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We present high-resolution three-dimensional direct numerical simulations of breaking
waves solving for the two-phase Navier-Stokes equations. We investigate the role of the
Reynolds (wave inertia relative to viscous effects) and Bond numbers (wave scale over
the capillary length) on the energy, bubble and droplet statistics of strong plunging
breakers. We explore the asymptotic regimes at high Reynolds and Bond numbers and
compare with laboratory breaking waves. Energetically, the breaking wave transitions
from laminar to three-dimensional turbulent flow on a timescale that depends on the
turbulent Reynolds number up to a limiting value of Reλ ∼ 100, consistent with the
mixing transition in other canonical turbulent flows. We characterize the role of capillary
effects on the impacting jet and ingested main cavity shape and subsequent fragmentation
process, and extend the buoyant-energetic scaling from Deike et al. (2016) to account for
the cavity shape and its scale separation from the Hinze scale, rH . We confirm two regimes
in the bubble size distribution, N(r/rH) ∝ (r/rH)−10/3 for bubbles above rH , and
N(r/rH) ∝ (r/rH)−3/2 below it. We show resolved bubbles up to one order of magnitude
below the Hinze scale and observe a good collapse of the numerical data compared to
laboratory breaking waves (Deane & Stokes 2002). We resolve droplet statistics at high
Bond number in good agreement with recent experiments (Erinin et al. 2019), with a
distribution shape close to Nd(rd) ∝ r−2

d . The evolution of the droplet statistics appears
controlled by the details of the impact process and subsequent splash-up. We discuss
velocity distributions for the droplets, finding ejection velocities up to four times the
phase speed of the wave, which are produced during the most intense splashing events
of the breaking process.

1. Introduction

1.1. The broader context

The action of breaking waves on the ocean surface has a large and incompletely
understood effect on the dynamics of mass, momentum and energy transfer
between the ocean and the atmosphere, converting much of the wave energy
into heat in a complex process which spans a wide range of scales (Melville
1996). Breaking also marks a transition at the ocean surface from laminar flow
to two-phase turbulent mixing at small scales, modulating the dynamics of the
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upper ocean sub-mesoscales, particularly via Langmuir turbulence and fronts
(McWilliams 2016), and affects the transport of particles with implications for
the fate of oil spills and plastic pollutants (Deike et al. 2017; Pizzo et al. 2019).
Furthermore, surface breaking injects a large amount of gas into the ocean via
the entrainment of bubbles, including approximately 30% of the CO2 which has
been released into the atmosphere (Deike & Melville 2018; Reichl & Deike 2020);
breaking also ejects spray into the atmosphere, where it can convect and evaporate
to leave salt crystals which may serve as cloud condensation nuclei (de Leeuw
et al. 2011; Veron 2015).

Wave breaking involves transition from two-dimensional (2D) laminar wave
flow to three-dimensional (3D) turbulence. As wave energy focuses through linear
or nonlinear processes, local conditions on a wave surface become unstable and
cause breaking, which transfers energy and momentum to the water column. The
geometry and kinematics of the breaking waves have been extensively studied
(Longuet-Higgins & Cokelet 1976; Perlin et al. 2013; Schwendeman & Thomson
2017; Fedele et al. 2020), and the identification of a breaking threshold with
approaches based on the wave kinematics, dynamics or geometry remains a
longstanding issue (Melville 1982; Banner & Peirson 2007; Perlin et al. 2013)
with recent work discussing the link between the breaker kinematics and dynamics
(Saket et al. 2017a; Derakhti et al. 2020; Pizzo 2020).

While the initiation of the breaking phenomenon and the turbulence generated
by it have been characterized (Rapp & Melville 1990; Duncan et al. 1999; Tulin
& Waseda 1999; Melville et al. 2002; Banner & Peirson 2007; Drazen et al. 2008;
Drazen & Melville 2009), the time and length scales of the transition process
remain to be explored. During this transition to turbulence, air is entrained, and
bubbles are formed (Lamarre & Melville 1991; Deane & Stokes 2002) and spray
droplets are ejected (Erinin et al. 2019). The measurements of 3D two-phase
turbulence in the laboratory and in the field present many technical challenges in
terms of successfully accessing the turbulent flow field and the size distributions
of drops and bubbles during the active time of breaking.

Direct numerical simulations (DNS) therefore appear as an appealing tool.
Owing to the computational difficulty and expense of modelling 3D multiphase
flows, numerical studies began by using 2D breakers as analogues for the full 3D
processes (Chen et al. 1999; Song & Sirviente 2004; Iafrati 2009, 2011; Deike et al.
2015). Early development of nonlinear potential flow models has shed light on the
breaking process up to the moment of impact (Longuet-Higgins & Cokelet 1976;
Dommermuth et al. 1988), while 3D simulations have used reduced models such
as large-eddy simulation to capture the breaking process itself (Watanabe et al.
2005; Lubin & Glockner 2015; Hao & Shen 2019), but the complete resolution of
the breaker in DNS in 3D has only recently become feasible (Fuster et al. 2009;
Deike et al. 2016; Wang et al. 2016; Yang et al. 2018). Surprisingly, despite the
essentially 3D nature of the turbulence resulting from breaking, 2D breakers at
the tested conditions have provided a reasonable estimate of the dissipation rates
obtained from experiments and 3D computation (discussed further below). In
contrast, the turbulent dissipation in internal wave breaking has been shown to
be a clear 3D process (Gayen & Sarkar 2010).
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1.2. Laboratory experiments and direct numerical simulations of canonical breaking
waves

Canonical breaking waves have been studied using a variety of different ap-
proaches both experimental and numerical (Duncan 1981; Melville 1982; Rapp &
Melville 1990; Melville 1994; Duncan et al. 1999; Banner & Peirson 2007; Tian
et al. 2010; Drazen et al. 2008; Erinin et al. 2019). Studies such as these have
identified the main controlling parameters of breaking waves, namely the breaking
speed and the wave slope at breaking S = ak, where a is the wave amplitude and
k the wavenumber. The bandwidth of the wave packet is also important, and the
detailed kinematics before breaking, in particular a significant slowdown of the
wave crest, have been discussed in order to propose breaking threshold criteria
(Banner et al. 2014; Saket et al. 2017b; Pizzo & Melville 2019; Derakhti et al.
2020; Fedele et al. 2020), although we will neglect its influence from hereon in.

It follows that DNS of breaking waves can be framed in terms of a set of
non-dimensional numbers. The relevant parameters are the air-water density and
viscosity ratio, the wave speed and wavenumber, and amplitude. These define a
wave Reynolds number, and the wave slope

Re =

√
gλ30
ν

, S = ak (1.1)

where λ0 = 2π/k is the wavelength and ν is the kinematic viscosity of the water.
Similarly to turbulent DNS, numerical simulations of breaking waves are typically
confined to the highest Re accessible to available computation effort, which has
grown over time. Iafrati (2009); Deike et al. (2015, 2016); De Vita et al. (2018)
have typically used Re = 40× 103.

To consider bubble and droplet generation, the Bond number is needed,

Bo =
∆ρg

σk2
. (1.2)

∆ρ is the density difference between air and water and σ is the surface tension. Bo
corresponds to the ratio between the wavelength and the capillary length scale.

Deike et al. (2015, 2016) used the Bond number to compare the numerical wave-
length to experimental results. Deike et al. (2015) describes the wave patterns for
a large range of Bo and S, discussing the energetics of parasitic capillary waves,
spilling breakers and plunging breakers. As discussed in Iafrati (2009); Deike
et al. (2015, 2016), the breaking waves in laboratory would approach Re = 106.
Despite this difference in Re, DNS (Iafrati 2009; Deike et al. 2015, 2016) and LES
(Derakhti & Kirby 2014, 2016) found good agreement between experiments and
simulations for the non-dimensional energy dissipation due to breaking as a func-
tion of the breaker slope (see figure 1)). Nevertheless, an outstanding challenge in
direct numerical simulation (DNS) is the correct numerical resolution of processes
whose separation of scales increases with Re and Bo. For such simulations to
capture the physics of breaking waves correctly, they must resolve all scales
between and including those of energy dissipation and the formation and breakup
of bubbles and droplets in a two-phase turbulent environment. This requires
capturing the full physics of the problem, while retaining a qualitatively faithful
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representation of the breaking process in comparison with experiment. These very
difficult challenges have historically limited the scope of DNS investigations, the
details of whose approaches are discussed in more detail below.

Both the wave Reynolds number and the Bond number characterize the overall
scale of the wave through its wavelength and phase speed, compared with vis-
cous and capillary effects. Once the wave breaks, the turbulence it generates is
controlled by the breaking slope together with the speed of the breaker, and is
itself characterized by a turbulence Reynolds number, typically defined using the
Taylor micro-scale Reλ, with Drazen & Melville (2009) typically finding values
around Reλ ≈ 500. Similarly, the fragmentation processes and generation of drops
and bubbles in a turbulent flow is usually analysed in terms of a Weber number,
comparing the inertial stresses due to the turbulence to the surface tension.

