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Abstract

This paper presents a variant of the vehicle routing problem regarding the delivery of products
to customers in cities with a combination of walking and driving. The objective is first to offer
a better modeling of delivery problems in congested cities and also to evaluate potential savings
in traveled distances and parking times. We introduce the Park-and-Loop Routing Problem
with Parking Selection (PLRP-PS) in which a parking space or loading zone has to be found
for the driver and his vehicle before he walks to deliver to one or several customers. In this
paper, we will focus on cases where parking locations should be selected among a large set of
parking areas. To solve this problem, we developed a variant of the large neighborhood search
metaheuristic called Small and Large Neighborhood Search (SLNS). We will focus on designing
and comparing simple and efficient techniques to select parking spots for vehicles before goods
are delivered by walking trips. The efficiency of the approach is demonstrated in the park-and-
loop routing problem, with eleven new best solutions found on an existing benchmark. Some
realistic instances were generated based on open data from the city of Nantes, France. In these
instances, we find that combining walking and driving to deliver to the center of a city can save
19% of working time on average compared to the classical vehicle routing approach.

Keywords: vehicle routing, park-and-loop, large neighborhood search, last-mile delivery

1. Introduction

Reducing congestion and CO2 emissions is a major challenge for the delivery of goods in
urban areas. In this paper, we are interested in combining driving and walking for last-mile
delivery, with a focus on where a vehicle can park before its driver can deliver to his or her
customers.5

The foremost inspiration of this work is that most vehicle routing problems implicitly assume
that vehicles park in front of customer locations. This assumption is not always realistic in dense
cities, since parking spaces do not always exist at a customer location. Indeed, parking a delivery
vehicle exactly in front of each customer is often impossible, but it may not even be profitable
considering the driving distance or workload. It can be more efficient to cross the street by10

foot than to turn around or make a detour to park on the customer’s side of the street. If two
successive customers are located near each other, re-starting the vehicle and parking it a few
meters further is also not realistic when the driver can walk between the two addresses. As
many cities tend to reallocate road space to pedestrians, bicycles, and public transportation
(Martinez-Sykora et al., 2020) it seems more and more valuable to optimize delivery routes by15

considering parking locations and walking trips.
Supporting this statement, recent studies show that the time to find parking spots is not

negligible in large cities (Reed et al., 2021). Thus, the unproductive driving time spent looking
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for a parking space leads to significant overhead costs (Bates et al., 2017). Consequently, drivers
often illegally double-park, also at high costs (Chiara et al., 2020). In both cases, assuming20

parking at customers has a cost, it also generates congestion, air pollution and noise pollution.
To address this challenge we investigate vehicle routing with driving, walking, and parking

selection for last mile delivery. In this study, the potential parking locations are the available
commercial loading zones defined by local authorities. In a dense urban area, we show that it
is beneficial to serve multiple customers from one parking spot.25

To better integrate these considerations in VRP models and algorithms, we introduce the
Park-and-Loop Routing Problem with Parking Selection (PLRP-PS). This problem considers
a set of customers who are delivered to from a depot by drivers with a homogeneous fleet of
vehicles. We presume a large set of parking locations is known and that drivers have to park
at one of these locations before delivering to some customers through walking-trips.30

In this paper, we first review the related literature in Section 2. Then, a formal definition
and a Mixed Integer Linear Programming (MILP) formulation for the PLRP-PS are proposed
in Section 3. To solve this problem, we designed a variant of Large Neighborhood Search (LNS)
called Small and Large Neighborhood Search (SLNS) (Section 4). We detail the used opera-
tors, types of insertions, and we focus more specifically on efficient parking selection strategies.35

The computational experiments are presented in Section 5. We first evaluate the proposed
algorithmic components in order to identify the best LNS configuration to solve the PLRP-PS.
Then, the performance of the designed SLNS is evaluated on a particular case of the VRP-TR
(Coindreau et al., 2019). Finally, managerial insights on the impact of parking selection are
presented.40

2. Literature review

Section 2.1 discusses VRP variants that integrate the combination of driving and walking.
Section 2.2 presents some other categories of problems related to the PLRP-PS. As the main
focus of this paper is the selection of parking in a commercial loading zone from a large set of
possible locations, the literature review gives particular attention to this aspect.45

2.1. Vehicle routing problems with park-and-loop

The combination of walking and driving in routing optimization was first introduced in a
Location Arc Routing Problem by Levy and Bodin (1989), within the context of mail delivery.
Later on, park-and-loop was described in Bodin and Levy (2000) as a practice of parking the
vehicle before serving a set of nearby customers on foot before returning to the vehicle and50

continuing the route. This practice is also mentioned in Irnich (2008) as an extension of the
windy rural postman problem. To our knowledge, the first solution method for a VRP with
park-and-loop was proposed by Gussmagg-Pfliegl et al. (2011) also presented as a mail delivery
problem. This method follows a cluster-first route-second heuristic combined with the solving
of a set partitioning problem.55

Park-and-loop is considered in the Vehicle Routing Problem with Time Windows and Multi-
ple Service Workers (VRPTWMS, Senarclens de Grancy and Reimann (2015)). The VRPTWMS
is an extension of the VRPTW where multiple service workers can be in the same vehicle and
vehicles can park only at pre-identified parking locations. After a vehicle is parked, workers
perform back-and-forth walking trips to customers from the vehicle, serving only one customer60

per walking trip. The vehicle may leave the parking spot when all workers have served their
customers. A fast cluster-first route-second heuristic was developed. First, a parallel insertion
heuristic is used to group customers and assign them to a parking location. Second, the I1
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insertion heuristic of Solomon (1987) is used to determine the routes. Randomly generated
instances with up to 200 customers and 150 parking locations are considered.65

Martinez-Sykora et al. (2020) solve an asymmetric TSP with park-and-loop where the ob-
jective is a weighted sum of the total driving time and the total walking time. A branch-and-cut
algorithm is used to solve instances from a London case study with up to 30 customers. In this
problem, the vehicle is parked at a customer’s location but the driver can walk to serve several
customers from one parking spot.70

Reed et al. (2021) describe the Capacitated Delivery Problem with Parking (CDPP). The
CDPP is a VRP in which delivery persons can drive and walk. They park near the customers
and can serve a few others by walking but finding a parking spot on a commercial loading
zone takes a given amount of time. A Mixed Integer Programming (MIP) model is developed,
with dedicated valid inequalities, to solve instances based in the State of Illinois. Extensive75

experiments study the impact of parking time. They conclude that taking it into account is of
major importance in cities and that combining driving and walking is very promising.

