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a b s t r a c t

This paper deals with an optimization problem, which arises when a new simple
assembly line has to be designed subject to a fixed number of available workstations,
cycle time constraint, and precedence relations between necessary assembly tasks. The
studied problem consists in assigning a given set of tasks to workstations so as to find
the most robust line configuration, which can withstand processing time uncertainty as
much as possible. The line robustness is measured by a new indicator, called stability
factor. In this work, the studied problem is proven to be strongly NP-hard, upper
bounds are proposed, and the relation of the stability factor with another robustness
indicator, known as stability radius, is investigated. A mixed-integer linear program
(MILP) is proposed for maximizing the stability factor in the general case, and an
alternative formulation is also derived when uncertainty originates in workstations only.
Computational results are reported on a collection of instances derived from classic
benchmark data used in the literature for the Simple Assembly Line Balancing Problem
(SALBP).

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

A robust balancing of simple assembly lines with a fixed number of workstations is considered. As for the classic SALBP
roblem [see, e.g., 2,22], the restrictions such as precedence and cycle time constraints are taken into account. The cycle

time constraint is enforced by the use of a conveyor belt, that moves all the products synchronously along the line. As
a result, the considered production system is a paced assembly line [see, e.g., 16], and is free of buffer limitation issues
y construction. In this work, the goal is not only to obtain an admissible assignment of a given set of assembly tasks to
orkstations, but also to focus on the best way to maintain its feasibility despite the presence of tasks, called uncertain,
hose processing time can vary.
Classic formulation of SALBP captures basic features only and does not always reflect particular real-world situations

n manufacturing, which often need to tackle the task processing time uncertainty. Indeed, as mentioned in [2], task
rocessing times are not exactly known at the preliminary design stage of the line and only their nominal (or estimated)
alues are available. This may be caused by the following practical factors:
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• for manual assembly lines, the performance of operators implementing tasks, depends on their work rate, skill level,
fatigue and motivation;

• product specifications as well as workstation characteristics may be changed during the line life cycle. Such changes
may be motivated by a customer demand or updating the market of materials;

• various delays and micro-stoppages when tasks are executed.

Any of these events may occur in any moment of the line exploitation implying a costly line interruption, if the cycle
ime is exceeded. As a consequence, to construct a robust line configuration for a long term usage, the task processing
ime uncertainty should be anticipated at the line balancing stage.

The choice of an appropriate approach for handling the processing time of tasks strongly depends on the available
nformation related to uncertainty. Thus, among the ways widely-used in the literature, we can distinguish the following
nes: stochastic or fuzzy. For the stochastic approach, task processing times are represented as independent random
ariables with known probability distributions [see, e.g., 1,3,17,18]. Concerning the fuzzy approach, the potential task pro-
essing time values are represented as a fuzzy set whose membership function describes their possibility distribution [see,
.g., 13,25,26].
However, it should be noted that the use of these two approaches in practice could be a difficult challenge. This is

ue to the fact that the available knowledge on the input data is not always sufficient to infer adequate probability or
ossibility distributions for all task processing times, especially if the design of the production system is planned for the
irst time. For example, in order to apply stochastic methods in this case, we should assume that the task processing time
ollows a particular probability distribution, but with unknown parameters. Then, based on scenario analysis, a discrete
vent simulation technique can be applied for uncertainty modeling [see, e.g.,14].
The use of the discrete or interval representation of uncertainty scenarios usually modifies the goal of the considered

roblem. Indeed, an optimal solution found for one scenario can loose its optimality and even its feasibility for another
ne. To get around this situation, a criterion named as Bertsimas and Sim robustness [4–6] can be applied. Widely used
n robust optimization, it aims to seek a solution remaining feasible for all scenarios and having the best performance
or the worst of them provided that at most Γ uncertain problem parameters can deviate from their nominal values. For
nstance, this criterion with interval task processing times was studied in [10,20] for the SALBP-1 problem, in [11] for the
ALBP-2 problem and in [12] for U-shaped assembly line balancing. In these four papers, to find the solution mentioned
bove, the authors developed exact methods such as branch-and-bound, branch-and-price and Benders decomposition. A
imilar approach, named min–max robustness, was applied in [7] for SALBP-2, but with a discrete set of scenarios. In the
atter work, the computational complexity of seeking the robust solution was presented for different types of precedence
onstraints.
The case where only a set of uncertain tasks (with variable processing times) can be identified without any additional

nformation is less informative, but probably the most frequent in practice. Because of the lack of information, the methods
sed for the approaches referred earlier are not applicable. To evaluate a solution in such a situation, Sotskov et al. [23,24],
tudying SALBP, have suggested a specific indicator, called as stability radius. Given a solution, it is calculated as the
aximal magnitude of deviations of the nominal processing time of uncertain tasks for which the solution feasibility (or
ptimality) is maintained. The authors show that this indicator can serve as an appropriate robustness measure. Indeed,
he greater its value for a solution studied, the greater the robustness of the line configuration engaged. This positive
utcome has inspired several works concerning stability aspects under balancing production lines [8,9,21]. The paper
f Rossi et al. [21] studies a new optimization problem, which seeks a line configuration with the greatest stability radius,
nstead of computing it for an already existing line configuration as before. The authors prove the NP-hardness of this
roblem and formulate two MILP models for each norm ℓ1 and ℓ∞ of computing the stability radius.
The relative weakness of the approach, studied in [21], consists in the fact that the considered stability radius can

e disproportional with respect to the nominal processing time of uncertain tasks, especially if there exists a large gap
etween their minimal and maximal values. In order to overcome this disadvantage, in this paper, we propose to study
new indicator of robustness, referred here to as stability factor. Compared to [21], this indicator is calculated as the
aximum rate of increment (and not as the greatest absolute increment) of the nominal processing time applied for any
ncertain task without compromising the admissibility of the corresponding line configuration. As a consequence, seeking
line configuration with the largest value of stability factor is the natural goal of the studied optimization problem in this
aper. This choice is motivated by the fact that the tasks processed by human workers may have a processing time that
aries significantly under a variety of factors, as shown in [15]. Their study also suggests that the task processing time
eviation is proportional to workload, which motivates the choice of focusing on the stability factor. Maximizing this
ndicator aims at preserving the assembly line throughput when inevitable variations of human worker performances
ccur.
The rest of the article is organized as follows. Basic definitions and properties are presented in Section 2. Section 3

s dedicated to developing a certain number of upper bounds on the optimal value of stability factor. Some relations
ith stability radius are provided in Section 4. Complexity aspects of the studied optimization problem, its variants
nd corresponding MILP formulations are discussed in Section 5. Computational results by a MIP solver with illustrative

xamples are provided and analyzed in Section 6. Final remarks and conclusions are given in Section 7.
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Table 1
Supplementary notations.

G is a directed acyclic graph (V , A) representing the precedence constraints between the
tasks, where A is the set of arcs;

tj is a non-negative nominal processing time of task j;

t is a vector expressing the nominal task processing times, i.e., (t1, t2, . . . , tn);

F (t) is the set of all feasible solutions with respect to a given vector t;

Ξ is the set of vectors, where each of which presents possible non-negative processing
time deviations for the uncertain tasks, i.e., {ξ ∈ Rn

+
| ξj = 0, j ∈ V \ Ṽ };

T is the cycle time;

Vk is the set of all tasks assigned to workstation k;

Ṽk is the set of all uncertain tasks assigned to workstation k, i.e., Vk ∩ Ṽ ;

W̃ is the set of workstations having at least one a priori or a posteriori uncertain task;

P(j) is the set of all predecessors of j in G;

S(j) is the set of all successors of j in G;

Q (j) is the interval of workstations that can process the task j ∈ V .

It can be computed as follows [see19]:[⌈
tj+

∑
i∈P(j) ti
T

⌉
,m + 1 −

⌈
tj+

∑
i∈S(j) ti
T

⌉]
.

2. Basic definitions and properties

Let V = {1, 2, . . . , n} be the set of necessary assembly tasks andW = {1, 2, . . . ,m} be the set of available workstations.
t is also supposed here that there exist two sets of uncertain tasks: a set Ṽ 1

⊆ V of a priori uncertain tasks whose
rocessing time may deviate from its nominal value with regard to time without any additional information and a set
2

⊆ V of a posteriori uncertain tasks whose uncertainty is caused by a set Ŵ ⊆ W of uncertain workstations. These
orkstations are such that any task allocated to them becomes uncertain (even if it belongs to V \ Ṽ 1). Hereinafter, the
et of all uncertain tasks is denoted as Ṽ = Ṽ 1

∪ Ṽ 2 and any workstation from W \ Ŵ is called certain. The presence
f certain and/or uncertain workstations can be explained by the existence of assembly lines having simultaneously two
ypes of workstations: workstations with automatic tasks executed by robots or machines and workplaces where tasks
re operated manually, respectively. Supplementary notations related to the studied problem are given in Table 1.

emark 1. Since any decrease of task processing time cannot compromise the solution feasibility, it is sufficient to
onsider only non-negative task processing time deviations in this work, i.e., for all j ∈ Ṽ we have ξj ∈ R+.

