
HAL Id: hal-03631882
https://hal.science/hal-03631882

Submitted on 6 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Low-Overhead Resilience for Data Parallel
Deep Learning

Bogdan Nicolae, Tanner Hobson, Orcun Yildiz, Tom Peterka, Dmitry Morozov

To cite this version:
Bogdan Nicolae, Tanner Hobson, Orcun Yildiz, Tom Peterka, Dmitry Morozov. Towards Low-
Overhead Resilience for Data Parallel Deep Learning. CCGrid’22: The 22nd IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing, May 2022, Messina, Italy. �hal-03631882�

https://hal.science/hal-03631882
https://hal.archives-ouvertes.fr

Towards Low-Overhead Resilience
for Data Parallel Deep Learning

Bogdan Nicolae†, Tanner Hobson∗, Orcun Yildiz†, Tom Peterka†, Dmitry Morozov‡,
∗University of Knoxville, Tennessee, USA

Email: thobson2@vols.utk.edu
†Argonne National Laboratory, USA

Email: {bnicolae,oyildiz,tpeterka}@anl.gov
‡Lawrence Berkeley National Laboratory, USA

Email: dmorozov@lbl.gov

Abstract—Data parallel techniques have been widely adopted
both in academia and industry as a tool to enable scalable
training of deep learning models. At scale, DL training jobs
can fail due to software or hardware bugs, may need to be
preempted or terminated due to unexpected events, or may
perform suboptimally because they were misconfigured. Under
such circumstances, there is a need to recover and/or reconfigure
data-parallel DL training jobs on-the-fly, while minimizing the
impact on the accuracy of the DNN model and the runtime
overhead. In this regard, state-of-art techniques adopted by
the HPC community mostly rely on checkpoint-restart, which
inevitably leads to loss of progress, thus increasing the runtime
overhead. In this paper we explore alternative techniques that
exploit the properties of modern deep learning frameworks
(overlapping of gradient averaging and weight updates with local
gradient computations through pipeline parallelism) to reduce
the overhead of resilience/elasticity. To this end we introduce
a failure simulation framework and two resilience strategies
(immediate mini-batch rollback and lossy forward recovery),
which we study compared with checkpoint-restart approaches
in a variety of settings in order to understand the trade-offs
between the accuracy loss of the DNN model and the runtime
overhead.

Index Terms—deep learning; data-parallel training; failure
simulation; performance model; trade-off analysis

I. INTRODUCTION

Deep learning (DL) applications are rapidly gaining traction
both in industry and scientific computing thanks to the accu-
mulation of massive data sizes. In the area of HPC, scientific
instruments collect data in the order of GB/s, accumulating
100+ TB/day, all of which present a wide range of learning
opportunities. Unsurprisingly, this creates significant interest
to adopt DL on HPC machines for various scientific areas:
fusion energy science, computational fluid dynamics, lattice
quantum chromodynamics, virtual drug response prediction,
cancer research, etc.

Such massive data sizes make the training of deep neural
network (DNN) models challenging, especially since this
involves a large number of epochs, where each epoch is a
complete pass over the dataset. The computations performed
during each epoch are non-trivial: they involve iterating over
the dataset in a random order in small batches (mini-batches),

each of which is composed of a forward pass, responsible to
predict the result using the model, and a back-propagation,
responsible to update the parameters of the model such that
the difference between the predicted result and the actual result
is minimized (typically achieved using techniques such as
stochastic gradient descent).

In a quest to alleviate this challenge, various parallelization
techniques have been proposed that leverage multiple compute
nodes. A popular technique is synchronous data-parallel [1]
training. It creates replicas of the DNN model on multiple
workers, each of which is placed on a different device and/or
compute node. The input data is randomly shuffled and parti-
tioned among the workers at each epoch. During the forward
pass, the workers simply proceed in an embarrassingly parallel
fashion by iterating over the partition of their dataset. Then,
during back-propagation, the weights are not updated based
on the local gradients as it is normally done for a serial
training, but by using a global average computed across all
workers using all-reduce operations. This effectively results in
all workers learning the same pattern, to which each individual
worker has contributed. Note that these operations need not be
serialized. Instead, this can be done in a pipeline: as soon as
the computations of the local gradients of a layer are finished,
the computations for the previous layer can start, while all-
reduce operations to average the local gradients and update
the model weights can be performed in parallel. Such an
optimization is called pipeline parallelism. The combination
of data parallelism and pipeline parallelism is widely used in
practice, which is why we choose it as the focus of our work.

Despite such optimizations, DL training remains a time-
consuming process. Since there are a large number of com-
pute nodes involved, failures due to software or hardware
errors are a common occurrence, with mean time between
failures (MTBF) of 4-22 hours often reported [2] for HPC
machines. As data centers are increasingly adapted for running
DL applications (increasing number of GPUs per compute
node, increasing complexity of the software stack), the failure
frequency is projected to increase. Indeed, a study of large-
scale DNN training clusters at Microsoft [3] has found the
MTBF to be as low as 45 minutes.

Furthermore, workflows that run multiple DL training in-U.S. Government work not protected by U.S. copyright

stances and/or integrate them with other tasks are becoming
increasingly complex, causing unexpected events that mimic
the impact of failures. For example, if a high-priority, on-
demand task needs to be started immediately, then some of
the workers of the data-parallel training may need to be killed
in a timely fashion, leaving very narrow room to react [4].
Another example is elastic scheduling, which involves the need
to redistribute the resources among the tasks. In this case,
workers need to be frequently terminated (or suspended) and
respawned (or resumed) later. In these scenarios, the frequency
of unexpected events can be much higher than the MTBF
(order of seconds).

To address failures and unexpected events, tightly cou-
pled applications such as HPC simulations typically rely on
checkpoint-restart approaches for resilience: they capture a
globally consistent execution state of all processes at regular
intervals (checkpoint) and roll back to the most recent one in
case of an unexpected event (restart). Data-parallel DL training
can also take advantage of checkpoint-restart to replay the
mini-batches since the last checkpoint (by making stochastic
operations deterministic through the use of pseudo-random
number generators with fixed seeds). While this solves the
problem of obtaining identical results compared with a failure-
free run, it suffers from high performance overheads due to
loss of progress, since DNN models are typically checkpointed
at the end of each epoch or less frequently.

