COMPARISON WITH MFT

We now compare our results with those obtained in the formalism of the Macroscopic Fluctuation Theory [22–26].
We are interested in the study of the single-file system at a large time T . We introduce a new density ρ̃, constructed
from ρ(x, t) introduced in Section III A by rescaling the time and position:

ρ(x, t) = ρ̃

(
u = x√

T
, τ = t

T

)
. (S153)

The probability to evolve from an density ρ̃0 at t = 0 to a density ρ̃(u, 1) at t = T is given by [9]:

P(ρ̃0(u) −→ ρ̃(u, 1)) =
∫
D[ρ̃(u, τ)]D[H(u, τ)] e−

√
T S[ρ̃,H] , (S154)

where the action S reads

S[ρ̃, H] =
∫

du
∫ 1

0
dτ
(
H∂τ ρ̃+D(ρ̃)∂uρ̃∂uH −

σ(ρ̃)
2 (∂uH)2

)
. (S155)

The distribution of the initial condition ρ̃0 is

P[ρ̃0] ≃ e−
√
T F [ρ̃0] , (S156)

with

F [ρ̃(u, 0)] =
∫

dv
∫ ρ̃(u,0)

ρ

dz 2D(z)
σ(z) (ρ̃(u, 0)− z) . (S157)

In this formalism, the moment generating function of the tracer’s position is given by [16]〈
eλXT

〉
≃
∫
Dρ̃0

∫
D[ρ̃(u, τ)]D[H(u, τ)] e−

√
T (S[ρ̃,H]+F [ρ̃0]−λY [ρ̃]) , (S158)

where Y [ρ̃] = XT /
√
T is the rescaled position of the tracer, which is deduced from (S123):∫ Y [ρ̃]

0
ρ̃(u, 1)du =

∫ ∞

0
(ρ̃(u, 1)− ρ̃(u, 0)) du . (S159)

For large T , the integral in (S158) is dominated by the minimum of S + F − λY , taken as a function of (ρ̃, H). We
denote this minimum (q, p). These functions satisfy the evolution equations [16]

∂τq = ∂u[D(q)∂uq]− ∂u[σ(q)∂up] , (S160)

∂τp = −D(q)∂2
up−

1
2σ

′(q)(∂up)2 , (S161)

with the terminal condition for p

p(u, τ = 1) = BΘ(u− Y ) , B = λ

q(Y, 1) , (S162)

and the initial condition for q, expressed in terms of p(u, 0):

p(u, 0) = BΘ(u) +
∫ q(u,0)

ρ

dr2D(r)
σ(r) . (S163)

As shown in [1], our generalised density profiles (S124) can be deduced from the MFT solution q(u, τ), since

wr(λ, T ) ≃

∫
Dρ̃0

∫
D[ρ̃(u, τ)]D[H(u, τ)] ρ̃(Y [ρ̃] + r/

√
T , 1) e−

√
T (S[ρ̃,H]+F [ρ̃0]−λYT [ρ̃])∫

Dρ̃0

∫
D[ρ̃(u, τ)]D[H(u, τ)] e−

√
T (S[ρ̃,H]+F [ρ̃0]−λYT [ρ̃])

, (S164)
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which yields from a saddle point estimate:

wr(λ, T ) ≃ Φ
(
v = r√

4D0T
, λ

)
= q

(√
4D0(v + ξ), τ = 1

)
, ξ = Y [q]√

4D0
(S165)

where we have used here the scaling with time introduced above in the case D(ρ) = D0 for consistency, but this
relation between Φ and q also holds for a general D(ρ) (without rescaling the positions with D0). Aside from a few
specific cases (such as the hard Brownian particles), the MFT equations cannot be solved analytically for arbitrary λ.
We thus rely both on a perturbative solution and a numerical resolution of these equations to compare with our results.

A. Perturbative expansion in λ for the SEP

We come back to the case of the SEP, corresponding to D(ρ) = 1/2 and σ(ρ) = ρ(1− ρ). The MFT equations can
be solved perturbatively by expanding them in powers of the parameter B, defined in (S162), which appears explicitly
in the equations, as

p(u, τ) =
∑
n≥1

Bnpn(u, τ) , q(u, τ) = ρ+
∑
n≥1

Bnqn(u, τ) , Y =
∑
n≥1

BnYn . (S166)

This procedure was carried out for the first orders in [16]. The difficulty is then to relate B and λ, because the
solution q(u, τ = 1) is discontinuous at u = Y , which makes it impossible to use the definition (S162). The relation
between these parameters can still be found by treating B and λ independently, and minimizing the resulting cumulant
generating function with respect to B. This procedure was used in [16]. Here, we use a shortcut: since Y =