In order to measure the robustness of a feasible solution, we introduce the concept of stability factor by analogy with
he stability radius [see 23], which is also recalled below. Thus, the stability factor of a feasible solution s ∈ F (t) can be
efined as follows:

f (s, t) = max{ϵ ≥ 0 | ∀ξ ∈ H(ϵ, t) (s ∈ F (t + ξ ))},

here H(ϵ, t) = {ξ ∈ Ξ | ξj ≤ ϵ · tj, j ∈ Ṽ }. In other words, f (s, t) is defined as the proportionality factor defining
he greatest closed n-dimensional hyperrectangle H(·), called stability hyperrectangle, representing the deviations of the
ncertain task nominal processing times, for which s remains feasible.
Following [23], the stability radius is defined as follows:

ρ(s, t) = max{ϵ ≥ 0 | ∀ξ ∈ B(ϵ) (s ∈ F (t + ξ ))},

here B(ϵ) = {ξ ∈ Ξ | ∥ξ∥ ≤ ϵ}. By contrast, ρ(s, t) is defined as the value of the radius of the greatest closed ball
(·), called stability ball. Any element ξ of B(·) is evaluated based on a given norm ∥ · ∥. Two norms ℓ1 (∥ · ∥1) and ℓ∞

∥ · ∥∞) have been used for the stability radius in [21], where by definition ∥ξ∥1 =
∑

j∈Ṽ ξj and ∥ξ∥∞ = maxj∈Ṽ ξj. As a
onsequence, the notations ρ1(·) and ρ∞(·) denote the stability radius in the ℓ1 and ℓ∞ norm, respectively. Finally, it can
e observed that these robustness indicators can have an infinite value, typically when there are no uncertain tasks, and
ll certain tasks can be allocated to certain workstations only.
The following theorem presents a formula for computing the stability factor of any fixed line configuration in O(n) time.

he notation t (α)j is used to model a perturbed processing time with respect to a non-negative ratio α. Thus, t (α)j = (1+α)tj,
f j ∈ Ṽ and t (α) = t otherwise.
j j

3
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Theorem 1. The stability factor f for a given feasible solution is calculated as follows

f = min
k∈W̃

T −
∑

j∈Vk
tj∑

j∈Ṽk
tj

(1)

and f = +∞, if W̃ is empty.

Proof. Let us denote the right-hand side of (1) as ϕ. To prove the present theorem, it needs to show that f ≥ ϕ and
f ≤ ϕ.

First start with f ≥ ϕ. Let k be an uncertain workstation, exposed to stand the processing time perturbations, whose
ratio β does not exceed ϕ. It is not difficult to see that its perturbed load can be expressed as follows∑

j∈Vk

t (β)j =

∑
j∈Vk

tj + β ·

∑
j∈Ṽk

tj. (2)

Taking into account the fact that β ≤ ϕ and the inequality ϕ ≤
T−

∑
j∈Vk

tj∑
j∈Ṽk

tj
, which is valid for any k ∈ W̃ due to the

efinition of ϕ, we obtain

(2) ≤

∑
j∈Vk

tj +
T −

∑
j∈Vk

tj∑
j∈Ṽk

tj
·

∑
j∈Ṽk

tj = T .

The latter shows that the load of the workstation k does not exceed the cycle time, provided that the perturbation ratio
remains less than or equal to ϕ. This proves f ≥ ϕ.

Now let us prove that f ≤ ϕ. To do this, it is sufficient to check that any perturbation ratio β > ϕ causes the considered
feasible solution to be unfeasible.

As above, based on the definition of ϕ, we deduce that there exists an uncertain workstation k∗ so that ϕ =
T−

∑
j∈Vk∗

tj∑
j∈Ṽk∗

tj
.

hen, we can notice that the perturbed load (with respect to the ratio β) of the workstation k∗ violates the cycle time
onstraint, since∑

j∈V∗
k

t (β)j =

∑
j∈V∗

k

tj + β ·

∑
j∈Ṽ∗

k

tj >
∑
j∈V∗

k

tj +
T −

∑
j∈V∗

k
tj∑

j∈Ṽ∗
k
tj

·

∑
j∈Ṽ∗

k

tj = T

that proves f ≤ ϕ. □

Theorem 1 shows how to compute the stability factor of a given solution. In the case where a solution that maximizes
f is sought, we propose in the next section some upper bounds on the optimal value of stability factor.

3. Upper bounds on stability factor

The MILP formulation of the problem of maximizing the stability factor, introduced in Section 5, requires an upper
bound on the stability factor. Such an upper bound can be computed as min{UB1,UB2}, if

∑
j∈V\Ṽ1 tj ≥ |W\Ŵ | · T and

min{UB1,UB3} otherwise, where UB1, UB2 and UB3 are defined below.
The first upper bound on f is denoted by UB1 and is the minimum of the following three upper bounds denoted by

UBa
1, UB

b
1 and UBc

1, that can be computed only when Ṽ 1 is nonempty. If Ṽ 1 is empty, then UB1 is set to +∞ and none
of the aforementioned three upper bounds can be computed. Indeed, when Ṽ 1 is empty, deciding whether the stability
factor is finite or not is strongly NP-complete, because it is equivalent to decide if all the tasks can be processed by certain
workstations only, which is the decision problem of bin-packing. Assuming that Ṽ 1 is nonempty, we define UBa

1, UB
b
1 and

UBc
1 as follows. First, UBa

1 is defined as T−λa1
λa1

, where λa
1 = maxj∈Ṽ1 tj. This upper bound is set by the longest uncertain task,

whose processing time increase is limited by the cycle time. A second upper bound on f , denoted by UBb
1, can be derived

from the fact that total amount of work that the workstations can carry out is upper-bounded by m ·T . This can be written
s (1+ f ) ·

∑
j∈Ṽ1 tj +

∑
j∈V\Ṽ1 tj ≤ m · T . Hence f is upper-bounded by UBb

1 =

(
m · T −

∑
j∈V\Ṽ1 tj

)
/
(∑

j∈Ṽ1 tj
)
−1. A third

pper bound on f , denoted by UBc
1, is based on the pigeonhole principle. It states that there exists at least one workstation

hat processes at least γ1 =

⌈
|̃V1

|

m

⌉
uncertain tasks. Let π be a permutation of the set Ṽ 1 such that tπ1 ≤ · · · ≤ tπ

|̃V1 |
. It

an then be deduced that the total processing time due to uncertain tasks in this workstation is at least λc
1 =

∑γ1
q=1 tπq .

ence, UBc
1 =

T−λc1
λc1

is an upper bound on f and finally UB1 is defined as UB1 = min{UBa
1,UB

b
1,UB

c
1}.

If
∑

j∈V\Ṽ1 tj ≥ |W\Ŵ | ·T , then certain workstations alone cannot process all certain tasks, which means that uncertain
workstations have to process at least one certain task. Hence in that case, the minimum value of the maximum load over all
the uncertain workstations is λ =

(∑
t − |W\Ŵ | · T

)
/ |Ŵ |. As a result, UB =

T−λ2 is an upper bound of f . Otherwise,
2 j∈V j 2 λ2

4
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Fig. 1. The solution S1 , for which f (S1) = 1 and ρ∞(S1) = 1.

f
∑

j∈V\Ṽ1 tj < |W\Ŵ | · T , then an upper bound on f can be derived by observing that at most
⌊∑

j∈V\Ṽ1 tj/T
⌋

certain

orkstations have a load equal to T due to certain tasks only, which leaves at least m −

⌊∑
j∈V\Ṽ1 tj/T

⌋
workstations

o process uncertain tasks, and by the pigeonhole principle, there exists a workstation that processes at least γ3 =

|̃V 1
| /

(
m −

⌊∑
j∈V\Ṽ1 tj/T

⌋)⌉
≥ γ1 uncertain tasks. As a result, there exists a workstation that processes at least γ3

ncertain tasks whose total load is at least λ3 =
∑γ3

q=1 tπq . Hence, UB3 =
T−λ3

λ3
is an upper bound on f .

The upper bound described above can be computed in O(n log n) time because UBc
1 requires to sort the uncertain tasks

by increasing processing time. It is implicitly defined on the full range of workstations, i.e., [1,m] as it always takes all
the tasks and workstations into account. We extend this upper bound by computing it for all the workstation ranges of
the form [m1,m2] where 1 ≤ m1 ≤ m2 ≤ m, and m1 is the lower bound of the allocation interval of some task, m2 is
the upper bound of the allocation interval of some task (possibly the same task as for m1), and where we consider all the
tasks j ∈ V such that Q (j) ⊆ [m1,m2]. If none of these tasks is uncertain and [m1,m2]∩Ŵ is empty, then no upper bound
on f can be derived from this particular range of workstations. This extension leads to compute the upper bound of the
previous paragraph at most n × n times (because m1 and m2 cannot take more than n different values) and returning
the lowest one, leading to an overall complexity of O(n3 log n) for this extended upper bound on the stability factor. The
computation of UBc

1 requires to sort the uncertain tasks by increasing processing time, which can be achieved in O(n log n)
time. However, all the uncertain tasks can be sorted once, and the subsequent computations of UBc

1 do not require any
additional sorting. As a result, the upper bound on the stability factor can be computed in O(n3).

4. Relations with other indicators

In the sequel of this section, the relations between the problems of maximizing the stability radii in the ℓ1 and ℓ∞

orms, introduced in [21], and the problem of maximizing the stability factor are explored. It is first shown that in general
he stability factor is not equivalent to the two aforementioned stability radii. The following two examples show that the
roblem of maximizing the stability factor f is neither equivalent to maximizing the stability radius in ℓ∞-norm, nor in
he ℓ1-norm. This justifies the need to introduce a specific problem formulation in Section 5. It is also shown that when all
he tasks are uncertain (or equivalently when all the workstations are uncertain), the problem of maximizing the stability
adius in the ℓ1-norm and the problem of maximizing the stability factor are equivalent.

.1. Maximizing f is not equivalent to maximizing ρ∞

Consider a problem instance consisting of n = |̃V 1
| = 5 tasks (all of them are uncertain) with nominal processing

imes t = (1, 1, 1, 1, 4) to be processed on m = 2 certain workstations (Ŵ is empty, so is Ṽ 2, and W̃ = W = {1, 2} since
= Ṽ = {1, . . . , 5}) with a cycle time equal to T = 8 units of time and no precedence constraints. In order to show that
aximizing f is not equivalent to maximizing ρ∞, we build S1, an optimal solution for f , and S2, an optimal solution for

∞. Then, S1 (resp. S2) is shown to be non-optimal for ρ∞ (resp. for f ).