In this paper, we focus on alternative resilience strategies
that relax the requirement to obtain identical results compared
with a failure-free run in order reduce the performance over-
head. To this end, we leverage a key observation: DL training
is a stochastic process, therefore it is possible to relax sev-
eral consistency considerations, in particular during the back-
propagation. For example, data-parallelism may still produce
a viable model even if only a subset of the whole process
group contributes to the gradient averages. Furthermore, a
DNN model may still be viable even if the weights of its
layers were only partially updated during a mini-batch. Thus,
an interesting question arises: can we sacrifice consistency to
avoid a rollback to a previous checkpoint in case of unexpected
events (and thus avoid loss of progress) without significant
impact on the accuracy of the DNN model? Our contributions
aim to answer this question. We summarize them below:

• We propose two resilience strategies, both of which are
based on the idea of capturing the state of the DNN model
on the surviving workers of the data-parallel training after
the unexpected event happened and without access to any
previous checkpoint. Using this (potentially inconsistent)
state, we either: (1) launch additional workers to replace
the failed ones, broadcast the state to them and then
globally replay the last mini-batch; (2) continue the back-
propagation by averaging the gradients of the surviving
workers (Section III-B).

• We design an develop a failure simulation framework
specifically designed for the combination of data-parallel
and pipeline parallel DL training using the Tensorflow
and Horovod DL runtimes. Our approach enables fine-

grain control over the moment when to simulate a failure
and captures the state of the DNN model at that moment.
This allows a study of the proposed resilience strategies
in a variety of simulated failure scenarios (Section III-C).

• We run a series of extensive experiments on an HPC
testbed using two DL applications in order to study
the trade-offs between performance and accuracy for the
proposed strategies in a variety of simulated failure sce-
narios. The results show our proposed resilience strategies
incur a significantly lower performance overhead, at the
expense of negligible accuracy loss (Section IV).

II. RELATED WORK

Checkpoint-Restart: is a resilience strategy applied both
for loosely coupled and tightly coupled applications. When
I/O bandwidth is a concern (especially for tightly-coupled
HPC applications running at large scale), multi-level check-
pointing [5], [6] can be used to leverage complementary
strategies (partner replication, erasure coding) adapted for
HPC storage hierarchies. VELOC [7], [8] takes this approach
further by introducing asynchronous techniques to apply such
complementary strategies in the background. When the check-
points of different processes have similar content, techniques
such as [9], [10] can be applied to complement multi-level
checkpointing. However, for data-parallel training, the DNN
models are known to be identical in advance, therefore such
techniques introduce unnecessary overheads.

DNN Model Checkpointing: popular runtimes such as
Tensorflow and PyTorch implement rudimentary checkpoint-
ing into either standardized formats (e.g. HDF5) or custom
formats (e.g., SaveModel1). However, such techniques are
not optimized to take advantage of multiple storage tiers,
asynchronous I/O, nor to leverage the redundancy of identical
DNN model replicas. To this end, checkpointing approaches
such as DeepFreeze [11] introduce sharing techniques that
write different parts of the DNN model in parallel from each
replica, which can be overlapped with the back-propagation
by embedding the write operations directly into the execution
graph. Building on top of such techniques is the related prob-
lem of cloning, which involves checkpointing an ongoing data-
parallel training while simultaneously starting a separate data-
parallel training from the checkpoint [12]. Other approaches
such as CheckFreq [13] focus on determining the optimal
checkpointing frequency through systematic online profiling
of the overhead. Such approaches can be used to reduce
the overhead of capturing the DNN model state after an
unexpected event has occured.

Silent errors in DNNs: are explored in a variety of scenar-
ios. For example, FT-CNN [14] uses algorithmic-based fault
tolerance techniques that are capable of protecting DNN mod-
els against non-catastrophic soft errors by using lightweight
checksums to minimize both the compute and data redundancy.
Li at al. [15] study silent error propagation in DNNs, conclud-
ing that their impact depends mostly on the data structures

1https://www.tensorflow.org/guide/saved model

being used, frequency of reuse and sensitive bits. They propose
mitigation techniques such as symptom-based error detectors
and selective latch hardening. Similar studies focus on silent
errors due to running DNNs on accelerators using reduced
voltage to limit energy consumption [16]. Silent errors were
also investigated in trade-offs, e.g. to reduce the overhead
of all-reduce gradient averaging in data-parallel training by
ignoring stragglers [17].

To summarize, state-of-art techniques either focus on
checkpoint-restart or study specific scenarios such as silent
errors. By contrast, our work focuses on fail-stop errors and
unexpected events that kill processes but without introducing
the overhead of checkpointing during failure-free execution.
To our best knowledge, we are the first to explore this aspect.

III. FAILURE ANALYSIS FRAMEWORK

This section details our approach, starting from the princi-
ples behind the Tensorflow and Horovod runtimes that enable
the combination of data parallelism with pipeline parallelism,
which we exploit to design and develop two resilience strate-
gies, a failure simulator and a performance model.

A. Background

DL runtimes like Tensorflow take advantage of multi-core
and hybrid architectures to parallelize computations at fine
granularity. To this end, they enforce a programming model
based on data-flow graphs: applications describe a computation
by defining a graph whose nodes represent the operators and
whose edges represent the operands (which take the form of
tensors, or multi-dimensional arrays). Then, based on this data-
flow graph, Tensorflow optimizes the schedule of where to
run the operators and how to transfer the inputs and outputs
between them.

However, it is non-trivial for application developers to
reason at low level directly in terms of data-flow graphs.
Therefore, Tensorflow provides high-level abstractions built
on top of data-flow graphs that are exposed in programming
languages such as Python: data pipelines that allow asyn-
chronous fetching and pre-processing of the training samples,
building blocks of DL models (e.g., certain arrangements of
layers) or even full standardized DL models, optimizers that
implement the forward pass and back-propagation using vari-
ous techniques (SGD, Adam, etc.). These abstractions are then
combined and translated automatically into a data-flow graph.
At this point, pipeline parallelism is implemented during the
back-propagation by simply reusing the output produced by
the sub-graph responsible for the gradient calculations of a
given layer for two other parallel sub-graphs: (1) the gradient
calculations of the previous layer using the chain rule; (2) the
weight updates of the given layer.

Since much of the DL ecosystem has evolved around
Python, complementary runtimes that enable data parallelism
such as Horovod continue this tradition. Specifically, Horovod
hides the details of parallelization by wrapping around the
optimizer instantiated by the DL application in order to
transparently augment the data-flow graph to average the

local gradients of all workers using an all-reduce collective
communication pattern (e.g., as provided by MPI implemen-
tations) before proceeding with the weight updates. Using
this approach has two advantages: (1) at application level,
there are only minimal changes necessary take advantage of
data parallelism; (2) all-reduce collective communication is
overlapped with the rest of the operations performed by the
data-flow graph, thereby reducing communication overheads.