Coindreau et al. (2019) introduce the Vehicle Routing Problem with Transportable Resources
(VRP-TR). The VRP-TR considers a setting with drivers and additional workers that can
carpool, walk between customers, and possibly change vehicles. The objective in this problem80

is to minimize the sum of all vehicles’ travel distance, taking account a maximum overall walking
distance for each worker as well as a day duration constraint. A Variable Neighborhood Search
(VNS) metaheuristic is developed to solve instances inspired by a European energy provider
with up to 50 customers with a time budget of 10 hours. These VRP-TR instances are solved
both in the case where car-pooling is allowed and also with one driver per vehicle and no85

car-pooling. The VRP-TR also takes the set of customers as the set of parking locations.
Cabrera et al. (2022) introduce the Doubly Open Park-and-Loop Routing Problem (DO-

PLRP) which is closely related to the VRP-TR especially when carpooling is not allowed. The
DOPLRP consists of designing routes for technicians to visit a set of customers for an energy
provider. Routes are subcontracted and their costs are evaluated based on the distance traveled90

between the first and the last customer of each route. There are three types of routes: pure
vehicle routes where the technician serves customers by driving only, pure walking routes where
the technician serves customers by walking only, and vehicle routes with park-and-loop. Vehi-
cles can park at customer locations. The authors propose a matheuristic which is composed of
a split procedure on a giant-tour that provides routes and a set partitioning formulation that95

uses these routes to improve solutions. The algorithm is shown to outperform the VNS of Coin-
dreau et al. (2019) on the VRP-TR instances in the case where carpooling is not considered. In
addition, the proposed method is used to solve real-world DOPLRP instances with up to 3800
customers.

A first observation from the recent literature is that, independent of parking selection, the100

terminology is not unified over the different papers that integrate the VRP and park-and-loop.
In the following, we denote by the Park-and-Loop Routing Problem (PLRP) that the simplest
integration of park-and-loop in the VRP, whereby vehicles can park at customers and drivers
can perform walking trips to deliver more than one customer from a parking location. This
corresponds to the VRP-TR without car-pooling of Coindreau et al. (2019) or the DOPLRP105

with closed vehicle routes from Cabrera et al. (2022).

2.2. Related classes of problems

The Truck and Trailer Routing Problem (TTRP) was first studied by Semet (1995) under
the name Partial Accessibility Vehicle Routing Problem. This problem typically occurs in milk
collection problems where some producers cannot be accessed by a truck with its trailer. Thus,110
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the truck can leave its trailer at some customer’s location and perform some visits before re-
coupling with its trailer. Hence, in this problem, solutions have a park-and-loop structure. The
connection between the TTRP and park-and-loop routing problems is extensively discussed in
the recent paper of Cabrera et al. (2022). In particular, the TTRP with time windows has been
recently addressed by Parragh and Cordeau (2017) with a branch-and-price algorithm and an115

LNS. The authors solve instances with up to 100 customers in which the decoupling points are
the customers that are accessible with trailers.

The routing problems with drones also consider sub-tours for visiting customers. The Trav-
eling Salesman Problem with Drone (Agatz et al., 2018, TSP-D) extends the standard TSP
by allowing the driver to send an unmanned aerial vehicle (UAV) to deliver a package while120

he/she is serving other customers. The truck and the drone can couple/decouple only at cus-
tomers’ locations. The authors propose a mathematical model and a route-first, cluster-second
method to solve instances with up to 100 customers. More recently, Li et al. (2021) defined
the Two-Echelon Vehicle Routing Problem with Time Windows and Mobile Satellites (2E-VRP-
TM). This problem considers a homogeneous fleet of vans paired with UAVs for parcel delivery.125

It extends the standard VRP by allowing UAVs to deliver customers while the van is parked
at another customer location. An Adaptive Large Neighborhood Search (ALNS) heuristic is
proposed to solve instances with up to 100 customers.

In addition, the combination of walking and driving can be found in home health care
logistics. For example, Fikar and Hirsch (2015) consider that nurses could be driven to customers130

by a driver and serve some other customers on foot before being picked up. The resulting
problem is similar to a dial-a-ride problem. Instances based on data from the Austrian red
cross with up to 125 customers were solved with a Tabu Search heuristic.

The connection is also strong with the Two-Echelon VRP (Crainic et al., 2009), in which
large vehicles transfer goods to smaller vehicles at so-called satellites, the later ones being135

allowed to deliver to the customer in a restricted delivery area. We refer the interested reader
to Cuda et al. (2015) and Sluijk et al. (2022). Nonetheless, as in other routing problems with
intermediate facilities (Guastaroba et al., 2016), the purpose of those is to concentrate the flows.
Thus, only a few are considered especially because of their high initial cost in practice.

2.3. Discussion140

We observe that, although problems with park-and-loop structures have already been in-
vestigated in the literature, none of these really consider the selection of parking spaces into a
large set of available ones. The largest instances assume that each customer can be a parking
space but we think that two considerations are worth investigating in a city logistics context:
firstly, parking as close as possible to a customer may not be the best strategy depending on its145

accessibility and the direction from which the vehicle is coming. Secondly, a large set of areas
are available for delivery vehicles in some cities and there is a need for efficient selection rules
to be used in vehicle routing heuristics.

3. The Park-and-Loop Routing Problem with Parking Selection

This section introduces the Park-and-Loop Routing Problem with Parking Selection (PLRP-150

PS). Section 3.1 depicts the problem settings and Section 3.2 provides a mathematical model.
For the sake of simplicity, we do not consider the time necessary to pick up packages at the
vehicle nor the service duration at customers, but their integration in our model and method is
straightforward.
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3.1. Problem description155

Let us consider a set N of customers with non-unitary demand qi, ∀i ∈ N . Let K =
{1, ..., kmax} denote the homogeneous vehicle fleet, where kmax is the maximum vehicle fleet
size. We consider that each vehicle is assigned to a driver who will perform deliveries by walking
from a parking location to the customers. Accordingly, we indifferently refer to a vehicle k ∈ K
or to a driver k ∈ K in this paper. All vehicles are based at a depot denoted o. The set P160

models the set of delivery areas. Each parking location j ∈ P is associated with a parking time
ptj .

The PLRP-PS is defined on a directed graph G = (V,A). The set of vertices is V =
N ∪ P ∪ {o}. The set of arcs is A = Ad ∪ Aw, where Ad is the set of driving arcs, with
Ad = {(o, p) | ∀p ∈ P}∪{(i, j) | ∀i, j ∈ P, i 6= j}∪{(p, o) | ∀p ∈ P}, and Aw is the set of walking165

arcs, with Aw = {(p, i) | ∀p ∈ P, i ∈ N} ∪ {(i, j) | ∀i, j ∈ N, i 6= j} ∪ {(i, p) | ∀p ∈ P, i ∈ N}.
In addition, we define the set Ac = {(i, j) | ∀i, j ∈ N, i 6= j} of walking arcs between customers,
with Ac ⊆ Aw. The driving time matrix is td , with tdij ∀(i, j) ∈ Ad the driving time for all

driving arcs. A driving time tdij integrates the parking time at destination ptj .
The walking time matrix is tw, with twij ∀(i, j) ∈ Aw the walking time for all walking arcs.170

The walking distance matrix is dw, with dwij ∀(i, j) ∈ Aw the walking distance for all walking
arcs.