• The solution S1, shown in Fig. 1, and defined by allocating tasks 1 to 4 to workstation 1 and task 5 to workstation 2 is
optimal for f , as it reaches the upper bound UBa

1 introduced in Section 3. The stability factor of S1 is denoted by f (S1)
and is equal to 1, as all the tasks can have their processing time multiplied by two without compromising solution
feasibility. The stability radius in the ℓ∞-norm of S1, denoted by ρ∞(S1) is 1, as one can increase the processing time
of all the tasks simultaneously by 1 unit of time without compromising feasibility.

• The solution S2, shown in Fig. 2, and defined by allocating tasks 1 to 3 to workstation 1 and tasks 4 and 5 to
workstation 2 is optimal for ρ∞, as can be checked by inspection: it is equal to 1.5. The corresponding value of
the stability factor is f (S2) = 0.6 as the processing time of tasks 4 and 5 can be multiplied by 1.6 without violating
the cycle time.
5
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Fig. 2. The solution S2 , for which f (S2) = 0.6 and ρ∞(S2) = 1.5.

.2. Maximizing f is not equivalent to maximizing ρ1

The same problem instance is used but with Ṽ 1
= {1, . . . , 4}, which means that now, task 5 is certain. Upon this

etting, the solution S1 defined above is optimal for ρ1, whose value is 4. As previously, the stability factor of S1 is 1. The
olution S2 has the stability radius in the ℓ1-norm equal to 3 because the second workstation has a load equal to 5 and
rocesses an uncertain task. However, S2 maximizes the stability factor which is f (S2) =

5
3 ≈ 1.667, as the processing

time of tasks 1 to 3 can be multiplied by 8
3 while maintaining feasibility (the same holds for task 4 on workstation 2).

4.3. Maximizing f is equivalent to maximizing ρ1 when all the tasks are uncertain

When Ṽ = V or W̃ = W , all the tasks are uncertain, and for any solution S , the load of the workstation k ∈ W is defined
y Lk(S) =

∑
j∈Vk(S) tj, where Vk(S) is the set of tasks that are allocated to workstation k in solution S. Using this notation

nd Theorem 1 in [21], the stability radius in the ℓ1-norm of S can be written as ρ1(S) = min
k∈W

(T − Lk(S)) = T −max
k∈W

Lk(S).

y Theorem 1 (see Section 2), f (S) = min
k∈W

(
T

Lk(S)
− 1

)
=

T
max
k∈W

Lk(S)
− 1.

First, let us show by contradiction that if a solution maximizes the stability radius in the ℓ1-norm, then it also
aximizes the stability factor. Let S1 be such that ρ1(S1) is maximum, and assume that there exists S2 such that f (S1) <

(S2). This implies that f (S1) = min
p∈W

(
T

Lp(S1)
− 1

)
< min

k∈W

(
T

Lk(S2)
− 1

)
= f (S2). So

T
max
p∈W

Lp(S1)
− 1 <

T
Lk(S2)

− 1 for all

k ∈ W , hence T−max
p∈W

Lp(S1) < T−Lk(S2) for all k ∈ W , which leads to ρ1(S1) = T−max
p∈W

Lp(S1) < min
k∈W

(T−Lk(S2)) = ρ1(S2).

his is a contradiction, since ρ1(S1) was supposed to be maximum.
Second, let us show by contradiction that if a solution maximizes the stability factor, then it also maximizes the stability

adius in the ℓ1-norm. Let S2 be such that f (S2) is maximum, and assume that there exists S1 such that ρ1(S2) < ρ1(S1).

his implies that T − max
p∈W

Lp(S2) < T − Lk(S1) for all k ∈ W , hence
T

max
p∈W

Lp(S2)
<

T
Lk(S1)

for all k ∈ W , which leads to

(S2) =
T

max
p∈W

Lp(S2)
− 1 < min

k∈W

(
T

Lk(S1)
− 1

)
= f (S1). This is a contradiction, since f (S2) was supposed to be maximum.

This shows that maximizing the stability factor is equivalent to maximizing the stability radius in the ℓ1-norm when
all the tasks are uncertain. In the latter problem, the maximum load over all the workstations is T − ρ1 when the tasks
have their nominal processing times, so these two equivalent problems are also equivalent to SALBP-2.

4.4. Connection between f and ρ∞

It is assumed that Ṽ 1 is nonempty. Let j− ∈ Ṽ 1 (resp. j+) be an uncertain task such that tj− = minj∈Ṽ1 tj (resp.
j+ = maxj∈Ṽ1 tj), i.e., j− (resp. j+) is an uncertain task of minimum (resp. maximum) processing time.

Whereas the problem of maximizing the stability factor and the stability radius in the ℓ∞-norm have been shown
o be non-equivalent, the following two properties show that when a feasible solution is available for one of these two
roblems, it provides a lower bound on the objective value of the other problem.

roperty 1. If the stability factor of a given feasible solution S is f (S), then its stability radius in the ℓ∞-norm is at least
j− · f (S).

To justify Property 1, it suffices to check that increasing the nominal processing time tj by tj− · f (S) for all j ∈ Ṽ 1 yields
his processing time less than or equal to (1+ f (S)) · tj. Consequently, the stability radius value in the ℓ∞-norm of S is at
east tj− · f (S).

roperty 2 (Corollary of Property 1). If the stability radius in the ℓ∞-norm of a given feasible solution S is ρ∞(S), then its
tability factor is at least ρ∞(S)

tj+
.

The proof of Property 2 is obtained by the same argument as in the proof of Property 1.
6
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5. Problem formulations

In this section, we formulate two mixed integer linear programs for building a line configuration that maximizes the
tability. The following decision variables are used: f is the stability factor to maximize, xjk is a binary variable that is set
o one if and only if the task j is allocated to the workstation k, and αjk is the increment rate of the nominal processing
ime of the task j on the workstation k.

The main idea of the first MILP formulation, referred to as Model-1, is that the nominal processing time of all uncertain
asks can be multiplied by 1 + f while maintaining feasibility.

Maximize f∑
k∈W

xjk = 1, ∀j ∈ V (3)

αjk ≤ UB · xjk, ∀j ∈ V , ∀k ∈ W (4)

f =

∑
k∈W

αjk, ∀j ∈ V (5)∑
j∈V

tjxjk +

∑
j∈V

tjαjk ≤ T , ∀k ∈ Ŵ (6)∑
j∈V

tjxjk +

∑
j∈Ṽ1

tjαjk ≤ T , ∀k ∈ W \ Ŵ (7)

m∑
q=k

xiq ≤

m∑
q=k

xjq, ∀(i, j) ∈ A, ∀k ∈ W \ {1} (8)

xjk = 0, ∀j ∈ V , ∀k /∈ Q (j) (9)
f ≥ 0,
αjk ≥ 0, ∀j ∈ V , ∀k ∈ W
xjk ∈ {0, 1}, ∀j ∈ V , ∀k ∈ W

Constraints (3) imply that any task has to be assigned to exactly one workstation. Constraints (4) together with (3)
nsure that only for one k ∈ W , αjk is non-zero for any fixed j ∈ V and state that the increment rate of any uncertain task

is upper-bounded by the constant UB. The numerical value of UB is discussed in the next paragraph. Equalities (5) state
that the increment rate of any task is set to the stability factor value f . The perturbed load of each workstation cannot
exceed the cycle time, as shown in constraints (6) and (7). The precedence constraints are expressed by constraints (8).
Constraints (9) induce that the task j can only be allocated to a restricted set of workstations denoted by the interval Q (j),
introduced in Section 2.

It can be seen that the considered optimization problem is strongly NP-hard. This can be explained by the fact that
the decision problem of seeking whether there exists a feasible assignment of tasks to workstations having the value of
stability factor greater than or equal to zero is equivalent to the bin-packing problem.

In order to set the numerical value of UB, used in inequality (4), it should be recalled that the upper bound on the
stability factor, introduced in Section 3, can be infinite: this may happen only when Ṽ 1 is empty. When this bound is
finite, UB is simply set to this value. But when it is not the case, setting UB to an overly large value like DBL_MAX (a
constant defined in float.h, whose numerical value is around 1.79 · 10308) is very likely to lead to wrong results caused
by numerical instability. This issue is overcome by observing that the largest finite value of the stability factor is reached
when processing the shortest task alone on an uncertain workstation, in that case (1 + f ) = T/minj∈V tj, so T/minj∈V tj
is strictly larger than any possible finite value for f . We then set UB to T/minj∈V tj when the upper bound is infinite, and
perform a simple post-optimization test once Model-1 is solved. If its objective value is strictly less than UB, then the
bjective value is correct, as UB was actually a proper upper bound on f . But if the objective value of Model-1 is equal
o UB, then this indicates that f is infinite, as it is strictly larger than the largest finite value achievable for f . Such a
ituation happens only when all the tasks are certain, and are processed by certain workstations only, leaving uncertain
orkstations with no task to process. The xjk variables computed by solving Model-1 are then correct, but the objective
alue is not, as it is artificially upper bounded by the finite constant UB. Consequently, the objective value is simply set
o +∞. Section 6 reports some instances where such situations arise.