B. Resilience Strategies

We propose two resilience strategies that take advantage of
the low-level data-flow graph to capture the DNN model on
the surviving workers after an unexpected event happened and
continue the DNN training without loss of progress.

Immediate mini-batch rollback: is based on the idea re-
playing the same mini-batch. The key observation we leverage
is that even if a single DNN model replica survived out of
the entire group participating in the data-parallel training, it
is enough to capture all information needed to continue. If
the failure happened during the forward pass, then the DNN
model is in a consistent state. If the failure appended during
the back-propagation, then the weights of the DNN model
may have been updated only partially, therefore it may be in
an inconsistent state. However, it is important to note that the
partial updates are not random: even when considering fine-
grain parallelism, the updates in the data-flow graph are likely
to be applied in reverse order of the layers. Therefore, up to
the point where the last update was applied, the DL model will
use the same initial weights, while from that point on, it will
funnel the results in a slightly different but coherent direction.
Thus, there is a high chance that this kind of inconsistencies
do not break the viability of the DNN model. We can leverage
this observation to simply checkpoint the DNN model on the
surviving workers, launch a new set of workers (or to use
spare workers that are waiting in stand-by) and broadcast the
DNN model to them (using simple techniques such as electing
a leader among the survivors to perform the broadcast or more
advanced techniques such as cloning [12]). Once all workers
hold synchronized DNN model replicas, the failed mini-batch
can be replayed. Note that each new worker needs to reload
the original data partition and assemble a new mini-batch.
However, this process can be easily made deterministic by
using a pseudo-random number generator with a fixed seed
(e.g., all workers agree on a random seed at the beginning of
the training, to which they add their id).

Lossy forward recovery: is based on the idea of continu-
ing the training only with the surviving workers. Regardless
whether the failure happened during the forward pass or the
back-propagation, ultimately each surviving worker indepen-
dently updates its own DNN model replica, therefore it will
maintain consistency if allowed to complete the mini-batch.
However, the question is, what gradients should the surviving
workers use to perform the weight updates? If each worker
uses its own local gradients, then the influence of important
training samples belonging to other partitions may be lost.
If the survivors pay an additional overhead to average the

Fig. 1: Lossy forward recovery: Illustration for three workers,
each of which is updating its DNN model replica during back-
propagation using pipeline parallelism. After worker 3 fails,
the survivors continue the back-propagation to complete the
mini-batch by averaging the gradients among themselves.

gradients among themselves, then they will lose only the
influence of the training samples belonging to the mini-batches
of the failed workers. We advocate for the latter, since the
overhead of restoring communication among the survivors
(e.g., by creating a new MPI communicator) is typically small.
An example of how this works is illustrated in Figure 1.

Note that this strategy is also particularly well suited to
support unexpected events that do not necessarily terminate
the workers, as detailed in Section I for scenarios such as task
pre-emption and elasticity. In this case, workers can be put in
a dormant state where they do not perform any computations
and simply contribute with token values that are ignored to
the gradient all-reduce. Using this approach, the workers can
be suspended and resumed in near real-time, without the need
to reinitialize or reconstruct MPI communicators.

C. Failure/Unexpected Event Simulation Framework

To study the impact of failures and unexpected events on
the accuracy and performance overhead of both resilience
strategies discussed in Section III-B, we propose the design
and implementation of a simulation framework that is capa-
ble of generating controlled scenarios. Note that the general
principles discussed in this section can be easily extended to
study other resilience strategies as well.

We set three design goals: (1) ability to control the moment
when a simulated failure happens; (2) generate the same
outcomes as if a real failure happened; (3) minimize the
modifications to the original code in order to accurately
measure the performance overhead. To this end, we introduce
the following components:

Failure injection using a custom optimizer: we propose
a custom optimizer that extends the standard Keras optimizers
to allow the user to specify a DNN model layer beginning

with which a failure is simulated during the back-propagation
on a specified number of model replicas (called casualties).
We refer to the model replicas on which no failures are being
simulated as survivors. Our assumption is that the weights
of all successive layers (in reverse order beginning with the
last) have been successfully updated by the time the data-flow
graph reaches the specified layer on both the casualties and the
survivors. Then, instead of aborting the training immediately,
we modify the data-flow graph of the casualties to set the
content of the local gradients for the specified layer and
all preceding layers with zero and run the mini-batch to
completion. Using this approach, we satisfy goal (1).

Immediate mini-batch rollback simulation: In the case
of immediate mini-batch rollback, the number of survivors is
zero, which means the average gradients across all workers
beginning with the specified layer is zero. Therefore, from
that moment on, the weights of the model replicas will not be
updated, which means the outcome is equivalent to stopping
all workers. This enables us to reach goal (2). To simulate
immediate mini-batch rollback, it is sufficient to let the failed
mini-batch run to completion, checkpoint the model on one
of the workers, restart all workers from the checkpoint, then
re-run the same mini-batch in failure-free mode. Using this
approach, the whole process is greatly simplified. Furthermore,
it is important to note that the extra runtime overhead for
running the failed mini-batch to completion is negligible
(because we directly set the tensors to zero in the data-flow
graph, therefore no computation is performed to calculate any
gradients beginning with the specified layer). This enables an
accurate approximation of the overall runtime overhead, thus
satisfying goal (3).

Lossy forward recovery simulation: In the case of lossy
forward recovery, there must be a non-zero number of sur-
vivors. One approach to address this case is to simply modify
the average of the gradients starting from a specified layer
to perform the sum as usual over all workers, but divide the
result over the number of survivors, which effectively ignores
the zero-filled gradients of the casualties. This is equivalent
to averaging the gradients of the survivors directly, satisfying
goal (2). However, such an approach requires modifications
to the Horovod framework in order to compute a different
average function. Instead, we adopt a simpler approach: start-
ing from the specified layer, every worker divides its local
gradients by the number of survivors instead of the number of
total workers (except for the casualties, for which the gradients
remain zero). Then, instead of reducing the gradients using
an average function as usual, we reduce them using the sum
function, which is available as an alternative in Horovod.
Using this approach, we satisfy both goals (2) and (3).