√
2ξ

with ξ = dψ̂
dλ and ψ̂ has been determined in [2], we can use this relation to obtain B as a function of λ after inversion

of (S166). The main difficulty is now to compute qn(u, τ) at a given order n.
The solution for the first two orders has been computed in [16], and reads

p1(u, τ) = 1
2 erfc

(
−u√

2(1− τ)

)
, q1(u, τ) = ρ(1− ρ)

2

[
erfc

(
−u√

2(1− τ)

)
− erfc

(
−u√

2τ

)]
, Y1 =

√
2
π

(1− ρ) ,

(S167)

p2(u, τ) = −Y1K(u|1− τ) + 1− 2ρ
8 erfc

(
u√

2(1− τ)

)
erfc

(
−u√

2(1− τ)

)
, Y2 = 0 , (S168)

q2(u, τ) = ρ(1− ρ)(1− 2ρ)
4

[
erfc

(
u√
2τ

)
+ erfc

(
u√
2τ

)
erfc

(
u√

2(1− τ)

)
− 4Y1

1− 2ρK(u|1− τ)
]
, (S169)

where

K(u|τ) = e− u2
2t

√
2πt

(S170)

is the heat kernel. Starting from order 3, the resolution becomes more complex. In [16], the solutions at order 3 were
written in the form

p3(u, t) = (1− 2ρ)2

24

[
− erf

(
u√

2(1− τ)

)
erfc

(
−u√

2(1− τ)

)
− 12Y1

1− 2ρK(u|1− τ)
]

erfc
(

u√
2(1− τ)

)

− 1
2

(
Y 2

1 u

1− τ + (2ρ− 1)Y1

)
K(u|1− τ) + p̃3(u, τ) , (S171)

q3(u, t) = ρ(1− ρ)(1− 2ρ)2

12

[
erfc

(
u√
2τ

)
− erfc

(
u√

2(1− τ)

)]

+ ρ(1− ρ)
2 Y1K(u|1− τ)

(
− u

1− τ Y1 + (1− 2ρ)− (1− 2ρ) erfc
(

u√
2τ

))
+ q̃3(u, τ) , (S172)
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where the two additional functions p̃3 and q̃3 satisfy the following inhomogeneous heat equations

∂τ p̃3 = −1
2∂

2
up̃3 + q1(∂up1)2 , (S173)

∂τ q̃3 = 1
2∂

2
uq̃3 − ρ(1− ρ)∂2

up̃3 + ∂u(q2
1∂up1) , (S174)

with the boundary conditions

p̃3(u, 1) = 0 , q̃3(u, 0) = − 1
3ρ(1− ρ)q1(u, 0)3 + ρ(1− ρ)p̃3(u, 0) . (S175)

However, these equations cannot be solved analytically, and were studied numerically in [16] in order to compute
the fourth cumulant κ4. One can indeed obtain exact integral representations of the solution q̃3(u, τ), in terms of
space-time convolutions of the r.h.s. with the heat kernel. This allow for precise numerical estimate of this function.
Here, we are only interested in its value at τ = 1 because of the relation (S165). Furthermore, because of the expected
form of the equation (S38), the combination

∂2
uq̃3(u, 1) + u∂uq̃3(u, 1) (S176)

should take a simpler form (the difference in the factors with (S38) comes from the fact that u =
√

2v). We can
thus write an integral representation for this expression, instead of q̃3, which can be computed numerically with an
arbitrary precision for a large number of points (∼ 500). Fitting these points with the functions we expect from the
equation (S40), we find that for u > 0

∂2
uq̃3(u, 1) + u∂uq̃3(u, 1) = ρ2(1− ρ)2

(
αue− u2

4 erfc
(u

2

)
+ βe− u2

2

)
, (S177)

with

α = 0.07052369794... and β = −0.07957747154... . (S178)

The coefficients obtained from this fit are extremely stable: they do not change by more that 10−12 when the interval
or the number of points are changed, or when adding other functions to fit with (these functions then get very small
coefficients < 10−10). Furthermore, we find that∣∣∣∣α− 1

8
√
π

∣∣∣∣ < 10−11 and
∣∣∣∣β + 1

4π

∣∣∣∣ < 10−11 . (S179)

Therefore,

∂2
uq̃3(u, 1) + u∂uq̃3(u, 1) = ρ2(1− ρ)2

(
u

8
√
π

e− u2
4 erfc

(u
2

)
− e− u2

2

4π

)
. (S180)

Although we first obtained this result numerically as described here, it can actually be proved from the integral
representation of the l.h.s. in terms of a space-time convolution: the spatial integral can be computed using [5], and
the remaining time integration reduces to the above result after some manipulations. Unfortunately, this procedure
can only be carried explicitly at this order, while the numerical evaluation can be performed at higher orders. Indeed,
using this procedure, we also obtained:

∂2
uq4(u, 1) + u∂uq4(u, 1) = ρ2(1− ρ2)(1− 2ρ)

16π2

(
u
√
πe− u2

4 erfc
(u

2

)
− 2e− u2

2

)
− ρ2(1− ρ)3

8
√

2π3/2

(√
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Going back to the profiles Φn(v) using the relation (S165), these expressions coincide perfectly with the results
obtained from our integral equations (S67,S68).