A vehicle route starts from the depot, visits a sequence of parking locations in P , and returns
to the depot. The sum of customer orders served by a vehicle route must not exceed the vehicle
capacity Qd and a vehicle route duration must not exceed the value hmax. A walking-trip starts175

from a parking location in P , visits a sequence of customers, and returns to the same parking
location. The duration of a walking-trip is the sum of the duration of all walking arcs used in
this walking-trip. The customer orders served by a walking-trip should not be larger than the
walking capacity denoted Qw. The overall walking distance of each driver (i.e. the sum of the
distance dwij of the walking arcs used by a driver over all of its working trips) should not exceed180

the value wmax. At a parking location, a walking-trip can start after the vehicle is parked.
Then, the drivers may perform several walking-trips from their parked vehicle.

The PLRP-PS consists of designing vehicle routes and walking-trips, with respect to their
delivery and walking capacities, the maximum route duration of each vehicle, and the maximum
walking distance of each driver such that each customer is served by exactly one driver. The185

objective function lexicographically minimizes the number of vehicles (z1) and the sum of driving
times, walking times, and parking times denoted z2.

Figure 1 illustrates a PLRP-PS solution with N = {c1, c2, c3, c4, c5}, P = {p1, p2, p3} and
K = {k1, k2}. Vehicle routes are represented by solid lines and walking trips are represented by
dashed lines.190
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Figure 1: Routes and walking-trips representation in the PLRP-PS

3.2. Mathematical model

This section introduces an MILP formulation for the PLRP-PS. It introduces two classes
of binary variables and two classes of real variables. First of all, xkij is a binary variable that
takes value 1 if arc (i, j) ∈ Ad is used by vehicle k ∈ K, and is equal to 0 otherwise. Then,

ykpij is equal to 1 if arc (i, j) ∈ Aw is used by driver k ∈ K by walking while his/her vehicle is195

parked at p ∈ P , and 0 otherwise. The non-negative real variable rkp models the order in which
a vehicle k ∈ K (or its driver) visits parking locations p ∈ P . Finally, non-negative real variable
uki represents the remaining capacity of the driver k ∈ K after visiting customer c ∈ N during
the considered walking-trip. According to this notation, the PLRP-PS can be modeled with
the following MILP formulation:200

lex−min(z1, z2) (1a)

s.t.

z1 =
∑
k∈K

∑
i∈P

xk0i (1b)

z2 =
∑
k∈K

∑
p∈P

∑
(i,j)∈Aw

twijy
kp
ij +

∑
k∈K

∑
(i,j)∈Ad

tdijx
k
ij (1c)

∑
k∈K

∑
p∈P

∑
(i,j)∈Aw

ykpij = 1 ∀j ∈ N (1d)

∑
(i,j)∈Aw

ykpij =
∑

(j,i)∈Aw

ykpji ∀k ∈ K, p ∈ P, j ∈ N ∪ P (1e)

∑
(i,p)∈Ad

xkip =
∑

(p,i)∈Ad

xkpi ∀k ∈ K, p ∈ P (1f)

∑
(0,i)∈Ad

xk0i =
∑

(i,n+1)∈Ad

xki,n+1 = 1 ∀k ∈ K (1g)
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∑
(i,p)∈Ad

xkip ≥ y
kp
pj ∀k ∈ K, p ∈ P, j ∈ N (1h)

ykpij = 0 ∀k ∈ K, i, p ∈ P, i 6= p, j ∈ N (1i)

ykpji = 0 ∀k ∈ K, i, p ∈ P, i 6= p, j ∈ N ∪ P (1j)∑
p∈P

∑
(i,j)∈Aw

dwij × y
kp
ij ≤ wmax ∀k ∈ K (1k)

∑
p∈P

∑
(i,j)∈Aw

twijy
kp
ij +

∑
(i,j)∈Ad

tdijx
k
ij ≤ hmax ∀k ∈ K (1l)

uki ≤ Qw − qi × ykppi ∀k ∈ K, p ∈ P, i ∈ N (1m)

ukj ≤ uki − qj + (1− ykpij )Qw ∀k ∈ K, p ∈ P, (i, j) ∈ Aw (1n)∑
p∈P

∑
(i,j)∈Aw

qj × ykpij ≤ Qd ∀k ∈ K, j ∈ N (1o)

rkj − rki ≥ 1− |P |(1− xkij) ∀k ∈ K, i, j ∈ P, i 6= j (1p)

xkij ∈ {0, 1} ∀k ∈ K, (i, j) ∈ Ad (1q)

ykpij ∈ {0, 1} ∀k ∈ K, p ∈ P, (i, j) ∈ Aw (1r)

0 ≤ uki ∀k ∈ K, i ∈ N (1s)

0 ≤ rkp ∀k ∈ K, p ∈ P (1t)

In this model, the objective function (1a) lexicographically considers two objectives. The
first objective (1b) minimizes the vehicle fleet size, while the second objective (1c) minimizes
the sum of walking time and driving time (that also includes parking time).

The first set of constraints (1d) fulfills customers’ order satisfaction. Every customer must205

be served by a driver k ∈ K using a walking arc (i, j) ∈ Aw while the vehicle is parked at parking
node p ∈ P . Constraints (1e) enforce flow conservation on walking arcs. A driver walking to
a node j ∈ N ∪ P (either a parking or customer node) should also leave this node by walking.
Constraints (1f) enforce the vehicles flow conservation. Constraints (1g) state that each vehicle
in K must leave the depot and return to the depot. If a solution uses less than |K| vehicles,210

then each unused vehicle k ∈ K takes the arc (0, n+ 1) with cost 0.
Constraints (1h) state that the driver of vehicle k ∈ K can deliver j ∈ N from parking node

p ∈ P if there is a driving arc xkip that enters parking p. Constraints (1i) state that a driver
cannot deliver a customer j ∈ N directly from a parking node i ∈ P if i 6= p where p ∈ P is the
parking node assigned to the walking arc ykpij . Constraints (1j) state that a driver cannot walk215

to a parking i ∈ P if the car is parked at another parking p ∈ P : i 6= p.
The overall walking distance constraints (1k) are: for each vehicle k ∈ K the sum of walking

arcs distances used by this vehicle should not exceed wmax. Constraints (1l) limit the duration
of a route, and its walking trips, to hmax, i.e. the day duration.