Model-1 is appropriate when tasks processing time increase may be due to both the presence of uncertain tasks and
ncertain workstations. However, when uncertainty is due to uncertain workstations only, (i.e., when Ṽ 1 is empty) we

propose a second model, referred to as Model-2, to address this particular case more efficiently.
Model-2 is an extension of the problem SALBP-2, where the maximum load L is minimized for uncertain workstations

only, whereas the load of the workstations in W\Ŵ should be less than or equal to the constant cycle time T . The stability
factor f is computed indirectly, because of its non-linear expression as a function of T . Indeed, if L > T , then the problem is

T−L , as the processing time of all the tasks allocated
infeasible as the cycle time constraint is not satisfied. Otherwise, f = L

7
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Fig. 3. Precedence constraints of the instance JACKSON.

Fig. 4. f = 0.3 for JACKSON with Ṽ 1 = {2, 3, 7, 8, 9, 10} and Ŵ = ∅.

Fig. 5. The solution shown in Fig. 4 when all uncertain tasks reach their maximum processing time.

Fig. 6. f = 0.167 for JACKSON with Ṽ 1
= {2, 3, 7, 8, 9, 10} and Ŵ = {3, 5, 6}.
8
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Fig. 7. The solution shown in Fig. 6 when all uncertain tasks reach their maximum processing time.

o an uncertain workstation can be multiplied by 1 + f while keeping the solution feasible. Note that whenever Ṽ 1
= V

r Ŵ = W , the problem is exactly SALBP-2 [22]. Model-2 is formulated as follows.

Minimize L∑
k∈W

xjk = 1, ∀j ∈ V∑
j∈V

tjxjk ≤ L, ∀k ∈ Ŵ∑
j∈V

tjxjk ≤ T , ∀k ∈ W \ Ŵ

m∑
q=k

xiq ≤

m∑
q=k

xjq, ∀(i, j) ∈ A, ∀k ∈ W \ {1}

xjk = 0, ∀j ∈ V , ∀k /∈ Q (j)
L ≥ 0,
xjk ∈ {0, 1}, ∀j ∈ V , ∀k ∈ W

The problem formulations proposed in this section aim at finding optimal solutions. Since the problem is NP-hard, large
instances may not be solved (or approached within an acceptable accuracy) in a reasonable amount of time. In such cases,
one may resort to heuristics, and the reader is referred to [8], where fast heuristics have been proposed in the context of
stability radius maximization. These heuristics may easily be adapted to the maximization of the stability factor.

6. Computational results

In order to test the proposed MILP formulations, we use the same set of 25 instances1 as in [21]. For these instances,
we set respectively the number of workstations and the cycle time to m =

⌈
1.2

∑
j∈V tj
T

⌉
and T = 1.5maxj∈V tj, except

or the instance WEE-MAG where m has been set to 60 instead of 45, for the sake of feasibility. The set Ṽ 1 (resp. Ŵ ) is
uilt by taking the first |̃V 1

| (resp. |Ŵ |) elements of a random permutation of {1, . . . , n} (resp. {1, . . . ,m}) associated
ith each instance. We generate 13 series (each one derived from the 25 aforementioned instances) by varying the
umber of a priori uncertain tasks and the number of uncertain workstations such that |̃V 1

| ∈ {0, ⌈ n
4⌉, ⌈

n
2⌉, ⌈

3n
4 ⌉} and

|Ŵ | ∈ {0, ⌈m
4 ⌉, ⌈m

2 ⌉, ⌈ 3m
4 ⌉,m}. The computational results are carried out on a laptop equipped with an Inter Core i7-8665U

rocessor at 1.90 GHz and 32 GB RAM. GUROBI 9.0.2 with default parameters is used as a MIP solver. The maximum
olution time has been limited to 600 s per instance. The detailed results of each series are given in Appendix. All these
ables are built as follows. The first four columns indicate respectively the instance name, the number of tasks, the number
f workstations, and the cycle time. The next two columns are respectively the lower bound (LB) and the upper bound (UB)

of the stability factor found by GUROBI. Column 7 reports the CPU time in seconds for the instances solved to optimality.
If an instance is not solved to optimality within the time limit, the abbreviation ’NF’ (not finished) is indicated. The last
column displays the GAP, computed as (UB − LB)/LB. The last row of each table displays at first the number of instances

1 http://pagesperso.ls2n.fr/~gurevsky-e/data/R-ALBP.zip
9
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solved to optimality, the average CPU time over all the 25 instances and the average GAP. Tables A.1 to A.3 give the results
of solving Model-1 for |Ŵ | = 0 with 3 combinations of |̃V 1

|. Similarly, Tables A.4 to A.6 and Tables A.7 to A.9 present
respectively the results ofModel-1 for |Ŵ | = ⌈

m
4 ⌉ and |Ŵ | = ⌈

m
2 ⌉. Tables A.10 to A.13 show the results of solvingModel-1

ith no uncertain tasks, and 4 combinations of |Ŵ |. Finally, Tables A.14 to A.17 give the results of solving Model-2 on
Series 10 to 13, which allows to compare the two problem formulations when |̃V 1

| = 0.
Table 2
Summary of computational results for Model-1.

Series |̃V 1
| |Ŵ | #OPT Avg. CPU Avg. GAP

1 ⌈
n
4 ⌉ 0 23 49.58 0.004

2 ⌈
n
2 ⌉ 0 18 172.83 0.052

3 ⌈
3n
4 ⌉ 0 15 241.99 0.074

4 ⌈
n
4 ⌉ ⌈

m
4 ⌉ 22 81.13 0.049

5 ⌈
n
2 ⌉ ⌈

m
4 ⌉ 18 188.52 0.053

6 ⌈
3n
4 ⌉ ⌈

m
4 ⌉ 17 213.52 0.082

7 ⌈
n
4 ⌉ ⌈

m
2 ⌉ 18 179.10 0.110

8 ⌈
n
2 ⌉ ⌈

m
2 ⌉ 17 212.57 0.126

9 ⌈
3n
4 ⌉ ⌈

m
2 ⌉ 15 247.44 0.144

10 0 ⌈
m
4 ⌉ 19 182.21 0.076

11 0 ⌈
m
2 ⌉ 16 237.20 0.072

12 0 ⌈
3m
4 ⌉ 15 261.25 0.084

13 0 m 14 265.95 0.163

Table 3
Summary of computational results for Model-2.

Series |̃V 1
| |Ŵ | #OPT Avg. CPU Avg. GAP

10 0 ⌈
m
4 ⌉ 22 74.47 0.015

11 0 ⌈
m
2 ⌉ 21 100.03 0.013

12 0 ⌈
3m
4 ⌉ 20 122.70 0.011

13 0 m 20 124.16 0.009

For the sake of illustrating the results presented in these tables, the solutions provided for the instance JACKSON with
n = 11, m = 6 and T = 10.5 are shown as Gantt charts in Figs. 4–7. Tasks are represented by rectangles. The white (resp.
gray) rectangles correspond to the certain (resp. uncertain) tasks. The width of a rectangle provides the processing time
for the corresponding task. The hatched rectangles show the increment of the processing time of uncertain tasks, located
on their left. The tasks in the instance JACKSON are subject to the precedence constraints given in Fig. 3.

For Table A.2, half of tasks are uncertain and there is no uncertain workstation. Fig. 4 shows an optimal solution, and
Fig. 5 illustrates the impact of an increase of processing times associated with the optimal value of the stability factor. It
can be seen that the workstation 6 limits the value of f .

In Table A.8, |̃V 1
| = ⌈

n
2⌉ and |Ŵ | = ⌈

m
2 ⌉. As it can be remarked in Fig. 6, the tasks 4, 6 and 11 become uncertain, since

they are assigned to uncertain workstations. In Fig. 7 the value of f is also limited by the workstation 6.
If the upper bound on the stability factor is simply computed on the full range of workstations only, (i.e., from 1 to

), it may sometimes be found to be infinite when it is actually not. This happens with BOWMAN8 when |̃V 1
| = 0 and

Ŵ | = ⌈
m
4 ⌉ because there are m = 4 workstations with a cycle time T = 25.5 and a single one is uncertain (workstation

3). Since the sum of the processing times is 75, we have ⌈75/T⌉ = 3 ≤ m − |Ŵ | which does not allow to obtain a finite
upper bound, as all the tasks may possibly be processed by certain workstations. However, when computing the upper
bound on the stability factor on the range of workstations [2, 4], the tasks allocation intervals are such that all the tasks
except the first one have to be processed by workstations 2 to 4, which leads to ⌈(75− t1)/T⌉ = 3, and the upper bounds
on f drops to 0.961, because now we know that the uncertain workstation has to process at least one task, which implies
that the stability factor is finite. Since the question of deciding whether the stability factor is finite or not is strongly
NP-complete, it may happen that we produce an infinite upper bound on f while it is finite. In order to illustrate how
such a situation is dealt with, we assume in the sequel of this paragraph that the upper bound on f is computed on the
full range of workstations only. In Table A.10 (when |̃V 1

| = 0 and |Ŵ | = ⌈
m
4 ⌉), the value of the upper bound on f is

infinite for both BOWMAN8 and MANSOOR, so the constant UB in constraint (4) of Model-1 is set to T/minj∈V tj, i.e., 8.5 for
OWMAN8 and 33.75 for MANSOOR. The solution value of Model-1 obtained for BOWMAN8 is 0.4166, so since it is strictly less
han UB, this value is not modified. However, after solving Model-1 with MANSOOR, the objective value is 33.75, and is
qual to UB. Consequently, the stability factor for this instance is not 33.75, but it is infinite, as can be seen in Table A.10.
10
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The solution found by the solver is indeed such that all the tasks are allocated to three certain workstations, and the
unique uncertain workstation does not process any task.