D. Implementation Details

We implemented the resilience strategies and simulation
framework introduced above for the Keras library shipped with
Tensorflow 2.5.0. For the purpose of this work, we have chosen
to use the tensorflow.keras.optimizers.SGD optimizer as a base
class, since it the most widely used in practice. However, it is

important to note that our approach can be trivially adapted
to any other optimizer by using a different base class. Specifi-
cally, we intercept the compute gradients method responsible
to generate the data-flow graph corresponding to the gradient
tape: after executing the code of the super-class, starting with
a given gradient (expressed as percent out of the total number
of gradients) we fill the content of the tensors with zero
on the casualties. Then, we return the modified data flow
graph, which is used by the optimizer internally to obtain the
actual gradients and update the weights of the model. This
approach integrates seamlessly with Horovod: the distributed
Horovod optimizer that normally wraps around the original
Keras optimizers, simply needs to wrap around our own
optimizer instead. In addition, we implemented a callback for
model.fit that is responsible to perform checkpointing (using
the default HDF5 format) at a given epoch and mini-batch
number, as well as to monitor and to log relevant metrics,
such as duration of each mini-batch, loss and accuracy.

IV. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation we per-
formed in order to study the trade-off between the performance
and accuracy achieved by the robustness strategies proposed
in Section III-B in several controlled scenarios that simulate
failures and/or unexpected events.

A. Experimental Setup

Our experiments were performed on Argonne’s ThetaGPU
cluster, a testbed specifically optimized for training DNN
models at scale. It comprises 24 NVIDIA DGX A100 nodes,
each with eight NVIDIA A100 Tensor Core GPUs and two
AMD Rome CPUs. Memory-wise, each node is equipped with
1 TB of DDR4 memory and 320 GB GPU memory, for a
total of 24 TB DDR4 and 7.6 TB GPU memory. The nodes
are interconnected using 20 Mellanox QM9700 HDR200 40-
port switches wired in a fat-tree topology. External storage is
provided by a Lustre parallel file system, which is mounted
using POSIX and provides an aggregated I/O bandwidth of
250 GB/s.

For the purpose of this work, we use one full ThetaGPU
node to run a data-parallel training on its eight GPUs. Each
Horovod worker is responsible for a DNN model replica and
runs on its own dedicated GPU.

In terms of deep learning software, we use Horovod v0.20.3
and Tensorflow v2.5, which comes with its own optimized
implementation of the Keras library. They are running on top
of Python v.3.8.5 and CUDA v11.1.105.

B. Applications

We choose two representative real-life DL applications for
our study. They exhibit complementary DNN model properties
(small size with large number of layers vs. large size with
small number of layers), which results in different behavior
patterns with respect to loss of accuracy and recovery over-
heads.

ResNet-50: ResNet is a family of DNN where the layers
learn residual functions with reference to the input layers,
instead of learning unreferenced functions. This allows ResNet
to train extremely deep neural networks with 150+ layers,
which was difficult prior to its introduction due to the problem
of vanishing gradients [18]. Thanks to this breakthrough,
ResNet became a highly popular image classification bench-
mark. In this paper, we study the ResNet−50 variant, which
is the most popular in the family. We rely on the default
implementation shipped with Keras. As training data, we
use the TinyImageNet dataset [19], which is ≈ 200 MB
large and includes 100,000 samples. The training data is
partitioned among all workers. Each worker randomly samples
its partition to obtain a different mini-batch compared with the
other workers. This DNN model is representative of a large
number of layers, each of which is small (in the order of MiB).

CANDLE-NT3: CANDLE [20] (Cancer Distributed Learn-
ing Environment) is a project that aims to combine the power
of Exascale computing with deep learning to address a series
of loosely connected problems in cancer research. In this
context, we study on NT3 [21], which consists of a 1D
convolutional network for classifying tissue, expressed as gene
sequences, as normal or tumorous. This type of network
follows the classic architecture of convolutional models with
multiple 1D convolutional layers interleaved with pooling
layers followed by final dense layers. The optimizer used by
NT3 is SGD (stochastic gradient descent). The training data
size for this benchmark is ≈ 600 MB, which includes 1120
training samples. NT3 is a representative DNN model of a
small number of layers, each of which can grow to huge sizes
(hundreds of MiB).

C. Methodology

We compare the resilience strategies described in Sec-
tion III-B with a baseline strategy that checkpoints every epoch
and restarts from the latest checkpoint in case of failures or
unexpected events. For brevity, we use the following notations:
Immediate−Rollback refers to the immediate mini-batch roll-
back, Lossy−Forward refers to the lossy forward recovery, and
Checkpoint−Restart refers to the baseline strategy.

Our goal is to study the trade-off between accuracy loss
and performance overhead for all three strategies. Since it
is not feasible to simulate all possible points of failures or
unexpected events, we focus our study on a subset of repre-
sentative epochs and mini-batches that capture the behavior of
the training at different moments during the runtime. We to
these representative mini-batches as scenarios. As mentioned
in Section III-C, failures during the forward pass are trivial to
handle, because the model remains read-only. Therefore, we
study only on the back-propagation in each of these scenarios.

In terms of accuracy, recall that Checkpoint−Restart in-
volves a replay of all mini-batches since the beginning of
the epoch starting from a consistent checkpoint, resulting in
the same accuracy as an equivalent failure-free run. On the
other hand, for Immediate−Rollback and Lossy−Forward, the
accuracy is not guaranteed to remain identical to the equivalent

failure-free run, which is why we measure its deviation from
the failure-free run.

In terms of performance, Checkpoint−Restart incurs three
overheads: (1) replay overhead, which measures the time
necessary to roll back to the last checkpoint and replay all lost
mini-batches until the moment of failure or unexpected event;
(2) checkpointing overhead, which measures the increase in
runtime during failure-free execution due to periodic check-
pointing; (3) restart overhead, which measures the various
overheads involved in restarting the training (initializing the
model replicas, communicators, loading the model weights
and optimizer state, etc.). In the case of Immediate−Rollback,
we also have a restart overhead followed by a replay over-
head, but involves a single mini-batch. There is no periodic
checkpointing overhead. In the case of Lossy−Forward, if
the survivors continue without spawning more workers, no
additional overheads are present. Otherwise, Lossy−Forward
incurs a restart overhead as well, albeit only partially for the
new workers that join the survivors.

Only the replay overhead of Checkpoint−Restart depends
on the scenario. Therefore, we report all other overheads
separately. They can be added to the scenario-specific replay
overhead to obtain an end-to-end overhead.

Note that DL training is by nature a stochastic process,
because it relies on random sampling. Thus, to guarantee
a fair comparison between the three strategies, we force it
to become a deterministic process by using pseudo-random
number generators with fixed seeds. Specifically, we fix the
seeds of three different generators that are used both directly
and indirectly at various levels: TensorFlow, NumPy, and
Python’s standard library. Using this approach, we guarantee
the selection of the same training samples for each mini-batch,
which results in identical gradients and therefore identical
weight updates across different runs.