1.3. Energetics and dimensionality of breaking waves

Breaking waves dissipate energy, generating a turbulent two-phase flow, with
properties that can be related to the local breaking properties (Duncan 1981). The
local turbulent dissipation rate due to breaking can be described by an inertial
scaling (Drazen et al. 2008),

ε =
√
gh

3
/h (1.3)

where h is the breaking height, here consistently defined as half the distance
between wave crest and trough,

√
gh the ballistic velocity of the plunging breaker

where g is the acceleration due to gravity. The turbulence is confined to a volume
V0 = ALc, of cross section which is generally assumed to be A ' πh2/4 (Duncan
1981; Drazen et al. 2008), and length of breaking crest Lc, leading to an integrated
dissipation rate per unit length of breaking crest,

εl = ρAε. (1.4)

This scaling can be related to the initial slope, bandwidth, and speed of the wave
packet in controlled laboratory experiments (Duncan 1981; Rapp & Melville 1990;
Banner & Peirson 2007; Drazen et al. 2008; Tian et al. 2010; Grare et al. 2013)
and numerical simulations (Deike et al. 2015, 2016; Iafrati 2009; Derakhti & Kirby
2016). The breaking parameter b is a non-dimensional measure of the dissipation
that was introduced by Duncan (1981); Phillips (1985), and relates to εl

εl = bρc5/g, (1.5)

which combined with the local dissipation rate argument above and assuming
the breaking speed is related to the wavenumber by the dispersion relation c =√
g/k leads to b ∝ S5/2 (Drazen et al. 2008). Introducing a slope-based breaking

threshold S0, this formulation for the breaking parameter reads,

b = χ0(S − S0)5/2. (1.6)

Extensive laboratory experiments have demonstrated the accuracy of the physics-
based model, with χ0 ≈ 0.4 and S0 ≈ 0.08 used as fitting parameters by Romero
et al. (2012) and allowing to account for numerous laboratory data (Duncan
1981; Rapp & Melville 1990; Banner & Peirson 2007; Drazen et al. 2008; Tian
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Figure 1. Breaking parameters b as a function of wave slope S. Red X: Present DNS data. Red
circles: DNS data of Deike et al. (2016), blue circles are DNS data from Deike et al. (2015).
Black and grey data: Experimental data due to Drazen et al. (2008); Banner & Peirson (2007);

Grare et al. (2013). Solid line: b = 0.4(S−0.08)5/2, semi-empirical result of Romero et al. (2012).
Shaded area indicates the uncertainties on the scaling for b.

et al. 2010; Grare et al. 2013). Several numerical studies have confirmed this
scaling and validated their approaches against this result (Deike et al. 2015, 2016,
2017; Derakhti & Kirby 2014, 2016; De Vita et al. 2018). Figure 1 shows b as a
function of S for a variety of experimental and numerical data, including from
the present study. We note that experimental work using the linear focusing
technique typically considers the linearly predicted wave slope, summed over
all components, while numerical work using compact wave initialization have
considered the initial slope. In all cases, the slope being used is proportional to
the breaking slope, as discussed in Drazen et al. (2008) for experimental data and
Deike et al. (2015, 2016) for numerical data, which allows comparison between the
experimental and numerical work. The differences in definitions and estimations
may therefore be responsible for some of the scatter in figure 1 between the
various data sets, and uncertainties in the fitting coefficients are indicated by
the shaded area. Note that the scaling b ∝ S5/2 is observed at high slopes for
both the experiments and DNS. Moreover, the proportion of energy dissipated
by breaking for a given slope in is similar between experiments and simulations.
This fundamental model for the turbulent dissipation rate has been successfully
used as the physical basis of larger-scale spectral wave models (Romero et al.
2012; Romero 2019). Moreover, we recently proposed an extension of the inertial
argument to certain types of shallow-water breakers (Mostert & Deike 2020).

It remains to determine the particular transition characteristics of the fully
three-dimensional (3D) flow, and to investigate the dependence of these charac-
teristics on the flow Reynolds number, as well as on the evolution of the ingested
bubble plume. Furthermore, even aside from limitations on the maximum values
of Re,Bo attainable in computation, many numerical studies have investigated
two-dimensional (2D) breakers as computationally feasible analogues for the full
3D processes (Song & Sirviente 2004; Hendrickson & Yue 2006; Iafrati 2009;
Deike et al. 2015). Surprisingly, despite the essentially 3D nature of the turbu-
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lence resulting from the breaking process, 2D breakers at the tested conditions
provided a reasonable estimate of the dissipation rates for 3D breakers obtained
from computation and experiment, with discrepancies sometimes as small as
5% (Lubin et al. 2006; Iafrati 2009). Favourable comparison with semi-empirical
models as discussed above also suggests the usefulness of 2D computations for
the dissipation rate (Deike et al. 2015). Nonetheless, the details of the 2D-3D
transition physics in breaking waves constitute an open question. The present
study will go some way to addressing these questions, with suggestion of a possible
transition to turbulence with an associated turbulence Reynolds number.

1.4. Bubble size distributions in breaking waves

A breaking wave entrains air, which is characterized by a broad size distribution
of bubbles. Direct investigation of the bubble distribution, obviously not available
within a 2D study, is important to inform subgrid scale models used in LES (Shi
et al. 2010; Liang et al. 2011, 2012; Derakhti & Kirby 2014) and gas transfer
models (Liang et al. 2011; Deike & Melville 2018). Garrett et al. (2000) proposed
a turbulent break-up cascade model for the size distribution per unit volume
N (r), where r is the bubble radius, as a function of the local dissipation rate ε̄
with constant volumetric air flow-rate Q, with a dimensional analysis yielding,

N (r) ∝ Qε̄−1/3r−10/3. (1.7)

We note that a time-averaged dissipation rate ε̄ over the breaking time has
been considered when analyzing and scaling various data sets in Deane & Stokes
(2002); Deike et al. (2016). The corresponding breakup model assumes a turbulent
inertial subrange with a direct cascade, with large bubbles injected at one end
of the cascade by a notional entrainment process and turbulent fluctuations then
breaking these into smaller bubbles. The lower end of the cascade is set by the
Hinze scale (Hinze 1955; Deane & Stokes 2002; Perrard et al. 2021),

rH = C0
(
σ

ρ

)3/5

ε̄−2/5. (1.8)

Here C0 ' 0.4 (Deane & Stokes 2002) is a dimensionless constant. Its value
is related to the critical Weber number defining bubble break-up which ranges
typically from 1 to 5 (Risso & Fabre 1998; Martinez-Bazan et al. 1999; Deane &
Stokes 2002; Vejražka et al. 2018; Perrard et al. 2021; Rivière et al. 2021), with
estimations of C0 varying by about a factor of 2. These differences are related
to variations in the experimental protocols and the large scale structure of the
turbulent flow. Note also that the breaking wave problem is transient in nature,
so that the Hinze scale might present variations in time, and estimations of the
Hinze scale based on the averaged turbulence dissipation rate presents an added
uncertainty. For all these reasons, it should be considered a soft limit. The size
distribution below the Hinze scale is not addressed by Garrett et al. (2000).

Laboratory experiments have reported measurements of the bubble size dis-
tribution under a breaking wave using various optical and acoustic techniques
(Loewen et al. 1996; Terrill et al. 2001; Deane & Stokes 2002; Leifer & de Leeuw
2006; Rojas & Loewen 2007; Blenkinsopp & Chaplin 2010) in general agreement
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with the model from Garrett et al. (2000). Theoretical and numerical investigation
has further strengthened understanding of the turbulent bubble cascade above
the Hinze scale (Chan et al. 2020a,b). Deike et al. (2016) demonstrated the ability
of numerical methods to reproduce the size distribution observed experimentally
and described theoretically, with an extension of the theory to constrain the mean
air flow rate for increasing wave slopes. That study also noted a correspondence
between the development of the entrained bubble population and the wave’s
energy dissipation rate. For bubbles below the Hinze scale, however, there is
significant scatter between existing datasets, although Deane & Stokes (2002)
suggests a relationship of ∝ r−3/2.

The numerical studies from Deike et al. (2016); Wang et al. (2016) had limited
resolution of sub-Hinze scale bubbles and were performed at Re = 40×103, Bo =
200 with the assumption that the bubble size distributions were independent of
Re, Bo, like the dissipation rate (see §1.3). The present DNS study brings to
bear sophisticated methods and computational resources to test the dependence
in Re, Bo, of the bubble size distribution, and to resolve the sub-Hinze bubble
statistics. These constitute two of the main objectives of the present study.

1.5. Droplet size distributions in breaking waves

The mechanisms of spray generation by breaking waves have been recently
reviewed by Veron (2015). Droplet size distributions have been explored experi-
mentally in the presence of wind (Wu 1979; Veron et al. 2012; Ortiz-Suslow et al.
2016; Troitskaya et al. 2018) as well as for deep water breaking waves generated
by linear focusing (Erinin et al. 2019), while numerical investigations have been
made of Lagrangian transport of spume droplets in the air (Richter & Sullivan
2013; Druzhinin et al. 2017; Tang et al. 2017). However, a general theoretical
model for the droplet size distribution has not been formulated.

In the context of breaking waves, spray is not created in the same manner as
bubbles in the flow, being instead more analogous to atomization and fragmenta-
tion droplets (Veron et al. 2012; Troitskaya et al. 2018; Villermaux 2020). They
are generated by two main mechanisms: direct ejection from wave impact and
the related dynamic interface evolution, and indirect jet ejection resulting from
the bursting of bubbles that were initially entrained by the breaker (Lhuissier
& Villermaux 2012; Deike et al. 2018; Berny et al. 2020). The latter population
is typically much smaller than the former (Veron 2015), and hence even more
challenging to resolve numerically within the breaking wave event, but can be
studied separately (Deike et al. 2018; Berny et al. 2020). Separately, a major
complicating factor is that spray droplet populations are typically significantly
smaller than bubble populations for a given breaking wave, leading to challenges
in statistical convergence of the data. For these reasons, experimental and nu-
merical studies of droplet production by breaking waves are limited (Wang et al.
2016; Erinin et al. 2019). In this study, droplet populations are resolved over a
sufficient range of length scales to allow comparison with experiment, showing
good agreement in the shape of the resolved size distribution. Velocity and joint
velocity-size distributions are also shown, which will aid future studies.
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1.6. Outline

In this paper, we present high-resolution DNS, which mobilizes sophisticated
tools and computational resources to advance the following challenges; we will
show statistics spanning multiple scales of fluid behaviour for full 3D simulations
which capture breaking physics as seen in laboratory experiments regarding
energy dissipation, bubble and droplets size distribution. The setup is similar
to Deike et al. (2016) and is analogous to deep-water breaking waves in the
laboratory obtained by focusing packets (Drazen et al. 2008; Deane & Stokes
2002) as demonstrated by Deike et al. (2016), but increased resolution of the
interfacial processes allows access to higher Reynolds and Bond number to
describe the transition to 3D turbulence and the formation of droplets and
bubbles down to scales comparable to state-of-the-art laboratory experiments.
These simulations represent the current state of the art in multiphase simulations
of breaking waves and further confirm that the physics of breaking waves can be
profitably investigated through these high fidelity numerical data. We analyse
the role of these parameters in interfacial processes, including air entrainment,
bubble statistics and droplet statistics. We discuss how energy dissipation, bub-
ble and droplet statistics seem independent of the Reynolds number above a
certain value, for the strong plunging breakers, confirming the results obtained
previously at lower Reynolds numbers by comparison with experimental data.
Next, we investigate the role of the capillary length and other flow scales on
the air entrainment and spray production, which are most likely to mediate the
development of transverse instabilities in the breaking process. We emphasize
that such a study is only possible thanks to improvement in adaptive mesh
refinement (AMR) techniques, along with increasing computational power, which
has enabled sufficiently high resolution.