The walking capacity constraints are (1m) and (1n), the capacity remaining after delivering220

to the first client of a walking-trip i ∈ N is given by (1m). Also, (1n) gives the capacity remaining
after delivering the following clients in this walking-trip. The driving capacity constraints are
(1o): for each vehicle k ∈ K the sum of the demands served by this vehicle should not exceed
the vehicle capacity Qd. Finally, constraints (1p) rank the visits to parking. This adoption of
the Miller-Tucker-Zemlin constraints (Dantzig et al., 1954) is used to eliminate subtours.225
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4. Small and Large Neighborhood Search

The Large Neighborhood Search (LNS) metaheuristic consists of iteratively destroying and
repairing the current solution in order to improve it, until a time or iteration limit is reached.
The destroy part appeals to so-called destroy operators and the repairing part to repair oper-
ators. The idea of LNS was first introduced by Shaw (1998) in constraint programming and230

reintroduced by Schrimpf et al. (2000) under the name “ruin and recreate.” Its popularization
as a metaheuristic is due to Ropke and Pisinger (2006a) who proposed an adaptive LNS in
which several operators are selected depending on their previous performance. The method was
shown to be efficient for solving large classes of VRP (Pisinger and Ropke, 2007; Ropke and
Pisinger, 2006b). Recently, Christiaens and Vanden Berghe (2020) considerably improved the235

efficiency of the approach by introducing, among other features, a smaller destruction size and
fast repair operators. Dumez et al. (2021a) combines small and large destruction sizes for the
LNS. This approach is improved in Dumez et al. (2021b) to solve variants of the generalized
VRP. The LNS variant of Dumez et al. (2021a) and Dumez et al. (2021b) was further detailed
in Dumez (2021). In this paper, we present a more formal definition of this algorithm under240

the name Small and Large Neighborhood Search (SLNS).
The SLNS general algorithm is presented in Section 4.1. The destroy and repair operators

designed to solve the PLRP-PS are described in Section 4.2, while the different types of insertions
implemented in these operators are detailed in Section 4.3. Finally, the proposed parking
selection strategies are presented in Section 4.4.245

4.1. Algorithm

Let us first introduce the concept of partial solution and request bank, which is the LNS
way to visit infeasible solutions. The LNS algorithm iteratively destroys and repairs solutions.
Hence, the algorithm manipulates partial solutions. Given a solution S, the set B(S), called the
request bank, denotes the set of customers that are not served in S. When B(S) is non-empty, S250

is a called partial solution. Partial solutions are used in operators, with the number of requests
in the request bank penalized in the cost function as proposed by Pisinger and Ropke (2007).
Accordingly, considering z2 = f(S), a modified objective function z′2 = f ′(S) is optimized in
LNS, with:

f ′(S) = f(S)

(
1 + β

|B(S)|
N

)
. (2)

In SLNS, the small and large destruction sizes are randomly chosen in intervals [δsmall, ∆small]255

and [δlarge, ∆large], respectively. In addition, we presume two sets of destroy operators: denoted
Σ−small and Σ−large, and two sets of repair operators denoted Σ+

small and Σ+
large. A Small Neigh-

borhood Search (SNS) iteration draws a destruction size in [δsmall, ∆small], a destroy operator
in Σ−small and a repair operator in Σ+

small. A Large neighborhood Search (LNS) iteration draws
a destruction size in [δlarge, ∆large], a destroy operator in Σ−large and a repair operator in Σ+

large.260

Dumez et al. (2021b) propose to control these destruction sizes based on a parameter ω called
the LNS frequency: if no new best solution is found within ω SNS iterations, then the next
iteration will be an LNS iteration.

SLNS is described in Algorithm 1.
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Algorithm 1 Small and Large Neighborhood Search

Input: δsmall, ∆small, δlarge, ∆large, Σ
−
small, Σ

−
large, Σ

+
small,Σ

+
large, ω, β, S

Output: Best solution found S∗

1: iter = 0
2: while the time budget is not reached do
3: if iter < ω then
4: iter ← iter + 1 {small neighborhood search iteration}
5: S′ ← S
6: randomly select a small destruction size Φ ∈ [δsmall, ∆small]
7: randomly select operators σ− ∈ Σ−small and σ+ ∈ Σ+

small

8: S′ ← σ+(σ−(S′, Φ))
9: if f ′(S′) < (1 + ε)f ′(S∗) or f ′(S′) < f ′(S) then

10: S ← S′

11: end if
12: else
13: iter = 0 {large neighborhood search iteration}
14: S′ ← S∗

15: randomly select a large destruction size Φ ∈ [δlarge, ∆large]
16: randomly select operators σ− ∈ Σ−large and σ+ ∈ Σ+

large

17: S′ ← σ+(σ−(S′, Φ))
18: S ← S′

19: end if
20: if f(S′) < f(S∗) and B(S′) = ∅ then
21: S∗ ← S′

22: iter ← 0
23: end if
24: end while
25: return S∗

The iteration counter iter, initialized to zero in line 1, tracks the number of SNS iterations265

without improving the best known solution S∗. The counter iter is re-initialized to 0 on each
LNS iteration (line 13) and each time S∗ is improved (line 22). The main loop between lines 2
and 24 performs SNS iterations and LNS iterations as long as the time limit is not reached. On
an SNS iteration (iter < ω, Line 3 – 11), a new solution S′ is created from the current solution
S, a small destruction size φ is drawn in the interval [δsmall, ∆small], a small destroy operator270

σ− is selected in Σ−small and a small recreate operator σ+ is selected in Σ+
small. The new solution

S′ is obtained (Line 8) by applying these two operators. S′ is accepted as the current solution
for the next iteration based on a record-to-record acceptance criterion (Dueck, 1993) applied on
the modified cost function f ′ (line 9). In addition, a new solution is also accepted if it improves
the current solution. This condition is used in particular on the SNS iterations that follow a275

LNS one.
If S∗ is not improved for ω iterations, an LNS iteration is performed (line 13–19). In this

case, the new solution S′ is created from the best known solution S∗. The destruction size
φ, destroy operator σ− and repair operator are drawn from [δlarge, ∆large], Σ

−
large and Σ+

large,
respectively. The produced solution is then systematically accepted as the current solution for280

the next SLNS iteration. Over all iterations of the main loop, the best found solution S∗ is
saved (lines 20–22) and returned at the end of the algorithm.

As in Ropke and Pisinger (2006a) SLNS is used in two consecutive phases. The initial
solution is found with an unlimited number of vehicles. The first phase reduces the number
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of vehicles (z1): every time a feasible solution is found (i.e. the request bank is empty), the285

maximum number of vehicles kmax is decremented, the route with the minimum number of
customers is removed from the solution and its customers are added to the request bank. When

the minimum number of vehicles

⌈∑
i∈N qi

Qd

⌉
or the first phase time budget is reached, the

second phase (minimization of z2) starts.

4.2. Destroy and repair operators290

This section introduces the SLNS operators that were implemented to solve the PLRP-PS.
We will first briefly describe the destroy operators of the set Σ−small used in SNS iterations:

Random removal (Ropke and Pisinger, 2006a) randomly selects φ customers and removes them
from the current solution.295

Worst removal (Ropke and Pisinger, 2006a) removes φ customers one after the other, each time
selecting the customer whose removal decreases the cost function the most.

Related removal (Hemmelmayr et al., 2012) selects a seed-customer randomly together with its300

φ− 1 nearest customers. These are removed from the solution.