D. Scenarios

Our first set of experiments focuses on the selection of the
scenarios for both ResNet−50 and CANDLE−NT3. To this end,
we run both applications failure-free on eight GPUs (single
ThetaGPU node) until the DNN models converge. We record
the loss and accuracy after each mini-batch and depict the
results in Figure 2a and Figure 2b respectively.

As expected, the accuracy increases faster in the beginning
and gradually flattens with an increasing number of epochs.
In the case of ResNet−50, we can observe four distinct
phases: a sharp increase in the accuracy for the first 8 epochs,
followed by a gradual decline starting from epoch 8, 20,
30. Therefore, we pick four representative scenarios: mini-
batch 200 (representing the beginning of the training during
epoch 0), mini-batch 4000 (representing the second phase
during epoch 10), mini-batch 10000 (representing the third
phase during epoch 25) and mini-batch 25000 (representing
the fourth phase during epoch 64). Similarly, in the case of
CANDLE−NT3 we observe three phases: a sharp increase in
accuracy for the first two epochs, a gradual increase until
epoch 5, and then convergence after epoch 5. Therefore we

TABLE I: Model properties and overheads for both ResNet−50
and CANDLE−NT3 (replicated on 8 GPUs for data-parallel
training)

Property ResNet-50 CANDLE-NT3
Model size 600 MiB 91 MiB

Layers 10 50
Mini-batch size 32 20

Mini-batches/epoch 390 55
No epochs 90 10

Avg. mini-batch duration 0.17 s 2.2 s
Init overhead 3.0 s 1.9 s

Checkpoint overhead 0.48 s 3.4 s
Restart overhead 4.09 s 2.5 s

pick three representative scenarios: mini-batch 10 (represent-
ing the beginning of the training during epoch 0), mini-batch
250 (representing the second phase during epoch 4), mini-
batch 500 (representing the third phase during epoch 8).

Next, we summarize the properties and scenario-
independent overheads of the DNN models in Table I.
As can be observed, the two models exhibit differences
in the corresponding overheads: initialization and restart
overhead is larger for ResNet−50, while checkpointing
overhead and average mini-batch duration is significantly
larger for CANDLE−NT3. This can be explained by the fact
that ResNet−50 has a larger number of layers, which results
in the need to construct a more complex execution graph.
On the other hand, the CANDLE−NT3 model has a larger
size, which results in a longer serialization and longer I/O
operations (that make up the majority of the checkpointing
overhead).

Note that the duration of each mini-batch is close to the
average. Therefore, we did not explicitly depict the evolution
of the runtime for an increasing number of epochs. This can
be easily deducted using Table I.

E. Checkpoint-Restart

The checkpointing and restart overheads mentioned in Sec-
tion IV-E were measured using the default model loading/sav-
ing primitives available in Tensorflow. While they can be
further reduced using state-of-art checkpointing approaches
(see Section II), even in the ideal case when checkpointing
and restart overheads are negligible, Checkpoint−Restart will
incur a significant replay overhead. Thus, we focus our study
on this aspect.

We assume a typical setup in which the DNN model is
checkpointed at the end of each epoch. In this case, Figure 2c
depicts the replay overhead caused by restarting from the
latest checkpoint, which was taken at the beginning of the
previous epoch. For comparison, the total epoch duration is
also included.

As expected, the result depends on how many mini-batches
were processed since the beginning of the epoch. In fact, given
that the duration of the mini-batches is close to the average, the
replay overhead is easy to predict by multiplying the number
of mini-batches since the beginning of the epoch with the
average mini-batch duration taken from Table I. Figure 2c
confirms this prediction.

0 20 40 60 80
Epoch

1

2

3

4

5

6

7
Lo
ss Loss

Accuracy

0.0

0.2

0.4

0.6

0.8

Ac
cu
ra
cy

(a) ResNet-50: Accuracy (higher is better)
and loss (lower is better) for an increasing
number of epochs.

0 2 4 6 8 10
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss Loss

Accuracy

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy

(b) CANDLE-NT3: Accuracy (higher is bet-
ter) and loss (lower is better) for an increasing
number of epochs.

ResNet-50 CANDLE-NT3
Application

0

20

40

60

80

100

120

Re
pl
ay

 o
ve

rh
ea

d
(
)

Epoch duration
Scenario 1
Scenario 2
Scenario 3
Scenario 4

(c) Replay overhead caused by restarting
from checkpoints taken at epoch boundary
relative to epoch duration.

Fig. 2: Evolution of failure-free data-parallel training of ResNet-50 and CANDLE-NT3 on eight GPUs vs. replay overhead
caused by Checkpoint−Restart.

In general, each failure will cause on the average a replay
overhead that equals to half of the epoch duration. While this
may not seem significant for the considered examples (for
which the loss of progress is in the order of minutes), it is
also important to remember that DNN training can scale to
a much larger number of GPUs and may consume massive
amounts of input data, which means each epoch consists of a
much larger number of mini-batches, each of which will take
longer to complete. Therefore, the average loss of progress
is expected to be greatly amplified at scale even for a single
failure or unexpected event. At the same time, the frequency
of failures is constantly increasing, while the frequency of
unexpected events can be significantly higher than the mean
time between failures due to elastic scheduling, as mentioned
in Section I. Thus, an already amplified loss of progress is
expected to happen more frequently, leading to much high
performance overheads.

Furthermore, the additional overheads mentioned in Sec-
tion IV-C need further consideration. In particular, the ini-
tialization and restart overhead is triggered for each failure/e-
lasticity event, while the checkpointing overhead is triggered
for each epoch. When accounting for all these factors, it
becomes evident that a traditional checkpoint-restart strategy
can quickly become a performance bottleneck, which is a high
price to pay for reproducing the same result as a failure-free
execution.

F. Resilience Strategies

Our next experiments evaluate the Immediate−Rollback and
the Lazy−Forward strategies. To simulate failure, first we
capture a point of reference (denoted Before) by checkpointing
the DNN model right before the beginning of the represen-
tative epoch and mini-batch corresponding to each scenario.
Next, we start from the same Before state for both proposed
strategies in all scenarios and proceed with the forward pass of
the mini-batch, which is allowed to run to completion. During
the back-propagation, we simulate failures at three different
rates of progress, i.e., after 25%, 50% and 75% of the gradients
were computed and applied to update the weights. After each

strategy finished processing the mini-batch, we measure the
final accuracy and the performance overheads (averaged across
all workers). In the case of Lazy−Forward, we vary the number
of survivors as well, starting from two up to six (out of the
total of eight workers). For simplicity, we assume the case
when the survivors continue without using spares to replace
the casualties. In this case, Lazy−Forward has no performance
overhead.