The paper proceeds as follows. In §2, we describe the numerical methods and
the formulation of the physical problem, the transition from the initial planar
configuration to fully-developed 3D flows, and the general processes which pro-
duce entrained bubbles and ejected spray. In §3, we investigate the development
of the 3D flow in direct comparisons with 2D computations as well as the role
of transverse instabilities and their influence on the dissipation rate. We study
the transition time and length scale of the breaking flow, from its initial 2D
configuration, to final 3D turbulent one. Then, in §4, we present bubble size
distribution at higher Re,Bo and numerical resolutions than those found in the
numerical literature, and extend below the Hinze scale at lower Re,Bo. Droplet
size and velocity distributions are presented in §5, before concluding in §6.

2. Problem formulation and numerical method

2.1. Basilisk library

We use the Basilisk library to solve the two-phase incompressible Navier-
Stokes equations with surface tension, in 2D and 3D. The successor of the Gerris
flow solver (Popinet 2003, 2009), Basilisk is able to solve a diversity of partial
differential equation systems in an adaptive mesh refinement (AMR) framework
which significantly decreases the cost of high-resolution computations, allowing an
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Figure 2. Snapshot renderings of the three-dimensional (3D) breaking wave water-air interface
at different times, for the case Bo = 500, Re = 100× 103, at resolution L = 11. (a) t/T = 0.37,
nonlinear steepening and initial overturning, (b) t/T = 0.56, jet formation (c,d) t/T = 0.67, 0.8,
impact and ingestion of main cavity (e) t/T = 1.04, splash-up of main wave and rupture of main
cavity (f, g, h) t/T = 1.2, 1.36, 1.52 continuation and slowdown of main breaking process.

efficient representation of multiscale processes. Flow advection is approximated
using the Bell-Collela-Glaz method (Bell et al. 1989) and the viscous terms are
solved implicitly. The interface between distinct gas and liquid is described by a
geometric volume-of-fluid (VOF) advection scheme, with a well-balanced surface
tension treatment which mitigates the generation of parasitic currents (Popinet
2018). A momentum-conserving implementation allows to avoid artefacts due to
momentum “leaking” between the dense and light phases (Fuster & Popinet 2018;
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Zhang et al. 2020). The governing equations can be written,

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · (2µD) + ρg + σκδsn, (2.2)

∇ · u = 0, (2.3)

where ρ,u, µ, σ,D,g are the fluid density, velocity vector, dynamic viscosity,
surface tension, deformation tensor, and gravitational acceleration vector respec-
tively. The density and viscosity are allowed to vary according to a volume fraction
field c(x, t) which in these simulations takes the value of zero in the gas phase
and unity in the liquid phase. The variable δs is a Dirac delta which concentrates
surface tension effects into the liquid-gas interface; κ is the curvature of the
interface, and n is its unit normal vector.

2.2. Wave initialization

We consider breaking waves in deep water. The relevant physical parameters
are: the liquid and gas ρw, ρa respectively, the respective dynamic viscosities
µw, µa, the surface tension σ, the wavelength λ0, initial wave amplitude a,
and gravitational acceleration g. The water depth h0, while finite, is assumed
sufficiently large so that it does not significantly affect the breaking physics. The
eight significant parameters, which are expressed in three physical dimensions,
can thus be reduced into five dimensionless groups according to Buckingham’s
theorem; these are the density ratio ρa/ρw, viscosity ratio µa/µw, wave slope
S = ak where k = 2π/λ0 is the wavenumber, and the Bond and Reynolds

numbers, as defined previously, Bo = ∆ρg/σk2, Re =
√
gλ30/νw, where ∆ρ =

ρw − ρa ' ρw, and νw = µw/ρw is the kinematic viscosity. The wave period is
T = λ0/c = 2π/

√
gk, where c =

√
g/k is the linear phase speed for deep water

gravity waves. The governing equations (2.1)-(2.3) can be non-dimensionalized
in terms of these groups. These definitions follow the literature, see Chen et al.
(1999); Iafrati (2009); Deike et al. (2015, 2016).

The numerical resolution is indicated by the smallest cell size attained in the
simulation, given by ∆ = λ0/2

L, where L is the maximum level of refinement used
in the AMR scheme. The refinement criterion is based on both the velocity field
and the VOF tracer field. The maximum resolution used in this study is L = 11,
corresponding to a conventional grid of (211)3, or approximately 8.6 billion total
cells. Under the AMR scheme, the grid size reduces to the order of 150 million
cells at L = 11.

We initialize the breaking wave following Chen et al. (1999); Iafrati (2011);
Deike et al. (2015, 2016); Wang et al. (2016); Chan et al. (2020a,b), based on an
unstable third-order Stokes wave for the water velocity and zero velocity in the air.
The flow is regularized in the first time step. We note that the Stokes wave solution
has been derived for an irrotational, inviscid, free surface wave, hence remains
an imperfect initial condition for the full two-phase flow problem, accounting
for viscosity and surface tension. However, numerous studies have demonstrated
that it provides an efficient and compact initialization to study the post-breaking
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processes. Both 2D and 3D simulations are conducted in order to investigate
the transition from the laminar, planar, and essentially two-dimensional initial
evolution to the final, turbulent, three-dimensional flow. Besides the dimensional
difference, the 2D simulations are initialized identically to the 3D simulations. In
the 3D simulations, no perturbation is used to seed the transition from planar to
non-planar evolutioin of the wave; this transition is brought about by numerical
noise during the breaking process.

2.3. Parameter space

The density and viscosity ratios are fixed to the values for water and air,
ρw/ρa = 850, µw/µa = 51.15, and the input slope is fixed at a nominal value
of S = 0.55, leaving the remaining two groups, Re, Bo to be varied. Thus, we
investigate the independent effects of variation in surface tension through Bo and
viscosity through Re. The fixed value of S is chosen to be sufficiently large to force
the wave into a plunging breaker (Deike et al. 2015). We refer the reader to (Deike
et al. 2016) for an extensive study on the role of the wave slope S at constant
Re,Bo. The parameters are shown in Table 1, and correspond to low (Bo=200),
medium (Bo=500) and high (Bo=1000) Bond number, and low (Re=40000) and
high (Re=100000) Reynolds numbers. Cases run to test grid-convergence span
moderate (L = 10) and fine (L = 11) resolutions respectively. Some additional
cases at a variety of Reynolds numbers are also run for the energetics comparison
in §3. We reach a maximum separation of defined scales (wavelength to Hinze
scale) of a factor ∼ 550. The grid size for the L = 11 case reaches 181 million
cells, for a maximum runtime (excluding scheduling and queueing times) of 1.4
months and a cost of half a million CPU-hours. These highest resolution cases
were run on the Stampede2 cluster at the Texas Advanced Computing Center of
the University of Texas, typically on between 192 and 768 cores of the Skylake
node system. (Portions of these simulations were also run on the high performance
computing resources of the National Computing Center for Higher Education
(CINES)). Lower resolution cases (L = 10) were run on the TigerCPU cluster at
Princeton University using typically between 160 and 320 cores. Note that while
these simulations are expensive, they still save several orders of magnitude over
a uniform- or fixed-grid approach, which would require a prohibitively large grid
size of 8.6 billion cells in the highest-resolution case.

2.4. General flow characteristics

The wave evolves in a manner similar to that seen in previous studies with
similar initialization (Deike et al. 2015, 2016). Figure 2 shows a sequence of stills
at different stages of the breaking process. The initially planar wave steepens
nonlinearly to a point where it locally develops a vertical interface (a,b). The
wave then overturns, forming a jet which projects forward into the upstream water
surface (c), and impacts onto it (d), breaking the initially planar symmetry. At
this moment, a large tube of air is ingested into the liquid bulk which we refer to
as the main cavity. The wave now also forms a fine-scale 3D structure at the point
of impact, while ingesting the tubular cavity. This cavity persists for some time
until it breaks along its length into an array of large bubbles (at t/T = 1 − 1.2
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Re Bo L λ0/rH ∆/rH ∆/lc rH/lc Cost (CPU-h)

40× 103 200 11 284 0.139 0.043 0.312 1.75× 105

40× 103 200 10 143 0.279 0.087 0.311 3.22× 104

40× 103 500 11 501 0.489 0.069 0.280 2.58× 105

40× 103 500 10 251 0.489 0.137 0.281 3.83× 104

100× 103 500 11 501 0.245 0.069 0.280 5.26× 105

100× 103 500 10 251 0.484 0.137 0.284 6.42× 104

100× 103 1000 11 767 0.375 0.097 0.259 5.56× 105

100× 103 1000 10 384 0.738 0.194 0.263 8.76× 104

Total Cost
(CPU-h)

1.76× 106

Table 1. Computational matrix of parameter space for 3D breaking waves. The slope for each
case is S = 0.63 modeling a strong plunging breaker. The column labels are as follows: Re -
Reynolds number; Bo - Bond number; L - maximum level of grid refinement; λ0/rH , ratio of
wavelength to Hinze scale; ∆/rH - ratio of smallest grid size to Hinze scale; ∆/lc - ratio of
smallest grid size to the capillary length, defined as l2c = 1/(k2Bo) where k = 2π/λ0 is the
wavenumber; rH/lc - ratio of Hinze scale to capillary length.

e,f). In the meantime, the continuing breaking process on the surface creates
a splash-up jet, as the wave proceeds into the strongly dissipative phase of the
active breaking process (f) and develops into a fully-developed 3D flow (g,h) from
t/T = 1.4 onwards. At late times, most of the wave energy has been dissipated
in the breaking process, but the turbulent regions persist for some time, during
which a very large array of spray and especially bubbles is formed (f,g,h). All the
presented cases produce a large quantity of bubbles of various sizes, but spray is
abundantly produced, particularly at higher Bond numbers.