(Split) String removal (Christiaens and Vanden Berghe, 2020) removes sequences of customers
in the walking trips of the current solution, either conserving, or not, a sub-string in the middle.

The destroy operators Σ−large used in LNS iterations bring diversification to the algorithm.305

Every small destroy operator described previously is also used as a large destroy operator, i.e.
Σ−small ⊂ Σ

−
large.

In addition to the original versions, we adapt these four operators to the PLRP-PS. To take
this problem structure into account, some destroy operators can be either applied to customers310

or to parking locations (similarly to Hemmelmayr et al. (2012)). Hence, for each operator we
create an equivalent destroy operator that removes parking locations instead of customers.

When a visited parking location is removed from a solution, all the customers that are served
by the walking trips starting from this parking spot are placed in the request bank. For exam-
ple, the random parking removal operator randomly selects some visited parking locations, all315

of their visited customers are placed in the request bank and the visit to that particular parking
spot is removed from the route, until φ customers have been removed. Symmetrically, when
a walking trip becomes empty (after removing its last customer), the corresponding parking
location is removed from the vehicle route.

320

Historical removal (Pisinger and Ropke, 2007) is adapted here to focus on removing parking
locations exclusively. It is based on the best objective value obtained by a previous solution that
was using a particular parking location. For each parking location, the best objective function
value (z2) is stored over SLNS iterations. This operator iteratively removes the parking location
with the worst objective value in the history until at least φ customers have been placed in the325

request bank.

Route removal (Hemmelmayr et al., 2012) removes a random route from the solution.

In our SLNS implementation, the same set of repair operators Σ+ is used for large and330

small destruction sizes. Let S be a partial solution and B(S) the set of customers in the request
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bank. A repair operator σ+ ∈ Σ+ evaluates the insertion of customers in B(S). These are
selected according to list heuristics, as proposed in Christiaens and Vanden Berghe (2020):

Random selects customers in a random order.335

Closest selects customers whose nearest parking location is the closest to the depot first.

Farthest selects customers whose nearest parking location is the farthest to the depot first.
340

Largest selects customers with the largest demand first.

First in first out (FIFO) selects customers according to their order of insertion in B(S).

When a customer is selected for insertion, it has to be inserted in a walking-trip, starting345

and returning from a parking location on a route. The insertion position process with parking
selection is detailed in Section 4.3). It may happen that no feasible insertion position is found
for a customer. In this case, it remains in the request bank and the next customer is selected.
This results in a partial solution.

Note that in all repair operators, a parking spot already used by a vehicle is never inserted350

into another route or in another position on its current route.
Table 1 presents an overview of the operators that are implemented in the SLNS algorithm.

Sets in columns Customer/Parking/Route indicate when they may be used depending on what
they operate on. The references in the column source indicate the articles that proposed the
considered criteria.355

Type Name Customer Parking Route Source

Destroy Random Σ−small, Σ
−
large Σ−large Ropke and Pisinger (2006a)

Worst Σ−small, Σ
−
large Σ−large Ropke and Pisinger (2006a)

Related Σ−small, Σ
−
large Σ−large Hemmelmayr et al. (2012)

String Σ−small, Σ
−
large Σ−large Christiaens and Vanden Berghe (2020)

Historical Σ−large Pisinger and Ropke (2007)

Route Σ−large Hemmelmayr et al. (2012)

Repair Random Σ+
small, Σ

+
large Christiaens and Vanden Berghe (2020)

Closest Σ+
small, Σ

+
large Christiaens and Vanden Berghe (2020)

Farthest Σ+
small, Σ

+
large Christiaens and Vanden Berghe (2020)

Largest Σ+
small, Σ

+
large Christiaens and Vanden Berghe (2020)

FIFO Σ+
small, Σ

+
large this paper

Table 1: Overview of destroy and repair operators

4.3. Customer insertion

When a customer has been selected to be inserted in a solution, three types of insertions
are considered:

• Insertion in a new route: the first customer is inserted into a solution by creating a360

new route (Figure 2a). Hence, in this insertion a customer is served from a new route and
a new parking location.
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• Insertion through a new parking location: a customer can be inserted into a new
walking-trip, starting from a new parking location (Figure 2b) on an existing route. This
operation adds a parking location to the list of used parking spots.365

• Insertion through a served parking location: both of the above types of insertions
involve stopping at a new parking location, while serving a customer from a served parking
location takes advantage of the vehicle being already parked to serve several customers. In
this case, all possible insertions on existing walking-trips (Figure 2c), or on new walking-
trips from each served parking spot (Figure 2d) are evaluated.370

For each customer insertion, for all insertion types and unless a parking selection strategy
applies (as presented in Section 4.4), all insertion positions (all parking and customer positions
in walking trips) are evaluated and the best one is inserted. Note that in this process a diversi-
fication is obtained by integrating the blink principle of Christiaens and Vanden Berghe (2020):
insertions are evaluated with a probability 1 − γ, i.e. they have a probability γ to be ignored.375

The performed insertion is the cheapest one among all evaluated insertions.

(a) Insertion in a new route
(b) Insertion through a new parking location (existing
route)

(c) Insertion in an existing walking-trip (existing route,
served parking location)

(d) Insertion in a new walking trip (existing route, served
parking location)

Figure 2: Types of insertions in PLRP-PS solutions
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4.4. Parking location selection strategies

Inserting a customer in a new route or through a new parking location (Figure 2a and 2b)
suggests selecting a parking location among a very large set of potential locations. The proposed
selection strategies are applied to reduce the number of evaluated parking spots in these types380

of insertions.
Let us presume that a customer has been selected and our goal is to evaluate its insertion in a

new route or through a new parking location. We propose different parking selection strategies.
A parking selection strategy is composed of a parking selection criterion and parking selection
method.385

We consider two criteria to select parking locations from each customer: The first criterion
is the walking time between the parking location and the customer (radius-r criterion). The
second criterion is the ranking of the parking spot in the list of parking spots ordered by non-
decreasing distance to the considered customer (k-nearest criterion). In addition, two methods
involve these criteria to reduce the set of evaluated parking spots: The first one filters the390

parking set from which each customer can be served a priori, keeping the locations below a
given threshold on the chosen criterion. In the second method, for each customer a sorted list
of parking locations is designed based on the selected criterion. The locations are then evaluated
according to this order, with a given probability to stop after each location evaluation. These
two methods are detailed below.395

4.4.1. Filtering parking locations

Let us presume that, for each customer i ∈ N , a subset of parking locations is selected from
P and is referred to as Pi ⊂ P . According to the filtering method, when the customer i has to
be inserted in a new route or with a new parking location, the location j is considered if and
only if j ∈ Pi.400

Given a parameter r > 0, the radius-r criterion defines Pi as the subset of parking spots
within r minutes walking time from i, i.e. Pi = {j ∈ P |twij 6 r}. The k-nearest criterion, with
k ≤ 1 defines Pi as the subset containing the k nearest parking locations, walking from i.