First, we focus on the accuracy results for the ResNet−50
application, which are depicted in Figure 3a. As can be
observed, the impact of each mini-batch on the accuracy is
significant, because there is a substantial difference (ranging
between 2.6% - 8.5%) between the Before state and the state
after a failure-free mini-batch processing (denoted Baseline).
As expected, this difference is the largest in the beginning of
the training.

In the case of Immediate−Rollback, replaying the mini-batch
from an inconsistent checkpoint deviates from the accuracy
of Baseline by up to 5.5%, which is within the same limits
as the difference between Before and Baseline. However, in
this case, the difference is growing as the training progresses,
which is the opposite of the trend observed for Before. Also
interesting to observe is that the rate of progress has limited
impact on the accuracy. Specifically, for Scenario 3 (mini-
batch 10000, epoch 25), it does not matter at what point during
the back-propagation we encounter a failure. Furthermore,
for Scenario 2 (epoch 10, mini-batch 4000), an early failure
actually reduces the difference from Baseline. However, for
Scenario 4 (epoch 64, mini-batch 25000), the opposite is true.
There are two complementary factors involved that explain
this observation. On one hand, an early failure causes more
inconsistencies in the model state (because the error was prop-
agated to fewer layers during the back-propagation). However,
on the other hand, the replay of the mini-batch introduces a
bias that gets amplified when the failure happens later. Both
factors amplify the difference from Baseline.

In the case of Lossy−Forward, it is interesting to observe
that the difference from Baseline is much lower than in the

Before Baseline IR-F25% IR-F50% IR-F75% FR-F25%
(2 su v)

FR-F25%
(4 su v)

FR-F25%
(6 su v)

FR-F50%
(2 su v)

FR-F50%
(4 su v)

FR-F50%
(6 su v)

FR-F75%
(2 su v)

FR-F75%
(4 su v)

FR-F75%
(6 su v)

App oach

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ac

cu
 a

c%

8.
5%

6.
4%

2.
4%

4.
6%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

1.
7%

4.
9%

5.
5%

0.
0%

2.
6%

4.
9%

5.
5%

0.
0%

2.
6%

4.
9%

5.
1%

0.
0%

0.
6%

0.
0%

0.
5%

0.
0%

0.
6%

0.
3%

0.
0%

4.
3%

0.
0%

0.
3%

0.
2%

4.
3%

0.
6%

0.
0%

0.
5%

0.
0%

0.
0%

0.
3%

0.
0%

4.
3%

0.
0%

0.
0%

0.
0%

4.
3%

0.
6%

0.
0%

0.
5%

0.
0%

0.
0%

0.
0%

0.
0%

4.
3%

0.
0%

0.
0%

0.
0%

Batch 200 (Epoch 0) Batch 4000 (Epoch 10) Batch 10000 (Epoch 25) Batch 25000 (Epoch 64)

(a) ResNet−50: Accuracy after processing the mini-batch corresponding to the scenario (higher is better). The relative difference to the
baseline is indicated in percent on top of each bar.

Baseline IR-F25% IR-F50% IR-F75% FR-F25%
(2 su v)

FR-F25%
(4 su v)

FR-F25%
(6 su v)

FR-F50%
(2 su v)

FR-F50%
(4 su v)

FR-F50%
(6 su v)

FR-F75%
(2 su v)

FR-F75%
(4 su v)

FR-F75%
(6 su v)

App oach

0.0

0.1

0.2

0.3

0.4

0.5

Du
 a

tio
n

(s
)

1.
85

%
1.

87
%

1.
94

%
1.

97
%

1.
85

%
1.

91
%

1.
94

%
1.

97
%

1.
84

%
1.

90
%

1.
91

%
1.

95
%

1.
03

%
1.

02
%

1.
04

%
1.

06
%

1.
01

%
1.

01
%

1.
07

%
1.

10
%

1.
01

%
1.

05
%

1.
08

%
1.

11
%

1.
00

%
1.

02
%

1.
03

%
1.

05
%

0.
99

%
1.

01
%

1.
03

%
1.

05
%

1.
01

%
1.

03
%

1.
04

%
1.

07
%

0.
99

%
0.

99
%

1.
04

%
1.

07
%

0.
99

%
1.

00
%

1.
02

%
1.

04
%

0.
98

%
0.

99
%

1.
08

%
1.

11
%

Batch 200 (Epoch 0) Batch 4000 (Epoch 10) Batch 10000 (Epoch 25) Batch 25000 (Epoch 64)

(b) ResNet−50: Performance overhead after processing the mini-batch corresponding to the scenario (lower is better). The slowdown with
respect to the baseline (approach duration divided by baseline duration) is indicated on top of each bar.

Fig. 3: ResNet50: Accuracy vs. Performance Overhead for the Immediate−Rollback (denoted as IR) and Lossy−Forward strategies
(denoted FR) for data-parallel training on 8 GPUs. Before represents the state at the beginning of the mini-batch. Baseline
represents the state after the failure-free run on the mini-batch. The rate of progress during the back-propagation after which
a failure is simulated is denoted as F−XX%. In the case of Lossy−Forward, the number of survivors is mentioned explicitly.

case of Immediate−Rollback for all configurations. This is a
surprising finding, especially when the number of survivors is
small and the failures happen early, because only the survivors
are averaging the remaining gradients (thereby ignoring a large
number of gradients from the casualties, which effectively
gives them a large bias). Furthermore, we can observe another
interesting trend: both the rate of progress and the number
of survivors have a non-negligible impact on the accuracy
of Lossy−Forward. This is especially visible for the case of
four survivors, which consistently perform better than two
survivors and show a decreasing difference from Baseline for
an increasing progress rate (up to zero difference at 75%).

Next, we study the performance overheads for the
ResNet−50 application, which are depicted in Figure 3b. As
expected, in the case of Lossy−Forward, the performance
overhead is close to Baseline, because the survivors continue
the mini-batch undisturbed by the casualties. In fact, there is
a slight overhead, which can be traced back to the collective
operations used in our simulations to average the gradients,
during which the casualties still contribute with zero-filled
tensors. Nevertheless, this overhead is negligible compared

with the initialization overhead required to reconfigure the
Horovod communicators. Thus, a scenario that requires elastic
downsizing would benefit from keeping trivial workers that
keep sending zero-filled tensors at least until the completion
of the mini-batch. In the case of Immediate−Rollback, the
slowdown is almost 2x (but consistently lower than that),
which is expected given that the mini-batch needs to be
replayed.