These qualitative aspects of the breaking wave dynamics are crucial for a
faithful representation of the breaking process. In this respect, the evolution
and dynamics of the breaker closely resembles those of laboratory experiments,
notwithstanding certain Bond- and Reynolds-number influences and despite the
different initializations across studies. The overturning phenomenon is very simi-
lar to that seen in Bonmarin (1989); Rapp & Melville (1990); Drazen et al. (2008);
the size and shape of the main ingested cavity matches very closely that seen in a
large array of theoretical, numerical and experimental studies (Longuet-Higgins
1982; New 1983; New et al. 1985; Dommermuth et al. 1988; Bonmarin 1989);
and the subsequent droplet-producing splash sequence closely mirrors that seen
in Erinin et al. (2019) (see §5). This accurate reproduction of the breaker will be
further reflected in various quantitative statistical comparisons with theory and
experiment in the remainder of this paper, and moreover builds high confidence
in the validity of our new results.
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Figure 3. Energy budget for a breaking wave. (a) Energy budgets comparing 2D and 3D for
Bo = 500 and Re = 1, 4, 10 ×104. (b) Corresponding instantaneous resolved dissipation rate
comparing 2D and 3D for ε for Bo = 500,Re = 4 × 104. All simulations are at Level 11. Grid
convergence studies are presented in Supplementary Materials.

3. Energetics and transition to three-dimensional turbulent flow

We determine the effect of Re (and Bo) on the development of the 3D turbulent
flow underneath the breaking wave by direct comparisons of the 3D simulations
with 2D counterparts.

3.1. Energy dissipation by breaking

The wave mechanical energy is E = EP + EK , where EP =
∫
V ρg(z − z0)dV

is the gravitational potential energy with a gauge z0 chosen such that EP = 0
for the undisturbed water surface, EK =

∫
V ρ(u · u/2)dV is the kinetic energy,

and the integrals are taken over the liquid volume V (Deike et al. 2015, 2016).
The instantaneous dissipation rate in the water is ε ≡ ∑

i,j εij where εij =

(νw/2V0)
∫
V (∂iuj + ∂jui)

2dV , with ∂i ≡ ∂/∂xi. We decompose ε into in- and
out-of-plane components εin + εout where εin =

∑
i,j=x,z εij contains just those

contributions of the deformation tensor which lie entirely in the streamwise (x)
and vertical (z) directions, and εout = ε3D − εin comprises the remainder (i.e.
the sum of terms εiy, εyi for i = x, y, z, y being the spanwise direction). A planar
flow features only the in-plane contribution ε3D = εin, and a 3D flow features an
additional contribution εout (while in 2D, ε2D ≡ εin).

Figure 3a shows the budget of E over time for increasing Reynolds number
(Re = 104, 4 × 104, 105) and constant Bond number (Bo = 500), with a direct
comparison between the 2D and 3D cases. For each case, E remains approximately
flat at the earliest times, which correspond to the pre-broken wave where the
dissipation is entirely due to the viscous boundary layer at the surface, which is
properly resolved here given the high resolution in the boundary layer near the
interface and has been verified for low amplitude waves (see Deike et al. (2015)).
Breaking begins as the wave steepens and overturns at t/T ' 0.6 and extends
through t/T = 2 and afterwards, corresponding to the impact of the wave, and
the active breaking part with air entrainment and generation of turbulence. Only
a small amount of energy is dissipated in the air, amounting to approximately 5%
or less of the total energy budget. At small Re, viscosity is strong and the 2D and
3D budgets are in close agreement throughout the breaking process. For larger
Re (smaller viscosity), the 2D and 3D curves begin to strongly diverge at a time
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t/T ' 1.2, with the discrepancy becoming more pronounced at larger Re. The
percentage of energy dissipated for this high slope breaker is about 70%, close
to the amount of energy dissipated in high slope plunging breakers in laboratory
experiments (Drazen et al. 2008; Rapp & Melville 1990).

Numerical convergence of the simulations for the energy budget and instan-
taneous dissipation rates are fully discussed in supplementary materials. From
those results, the budget and dissipation rate at Re = 4 × 104 are numerically
converged in 3D between L = 10, 11, as well as for Re = 105 between L = 10, 11
in either 2D or 3D. The comparison of dissipation rates is very good for 2D
between L = 11, 12 at all Re. A 3D simulation at L = 12 at the highest Re is not
feasible to run currently given the computational cost. We note that the precise
time evolution of the dissipation rate is sensitive to the precise shape at impact.

Numerical resolution of characteristic dissipative scale can also be discussed.
Considering Batchelor’s estimate for the viscous sublayer under the prebroken
wave δ ∼ λ0/

√
Re, our results indicate that at Re = 4 × 104 an effective

resolution of 5 cells (at L = 10) in the sublayer suffices for grid convergence.
By the same estimation, we attain 6.5 cells in the viscous sublayer for Re = 105

at L = 11, suggesting grid convergence at this increased resolution. A resolution
criteria for traditional single-phase DNS in the literature (Pope 2000; Dodd et al.
2021) involves the Kolmogorov length scale η = (ν3w/ε)

1/4, with kmaxη > 1.5 is
considered sufficiently resolved, where kmax = π2L/λ0 is the maximum resolved
wavenumber. For the present simulations, for Re = 4 × 104, 105, at L = 11 this
corresponds to kmaxη ' 3.4, 1.8 respectively, which satisfies the criterion; and is
similar to resolution used in direct numerical simulations of bubble deformation
in turbulence (Farsoiya et al. 2021). For details, see supplementary materials.

Without a parallel (and currently not feasible) investigation of AMR conver-
gence with respect to uniform-grid representation at these high resolution levels,
and given these are individual realizations of multiphase turbulent flows, not
ensembles, some caution in the interpretation of the present data is required.
Nonetheless, using these different estimate of numerical convergence, the conver-
gence characteristics are reasonable, given the complexity of the problem.

3.2. Transition to three-dimensional turbulent flow

Figure 4 shows the time evolution of the components of the dissipation rate for
increasing Re. For each case, prior to breaking, the wave is planar and εin is the
only (small) contribution to ε3D, but the evolution of εin, εout on and after jet
impact depends on the particular Re. For Re = 104, figure 4a exhibits an almost
entirely planar flow, with εout becoming significant only late in the breaking
process, when εin, εout both grow rapidly to their respective peak values. Before
this time, the total dissipation ε3D approximately matches ε2D for much of the
time that the flow is planar, but deviates at later times.

At higher Re = 4 × 104, shown in figure 4b, 3D effects arise earlier and are
much more important: εout grows gradually from the moment of impact, and at
the moment of peak dissipation, εin and εout are comparable. At late times, they
remain similar in magnitude, suggesting that the flow has become fully 3D and
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Figure 4. Resolved instantaneous dissipation rates for breaking waves, showing in-plane and
out-of-plane contributions to the 3D dissipation rate, along with the corresponding 2D case.
Bo = 500, (a) Re = 1 × 104; (b) Re = 4 × 104; (c) Re = 1 × 105. The effective resolutions for
each case are 10243, 20483, 20483 respectively. (d) Overlaid total instantaneous dissipation rates
for each of the cases from (a),(b),(c), showing similar dissipation rate time-evolution, especially
for the two highest Re values. Larger Re corresponds with a more rapid transition from a planar
initial flow to fully-developed 3D flow. ε(t) is normalized by ε0, the turbulent dissipation rate
predicted by the inertial scaling argument (eq. 1.3).

turbulent by t/T = 1.3 − 1.4. As before, ε3D diverges from ε2D at the time of
rapid growth of εin, εout, reaching a maximum value almost double that of ε2D.

Figure 4c, showing Re = 105, is similar to figure 4b, but it does not exhibit
any phase of latent planar flow where εin � εout, and the transition to a fully
3D flow is much faster after jet impact at t/T = 0.6. Note that in this case while
each of εin, εout is similar to ε2D, the in- and out-of-plane contributions are not
analogous to 2D processes.

Finally, figure 4d shows an overlay of each of the total instantaneous dissipation
rates from figure 4a-c, suggesting that the total dissipation rate evolution and
maximum value is similar between the two highest Re cases. Note however that
since these cases are individual realizations of turbulent flow fields, these sugges-
tions should be quantified further by the production and analysis of turbulent
ensembles, which are prohibitively expensive to produce at these Reynolds and
Bond numbers in the present investigation.

The values of ε3D are similar for the highest Re suggesting the breaking process
has achieved an asymptotic behaviour in terms of dissipation rate. The dissipation
rate shown in figure 3 and 4 are normalized by that predicted by the scaling

argument ε0 =
(√
gh
)3
/h (eq. 1.3), which describes experimental and numerical

data for a wide range of breaking waves (Drazen et al. 2008; Romero et al. 2012;
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Figure 5. (a) Transition to fully 3D flow, measured as the relative contribution to dissipation
rate εout/ε3D (solid) and εin/ε3D (dash-dotted) as a function of time for various Re number. The
transition time is estimated as εout/εin = ĉ = 0.5 and indicated as vertical dotted lines. Larger
Re drives more rapid transition. (b) Transition time t3D/tshear as a function of Reint for all cases:
an asymptotic value seems to be reached at high Re, coherent with experimental estimations
(grey line). Inset shows the transitions dynamics with time rescaled as (t− tim)/tshear with line
legend as in (a). Colors in inset are those in main plot.

Deike et al. 2016). As such, our results are compatible with the inertial argument,
experimental studies for a wide range of breakers, and previous numerical studies.

We now investigate the development to 3D flow underneath the breakers. Figure
5a shows the relative increase of the out-of-plane contributions, εout/ε3D with
time as well as the concomitant decrease of εin/ε3D, for increasing Reynolds
number. The terminal turbulent state is reached when either curve plateaus; this
state occurs earlier for larger Re, showing the rapidity of development from planar
to 3D flow. This indicates that viscosity mediates the 3D instabilities involved in
the transition to turbulence at low Re.