A synthesis of the results for Model-1 reported in Tables A.1 to A.13 is shown in Table 2, where the first three columns
display the main characteristics of each series, the fourth one presents the number of instances solved to optimality and
the last two show the average CPU time (resp. the average GAP) over the 25 instances of the series. Table 2 clearly shows
that the difficulty of seeking an optimal solution with the maximum stability factor increases with respect to the amount
of uncertain tasks, i.e., with |̃V 1

| and |Ŵ |. Indeed, for Series 1 to 3, with |Ŵ | = 0, we can see that the number of obtained
ptimal solutions decreases when the number of uncertain tasks increases. The same observation can be done for Series
to 6, 7 to 9 and 10 to 13. Numerical results show that the used commercial solver can find an optimal solution with
odel-1 in less than 10 min for 65.8% of considered instances.
A synthesis of the results for Model-2 reported in Tables A.14 to A.17 is shown in Table 3. It can be seen that the CPU

ime to solve Model-2 is twice less than with Model-1. The gap is also 5 times less with Model-2. This confirms that
henever |̃V 1

| = 0, Model-2 should be used instead of Model-1.

. Conclusion and perspectives

This paper deals with a robust balancing of simple assembly lines. It consists in finding a line configuration that
aximizes the stability factor subject to restricted number of workstations, fixed cycle time, precedence constraints,
nd task processing time uncertainty. The corresponding problem has been proven to be strongly NP-hard, upper bounds
ere proposed, and the new problem has been shown to be non equivalent to the stability radius maximization. Two MILP

ormulations have been proposed and compared to address it, and promising experimental results have been obtained.
The proposed MILP models are a first attempt to address the studied problem. Our future research will be focused on

he implementation of an efficient branch-and-bound procedure based on the developed upper bounds.
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ppendix. Detailed computational results

See Tables A.1–A.17

Table A.1
Results with Model-1 for |̃V 1

| = ⌈
n
4 ⌉ and |Ŵ | = 0.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0.0 0.0 0.03 0
BOWMAN8 8 4 25.5 0.375 0.375 0.01 0
MANSOOR 11 4 67.5 1.812 1.812 0.01 0
JAESCHKE 9 5 9 0.2 0.2 0.00 0
JACKSON 11 6 10.5 0.3 0.3 0.01 0
MITCHELL 21 7 19.5 0.833 0.833 0.07 0
ROSZIEG 25 8 19.5 0.5 0.5 0.01 0
HESKIA 28 8 162 0.514 0.514 0.01 0
LUTZ1 32 9 2100 0.5 0.5 0.01 0
BUXEY 29 11 37.5 0.5 0.5 0.03 0
SAWYER30 30 11 37.5 0.974 0.974 0.31 0
GUNTHER 35 10 60 0.45 0.45 0.04 0
HAHN 53 7 2662.5 0.793 0.793 0.07 0
KILBRID 45 9 82.5 0.5 0.5 0.03 0
TONGE70 70 18 234 0.5 0.5 0.39 0
WARNECKE 58 24 79.5 0.529 0.529 0.98 0
ARC83 83 17 5536.5 1.021 1.046 NF 0.024
LUTZ3 89 18 111 0.5 0.5 0.41 0
BARTHOLD 148 12 574.5 0.5 0.5 0.70 0
MUKHERJE 94 20 256.5 0.5 0.5 0.34 0
ARC111 111 22 8533.5 0.687 0.687 3.15 0
LUTZ2 89 38 15 0.5 0.5 22.70 0
WEE-MAG 75 60 40.5 0.558 0.558 3.38 0
BARTHOL2 148 41 124.5 0.5 0.5 6.74 0
SCHOLL 297 41 2079 0.892 0.949 NF 0.064

#OPT: 23/25 49.58 0.004
11
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Table A.2
Results with Model-1 for |̃V 1

| = ⌈
n
2 ⌉ and |Ŵ | = 0.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.02 0
BOWMAN8 8 4 25.5 0.214 0.214 0.00 0
MANSOOR 11 4 67.5 0.691 0.691 0.01 0
JAESCHKE 9 5 9 0.125 0.125 0.00 0
JACKSON 11 6 10.5 0.3 0.3 0.01 0
MITCHELL 21 7 19.5 0.312 0.312 0.05 0
ROSZIEG 25 8 19.5 0.312 0.312 0.13 0
HESKIA 28 8 162 0.434 0.434 4.60 0
LUTZ1 32 9 2100 0.5 0.5 0.04 0
BUXEY 29 11 37.5 0.389 0.389 1.35 0
SAWYER30 30 11 37.5 0.464 0.464 5.34 0
GUNTHER 35 10 60 0.341 0.341 4.68 0
HAHN 53 7 2662.5 0.401 0.401 0.14 0
KILBRID 45 9 82.5 0.5 0.5 0.05 0
TONGE70 70 18 234 0.345 0.345 90.30 0
WARNECKE 58 24 79.5 0.347 0.428 NF 0.232
ARC83 83 17 5536.5 0.425 0.431 NF 0.013
LUTZ3 89 18 111 0.382 0.382 7.20 0
BARTHOLD 148 12 574.5 0.436 0.439 NF 0.006
MUKHERJE 94 20 256.5 0.357 0.357 1.84 0
ARC111 111 22 8533.5 0.485 0.488 NF 0.007
LUTZ2 89 38 15 0.154 0.271 NF 0.764
WEE-MAG 75 60 40.5 0.5 0.5 5.10 0
BARTHOL2 148 41 124.5 0.325 0.383 NF 0.18
SCHOLL 297 41 2079 0.397 0.433 NF 0.093

#OPT: 18/25 172.83 0.052

Table A.3
Results with Model-1 for |̃V 1

| = ⌈
3n
4 ⌉ and |Ŵ | = 0.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.02 0
BOWMAN8 8 4 25.5 0.206 0.206 0.00 0
MANSOOR 11 4 67.5 0.5 0.5 0.00 0
JAESCHKE 9 5 9 0 0 0.00 0
JACKSON 11 6 10.5 0.3 0.3 0.01 0
MITCHELL 21 7 19.5 0.269 0.269 0.09 0
ROSZIEG 25 8 19.5 0.219 0.219 0.12 0
HESKIA 28 8 162 0.298 0.298 15.70 0
LUTZ1 32 9 2100 0.403 0.403 0.41 0
BUXEY 29 11 37.5 0.271 0.271 2.57 0
SAWYER30 30 11 37.5 0.25 0.25 3.85 0
GUNTHER 35 10 60 0.25 0.25 4.80 0
HAHN 53 7 2662.5 0.207 0.207 0.12 0
KILBRID 45 9 82.5 0.41 0.42 NF 0.023
TONGE70 70 18 234 0.255 0.268 NF 0.051
WARNECKE 58 24 79.5 0.242 0.318 NF 0.314
ARC83 83 17 5536.5 0.273 0.278 NF 0.019
LUTZ3 89 18 111 0.26 0.26 21.05 0
BARTHOLD 148 12 574.5 0.311 0.313 NF 0.006
MUKHERJE 94 20 256.5 0.248 0.248 1.00 0
ARC111 111 22 8533.5 0.309 0.315 NF 0.019
LUTZ2 89 38 15 0.125 0.173 NF 0.38
WEE-MAG 75 60 40.5 0.3 0.5 NF 0.667
BARTHOL2 148 41 124.5 0.221 0.278 NF 0.256
SCHOLL 297 41 2079 0.257 0.285 NF 0.109

#OPT: 15/25 241.99 0.074
12
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Table A.4
Results with Model-1 for |̃V 1

| = ⌈
n
4 ⌉ and |Ŵ | = ⌈

m
4 ⌉.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.03 0
BOWMAN8 8 4 25.5 0.214 0.214 0.00 0
MANSOOR 11 4 67.5 1.75 1.75 0.01 0
JAESCHKE 9 5 9 0.125 0.125 0.01 0
JACKSON 11 6 10.5 0.3 0.3 0.01 0
MITCHELL 21 7 19.5 0.5 0.5 0.06 0
ROSZIEG 25 8 19.5 0.219 0.219 0.13 0
HESKIA 28 8 162 0.514 0.514 0.02 0
LUTZ1 32 9 2100 0.5 0.5 0.01 0
BUXEY 29 11 37.5 0.5 0.5 0.07 0
SAWYER30 30 11 37.5 0.786 0.786 1.66 0
GUNTHER 35 10 60 0.429 0.429 0.13 0
HAHN 53 7 2662.5 0.478 0.478 0.17 0
KILBRID 45 9 82.5 0.5 0.5 0.05 0
TONGE70 70 18 234 0.5 0.5 9.88 0
WARNECKE 58 24 79.5 0.529 0.529 4.86 0
ARC83 83 17 5536.5 0.665 0.71 NF 0.067
LUTZ3 89 18 111 0.426 0.426 5.43 0
BARTHOLD 148 12 574.5 0.5 0.5 1.35 0
MUKHERJE 94 20 256.5 0.5 0.5 1.20 0
ARC111 111 22 8533.5 0.687 0.687 39.33 0
LUTZ2 89 38 15 0.25 0.5 NF 1.0
WEE-MAG 75 60 40.5 0.558 0.558 4.35 0
BARTHOL2 148 41 124.5 0.5 0.5 159.49 0
SCHOLL 297 41 2079 0.817 0.948 NF 0.16