Next, we focus on the accuracy results for the
CANDLE−NT3 application, which are depicted in Figure 4a.
The results generally follow a similar trend compared with the
ResNet−50 application, but with several interesting differences
we discuss below. First, the Immediate−Rollback strategy ex-
hibits a larger difference in accuracy compared with Baseline
in the beginning of the training (epoch 0, mini-batch 10) than
for the later scenarios. This is a reversal from ResNet−50 and
can be explained by the fact that CANDLE−NT3 sees a sharp
increase in the accuracy in the beginning, therefore biases
introduced by replaying the mini-batch are amplified. Second,
in the case of Lossy−Forward, there is no bias introduced by
the survivors in the beginning of the training. On the other

Before Baseline IR-F25% IR-F50% IR-F75% FR-F25%
(2 su v)

FR-F25%
(4 su v)

FR-F25%
(6 su v)

FR-F50%
(2 su v)

FR-F50%
(4 su v)

FR-F50%
(6 su v)

FR-F75%
(2 su v)

FR-F75%
(4 su v)

FR-F75%
(6 su v)

App oach

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ac

cu
 a

c%

3.
4%

0.
4% 0.
9%

0.
0%

0.
0% 0.
0%

2.
1%

2.
3%

0.
3%

2.
1%

1.
6% 0.
4%

2.
1%

0.
9% 0.
3%

0.
0%

0.
3% 0.
3%

0.
0%

0.
3% 0.
7%

0.
0%

0.
6% 0.
6%

0.
0%

0.
0% 0.
4%

0.
6%

0.
3% 0.
6%

0.
6%

0.
9% 0.
4%

0.
0%

0.
4% 0.
0%

0.
0%

1.
9%

0.
0%

0.
0%

0.
3% 0.
4%

Batch 10 (Epoch 0) Batch 250 (Epoch 4) Batch 500 (Epoch 8)

(a) CANDLE−NT3: Accuracy after processing the mini-batch corresponding to the scenario (higher is better). The relative difference to the
baseline is indicated in percent on top of each bar.

Baseline IR-F25% IR-F50% IR-F75% FR-F25%
(2 su v)

FR-F25%
(4 su v)

FR-F25%
(6 su v)

FR-F50%
(2 su v)

FR-F50%
(4 su v)

FR-F50%
(6 su v)

FR-F75%
(2 su v)

FR-F75%
(4 su v)

FR-F75%
(6 su v)

App oach

0

1

2

3

4

5

6

7

Du
 a

tio
n

(s
)

2.
01

%
1.

97
%

1.
96

%

1.
98

%
1.

99
%

1.
95

%

2.
00

%
1.

97
%

1.
97

%

1.
00

%
1.

00
%

0.
99

%

1.
00

%
0.

99
%

0.
99

%

0.
99

%
1.

00
%

0.
98

%

0.
99

%
1.

00
%

0.
99

%

1.
00

%
1.

00
%

1.
04

%

1.
07

%
0.

99
%

0.
99

%

0.
99

%
1.

00
%

0.
99

%

1.
00

%
0.

99
%

0.
99

%

1.
00

%
1.

00
%

0.
98

%

Batch 10 (Epoch 0) Batch 250 (Epoch 4) Batch 500 (Epoch 8)

(b) CANDLE−NT3: Performance overhead after processing the mini-batch corresponding to the scenario (lower is better). The slowdown
with respect to the baseline (approach duration divided by baseline duration) is indicated on top of each bar.

Fig. 4: CANDLE−NT3: Accuracy vs. Performance Overhead for the Immediate−Rollback (denoted as IR) and Lossy−Forward
strategies (denoted FR) for data-parallel training on 8 GPUs. Before represents the state at the beginning of the mini-batch.
Baseline represents the state after the failure-free run on the mini-batch. The rate of progress during the back-propagation
after which a failure is simulated is denoted as F−XX%. In the case of Lossy−Forward, the number of survivors is mentioned
explicitly.

hand, for Scenario 2 (epoch 4, mini-batch 250) and Scenario
3 (epoch 8, mini-batch 500), the increasing rate of progress
and number of survivors does not lower the difference to
Baseline, as was the case for ResNet−50. Nevertheless, it
can be generally observed that the relative difference from
Baseline is lower than in the case of ResNet−50 for all
approaches.

Finally, the performance overheads for CANDLE−NT3
are depicted in Figure 4b. As can be observed,
Immediate−Rollback is 2x slower than Baseline, while
Lossy−Forward is very close to Baseline. Since the mini-batch
duration is much higher than in the case of ResNet−50, the
performance variations play a much smaller role in this case,
which explains why the results almost overlap with Baseline.

Overall, for both ResNet−50 and CANDLE−NT3, the
Lossy−Forward and Immediate−Rollback strategies incur at
least two orders of magnitude less performance overhead
than Checkpoint−Restart, even when considering only the
loss of progress (on top of which the other fixed overheads
need to be added). Given the small difference in accuracy

compared with Baseline, we can conclude they are viable
alternatives to Checkpoint−Restart in practice, effectively en-
abling a data-parallel DNN training to recover from failures
and unexpected events with negligible overhead. Furthermore,
if Lossy−Forward is applicable (which depends on the avail-
ability of the survivors to finish the mini-batch), then it is the
preferred choice over Immediate−Rollback, as it leads to both
less accuracy loss and less performance overhead compared
with Baseline.

V. CONCLUSIONS

In this paper, we focus on the problem of making the data-
parallel training of deep learning models resilient to failures
and/or unexpected events that lead to the partial loss of the
workers participating in the training (e.g., job pre-emption,
downsizing due to elasticity requirements, etc.). In this context,
the main challenge is to minimize the performance overhead
of recovering the state of the model and continue the training,
while at the same time minimizing the loss of accuracy com-
pared with a failure-free run. State-of-art checkpoint-restart

techniques typically adopted in the HPC community can be
used to obtain identical results with a failure-free execution (by
making stochastic operations deterministic through the use of
pseudo-random number generators with fixed seeds). However,
they suffer from high performance overheads due to loss of
progress, since DNN models are typically checkpointed at the
end of each epoch or less frequently.