B. Numerical solution at arbitrary λ

The MFT equations (S160,S161) have a forward/backward structure due to the terminal condition on p (S162) and
initial condition on q (S163). One can still obtain a numerical solution using the scheme described in [27], which we
briefly summarize here.

1. First solve the equation for q (S160) using the initial guess p(u, τ) = BΘ(u− Y ), corresponding to the terminal
condition (S162) extended to all times.

2. Then solve the equation for p (S161) using the newly obtained function q(u, τ).

3. Iterate the process, replacing each time either p or q by the newly obtained function. After a few iterations (∼ 3),
the stability of the algorithm can be improved by replacing the functions by a linear combination of the last two,
e.g.,

q(u, τ)←− αqnew(u, τ) + (1− α)qold(u, τ) . (S183)

For instance with α = 0.75.

The Heaviside Θ function must be regularized in order to use the standard methods for solving partial differential
equations. We used the following approximation

Θ(u) = 1 + tanh(au)
2 , (S184)

with a ∼ 100. This regularization causes a small discrepancy between the numerical solution and the exact one near
the discontinuity of the function q(u, 1).

This algorithm uses explicitly as inputs the values of Y (the position of the tracer) and B, which are related in this
problem by the conservation relation (S159). This relation is not satisfied for arbitrary values of both Y and B. Given
Y as an input, we find the corresponding value of B by performing a dichotomy, until relation (S159) is verified. The
value of the parameter λ is deduced from the definition of B (S162). This gives the solution q(u, τ) of the problem for
a given position of the tracer Y , and thus the profiles Φ(v) from (S165). The plots for different models given in the
main text are in excellent agreement with the solution of our main equations (S67,S68).

V. NUMERICAL SIMULATIONS

A. Symmetric exclusion process

The simulations of the SEP are performed on a periodic ring of size N , with M = ρN particles at average density ρ.
The particles are initially placed uniformly at random. The jumps of the particles are implemented as follow: one
picks a particle uniformly at random, along with one direction (left and right with equal probabilities). If the chosen
particle has no neighbor in that direction, the jump is performed, otherwise it is rejected. In both cases, the time of
the simulation is incremented by a random number picked from an exponential distribution of rate N .

We keep track of one particle (the tracer) and compute the moments of its displacement and the generalized density
profiles. The averaging is performed over 108 simulation.

B. Kipnis-Marchioro-Presutti model

We consider a periodic lattice of N = 500 sites, each one carrying a continuous energy variable εi > 0. Initially the
energy of each site is picked independently from a Boltzmann distribution at inverse temperature ρ = 1. At a random
time picked from an exponential distribution of rate N , we pick uniformly a site n of the lattice. The total energy of
sites n and n+ 1 is randomly redistributed between these sites with a uniform distribution. This process is repeated
until the final time t is reached.
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The position of the tracer (initially chosen as 0) is defined as the boundary which delimits two regions where
the energy is conserved (upon subtracting the flux through the periodic boundary). In the continuous limit, this is
equivalent to the definition (S123).

The generalized density profiles are averaged over 1.2 · 109 simulations.

C. Random-average process

By construction of the RAP, if the density of the particles is denoted by ρ and if x and t are the spatial and temporal
coordinates, the observables depend only on the two rescaled coordinates z = ρx and τ = ρt. For this reason, we only
consider the RAP at density ρ = 1.

The simulations are performed on a periodic ring of length L = 10000, with N = 10000 particles at positions xi. We
choose a uniform probability law for the jumps of the particles. The steady state of the RAP is non-trivial, and can be
written in terms of the gaps gi = xi+1 − xi between two particles (with xN+1 = x1) as [28]

PN,L({gn}) ∝
N∏
n=1

1
√
gn

δ

(
N∑
n=1

gn − L

)
. (S185)

Denoting Gn = √gn, this corresponds to a uniform distribution of the vector (G1, . . . , GN ) on the N -dimensional
sphere of radius

√
L. This initial condition can be easily implemented by generating N i.i.d. Gaussian random variables

Xi with zero mean and unit variance, and computing

gi = G2
i = L

X2
i

N∑
n=1

X2
n

. (S186)

The observables of interest are then averaged over 8 · 106 simulations.
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