We define a heuristic development time to 3D turbulent flow t3D which is
the time from impact until the moment that εout/εin = ĉ, where ĉ is some
representative percentage of the turbulence dissipation rate. For ĉ = 0.5, the value
of t3D is indicated in each case of fig. 5a. The choice of ĉ is empirical. It is possible
that mean velocity gradients in the streamwise-vertical plane (i.e. the in-plane
mean gradients) contribute differently to the dissipation rate than out-of-plane
mean gradients. On the other hand, mean gradients may in general play a much
smaller role than that of turbulent fluctuations. Given these considerations, and
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in the absence of ensemble data with which the relative contributions of mean
gradients and fluctuations can be quantified, we do not currently have a basis
for prescribing a physically-informed value of ĉ. Nevertheless, we can assess the
sensitivity of our time transition definition by varying ĉ across a range, which is
here chosen from 0.4 to 0.6. Secondly, small fluctuations in εout/ε3D could affect
t3D, so we filtered the data with moving averages of window sizes of 3, 5, 7, 9,
and 11 points to estimate how t3D responds to gradual smoothing of the curve.
The error bars are then estimated as the range of t3D as estimated across both of
these methods and are shown in figure 5b. We found that for each data point, the
range in estimates of t3D was determined solely by the variation of ĉ, highlighting
its potential importance. The resulting error bars capture the plausible variation
in transition time suggested by our data, and comment that ensemble data will
shed a clearer light on this issue.

Finally, we also studied dependence of t3D on numerical resolution for the
cases Bo = 200,Re = 4× 104; Bo = 500,Re = 2× 104; and Bo = 500,Re = 105;
we found that variation of t3D remained within the error bars. For the case
Bo = 3000,Re = 2× 105, numerical convergence cannot be assessed.

The transition to 3D turbulence can be analyzed in terms of a turbulence
Reynolds number. We plot the transition time in fig. 5b for the various initial
conditions as a function of two representative turbulence Reynolds number:
using the integral length and velocity scales given by the breaking height h
and ballistic velocity

√
gh (Drazen et al. 2008), an integral Reynolds number

is Reint ' g1/2h3/2/νw. The Taylor length-scale characterizing the inertial range
is estimated as λ ' a

√
10/Reint and fluctuations at this scale as v = λ

√
ε/(15νw)

(Sreenivasan 1984; Dimotakis 2005) with ε a characteristic dissipation rate taken
as the peak value of ε3D/(V0ρ). This yields an estimate of the turbulent Reynolds
number at the Taylor micro-scale Reλ = λv/νw ' 43, 69, 102 for the wave
Reynolds numbers 1, 4, 10× 104.

At Re = 4 × 104, the Bo = 500, 1000 points are identical, while the case
Bo = 200 shows a slightly lower value of t3D, suggesting that, for Bond numbers
above 500, surface tension does not play a significant role in the transition to 3D
flow and hence that Re is the main controlling parameter of this process. The
inset in fig. 5b shows the relative contributions as functions of the rescaled time
(t− tim)/t3D, including the different Bo, showing good collapse between all cases.
The 3D transition time can be rationalized in the Re-asymptotic limit in terms
of a Kelvin-Helmholtz scaling. Considering a uniform density shear layer driven
by the breaker speed ≈ c =

√
g/k over the depth of the turbulent cloud ≈ h, we

get tshear ' 1/s where s = kKHU with U ' Ac and A is an O(1) constant and
kKH ' 2/h. This shear time tshear is used to normalize the axis in fig. 5b, and
since the O(1) constant is not precisely known, we indicate tshear with a shaded
zone between 1 and 2 on figure 5b.

The transition time t3D seems to plateau at the highest Reynolds number we
were able to test, Reλ ≈ 50 − 100. Further support of the asymptotic regime
in Re number is given by considering laboratory experiments of breaking waves
(Loewen & Melville 1994; Deane & Stokes 2002; Drazen et al. 2008; Rapp &
Melville 1990), with λ0 ∼ 1 − 2m, leading to Re ≈ 106, and wave slopes 0.4 −
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0.5 inducing a turbulent flow with Reλ ≈ 500 (Drazen & Melville 2009). From
optical and acoustic records in these experiments, we estimate the transition
time texp3D ≈ 0.35 ± 0.1s, consistent with texpshear ≈ texp3D . The transition to Re-
independent flow suggests a mixing transition Reynolds number Reλ (Sreenivasan
1984; Dimotakis 2005) in the flow underneath the breaking wave, supported by the
similarity of ε3D curves in fig. 4b and 4c and the possibly asymptotic behaviour
in fig. 5b. This suggests that Reλ ' 50 − 100 in the developed flow corresponds
with a transition to Re-independent turbulent flow under a breaking wave, which
would be consistent with observations of the mixing transition in grid-generated
turbulence (Sreenivasan 1984) and scalar transport in turbulence (Pullin 2000;
Dimotakis 2005).

4. Air entrainment and bubble statistics

4.1. Cavity shape at entrainment

In this section, we describe air entrainment and bubble statistics. We begin
by discussing the shape of the cavity at impact, which controls the size of the
main cavity and the associated maximum volume of air entrained (Lamarre &
Melville 1991; Deike et al. 2016). Studies using a fully non-linear potential flow
formulation, i.e. inviscid conditions and neglecting surface tension effects, have
been able to reproduce the shape of the breaking wave at impact to a high
level of precision (Dommermuth et al. 1988), with discussion on the elliptical or
parametric cubic shape of the cavity (New 1983; Longuet-Higgins 1982). However,
these methods do not resolve the post-impact process. Lamarre & Melville (1991);
Blenkinsopp & Chaplin (2007); Deike et al. (2016) discuss that the maximum
volume of air entrained is constrained by the length of breaking crest Lc and A is
the cross-sectional area of the initially ingested cavity in the breaking process. In
particular,A controls the amount of entrained air initially available for subsequent
breakup into a bubble size distribution. It has been assumed that the cross section
area of entrained air scale as A ∝ πh2/4 (Duncan 1981; Lamarre & Melville 1991;
Blenkinsopp & Chaplin 2007; Deike et al. 2016), implicitly arguing that the height
of the wave is large compared to the width of the jet.

As already noted in previous work, when considering a two-phase solver able
to resolve post impact, moderate Bo leads to a jet thicker than observed in
the laboratory (Chen et al. 1999; Song & Sirviente 2004). Such moderate Bond
numbers were nevertheless considered in most previous studies when dealing with
three-dimensional breaking waves. This is because larger Bo exhibits increased
separation between the wave length and Hinze scales and thus incurs a prohibitive
numerical expense if all scales are to be resolved (Wang et al. 2016; Deike et al.
2016). Here, we use the high numerical efficiency gained through AMR and
increased computing power, and are thus able to resolve breakers showing greater
separation between length scales. Figure 6a shows again that as Bo increases, the
wave jet becomes thinner and projects further forward ahead of the wave. When
increasing the Bond number, the jet at impact appears thinner and more closely
similar to those observed in laboratory experiments. It is important to remark
that, by comparison of the orange and red curves in figure 6a, at Bo=500, the jet
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Figure 6. (a) Profiles of the volume-of-fluid interface at the moment of wave impact, obtained
from 2D simulations. Blue: Bo = 200, Re = 105. Orange: Bo = 500, Re = 4 × 104. Red:
Bo = 500, Re = 105. Purple: Bo = 1000, Re = 105. L = 11 for each case. Note the dependence
of cavity size on Bond number, but not on Reynolds number (compare red and orange curves).
(b,c,d): Wave profiles at the moment of impact with superimposed fitting ellipses for the cases,
(b) Bo = 1000, (c) Bo = 500, (d) Bo = 200, with Re = 105 in all cases. (e) Plot of cavity area
over different Bond numbers. Dashed: Corrective scaling from (4.1).

thickness is independent of Reynolds number, which confirms that jet thickening
is due to capillary effects.

The thicker jet can be interpreted by comparing the wave height with the
capillary length. For breakers in the laboratory, h ∼ 10cm and lc =

√
γ/ρg ∼

3mm (the capillary length) so that h/lc ≈ 33; in the DNS for Bo=200, we have
h/lc ≈ 7 which indicates the importance of capillary effects. By increasing to
Bo=1000, we get to h/lc ≈ 16 which is closer to laboratory conditions (but still
smaller than waves from large scale breakers in the field).

We therefore propose a correction of entrained area A based on the width of
the jet lj . First, the cavity shape is not truly circular but closely approximates an
ellipse (alternatively a parametric cubic function (Longuet-Higgins 1982)) with
an aspect ratio of

√
3 with its major axis rotated at an angle of approximately
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π/4 to the horizontal (New 1983; New et al. 1985). The cavity area is then
A = πp2/(4

√
3) where p is the major axis of the ellipse. If we now assume that, due

to the thickness of the jet, the major axis is given by p ' 31/4(h−Klc), where K is
a positive O(1) constant, which we set to π, we obtain A = π(h−π/(k

√
Bo))2/4.

This retrieves the usual relation for the cavity volume in the limit Bo→∞.
Figure 6b-d show wave profiles at the moment of impact with a superimposed

’
√

3-ellipse’ rotated at π/4 and with the major axis given by our estimate,
31/4(h − π/(k

√
Bo)). For higher Bond numbers (500, 1000), the ellipse fits very

well, suggesting that our proposed cavity scaling is appropriate at high Bond
numbers. Note that for the lowest Bond number (200), it approximates the shape
of only the very rear of the cavity. This suggests that the Bo = 200 case is
qualitatively distinct from higher Bo cases, in that capillary effects are sufficiently
strong to change the morphology of the plunging breaker. Nevertheless, the good
fit observed at higher Bond numbers supports the conjecture by New (1983),
further supported by Dommermuth et al. (1988), that the evolution of the
overturning wave is independent of the details of the interior flow. Furthermore,
since the

√
3-ellipse has been frequently observed in the above-cited literature,

our result also confirms that this evolution is independent of the details of the
initial conditions.