Note that in a solution, a customer i may still be served from a parking location not included
in Pi if it has been inserted in an existing trip or through a served parking location.405

4.4.2. Sorting parking locations

The second method is denoted sorting. It consists of building, for each customer, a sorted
list of parking locations. With both criteria, for each customer i ∈ N , the parkings j ∈ P are
sorted in non-decreasing order of twij . When inserting a customer i in a new route or through
a new parking location, the parking locations are considered according to their order in the410

customer’s sorted list of parking spots.
For the radius-r criterion, for a given parameter r, the list of parking locations is explored

while µ ≤ exp (−twij/r) where µ ∼ U([0; 1]) and twij is the walking time between the customer
i and the parking spot j. As for the simulated annealing criterion (Kirkpatrick et al., 1983),
this criterion is designed such that the expected walking time between i and the last parking415

location explored is around r minutes when the exploration stops.
For the k-nearest criterion, for a given parameter k, the list of parking locations is explored

while µ ≤ 1 − 1
k , with µ ∼ U([0; 1]). Let Y be a random variable modeling the number

of evaluated parking locations. By definition of a geometric distribution, we can say that
Y ∼ Geo( 1k ), and that its expected value is E(Y ) = k. In other words, the expected position of420

the parking location in the list when the exploration stops is k.
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5. Computational Results

This section presents the experiments performed with SLNS to solve the PLRP-PS. The
algorithm is coded in Julia 1.5.0. The experiments were performed on a PC running Linux,
Ubuntu 20.04.2 LTS, equipped with an Intel Xeon Gold 6230 @ 2.10GHz. A single thread is425

used by our code.
Section 5.1 introduces the instances that were generated for these experiments based on

realistic data. Section 5.2 compares the different parking selection strategies. SLNS is evaluated
on the PLRP, and our results are compared to those of Coindreau et al. (2019) and Cabrera
et al. (2022) in Section 5.3. Finally, numerical studies are performed in Section 5.4 to evaluate430

the impact of various delivery area configurations.

5.1. Instances and parameters

We created realistic instances based on open data from Nantes Metropole 1, as well as on
the official French open data platform 2.

The set of parking locations is taken from the “Loading zones in downtown Nantes” dataset 3
435

(Figure 3a). The customer locations were obtained with filters: “active,” “accommodation,”
and “catering locations” in “Loire-Atlantique” on the dataset “SIRENE database of companies
in Nantes Metropole” 4 (Figure 3b).

Our full dataset encompasses 352 loading zones (Figure 4a) and 1196 customer locations
within walking range of a loading zone (Figure 4b). The depot, represented by the black circle440

on the left of Figure 4b, is located outside of the city center.
Real-world distances and travel time matrices were obtained with openrouteservice back-

end 5. The driving speeds are heuristically computed by this software based on the legislation
and road characteristics. A walking speed of 4.8km/h is assumed. All visualizations were
created using Open Street Map 6.445

(a) Loading zones (b) All customers locations

Figure 3: Datasets representation

This data set is used to generate five sets of instances, including between 50 and 400 cus-
tomers. For each instance size, ten instances were generated, taking customer locations at

1https://data.nantesmetropole.fr
2https://www.data.gouv.fr
3https://www.data.gouv.fr/fr/datasets/aires-de-livraison-du-centre-ville-de-la-ville-de-nantes/
4https://data.nantesmetropole.fr/explore/dataset/244400404_base-sirene-entreprises-nantes-metropole/
5www.openrouteservice.org and www.github.com/GIScience/openrouteservice
6www.openstreetmap.org
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(a) Reduced customers locations (b) Loading zones + reduced customers locations

Figure 4: Reduction of the datasets

random in the set of 1196 locations, and customers demands are randomly generated integer
values between 1 and 5. The complete set of loading zones is considered in all instances. The
considered time horizon is 420 minutes (i.e 7h). In our experiments, we set the service duration450

at customers to 0.
Figure 5 illustrates a solution of the PLRP-PS, showing the real driving and walking paths

that are considered in this dataset. The red points indicate customers and the dark blue points
indicate the selected commercial loading zones. Lightblue points indicate loading zones that
are not used. Walking paths are represented in red, while the other colors show the vehicle455

itineraries.
For the sake of readability, driving paths between the depot and parking locations or loading

zones are replaced by dashed lines. Driving and walking paths are obtained with the openroute-
service backend5.

Table 2 summarizes the default parameter values taken for SLNS and for the PLRP-PS460

that were used in our experiments. The parameters of the parking selection strategies will be
thoroughly investigated in Section 5.2. The time budget used in SLNS for each instance size
n = {50, 100, 200, 300, 400} is {1, 3, 10, 20, 40} minutes, respectively.

PLRP-PS:

kmax ∞ (to be minimized)
Qd 50
Qw 10
pt 5 minutes
wmax 8 kilometers
hmax 420 minutes (i.e 7h)

SLNS:

initial solution Largest repair operator
[δsmall, ∆small] [0.05|N |, 0.10|N |]
[δlarge, ∆large] [0.10|N |, 0.20|N |]
ω |N |1.5
β 20
γ 10%

Table 2: Default SLNS and PLRP-PS parameter values

5.2. Selection of parking locations

This section provides insights into the main focus of this paper: the selection of parking465

locations in SLNS. In this section, we present different results of SLNS on the PLRP-PS,
focusing on the parking selection parameters introduced in Section 4.4, comparing the filtering
and sorting methods as well as the k-nearest and radius-r criteria.
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Figure 5: Visualization of the best found solution for instance “nantes-50-1” with 50 customers.

To find the best parking selection method, the different strategies were tested with different
parameter values. In addition, as a base case, we consider the no-filter(x5) configuration in470

which the maximum runtime is multiplied by five and no selection method is applied (all parking
locations p ∈ P are evaluated in all types of insertion). Then, the results of these configurations
are compared to the best-known solutions (BKS) with different measures: number of BKS found
(i.e gap is zero), average gap, and maximum gap. The gap is computed such as∆ = z−BKS

BKS ×100,
where z is the sum of driving time, walking time, and parking time.475

Table 3 synthesizes the results of these experiments (the detailed results are provided in
Appendix in Table A.7).

For each configuration, all instances are solved five times and the best solution out of these
five runs is kept. Each line corresponds to a configuration. The configurations are first grouped
by strategy: k-nearest or radius-r. Secondly, they are grouped by approach: filtering or sorting.480

Then, Column 3 specifies the value of r (in minutes) or k (in number of parking locations).
Finally, Columns 4, 5, and 6 give the number of best known solutions found, the maximum gap,
and the average gap, respectively.