To address this problem, we introduce two contributions.
First, we propose two resilience strategies: (1) capture a
potentially inconsistent state after a failure or unexpected event
happened and replay the mini-batch; (2) continue the training
by averaging the gradients among the survivors using pipeline
parallelism. Second, we design and implement a simulation
framework that allows fine-grain control and reproducibility
over when and under what circumstances to inject failures
during the back-propagation. Using the simulation framework,
we study the trade-off between performance overhead and
accuracy impact in extensive experiments that involve two
AI applications in a variety of scenarios, each of which
involves different progress rates during the back-propagation
and number of survivors (in the case of the second strategy).
The results show that both strategies are viable alternatives to
checkpoint-restart: they have a minimal impact on accuracy,
while reducing the performance overhead several orders of
magnitude thanks to avoiding replay overhead (up to 400x).

Encouraged by these results, we plan to explore several
follow-up research directions. First, given the high robustness
of the DNN models, one idea is to apply more aggressive
recovery strategies, such as simply skipping to the next mini-
batch instead of replaying the failed mini-batch. Second, we
plan to investigate the bias introduced by immediate rollback
and the potential impact of outliers left out during gradient av-
eraging. Third, we plan to implement our strategies (especially
lossy forward recovery) in a resilient runtime by leveraging
other efforts such as fault-tolerant MPI [22].

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy (DOE), Office of Science, Office of
Advanced Scientific Computing Research, under Contracts
DE-AC02-06CH11357 and DE-AC02-05CH11231, program
manager Margaret Lentz.

REFERENCES

[1] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,
J. Smith, B. Vaughan, P. Damania, and S. Chintala, “Pytorch distributed:
Experiences on accelerating data parallel training,” Proc. VLDB Endow.,
vol. 13, no. 12, pp. 3005–3018, 2020.

[2] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large scale
systems: Long-term measurement, analysis, and implications,” in SC’17:
The 2017 International Conference for High Performance Computing,
Networking, Storage and Analysis, Denver, USA, 2017, pp. 44:1–44:12.

[3] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of large-scale multi-tenant GPU clusters for DNN
training workloads,” in USENIX ATC ’19: The 2019 USENIX Annual
Technical Conference, Renton, WA, 2019, pp. 947–960.

[4] A. Maurya, B. Nicolae, I. Guliani, and M. M. Rafique, “CoSim: A
Simulator for Co-Scheduling of Batch and On-Demand Jobs in HPC
Datacenters,” in DS-RT’20: The 24th IEEE/ACM International Sympo-
sium on Distributed Simulation and Real Time Applications, Prague,
Czech Republic, 2020, pp. 167–174.

[5] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in SC ’10: The 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, New
Orleans, USA, 2010, pp. 1:1–1:11.

[6] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: High performance fault
tolerance interface for hybrid systems,” in SC ’11: The 2011
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, Seattle, USA, 2011, pp. 32:1–32:32.

[7] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello,
“Veloc: Towards high performance adaptive asynchronous checkpointing
at large scale,” in IPDPS’19: The 2019 IEEE International Parallel and
Distributed Processing Symposium, Rio de Janeiro, Brazil, 2019, pp.
911–920.

[8] S.-M. Tseng, B. Nicolae, G. Bosilca, E. Jeannot, and F. Cappello, “To-
wards portable online prediction of network utilization using MPI-level
monitoring,” in EuroPar’19 : 25th International European Conference
on Parallel and Distributed Systems, Goettingen, Germany, 2019, pp.
1–14.

[9] B. Nicolae, “Towards Scalable Checkpoint Restart: A Collective Inline
Memory Contents Deduplication Proposal,” in IPDPS ’13: The 27th
IEEE International Parallel and Distributed Processing Symposium,
Boston, USA, 2013, pp. 19–28.

[10] ——, “Leveraging naturally distributed data redundancy to reduce
collective I/O replication overhead,” in IPDPS ’15: 29th IEEE Inter-
national Parallel and Distributed Processing Symposium, Hyderabad,
India, 2015, pp. 1023–1032.

[11] B. Nicolae, J. Li, J. Wozniak, G. Bosilca, M. Dorier, and F. Cappello,
“Deepfreeze: Towards scalable asynchronous checkpointing of deep
learning models,” in CGrid’20: 20th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Internet Computing, Melbourne, Australia,
2020, pp. 172–181.

[12] B. Nicolae, J. M. Wozniak, M. Dorier, and F. Cappello, “DeepClone:
Lightweight State Replication of Deep Learning Models for Data Paral-
lel Training,” in CLUSTER’20: The 2020 IEEE International Conference
on Cluster Computing, Kobe, Japan, 2020.

[13] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent,
fine-grained DNN checkpointing,” in FAST’21: 19th USENIX Confer-
ence on File and Storage Technologies, 2021, pp. 203–216.

[14] K. Zhao, S. Di, S. Li, X. Liang, Y. Zhai, J. Chen, K. Ouyang,
F. Cappello, and Z. Chen, “Ft-cnn: Algorithm-based fault tolerance
for convolutional neural networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 7, pp. 1677–1689, 2021.

[15] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (dnn) accelerators and applications,” in SC ’17: The 2017
International Conference for High Performance Computing, Networking,
Storage and Analysis, Denver, Colorado, 2017, pp. 8:1–8:12.

[16] K. Givaki, B. Salami, R. Hojabr, S. M. Reza Tayaranian, A. Khonsari,
D. Rahmati, S. Gorgin, A. Cristal, and O. S. Unsal, “On the resilience
of deep learning for reduced-voltage fpgas,” in PDP’20: The 28th Eu-
romicro International Conference on Parallel, Distributed and Network-
Based Processing, 2020, pp. 110–117.

[17] S. Li, T. Ben-Nun, S. D. Girolamo, D. Alistarh, and T. Hoefler, “Taming
unbalanced training workloads in deep learning with partial collective
operations,” in PPoPP’20: The 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, San Diego, USA,
2020, p. 45–61.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR’16: 2016 IEEE Conference on Computer Vision
and Pattern Recognition, Las Vegas, USA, 2016, pp. 770–778.

[19] J. Deng, W. Dong, R. Socher et al., “ImageNet: A large-scale hierarchi-
cal image database,” in CVPR’09: Conference on Computer Vision and
Pattern Recognition, Miami, USA, 2009, pp. 248–255.

[20] J. Wozniak, R. Jain, P. Balaprakash et al., “CANDLE/Supervisor: A
workflow framework for machine learning applied to cancer research,”
BMC Bioinformatics, no. 19, 2018.

[21] “CANDLE Benchmarks,” Available online: https://github.com/ECP-
CANDLE/Benchmarks.

[22] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra, “Post-
failure recovery of mpi communication capability: Design and rationale,”
Int. J. High Perform. Comput. Appl., vol. 27, no. 3, p. 244–254, aug
2013.