This leads to the cavity correction for the entrained volume, defined as the ratio
of the actual entrained cavity V over its asymptotic value at high Bo number V0,

C =
V
V0

=
(h− π/(k

√
Bo))2

h2
. (4.1)

This new scaling is compared with numerical data in figure 6e and shows good
agreement at high Bond numbers, with weaker agreement at lower Bond numbers
as expected from figure 6b-d. Note that 2D and 3D simulations are considered in
figure 6e and the cavity shape is identical, since the 3D transition of the flow takes
place after impact, as discussed in §3. The cavity shape is well grid converged as
shown in Supplementary Materials.

4.2. Number of bubbles

We now discuss the formation of bubbles and the time evolution of their number
from impact. Numerical convergence is verified for the time evolution and time
averaged bubble size distribution in the Supplementary Materials.

Figure 7a shows the total number of bubblesN as a function of time (t−tim)/T .
More bubbles are produced with increasing Bo, showing an order of magnitude
variation in peak bubbles produced, while the production is less sensitive to
Reynolds number. The total number of bubbles begins increasing at the moment
of impact and peaks at the end of the active breaking stage, between 0.75T and
T after impact. Particularly at higher Bond numbers, there is an increase in
production rate at 0.4T which persists until ∼ 0.75T . Similar observations are
made when considering only the super-Hinze scale bubbles r > rH , as shown in
panel (b). The number of super-Hinze scale bubbles is much smaller than the
total count, between 20 at Bo=200 to 750 at Bo=1000.

The increase of bubble production rate at (t − tim)/T = 0.4 correlates with
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Figure 7. (a) Total number of bubbles as a function of time (t− tim)/T . (b) Number of bubbles
of size greater than the Hinze scale, r > rH as a function of time. In both a and b, more bubbles
are observed for higher Bo number, corresponding to the larger cavity. The bubble count is
similar for the two Re number tested at Bo=500. (c) Detailed count breakdown for two cases, in
log-log scales, showing the number of bubbles larger than the Hinze scale, r > rH and the total
count, as a function of time, measured from the moment of breaking, for various cases. A nearly
linear increase in number of bubbles is observed. (d) Turbulent dissipation rate as a function
of time, showing both the total dissipation rate and the out-of-plane contribution, for the same
cases as (c). Maximum ε is obtained when the cavity has fully collapsed.

the breakup of the main cavity. Figure 8 shows a view of the surface from below
from (t− tim)/T = 0.06 to 0.48. In (a) and (b), the main cavity is mostly intact,
with some minor shedding of bubbles appearing off a limb of the cavity in (b).
Due to the turbulence around the cavity, it deforms and ruptures dramatically
in (c), creating a large number of bubbles of many sizes. The remaining parts
of the cavity then destabilize further in (d), and eventually break up entirely by
0.7T after impact. Note that a significant number of bubbles is produced before
this time: figure 8a shows a snapshot of the breaker from below, where many
small bubbles have been entrained at the leading edge of the breaker but well
before the main cavity (visible to the rear of the wave) has begun to disintegrate.
Some chains of larger bubbles are also visible near the main cavity and under the
primary splash-up.

Returning to figure 7, (c) shows the breakdown between sub- and super-Hinze
scale bubbles for two particular cases Bo= 200 and Bo= 500, both at Re= 40000.
The total count is dominated by sub-Hinze scale bubbles. The number of bubbles
increases rapidly and at a roughly constant rate from the moment of impact until
0.7T or 0.8T after impact, when it begins to decay. The increase in production
between 0.4T and 0.7T is subtle (on the log-log scale); before then, the bubble
production rate appears to follow a broadly linear trend (indicated by the dashed
black line).
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Figure 8. Snapshots of the liquid-gas interface, from below, for the case Bo = 1000,Re = 105,
at times (t− tim)/T of (a) 0.06, (b) 0.28, (c) 0.38, (d) 0.48. Immediately after breaking, showing
the fully-resolved scales of bubble phenomena. Note in particular the very small bubbles visible
at and in front of the leading edge of the breaker. At later stages the air cavity collapses and
lead to a wide range of bubble sizes.

Finally, figure 7d shows the energy dissipation rate during the breaking process
for the same two cases as (c), similarly to figure 4. Note again that the energy
dissipation rate increases rapidly from 0.4T to 0.6T after impact, along with the
out-of-plane contribution. The turbulence dissipation rate (as well as its out of
plane contribution) is maximum when the cavity is fully broken.

This discussion suggests two effects controlling the bubble production and
resulting size distribution: i) the initial air entrainment and impact, which will
control initial sub-Hinze scale production, and ii) the fragmentation process of
the cavity, which depends on the cavity size and the turbulence being produced
during impact.

We more closely discuss the relative roles of the initial sub-Hinze production
and the later multiscale fragmentation processes of the main cavity, and examine
the statistics of the bubble populations. For each case, the number N and sizes of
bubbles are sampled at various times t and binned by equivalent bubble radius r
into bins of size ∆r, resulting in a time-dependent size distribution N(r/rH , t/T ),
where rH is the Hinze scale given by (1.8) and T is the wave period, and which has
been normalized by bin size such that

∫
N(r/rH , t/T )dr '∑N(r/rH , t/T )∆r =

N (t/T ), where N (t/T ) is the total number of bubbles at time t and summation
is done across all radius bins.

Figure 9 shows the contours resulting from plotting N(r/rH , t/T ) over time and
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(a) Bo = 200,Re = 40000 (b) Bo = 500,Re = 40000

(c) Bo = 1000,Re = 100000 (d) Bo = 500,Re = 100000

100 101 102 103 104 105

Figure 9. Contours of bubble size distribution over time, (a) Bo = 200, Re = 40 × 103; (b)
Bo = 500, Re = 40 × 103, (c) Bo = 1000, Re = 100 × 103, (d) Bo = 500, Re = 100 × 103.
L = 11 for each case. With increasing Bond number, the main cavity size increases compared
to the Hinze scale. The bubble statistics is similar for the two Re numbers at Bo=500. Small
sub-Hinze scale bubbles are produced at impact, while a broad bubble cascade occurs once the
cavity collapses.

radius, for the cases (a) Bo = 200, Re = 4×104; (b) Bo = 500, Re = 4×104; (C)
Bo = 500, Re = 105; (d) Bo = 1000, Re = 105. In each case for (t− tim)/T < 0
there are no bubbles because the wave has not broken. The moment of impact
corresponds with the generation of an array of sub-Hinze scale bubbles along
with a single large “bubble”, visible as an isolated line on the plot, which is the
main cavity (see §2.4). (Individual or small numbers of similarly-sized bubbles
are visible as isolated lines on the plot.) This persists until (t − tim)/T ' 0.4;
it is illustrated by figure 8a. At (t − tim)/T ' 0.4, the cavity destabilizes and
breaks into an array of large bubbles (see figure 8c,d), which themselves break
up and further populate the size distribution, so that at t/T = 0.6− 0.7 there is
a broad array of large and small bubbles, with the distribution weighted towards
the small bubbles. At late times, ((t − tim)/T = 1 onwards), the number of
large bubbles reduces as they break up or reach the surface and burst. The small
bubbles remain mostly entrained in the liquid for the remainder of the simulation.
For a sufficiently long simulation time, all the small bubbles would eventually rise
to the surface and burst, however the resolution of these bursting events would
require even higher resolution (on the individual bubble) (Berny et al. 2020) and
are not considered here. We note that the dynamics of entrainment of the small
bubbles at impact will present similarities with the physics of air entrainment by
falling jets, as discussed by Kiger & Duncan (2012).
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Significant qualitative differences in the distributions between the different
cases are apparent only with respect to Bond number; larger Bo corresponds
to a smaller Hinze scale rH , so that the distributions are generally larger relative
to rH . A clear indicator is the size in r/rH of the main cavity. Re does not affect
the shape of the bubble size distribution (compare the two Bo = 500 cases, at
Re = 4 × 104, 105, since the mean turbulent dissipation rate εl (which informs
rH) is not sensitive to Re for sufficiently large Re - see §3.

4.3. Bubble size distribution over the active breaking time: scalings

Having discussed qualitatively the bubble production and size distribution as a
function of time, we now turn to quantitative evaluations of the size distribution
and its scale dependence. We focus on time averaged distributions over the
active break-up time as statistical convergence of the data in the time evolution
remains challenging and would require ensemble averages (requiring substantive
computing time). We aim to scale the number of bubbles in the system. Figure 6
shows that the cavity shape changes at small Bo due to capillary effects, resulting
in a smaller cavity, and a smaller volume of air entrained. This is confirmed by
the bubble count in figure 7.

The time evolution of the bubble size distribution can be described as an
extension of the model proposed by Deike et al. (2016), for the super-Hinze bubble
size distribution, based on a turbulence-buoyancy balance

N(r, t) = B
ALc
2π

ε(t−∆τ)

Wg
r−10/3r−2/3m , (4.2)

where A is the cross-sectional area of the initially ingested cavity in the breaking
process; Lc is the length of breaking crest; ε(t − ∆τ) is the energy dissipation
rate and ∆τ is the time between breaker impact and peak energy dissipation rate,
which corresponds to the cavity collapse time; W ≈ h/τ is a dissipation-weighted
vertical mean velocity of the bubble plume over the active breaking period; with
τ the active breaking period, B is a dimensionless constant.

Following Deike et al. (2016) the timescale of the cavity collapse is evaluated

as ∆τ ∼ r2/3m ε−1/3, where rm is the cavity size, evaluated using the scaling of the
cavity length scale, rm = h− lj , i.e. at high Bo number it will be independent of
the Bond number (that is, the cavity of large scale breakers does not depend on
surface tension), while at moderate to low Bond number, surface tension effects
become important. The cross section area A controls the amount of entrained air
initially available for subsequent breakup into a bubble size distribution, which
we estimate from the cavity shape (see 4.1.), so that ALc ≡ V ∝ r2mLc. This leads

to the geometric scaling N(r) ∝ r4/3m , which indeed indicates that the number of
bubbles will increase with the size of the cavity.