From these experiments we find that the k-nearest parking selection strategy outperforms
the radius-r strategy. An interpretation is that the duration radius r integrates too many485

parking locations for customers in dense areas, and not enough when customers are isolated.
On the contrary, the k-nearest criterion considers a limited and controlled number of parking
locations for customers regardless of the density of parking locations. To understand the poor
performance of the filtering strategy with r=5 or r=10, let us have a deeper look into the
solution of instance nantes-50-1. For the r = 5 radius criterion with the filtering parking490

selection method, the best solution has a total working time of 394.1, with a driving time of
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Parking selection strategy # BKS Max. ∆ Avg. ∆

r

radius-r

filtering
5 0 38.67 19.22
10 0 28.56 15.93
15 1 5.45 1.90

sorting
5 1 5.35 1.93
10 3 5.40 2.11
15 0 7.64 2.59

k

k-nearest

filtering
5 4 3.48 0.88
10 13 2.90 0.88
15 3 4.08 1.34

sorting
3 8 3.37 0.81
5 6 2.37 0.79
10 7 2.85 0.85

no-filter(x5) - 5 3.12 1.25

Table 3: Comparison of the parking selection strategies

80.4, a walking time of 258.7 and a parking time of 55. On the other hand, for the k = 10
nearest criterion with the filtering method, the best solution has an overall working time of
326.5 with a driving time of 78.8, a walking time of 157.7, and a parking time of 90. With too
few possibilities to start new walking trips from new parking locations, the insertion algorithm495

mainly inserts in existing trips, resulting in a solution with long walking trips.
As far as the k-nearest parking selection criterion is concerned, the filtering method with

k = 10 and the sorting method with k = 5 both perform well. Let us denote them filtering-k10
and sorting-k5, respectively. The sorting-k5 strategy has better average and maximum gaps,
but filtering-k10 seems to provide more best-known solutions.500

Figure 4 presents a more detailed comparison of these two strategies. The results are ag-
gregated per instance size. In this table the column #Best indicates the number of instances
for which each strategy allows one to find the best solution out of the solutions given by the
two strategies. An additional column #veh indicates the average number of vehicles in each
category of instance. The first thing to notice here is that, when compared only to filtering-k10,505

the sorting-k5 strategy is often better than filtering-k10. This comforts the slight superiority of
sorting-k5 over filtering-k10 in our experiments. Nevertheless, the two strategies remain very
close. In particular, they find the same average number of vehicles per category.

According to these results, the following experiments are performed using the sorting-k5
strategy.510

5.3. Computational experiments on benchmark PLRP instances

The performance of the proposed SLNS is evaluated in the PLRP, in which the set of
parking locations is restricted to the set of customers. PLRP instances can be obtained from
the VRP-TR instances of Coindreau et al. (2019), without car-pooling and time windows. These
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filtering-k10 sorting-k5

n #Best Max∆ Avg∆ #veh #Best Max∆ Avg∆ #veh

50 4 0.71 0.17 3.7 6 1.21 0.2 3.7
100 5 1.07 0.31 6.7 5 1.74 0.35 6.7
200 3 2.9 0.72 12.3 7 2.02 0.4 12.3
300 4 1.9 0.84 18.4 6 1.64 0.5 18.4
400 6 2.2 0.48 24.5 4 2.37 0.61 24.5

Avg. 22 2.9 0.5 – 28 2.37 0.41 –

Table 4: Detailed comparison per instance size of the filtering-k10 and sorting-k5 strategy.

instances are available online 7 and they have been solved under these assumptions by the VNS515

of Coindreau et al. (2019) and the matheuristic of Cabrera et al. (2022).
Coindreau et al. (2019) minimize the sum of driving distances. To adapt our method, the

time needed to park is fixed to zero and the walking cost is obtained by multiplying all walking
distances by a small value ε. The constraints used by Coindreau et al. (2019) to solve their
instances are as follows: a maximum overall walking distance for each worker of 5 km (here520

named wmax = 5) and a time horizon of 7h (here hmax = 420). These instances also contain
a service duration at each customer. This service duration is not considered as a part of the
objective function but it is used to evaluate the day duration constraint.

For this set of experiments, the time limit of SLNS is set to 15, 30, 60, and 120 seconds
for the 20, 30, 40, and 50 customers instances, respectively. These values are chosen very close525

to the average run-times of Cabrera et al. (2022), who used a limited number of iterations.
The average run-times of Coindreau et al. (2019) are significantly greater (6779 seconds for 50
customer instances). Ten runs are performed for each instance.

Table 5 synthesizes the comparison between the proposed SLNS algorithm, the VNS of
Coindreau et al. (2019), and those of the matheuristic of Cabrera et al. (2022) (denoted MH).530

The detailed results for each instance can be found in Table A.6. Similarly to the previous
tables, each line represents averaged results for each instance size. For each method, the columns
indicate the number of BKS (including our solutions), the maximum gap to the best known
solution (in %), and the average gap to the best-known solutions (in %).

VNS MH SLNS

n # BKS Max. ∆ Avg. ∆ # BKS Max. ∆ Avg. ∆ # BKS Max. ∆ Avg. ∆

20.0 1.0 8.89 4.11 8.0 0.1 0.02 10.0 0.0 0.0
30.0 1.0 5.85 3.13 9.0 0.04 0.01 7.0 0.6 0.16
40.0 3.0 5.4 1.16 7.0 0.59 0.08 9.0 1.97 0.2
50.0 3.0 6.18 1.99 4.0 2.57 0.77 7.0 1.31 0.2

Total/Avg. 8.0 6.58 2.6 28.0 0.83 0.22 33.0 0.97 0.14

Table 5: Comparison on the Coindreau et al. (2019) PLRP instances to the VNS of Coindreau et al. (2019) and
the matheuristic (MH) of Cabrera et al. (2022).

From these experiments we find that, with equivalent computing times, SLNS finds a little535

more BKS than MH though it is not always on the same instances. New BKS are found
for eleven instances. Overall, SLNS misses only seven BKS over the set of forty instances. In

7https://github.com/ncabrera10/VRPTR_instances
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addition, SLNS has the smallest average gap (0.14%) on average, while MH has a slightly better
average for maximum gaps. It can be noted that with slightly longer run-times (600 seconds on
all instances), the SLNS average of average gaps falls to 0.05, while the average of maximum540

gaps falls to 0.44.
In conclusion, SLNS offers competitive results on the PLRP. With equivalent run-times, the

results slightly outperform the elaborate matheuristic of Cabrera et al. (2022). It also has the
advantage of being simple to design and easy to integrate in classical VRP heuristics.