#OPT: 22/25 81.13 0.049

Table A.5
Results with Model-1 for |̃V 1

| = ⌈
n
2 ⌉ and |Ŵ | = ⌈

m
4 ⌉.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.02 0
BOWMAN8 8 4 25.5 0.214 0.214 0.00 0
MANSOOR 11 4 67.5 0.607 0.607 0.01 0
JAESCHKE 9 5 9 0.125 0.125 0.00 0
JACKSON 11 6 10.5 0.3 0.3 0.01 0
MITCHELL 21 7 19.5 0.312 0.312 0.07 0
ROSZIEG 25 8 19.5 0.219 0.219 0.17 0
HESKIA 28 8 162 0.429 0.429 2.62 0
LUTZ1 32 9 2100 0.5 0.5 0.22 0
BUXEY 29 11 37.5 0.342 0.342 1.53 0
SAWYER30 30 11 37.5 0.442 0.442 3.19 0
GUNTHER 35 10 60 0.341 0.341 4.28 0
HAHN 53 7 2662.5 0.307 0.307 0.09 0
KILBRID 45 9 82.5 0.5 0.5 0.18 0
TONGE70 70 18 234 0.34 0.34 472.90 0
WARNECKE 58 24 79.5 0.347 0.386 NF 0.112
ARC83 83 17 5536.5 0.34 0.341 NF 0.003
LUTZ3 89 18 111 0.306 0.306 5.98 0
BARTHOLD 148 12 574.5 0.436 0.439 NF 0.006
MUKHERJE 94 20 256.5 0.357 0.357 12.54 0
ARC111 111 22 8533.5 0.442 0.45 NF 0.018
LUTZ2 89 38 15 0.154 0.269 NF 0.746
WEE-MAG 75 60 40.5 0.5 0.5 9.21 0
BARTHOL2 148 41 124.5 0.289 0.383 NF 0.325
SCHOLL 297 41 2079 0.389 0.433 NF 0.114

#OPT: 18/25 188.52 0.053
13
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Table A.6
Results with Model-1 for |̃V 1

| = ⌈
3n
4 ⌉ and |Ŵ | = ⌈

m
4 ⌉.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.02 0
BOWMAN8 8 4 25.5 0.206 0.206 0.00 0
MANSOOR 11 4 67.5 0.5 0.5 0.01 0
JAESCHKE 9 5 9 0 0 0.00 0
JACKSON 11 6 10.5 0.3 0.3 0.01 0
MITCHELL 21 7 19.5 0.269 0.269 0.08 0
ROSZIEG 25 8 19.5 0.219 0.219 0.08 0
HESKIA 28 8 162 0.296 0.296 3.60 0
LUTZ1 32 9 2100 0.36 0.36 0.54 0
BUXEY 29 11 37.5 0.25 0.25 1.86 0
SAWYER30 30 11 37.5 0.25 0.25 3.02 0
GUNTHER 35 10 60 0.25 0.25 3.46 0
HAHN 53 7 2662.5 0.207 0.207 0.15 0
KILBRID 45 9 82.5 0.394 0.394 301.20 0
TONGE70 70 18 234 0.251 0.259 NF 0.032
WARNECKE 58 24 79.5 0.242 0.309 NF 0.276
ARC83 83 17 5536.5 0.262 0.262 194.56 0
LUTZ3 89 18 111 0.233 0.233 12.47 0
BARTHOLD 148 12 574.5 0.31 0.313 NF 0.008
MUKHERJE 94 20 256.5 0.248 0.248 16.98 0
ARC111 111 22 8533.5 0.305 0.309 NF 0.015
LUTZ2 89 38 15 0.111 0.176 NF 0.587
WEE-MAG 75 60 40.5 0.3 0.5 NF 0.667
BARTHOL2 148 41 124.5 0.214 0.278 NF 0.297
SCHOLL 297 41 2079 0.245 0.285 NF 0.165

#OPT: 17/25 213.52 0.082

Table A.7
Results with Model-1 for |̃V 1

| = ⌈
n
4 ⌉ and |Ŵ | = ⌈

m
2 ⌉.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.02 0
BOWMAN8 8 4 25.5 0.214 0.214 0.01 0
MANSOOR 11 4 67.5 0.985 0.985 0.01 0
JAESCHKE 9 5 9 0 0 0.00 0
JACKSON 11 6 10.5 0.167 0.167 0.02 0
MITCHELL 21 7 19.5 0.3 0.3 0.07 0
ROSZIEG 25 8 19.5 0.219 0.219 0.07 0
HESKIA 28 8 162 0.514 0.514 0.03 0
LUTZ1 32 9 2100 0.5 0.5 0.01 0
BUXEY 29 11 37.5 0.5 0.5 0.18 0
SAWYER30 30 11 37.5 0.442 0.442 4.99 0
GUNTHER 35 10 60 0.364 0.364 2.50 0
HAHN 53 7 2662.5 0.467 0.467 0.13 0
KILBRID 45 9 82.5 0.5 0.5 0.23 0
TONGE70 70 18 234 0.376 0.376 248.84 0
WARNECKE 58 24 79.5 0.395 0.516 NF 0.308
ARC83 83 17 5536.5 0.438 0.466 NF 0.063
LUTZ3 89 18 111 0.321 0.321 11.88 0
BARTHOLD 148 12 574.5 0.5 0.5 2.37 0
MUKHERJE 94 20 256.5 0.425 0.433 NF 0.019
ARC111 111 22 8533.5 0.609 0.632 NF 0.037
LUTZ2 89 38 15 0.154 0.403 NF 1.619
WEE-MAG 75 60 40.5 0.558 0.558 6.17 0
BARTHOL2 148 41 124.5 0.353 0.496 NF 0.404
SCHOLL 297 41 2079 0.426 0.55 NF 0.292

#OPT: 18/25 179.1 0.110
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Table A.8
Results with Model-1 for |̃V 1

| = ⌈
n
2 ⌉ and |Ŵ | = ⌈

m
2 ⌉.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.03 0
BOWMAN8 8 4 25.5 0.214 0.214 0.01 0
MANSOOR 11 4 67.5 0.534 0.534 0.02 0
JAESCHKE 9 5 9 0 0 0.01 0
JACKSON 11 6 10.5 0.167 0.167 0.06 0
MITCHELL 21 7 19.5 0.219 0.219 0.11 0
ROSZIEG 25 8 19.5 0.219 0.219 0.04 0
HESKIA 28 8 162 0.409 0.409 1.23 0
LUTZ1 32 9 2100 0.483 0.483 0.52 0
BUXEY 29 11 37.5 0.293 0.293 2.53 0
SAWYER30 30 11 37.5 0.339 0.339 4.03 0
GUNTHER 35 10 60 0.304 0.304 5.60 0
HAHN 53 7 2662.5 0.307 0.307 0.14 0
KILBRID 45 9 82.5 0.5 0.5 1.04 0
TONGE70 70 18 234 0.279 0.279 476.40 0
WARNECKE 58 24 79.5 0.347 0.42 NF 0.208
ARC83 83 17 5536.5 0.293 0.321 NF 0.094
LUTZ3 89 18 111 0.233 0.233 9.23 0
BARTHOLD 148 12 574.5 0.426 0.436 NF 0.025
MUKHERJE 94 20 256.5 0.336 0.356 NF 0.059
ARC111 111 22 8533.5 0.427 0.446 NF 0.043
LUTZ2 89 38 15 0.091 0.274 NF 2.018
WEE-MAG 75 60 40.5 0.5 0.5 13.16 0
BARTHOL2 148 41 124.5 0.284 0.383 NF 0.351
SCHOLL 297 41 2079 0.309 0.418 NF 0.35

#OPT: 17/25 212.57 0.126

Table A.9
Results with Model-1 for |̃V 1

| = ⌈
3n
4 ⌉ and |Ŵ | = ⌈

m
2 ⌉.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.03 0
BOWMAN8 8 4 25.5 0.206 0.206 0.00 0
MANSOOR 11 4 67.5 0.5 0.5 0.01 0
JAESCHKE 9 5 9 0 0 0.00 0
JACKSON 11 6 10.5 0.167 0.167 0.01 0
MITCHELL 21 7 19.5 0.219 0.219 0.13 0
ROSZIEG 25 8 19.5 0.219 0.219 0.12 0
HESKIA 28 8 162 0.29 0.29 2.94 0
LUTZ1 32 9 2100 0.314 0.314 0.88 0
BUXEY 29 11 37.5 0.25 0.25 2.95 0
SAWYER30 30 11 37.5 0.25 0.25 4.80 0
GUNTHER 35 10 60 0.25 0.25 3.48 0
HAHN 53 7 2662.5 0.207 0.207 0.23 0
KILBRID 45 9 82.5 0.384 0.393 NF 0.023
TONGE70 70 18 234 0.238 0.238 146.56 0
WARNECKE 58 24 79.5 0.242 0.298 NF 0.23
ARC83 83 17 5536.5 0.246 0.262 NF 0.067
LUTZ3 89 18 111 0.207 0.207 23.88 0
BARTHOLD 148 12 574.5 0.312 0.313 NF 0.003
MUKHERJE 94 20 256.5 0.233 0.246 NF 0.057
ARC111 111 22 8533.5 0.294 0.309 NF 0.051
LUTZ2 89 38 15 0.071 0.213 NF 1.983
WEE-MAG 75 60 40.5 0.3 0.5 NF 0.667
BARTHOL2 148 41 124.5 0.209 0.278 NF 0.332
SCHOLL 297 41 2079 0.239 0.285 NF 0.191