Introducing the Hinze scale as characteristic length scale, eq. 4.2 can be written
in a non-dimensional form as,

N(r/rH , t/T ) =
B

2π

ε(t−∆τ)

Wg

(
r

rH

)−10/3 V
r3H

(
rH
rm

)2/3

. (4.3)

As described in Deike et al. (2016), the factor ε(t − ∆τ)/(Wg) describes the
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time evolution while the number of bubbles is determined by the strength of the
break-up process and the scale separation between the initial cavity size and the

Hinze scale, (V/r3H)(rH/rm)2/3 ∝ (rm/rH)4/3 (Lc/rH).
We note that the controlling parameter in bubble break-up is the Weber

number, which defines the ratio between the inertial turbulent stresses and the
surface tension. When analyzing the cavity collapse, a Weber number can be
defined, based on the cavity radius of rm, which depends on Bo but, as we have
suggested above, approaches a constant value h/2 for sufficiently large Bo. The

cavity’s Weber number is then, Wem = C1ρε−2/3h5/3

σ , where C1 is a constant, and
ε is the energy dissipation rate. Since the dissipation rate ε scales with the wave

height h, we obtain Wem = C1 ρgS
2

σk2
= C1BoS2; and we further note that the scale

separation rm/rH is linked to the Weber number by rm
rH
∝ (Wem)3/5. This links

the driving Weber number of the bubble statistics and breakup processes with
the Bond number and slope of the wave.

Separate studies of bubbles and droplets break-up in turbulence have demon-
strated that one can observe the N(r) ∝ r−10/3 scaling in other contexts from
breaking waves (Mukherjee et al. 2019; Soligo et al. 2019; Rivière et al. 2021),
suggesting a universal character of the break-up cascade, provided the injection
size is much larger than the Hinze scale, rm � rH . Numerical and experimental
results have shown that the number of child bubbles formed by the break-up
of a large super-Hinze bubble in turbulence follows a simple power-law scaling,
expressed in terms of the bubble Weber number, N ∝ (rm/rH)α, with α between
1 and 2 (Vejražka et al. 2018; Rivière et al. 2021), which appears compatible with

our results; since from eq. 4.3, V
r3H

( rHrm )2/3 ∼ Lcr
4/3
m

r
7/3
H

∼ ( rmrH )4/3( Lc
rH

). Note also that

the DNS from Rivière et al. (2021) observe a nearly linear increase of the number
of bubbles during the fragmentation process at high Weber number, analogous
to the behaviour observed for the cavity collapse.

We consider the time-averaged version of eq. 4.3, analogous to the equation
proposed by Deike et al. (2016), to rescale the data onto a universal scaling,

Nsuper(r/rH) =
B

2π

ε̄

Wg

(
r

rH

)−10/3 V
r3H

(
rm
rH

)−2/3
. (4.4)

for super-Hinze scale bubbles. The sub-Hinze scale follows a r−3/2 scaling. Since
the super- and sub-Hinze distributions must be continuous at the Hinze scale, we
obtain

Nsub(r/rH) =
B

2π

ε̄

Wg

(
r

rH

)−3/2 V
r3H

(
rm
rH

)−2/3
. (4.5)

4.4. Bubble size distribution over the active breaking time: comparison with laboratory
experiments

We rescale the experimental distribution by the estimated cavity volume, as
Deane & Stokes (2002) report a bubble size distribution n(r) in units of number
of bubbles per bin size, per unit volume. For the present comparison, we consider
that all bubbles are initially contained in the cavity volume V0.
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Figure 10. Time-averaged bubble size distributions over the full time window, N(r/rH),
together with the experimental data from Deane & Stokes (2002). Experimental data is plotted
over r/rH on the abscissa, and scaled according to eq. 4.4. All data collapse reasonably onto
a single curve given the complexity of the problem. The sub-Hinze volume is about 6% of the
total entrained volume.

The time-averaged bubble size distribution, for all Re and Bo cases, over the
active breaking time t/T ∈ [0 : 1.2] are shown in figure 10, and compare with
the laboratory experiments from Deane & Stokes (2002). For all Bo numbers,
the bubble size distribution follows the direct cascade scaling for super-Hinze
bubbles, N(r/rH) ∝ (r/rH)−10/3. We resolve up to one order-of-magnitude
below the Hinze scale at L = 11, in the Bo=200 case. For all cases, within
this range, the size distributions have developed a shape which is clearly less
steep than the super-Hinze results, close to the r−3/2 scaling, but the transition
between the two regimes is not as sharp as observed in the experimental data.
Note that our simulations stop at the end of the active breaking period, and
as such do not describe the late-time plume evolution and steepening of the
bubble size distribution, which evolves due to both degassing and further break-
up, as discussed by Deane & Stokes (2002); Deike et al. (2016); Gaylo et al.
(2021). For Bo=200, where the numerical resolution is sufficient to allow for a
discussion of the sub-Hinze scale bubbles, we observe a scaling compatible with
the experimental data set from Deane & Stokes (2002), N(r/rH) ∝ (r/rH)−3/2.
The size distribution is normalized such that

∫
N(r/rH)d(r/rH) = N , the total

number of bubbles. The partitioning in volume of air entrained is about 94%
within the super-Hinze range of scale and about 6% of the air within the sub-
Hinze bubbles, similar to the discussion of Deane & Stokes (2002). Figure 10
shows that the distribution in the super-Hinze regime between the Bo=1000 and
the experimental Deane & Stokes (2002) data agree reasonably well in the super-
Hinze region and suggests that the asymptotic regime in Bo observed for the
cavity volume in figure 10 has been reached. All data in figure 10 are reasonably
well collapsed onto a single curve including the experimental data of Deane &
Stokes (2002), given the uncertainties in the measurements and estimations of
the various terms in the scaling model.
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(a) (b)

(c) (d)

Figure 11. Snapshots of the liquid-gas interface at different magnifications and different
times, showing different stages of droplet production, for the case Bo = 1000,Re = 105. (a)
(t − tim)/T = 0.06, splashing produced by the initial impact at the front of the breaker; (b)
(t− tim)/T = 0.2, secondary splash-up shortly after impact producing a peak in droplet count,
(c) (t − tim)/T = 0.52, sustained droplet production later in the active breaking phase, (d)
(t− tim)/T = 1.1, jet droplet production at late times.

5. Droplet statistics

5.1. Stages of droplet production

We now discuss droplet production. Although all breaking waves in this study
produce some droplets, large numbers of droplets only appear at larger Bo. Figure
11 shows qualitatively some of the different production mechanisms observed in
these cases. Some droplets are produced immediately on impact (figure 11a);
from a secondary splash-up (11b); a sustained surface splashing in the devel-
oped breaker (11c); and some jet droplets, which are partially resolved in these
simulations (11d). Numerical convergence of our data is discussed in details in
Supplementary Materials.

Figure 12a shows the sizes of droplets produced by the secondary splash relative
to the mesh size, suggesting that many of these droplets in particular have radii
of approximately the smallest mesh size, hence the have to be considered with
caution. Figure 12b shows a fragmenting jet produced later in the breaking
process, with only the largest droplets exhibiting a radius of more than double
the mesh size. The largest droplets appear during the sustained splashing phase
(corresponding to figure 11c) and statistics for such droplets are numerically
converged.

The total droplet production over time is shown in Figure 13. Fewer droplets
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(a) (b)

(c) (d)

Figure 12. Snapshots of the liquid-gas interface for two droplet production stages, showing
overlaid section of the numerical mesh, for the case Bo = 1000,Re = 105. (a,b) (t−tim)/T = 0.2,
production of fine droplets by the secondary splash-up. Many of these droplets are resolved to
less than four mesh cells per droplet diameter, for which numerical convergence is difficult to
achieve. (c,d) (t− tim)/T = 1.2, jet and droplet production after bubble bursting. Note that the
largest droplets exceed four mesh cells per diameter.

are produced for all cases compared to the bubble count (fig. 7), and for Bo = 200,
fewer than 100 droplets are produced over time, which prevents any statistical
convergence of the distribution. The number of droplets produced increases with
Bo number, and for Bo = 500 both Re show a similar time evolution in the
number of drops, with about 200 drops at most. The Bo = 1000 case shows the
largest droplet counts, with many droplets produced at early times after impact
and up to 800 drops.

For the higher Bond number cases, figure 13a shows two prominent peaks in the
droplet production. The first, sharp peak occurs at approximately the same time
for both Bo = 500, 1000, at (t− tim)/T ' 0.2. Figure 11b shows qualitatively the
flow around this time for the Bo = 1000 case: shortly after the initial impact,
which produces a small amount of droplets, there is a secondary impact between
the splash-up and the bulk of the wave; this causes a second splash-up which
projects directly upwards from the surface and produces many droplets. For Bo =
200, while this same process occurs, surface tension is too strong to allow this
secondary splash-up to generate droplets. This corresponds with the first peak in
figure 13a, and explains why it only appears for large Bond numbers. The peak is
sharp because the droplets are produced in a single well-defined process and they
are quickly destroyed as they fall back to the surface. The second peak is broader
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Figure 13. (a) Total number of droplets plotted over time for various cases, measured
from moment of impact. (b) Energy dissipation rates for the same cases, showing the total
contribution.

and occurs for all cases at around (t− tim)/T = 0.5 to 0.6. The state around this
time is shown qualitatively for Bo = 1000 in figure 11c. It occurs as the wave
proceeds through its active breaking phase and is made up of many small-scale
splashing events and the bursting of large bubbles that were ingested earlier in
the process. Since this process is longer and not as well-defined in space or time,
the peak in 13b is accordingly broader.

Figure 13b shows the energy dissipation rates for the same cases as in (a).
In contrast to the close connection between the bubble statistics and energy
dissipation rate, there is no clear correlation between the dissipation rate and the
droplet production.