#OPT: 15/25 247.44 0.144
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Table A.10
Results with Model-1 for |̃V 1

| = 0 and |Ŵ | = ⌈
m
4 ⌉.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0.8 0.8 0.02 0
BOWMAN8 8 4 25.5 0.417 0.417 0.00 0
MANSOOR 11 4 67.5 +∞ +∞ 0.01 0
JAESCHKE 9 5 9 0.125 0.125 0.00 0
JACKSON 11 6 10.5 1.1 1.1 0.01 0
MITCHELL 21 7 19.5 1.786 1.786 0.12 0
ROSZIEG 25 8 19.5 0.625 0.625 0.26 0
HESKIA 28 8 162 5.231 5.231 0.95 0
LUTZ1 32 9 2100 1.298 1.298 1.46 0
BUXEY 29 11 37.5 0.875 0.875 2.96 0
SAWYER30 30 11 37.5 2.125 2.125 3.17 0
GUNTHER 35 10 60 0.5 0.5 0.07 0
HAHN 53 7 2662.5 1.742 1.742 0.06 0
KILBRID 45 9 82.5 2.75 2.75 0.78 0
TONGE70 70 18 234 1.294 1.491 NF 0.152
WARNECKE 58 24 79.5 1.409 1.409 223.67 0
ARC83 83 17 5536.5 1.636 1.636 16.85 0
LUTZ3 89 18 111 0.85 0.85 5.70 0
BARTHOLD 148 12 574.5 2.636 2.715 NF 0.03
MUKHERJE 94 20 256.5 2.018 2.018 213.47 0
ARC111 111 22 8533.5 2.444 2.635 NF 0.078
LUTZ2 89 38 15 0.875 0.875 485.63 0
WEE-MAG 75 60 40.5 0.761 1.211 NF 0.592
BARTHOL2 148 41 124.5 1.075 1.733 NF 0.612
SCHOLL 297 41 2079 1.49 2.139 NF 0.436

#OPT: 19/25 182.21 0.076

Table A.11
Results with Model-1 for |̃V 1

| = 0 and |Ŵ | = ⌈
m
2 ⌉.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0.5 0.5 0.02 0
BOWMAN8 8 4 25.5 0.214 0.214 0.00 0
MANSOOR 11 4 67.5 0.985 0.985 0.01 0
JAESCHKE 9 5 9 0 0 0.00 0
JACKSON 11 6 10.5 0.312 0.312 0.02 0
MITCHELL 21 7 19.5 0.5 0.5 0.05 0
ROSZIEG 25 8 19.5 0.219 0.219 0.12 0
HESKIA 28 8 162 0.723 0.723 0.20 0
LUTZ1 32 9 2100 0.643 0.643 0.44 0
BUXEY 29 11 37.5 0.5 0.5 0.62 0
SAWYER30 30 11 37.5 0.562 0.562 4.03 0
GUNTHER 35 10 60 0.429 0.429 0.57 0
HAHN 53 7 2662.5 0.714 0.714 0.27 0
KILBRID 45 9 82.5 0.793 0.839 NF 0.057
TONGE70 70 18 234 0.472 0.5 NF 0.06
WARNECKE 58 24 79.5 0.472 0.594 NF 0.258
ARC83 83 17 5536.5 0.5 0.5 129.16 0
LUTZ3 89 18 111 0.5 0.5 15.82 0
BARTHOLD 148 12 574.5 0.57 0.575 NF 0.01
MUKHERJE 94 20 256.5 0.491 0.521 NF 0.06
ARC111 111 22 8533.5 0.623 0.651 NF 0.045
LUTZ2 89 38 15 0.25 0.45 NF 0.802
WEE-MAG 75 60 40.5 0.761 0.761 378.62 0
BARTHOL2 148 41 124.5 0.368 0.496 NF 0.346
SCHOLL 297 41 2079 0.483 0.555 NF 0.15

#OPT: 16/25 237.20 0.072
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Table A.12
Results with Model-1 for |̃V 1

| = 0 and |Ŵ | = ⌈
3m
2 ⌉.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.03 0
BOWMAN8 8 4 25.5 0.159 0.159 0.00 0
MANSOOR 11 4 67.5 0.607 0.607 0.01 0
JAESCHKE 9 5 9 0 0 0.00 0
JACKSON 11 6 10.5 0.167 0.167 0.02 0
MITCHELL 21 7 19.5 0.219 0.219 0.07 0
ROSZIEG 25 8 19.5 0.219 0.219 0.19 0
HESKIA 28 8 162 0.385 0.385 1.50 0
LUTZ1 32 9 2100 0.404 0.404 0.78 0
BUXEY 29 11 37.5 0.25 0.25 1.80 0
SAWYER30 30 11 37.5 0.293 0.293 4.03 0
GUNTHER 35 10 60 0.25 0.25 3.80 0
HAHN 53 7 2662.5 0.253 0.253 0.13 0
KILBRID 45 9 82.5 0.473 0.489 NF 0.034
TONGE70 70 18 234 0.265 0.265 511.36 0
WARNECKE 58 24 79.5 0.242 0.291 NF 0.203
ARC83 83 17 5536.5 0.295 0.314 NF 0.065
LUTZ3 89 18 111 0.233 0.233 7.49 0
BARTHOLD 148 12 574.5 0.318 0.322 NF 0.013
MUKHERJE 94 20 256.5 0.282 0.298 NF 0.057
ARC111 111 22 8533.5 0.337 0.346 NF 0.027
LUTZ2 89 38 15 0.154 0.232 NF 0.508
WEE-MAG 75 60 40.5 0.306 0.558 NF 0.82
BARTHOL2 148 41 124.5 0.233 0.29 NF 0.246
SCHOLL 297 41 2079 0.284 0.319 NF 0.122

#OPT: 15/25 261.25 0.084

Table A.13
Results with Model-1 for |̃V 1

| = 0 and |Ŵ | = m.
Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.02 0
BOWMAN8 8 4 25.5 0.159 0.159 0.00 0
MANSOOR 11 4 67.5 0.406 0.406 0.01 0
JAESCHKE 9 5 9 0 0 0.00 0
JACKSON 11 6 10.5 0.167 0.167 0.01 0
MITCHELL 21 7 19.5 0.219 0.219 0.06 0
ROSZIEG 25 8 19.5 0.219 0.219 0.07 0
HESKIA 28 8 162 0.256 0.256 5.01 0
LUTZ1 32 9 2100 0.282 0.282 0.64 0
BUXEY 29 11 37.5 0.172 0.172 4.30 0
SAWYER30 30 11 37.5 0.21 0.21 6.58 0
GUNTHER 35 10 60 0.2 0.2 3.85 0
HAHN 53 7 2662.5 0.14 0.14 0.14 0
KILBRID 45 9 82.5 0.331 0.345 NF 0.044
TONGE70 70 18 234 0.194 0.2 NF 0.032
WARNECKE 58 24 79.5 0.187 0.205 NF 0.096
ARC83 83 17 5536.5 0.221 0.229 NF 0.034
LUTZ3 89 18 111 0.194 0.194 28.16 0
BARTHOLD 148 12 574.5 0.222 0.224 NF 0.006
MUKHERJE 94 20 256.5 0.161 0.166 NF 0.035
ARC111 111 22 8533.5 0.243 0.248 NF 0.02
LUTZ2 89 38 15 0.071 0.154 NF 1.154
WEE-MAG 75 60 40.5 0.157 0.5 NF 2.182
BARTHOL2 148 41 124.5 0.153 0.206 NF 0.346
SCHOLL 297 41 2079 0.2 0.224 NF 0.121

#OPT: 14/25 265.95 0.163
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Table A.14
Results with Model-2 for |̃V 1

| = 0 and |Ŵ | = ⌈
m
4 ⌉.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0.8 0.8 0.02 0
BOWMAN8 8 4 25.5 0.417 0.417 0.00 0
MANSOOR 11 4 67.5 +∞ +∞ 0.00 0
JAESCHKE 9 5 9 0.125 0.125 0.00 0
JACKSON 11 6 10.5 1.1 1.1 0.01 0
MITCHELL 21 7 19.5 1.786 1.786 0.01 0
ROSZIEG 25 8 19.5 0.625 0.625 0.01 0
HESKIA 28 8 162 5.231 5.231 0.29 0
LUTZ1 32 9 2100 1.298 1.298 0.16 0
BUXEY 29 11 37.5 0.875 0.875 0.24 0
SAWYER30 30 11 37.5 2.125 2.125 0.28 0
GUNTHER 35 10 60 0.5 0.5 0.02 0
HAHN 53 7 2662.5 1.742 1.742 0.02 0
KILBRID 45 9 82.5 2.75 2.75 0.07 0
TONGE70 70 18 234 1.294 1.294 7.84 0
WARNECKE 58 24 79.5 1.409 1.409 7.91 0
ARC83 83 17 5536.5 1.636 1.636 2.99 0
LUTZ3 89 18 111 0.85 0.85 1.00 0
BARTHOLD 148 12 574.5 2.683 2.683 29.91 0
MUKHERJE 94 20 256.5 2.018 2.018 2.56 0
ARC111 111 22 8533.5 2.452 2.532 NF 0.033
LUTZ2 89 38 15 0.875 0.875 6.10 0
WEE-MAG 75 60 40.5 0.761 0.761 2.39 0
BARTHOL2 148 41 124.5 1.394 1.649 NF 0.183
SCHOLL 297 41 2079 1.84 2.136 NF 0.161

#OPT: 22/25 74.47 0.015

Table A.15
Results with Model-2 for |̃V 1

| = 0 and |Ŵ | = ⌈
m
2 ⌉.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0.5 0.5 0.02 0
BOWMAN8 8 4 25.5 0.214 0.214 0.01 0
MANSOOR 11 4 67.5 0.985 0.985 0.00 0
JAESCHKE 9 5 9 0 0 0.00 0
JACKSON 11 6 10.5 0.312 0.312 0.01 0
MITCHELL 21 7 19.5 0.5 0.5 0.01 0
ROSZIEG 25 8 19.5 0.219 0.219 0.01 0
HESKIA 28 8 162 0.723 0.723 0.06 0
LUTZ1 32 9 2100 0.643 0.643 0.06 0
BUXEY 29 11 37.5 0.5 0.5 0.04 0
SAWYER30 30 11 37.5 0.562 0.562 0.14 0
GUNTHER 35 10 60 0.429 0.429 0.03 0
HAHN 53 7 2662.5 0.714 0.714 0.07 0
KILBRID 45 9 82.5 0.793 0.793 0.25 0
TONGE70 70 18 234 0.49 0.49 22.23 0
WARNECKE 58 24 79.5 0.5 0.529 NF 0.058
ARC83 83 17 5536.5 0.5 0.5 10.26 0
LUTZ3 89 18 111 0.5 0.5 2.25 0
BARTHOLD 148 12 574.5 0.574 0.574 4.30 0
MUKHERJE 94 20 256.5 0.5 0.5 5.70 0
ARC111 111 22 8533.5 0.632 0.636 NF 0.007
LUTZ2 89 38 15 0.25 0.25 47.82 0
WEE-MAG 75 60 40.5 0.761 0.761 7.43 0
BARTHOL2 148 41 124.5 0.399 0.482 NF 0.209
SCHOLL 297 41 2079 0.528 0.554 NF 0.05

#OPT: 21/25 100.03 0.013
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Table A.16
Results with Model-2 for |̃V 1

| = 0 and |Ŵ | = ⌈
3m
2 ⌉.

Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.03 0
BOWMAN8 8 4 25.5 0.159 0.159 0.01 0
MANSOOR 11 4 67.5 0.607 0.607 0.02 0
JAESCHKE 9 5 9 0 0 0.01 0
JACKSON 11 6 10.5 0.167 0.167 0.02 0
MITCHELL 21 7 19.5 0.219 0.219 0.07 0
ROSZIEG 25 8 19.5 0.219 0.219 0.04 0
HESKIA 28 8 162 0.385 0.385 0.17 0
LUTZ1 32 9 2100 0.404 0.404 0.13 0
BUXEY 29 11 37.5 0.25 0.25 0.04 0
SAWYER30 30 11 37.5 0.293 0.293 0.20 0
GUNTHER 35 10 60 0.25 0.25 0.21 0
HAHN 53 7 2662.5 0.253 0.253 0.03 0
KILBRID 45 9 82.5 0.473 0.473 0.07 0
TONGE70 70 18 234 0.265 0.265 26.29 0
WARNECKE 58 24 79.5 0.242 0.262 NF 0.081
ARC83 83 17 5536.5 0.301 0.305 NF 0.016
LUTZ3 89 18 111 0.233 0.233 0.72 0
BARTHOLD 148 12 574.5 0.321 0.321 6.07 0
MUKHERJE 94 20 256.5 0.289 0.289 6.09 0
ARC111 111 22 8533.5 0.344 0.346 NF 0.007
LUTZ2 89 38 15 0.154 0.154 4.31 0
WEE-MAG 75 60 40.5 0.306 0.306 22.89 0
BARTHOL2 148 41 124.5 0.258 0.284 NF 0.101
SCHOLL 297 41 2079 0.299 0.318 NF 0.066

#OPT: 20/25 122.70 0.011

Table A.17
Results with Model-2 for |̃V 1

| = 0 and |Ŵ | = m.
Instance n m T LB UB CPU GAP

MERTENS 7 4 9 0 0 0.03 0
BOWMAN8 8 4 25.5 0.159 0.159 0.01 0
MANSOOR 11 4 67.5 0.406 0.406 0.02 0
JAESCHKE 9 5 9 0 0 0.01 0
JACKSON 11 6 10.5 0.167 0.167 0.01 0
MITCHELL 21 7 19.5 0.219 0.219 0.04 0
ROSZIEG 25 8 19.5 0.219 0.219 0.07 0
HESKIA 28 8 162 0.256 0.256 0.40 0
LUTZ1 32 9 2100 0.282 0.282 0.19 0
BUXEY 29 11 37.5 0.172 0.172 0.54 0
SAWYER30 30 11 37.5 0.21 0.21 0.40 0
GUNTHER 35 10 60 0.2 0.2 0.36 0
HAHN 53 7 2662.5 0.14 0.14 0.03 0
KILBRID 45 9 82.5 0.331 0.331 0.06 0
TONGE70 70 18 234 0.194 0.194 20.64 0
WARNECKE 58 24 79.5 0.205 0.205 46.17 0
ARC83 83 17 5536.5 0.223 0.228 NF 0.024
LUTZ3 89 18 111 0.194 0.194 2.38 0
BARTHOLD 148 12 574.5 0.222 0.222 2.67 0
MUKHERJE 94 20 256.5 0.161 0.166 NF 0.033
ARC111 111 22 8533.5 0.24 0.248 NF 0.033
LUTZ2 89 38 15 0.071 0.071 9.99 0
WEE-MAG 75 60 40.5 0.157 0.157 19.97 0
BARTHOL2 148 41 124.5 0.186 0.197 NF 0.061
SCHOLL 297 41 2079 0.21 0.224 NF 0.064

#OPT: 20/25 124.16 0.009
19



E. Gurevsky, A. Rasamimanana, A. Pirogov et al. Discrete Applied Mathematics xxx (xxxx) xxx
References

[1] K. Ağpak, H. Gökçen, A chance-constrained approach to stochastic line balancing problem, European J. Oper. Res. 180 (3) (2007) 1098–1115.
[2] O. Battaïa, A. Dolgui, A taxonomy of line balancing problems and their solution approaches, Int. J. Prod. Econ. 142 (2) (2013) 259–277.
[3] M.L. Bentaha, O. Battaïa, A. Dolgui, A sample average approximation method for disassembly line balancing problem under uncertainty, Comput.

Oper. Res. 51 (2014) 111–122.
[4] D. Bertsimas, M. Sim, Robust discrete optimization and network flows, Math. Program. 98 (1–3) (2003) 49–71.
[5] D. Bertsimas, M. Sim, The price of robustness, Oper. Res. 52 (1) (2004) 35–53.
[6] M. Bougeret, A.A. Pessoa, M. Poss, Robust scheduling with budgeted uncertainty, Discrete Appl. Math. 261 (2019) 93–107.
[7] A. Dolgui, S. Kovalev, Scenario based robust line balancing: Computational complexity, Discrete Appl. Math. 160 (13–14) (2012) 1955–1963.
[8] E. Gurevsky, O. Battaïa, A. Dolgui, Balancing of simple assembly lines under variations of task processing times, Ann. Oper. Res. 201 (1) (2012)

265–286.
[9] E. Gurevsky, O. Battaïa, A. Dolgui, Stability measure for a generalized assembly line balancing problem, Discrete Appl. Math. 161 (3) (2013a)

377–394.
[10] E. Gurevsky, O. Hazır, O. Battaïa, A. Dolgui, Robust balancing of straight assembly lines with interval task times, J. Oper. Res. Soc. 64 (1) (2013b)

1607–1613.
[11] O. Hazır, A. Dolgui, Assembly line balancing under uncertainty: Robust optimization models and exact solution methods, Comput. Ind. Eng. 65

(2) (2013) 261–267.
[12] O. Hazır, A. Dolgui, A decomposition based solution algorithm for U-type assembly line balancing with interval data, Comput. Oper. Res. 59

(2015) 126–131.
[13] N.V. Hop, A heuristic solution for fuzzy mixed-model line balancing problem, European J. Oper. Res. 168 (3) (2006) 798–810.
[14] W.J. Hopp, M.L. Spearman, Factory Physics, third ed., Waveland Press, 2011.
[15] M. Jakob, M. Geyer, The influence of machine speed on human performance for simple and highly repetitive work processes: A pilot study,

Agricu. Eng. Int.: CIGR J. 8 (2006) 1–8.
[16] M. Öner-Közen, S. Minner, F. Steinthaler, Efficiency of paced and unpaced assembly lines under consideration of worker variability - A simulation

study, Comput. Ind. Eng. 111 (2017) 516–526.
[17] U. Özcan, Balancing stochastic two-sided assembly lines: A chance-constrained, piecewise-linear, mixed integer program and a simulated

annealing algorithm, European J. Oper. Res. 205 (1) (2010) 81–97.
[18] U. Özcan, Balancing stochastic parallel assembly lines, Comput. Oper. Res. 99 (2018) 109–122.
[19] J.H. Patterson, J.J. Albracht, Assembly-line balancing: Zero-one programming with Fibonacci search, Oper. Res. 23 (1) (1975) 166–172.
[20] J. Pereira, E. Álvarez-Miranda, An exact approach for the robust assembly line balancing problem, Omega 78 (2018) 85–98.
[21] A. Rossi, E. Gurevsky, O. Battaïa, A. Dolgui, Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of

workstations, Discrete Appl. Math. 208 (2016) 123–136.
[22] A. Scholl, C. Becker, State-of-the-art exact and heuristic solution procedures for simple assembly line balancing, European J. Oper. Res. 168 (3)

(2006) 666–693.
[23] Y. Sotskov, A. Dolgui, M.-C. Portmann, Stability analysis of an optimal balance for an assembly line with fixed cycle time, European J. Oper.

Res. 168 (3) (2006) 783–797.
[24] Y. Sotskov, A. Dolgui, N. Sotskova, F. Werner, Stability of optimal line balance with given station set, in: A. Dolgui, J. Soldek, O. Zaikin (Eds.),

Supply Chain Optimisation: Product/Process Design, in: Facility Location and Flow Control. 94 of Applied Optimization, Springer, US, 2005, pp.
135–149, Ch. 10.

[25] P. Th. Zacharia, A.C. Nearchou, Multi-objective fuzzy assembly line balancing using genetic algorithms, J. Intell. Manuf. 23 (3) (2012) 615–627.
[26] P. Th. Zacharia, A.C. Nearchou, A meta-heuristic algorithm for the fuzzy assembly line balancing type-E problem, Comput. Oper. Res. 40 (12)

(2013) 3033–3044.
20