We now discuss the droplet statistics. The droplets are gathered and binned
similarly to the bubbles, into distributions Nd(rd/lc, t/T ), where lc is the capillary
length. The droplet populations are strongly influenced by the strength of the
breaker (Erinin et al. 2019), and by the impact of the (ballistic) jet, particularly
at early times, suggesting to use the gravity-capillary length as the relevant length
scale. Note also that the lack of clear dependence on Reynolds number in the drop
production suggests that viscosity does not play a role in the drop formation
process. Figure 14 shows the contour maps for the droplet size distributions for
the cases Bo = 200,Re = 4 × 104; Bo = 500,Re = 4 × 104; Bo = 500,Re = 105;
Bo = 1000,Re = 105. These corroborate the picture drawn from figure 13; there
are two main peaks of droplet production, which produce short-lived drops; the
first peak is sharp and the second is broader. We also observe that these peaks,
and especially the second peak, are the source of large droplets. There is a slight
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(a) Bo = 200,Re = 40000 (b) Bo = 500,Re = 40000

(c) Bo = 1000,Re = 100000 (d) Bo = 500,Re = 100000
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Figure 14. Contours of droplet size distribution over time. (a) Bo = 200, Re = 40 × 103; (b)
Bo = 500, Re = 40× 103; (c) Bo = 500, Re = 100× 103; (d) Bo = 1000, Re = 100× 103. L = 11
for all cases.

Bond number dependency seen in the sizes of the droplets produced in the first
peak; that is, increased Bond number produces more droplets (as in figure 13a)
as well as larger ones.

5.2. Time-averaged distribution and comparison with Erinin et al 2019

We now seek to compare the present numerical data with experiment. For
this purpose, we consider the droplet size distributions time-averaged over (t −
tim)/T ∈ [0.2, 1]. The experimental data presented in Erinin et al. (2019) are
reported as a droplet count per bin size, per unit length of breaking crest. In
order to compare to the numerical data, we multiply Erinin et al. (2019) by the
wave tank width (1.15m), which yields an absolute number of drop distribution,
per unit bin-size. We consider only the Part I data from Erinin et al. which
corresponds to the earlier splashing stage which is best resolved in our data and
we do not consider the later drop production stage which corresponds to jet drop
production. We observe a reasonable agreement between our numerical data and
those of Erinin et al. (2019) in the range of drop size 0.08rd/lc to rd/lc, in terms
of total number of ejected drops and scaling with radius. This observation is
extremely encouraging, as we note that the breaker from Erinin is at a slightly
smaller wave slope than our breakers, and a slope (or wave height, or falling jet
speed) dependency is expected. Note that again, the effect of Reynolds number
is small, since the two Bo = 500 cases at Re = 4× 104, 105 collapse well.

To compare the scale of drops being produced, we normalized the drop size
by the capillary length lc, and therefore present Nd(rd/lc) as a function of rd/lc,
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Figure 15. Time-average of droplet size distributions over the time window t/T ∈ [0.2, 1.0],
and experimental data from Erinin et al. (2019). Experimental and numerical data is scaled
consistently.

shown in figure 15. We observe a remarkable general agreement in shape in overall
number of drops, as well as range of drops produced, while the data of Erinin
et al. extend to smaller droplets that we are not yet able to resolve. Some Bo-
number dependency is evident in the numerical data which can be attributed to
the enhanced surface tension effects that reduce the fragmentation process at low
Bo-number. As with the bubble size distributions, there probably exists a high-
Bo regime independent of surface tension, but this critical Bo number has not yet
been identified. The expected dependency in slope also complicates the analysis.
Understanding these effects requires both experimental and numerical data at
various slopes. However, these open questions do not reduce the importance of
having achieved direct numerical simulations of drop production by a splashing
process, which are well-resolved numerically and agree reasonably well with the
experimental data in terms of the range of drop size produced and their total
number, despite significant differences in the details of the initialization between
them. We do remark that the presence of wind, not accounted for in this study,
would likely generate spume, which would affect the droplet size distributions,
but would require the resolution of the turbulent boundary layer forcing the wave.

5.3. Droplet velocity statistics

Lastly, we consider the statistics of droplet velocities. Figure 16a shows a
contour plot of the droplet velocities (normalized by the deep water phase speed
cph =

√
g/k) over time. It shows that smaller velocities on the order of v ∼ cph

are prevalent throughout the breaking process, with larger droplet velocities
∼ 3cph − 4cph appearing during the secondary splash (see figure 11b) and the
sustained splashing later in the breaking period (see figure 11c). Comparison
with figure 14d shows these larger velocities are attained at the same time that
large droplets appear. Indeed, the joint distribution of velocities and droplet radii,
during the time of the sustained splashing ((t − tim)/T ' 0.6) shown in figure
16c suggests that the highest speeds are attained by the largest droplets, though
there are not many such droplets. Large droplets may also be very slow. Most
droplets are small (as confirmed by the marginal size distribution, shown in figure
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Figure 16. (a) Contour of droplet velocities for the case Bo = 1000, Re = 105, plotted over
time on the horizontal axis and velocity normalized by the wave phase speed on the vertical.
(b) The droplet size distribution at the time (t − tim)/T = 0.6 averaged over a time width of
∆t/T = 0.1. Dashed line: power law with exponent −2, as in Region I of Erinin et al. (2019). (c)
The velocity distribution for the same time as (b). Lines: Fits for gamma (solid) and log-normal
(dotted) distributions. (d) The joint size–velocity distribution for the same time as (b).

16b and matching earlier figures) but these vary broadly in speed. Finally, the
marginal velocity distribution is shown in figure 16d, showing a peak in droplets
that have low speeds ∼ cph with a drop-off at very small speeds and a skew
toward high speeds. The distribution is not governed by a power law, unlike the
size distributions, but appears to be best described by a Gamma distribution
(solid line) or by a log-normal distribution (dotted), both of which have been
observed in many fragmentation processes (Ling et al. 2017; Villermaux 2020).

It should be noted that the velocities presented in figure 16 are those of
all droplets in the gas phase, and therefore represent droplets at all points in
their ballistic trajectories. The data therefore does not in general represent only
ejection speeds per se. Nevertheless, it can be assumed that the largest droplet
velocities observed in figures 16a,c are those of ejecting droplets, since no larger
velocities are ever observed. Thus the fastest ejection speeds in the data are of the
order of 3cph−4cph, and they mostly occur for droplets larger than approximately
0.15lc and up to 0.4lc − 0.5lc. Complete statistical separation of the just-ejected
droplets from the rest of the droplet population remains to be conducted in a
future study.

6. Concluding remarks

We have presented high-resolution simulations of breaking waves using DNS of
the two-phase Navier-Stokes equations with surface tension exhibiting transition
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in a multiphase environment from laminar to turbulent flow, for a wide range of
Reynolds numbers. By varying Bond and Reynolds numbers at high numerical
resolution, we discuss the energetics of the breaker as well as statistics for bubble
and droplet populations. For the energy, we have analysed the transition to 3D
flow in terms of the volume-integrated dissipation rate in the water phase, and
showed a Reynolds-number dependency for values of the wave Reynolds number
less than 105, which corresponds to a mixing transition at a turbulence Reynolds
number of Reλ ' 100, analogous to results in a variety of canonical single-phase
turbulent flows. We characterize the transition time scale, which is associated
with a shear mechanism, the horizontal breaker speed and the vertical breaker
height. The result thus appears generic for highly-energetic breaking waves at
high slope. The shear-layer instability mechanism driving the transition is local
and is expected to be independent of the type of breaker (spilling or plunging).
Other features of the energetics such as a large peak in dissipation rate during
the active breaking phase can be explained in terms of the breakup of the
main cavity entrained by the plunging breaker. This critically contextualizes
prior observations in the literature that the energetics of numerical 2D breakers
approximate those of 3D breakers (Song & Sirviente 2004; Iafrati 2009, 2011;
Deike et al. 2015).

Regarding the bubble statistics, we resolve across multiple scales extending
from the main cavity to below the Hinze scale, particularly at low wave Bond
numbers, and find reasonable agreement with experiments (Deane & Stokes 2002)
across the full range of resolved bubble sizes. We describe capillary effects on the
plunging jet and ingested cavity, and characterize an asymptotic Bond number.
We extend the bubble size distribution model from Deike et al. (2016) to account
for variation due to capillary effects in the size of the main cavity ingested by
the breaker, and in the subsequent fragmentation and breakup cascade of the
cavity. Incorporated in the scaling, and as noted by Deike et al. (2016), is the
close connection between the bubble statistics and the energy dissipation rate in
the bulk liquid. The scaling shows good collapse of the data and, again, good
agreement with experiments.

We also present statistics on the droplet populations produced by the breakers.
We find good agreement in the shape of the droplet size distributions with the
recent experiments of Erinin et al. (2019), although some slope and Bond number
effects are present and remain to be precisely quantified. Statistics on the droplet
velocities are discussed, and it is found that the fastest-ejecting droplets travel
at up to four times the phase speed of the wave, and are also some of the largest
droplets; these are produced during the most intense splashing periods of the
breaker.

The bubble and droplet size distribution seem to be both independent of the
Reynolds number, once above the critical Reynolds number identified in studying
the 3D turbulence transition. Consistent results in simulations and experiments
for the bubble and droplet size distributions, when scaled by the characteristic
length scale of the problem, reinforces the discussion in the literature Deike et al.
(2015, 2016) that the details of these breakers are essentially local in the sense
that whatever the initial conditions of the breaker, the dissipative, bubble and
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droplet properties depend only parameters of the wave at the point of breaking
and not on the pre-breaking history of the wave.

We note that the results discussed here are grid converged, thanks to the use of
adaptive mesh refinement techniques, which allow an effective grid size of 20483

grid points. These results show the ability to resolve the mixing transition in the
turbulent flow in multiphase DNS of 3D breaking waves, and paves the way for
realistic direct simulations of turbulent two-phase flows.
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Farsoiya, Palas Kumar, Popinet, Stéphane & Deike, Luc 2021 Bubble-mediated transfer
of dilute gas in turbulence. Journal of Fluid Mechanics 920.

Fedele, Francesco, Banner, Michael L & Barthelemy, Xavier 2020 Crest speeds of
unsteady surface water waves. Journal of Fluid Mechanics 899.

Fuster, Daniel, Agbaglah, Gilou, Josserand, Christophe, Popinet, Stphane &
Zaleski, Stphane 2009 Numerical simulation of droplets, bubbles and waves: state of
the art. Fluid Dynamics Research 41 (6), 065001.
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