5.4. Managerial insights545

The objective of this section is to evaluate the impact of integrating parking selection and
walking trips in vehicle routing. Therefore, we present computational experiments in which the
PLRP-PS is solved with different parameter values and compared with the CVRP and PLRP.
These experiments are led on the Nantes instances presented in Section 5.1. We evaluate the
impact on driving time, walking time, and parking time as well as the number of times vehicles550

park as the number of possible parking location increases.
As described in the previous section, our SLNS for the PLRP-PS can solve the PLRP by

limiting the set of parking locations to the set of customers (P = N). It can also be used to
solve a CVRP by taking P = N and setting the maximum walking distance per driver, wmax

to zero.555

5.4.1. Impact of different compositions of the parking locations set

In the following experiments, we compare the solutions obtained with SLNS when solving
the Nantes instances as CVRP, PLRP, or as PLRP-PS. In the latter case, we consider two sets
of parking locations: either the set of loading zones (denoted LZ), or the set made of parking
at each customer location, plus the loading zones (denoted C+LZ). The parking time pt is set560

to five minutes in all cases. Figure 6 presents a breakdown of the objective function value
between driving time, parking time, and walking time, on average for each PLRP-PS instance
size, divided by the number of customers, for the different problem settings.
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Figure 6: Decomposition into driving, parking, and walking time
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The first observation is that all PLRP variants achieve a reduction in cost with respect
to the CVRP. In more detail, the PLRP solutions reduce driving time by 16% and parking565

times by 72% compared to the CVRP. Moreover, the PLRP solution costs are on average 35%
cheaper. This indicates that, even when parking at customers in city centers takes reasonable
time, walking to serve several customers from one parking location should be considered as a
way to reduce cost. Comparing the PLRP-PS(LZ) to the CVRP, the driving time is reduced
by 19%, the parking time is reduced by 80% and the objective value is reduced by 30%. The570

difference of reduction of the objective value between the PLRP and PLRP-PS(LZ) is due to
the walking time. In the latter case, the average walking time is 50% greater than for the PLRP.
Still looking at the overall cost, it is interesting to note that the relative cost saving is greater
for the PLRP variants when the number of customers is high. This indicates that park-and-loop
efficiency increases with the density of customers, which was expected.575

Secondly, the results for the PLRP are very similar to the ones with PLRP-PS(C+LZ) where
all customers and delivery areas are considered parking locations. These results indicate that
it is more efficient to park at customers when it is possible. Looking at the detail of driving,
parking, and walking times, parking at customers mainly reduces the walking time while driving
and parking times are higher.580

To further analyze the PLRP and PLRP-PS solutions, Figure 7 represents the average
number of parking instances per customer (i.e. the number of used parking locations divided
by the number of customers) for each instance size and each PLRP variant.

Parking at customers is represented in orange, while parking at loading zones is in green.
Let us recall that some parking at customers have been added to the PLRP-PS(LZ) parking585

locations for customers that are too far from a loading zone.
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Figure 7: Average number of parking instances per customer and per parking type in the PLRP and PLRP-PS
solutions
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The figure confirms that parking at customers is mostly used in PLRP-PS(C+LZ) solutions.
When parking farther from customers (i.e. in PLRP-PS(LZ) solutions), fewer parking locations
are used.

It is also worth noting that the average number of parking instances per customer decreases590

when the number of customers increases. This confirms that the greater the density of cus-
tomers, the more efficient the park-and-loop practice.

5.4.2. Impact of parking time

When comparing the different variants of the PLRP-PS, there is no doubt that parking time
is of uttermost importance. To evaluate its impact, we compare the solutions of the PLRP-PS595

with different values of pt ∈ {0, 3, 5, 15} (in minutes). The parking set is the set of loading zones
(PLRP-PS(LZ)). Figure 8 shows the impact of parking time variations.
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Figure 8: Average time per customer decomposed by driving time, parking time, and walking time

For each value of pt and each instance size, the bar chart shows the average driving time,
walking time, and parking time per customer. A first observation is that for all instance sizes,
the average driving time per customer remains relatively stable when pt increases. The average600

parking time per customers in solutions also increases with pt but this increase remains conse-
quently smaller than the increase of pt itself. On the contrary, the walking time significantly
increases, especially on small instances. On average, when parking time increases from pt = 0
to pt = 5, the average driving time per customer is reduced by 10% and the walking time is in-
creased by 44%. Looking at the impact on the overall working time, increasing the parking time605

from pt = 0 to pt = 5 generates a limited increase of working time by less than three minutes
per customer for the least favorable instances (N = 50). As far as the 400-customers instances
are concerned, this increase is even reduced to one minute and seventeen seconds on average.
This confirms that considerable savings can be generated by the park-and-loop practice when
parking requires significant time.610

Looking at the number of parking instances per customer on Figure 9, we observe that
when pt increases, the proportion of parking locations used decreases. For instance, when
pt = 5 minutes, the average number of parking locations used in solutions is reduced by 59%
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Figure 9: Evolution of the average number of parking instances per customer with respect to parking time

compared to solutions where pt = 0. It is worth observing that even when the parking time is
null, a parking spot is generally used to serve several customers. This can be explained by the615

fact that not every customer is necessarily in the immediate vicinity of a loading zone.

6. Conclusion

In this paper, we introduced the Park-and-Loop Routing Problem with Parking Selection
(PLRP-PS), which is an extension of previous vehicle routing problems where customers are
served through a combination of walking and driving, presented under the denomination Park-620

and-Loop Routing Problem (PLRP). The PLRP-PS captures practical aspects of urban delivery
by integrating the selection of a parking location into vehicle routing. To solve this problem,
we proposed a Small and Large Neighborhood Search (SLNS) metaheuristic combining recent
progress in the large neighborhood search meta-heuristic. We led extensive computational
experiments that focus on the integration of parking selection strategies in vehicle routing625

heuristics. We compared four parking selection strategies which are integrated in the repair
operators of SLNS. These strategies are evaluated in real-world instances built upon public
data from the city of Nantes.

We find that selection strategies based on the selection of a number of nearest parking
locations for each customer are more efficient than those based on the selection of parking spots630

within a fixed radius around each customer. Despite its simplicity, we show that SLNS competes
with state of the art metaheuristic on existing benchmarks from the literature. Besides, we
provide insights on the practical relevance of the PLRP-PS on our instances. Compared to a
classical CVRP model, we find that combining driving and walking reduces the driving time
needed by 19% on average to deliver to all customers while also decreasing the overall working635

time by 30%. Most of this saving is achieved by reducing the overall parking time by 80%.
To complete this analysis, we find that the parking time has a major impact on solutions.

Indeed, integrating a five-minute parking time reduces the average number of parking locations
used in solutions by 59% compared to a situation where the parking time is null.
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We conclude that integrating parking selection in heuristics can be efficiently done with640

simple approaches. In this context, the park-and-loop practice is of significant interest to
reduce working and driving time in dense delivery areas. Interesting perspectives would be to
investigate the impact of park-on-loop on C02 emissions as well as on the integration of temporal
aspects such as time windows at customers.
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Appendix A. Computational experiments results details

Inst VNS MH SLNS
Coindreau et al. (2019) Cabrera et al. (2022) this paper

20 A 1 (2, 32.42) (2, 30.95) (2, 30.95)
20 A 2 (2, 41.62) (2, 41.56) (2, 41.56)
20 A 3 (2, 39.44) (2, 36.22) (2, 36.22)
20 A 4 (2, 39.16) (2, 36.03) (2, 36.03)
20 A 5 (2, 35.27) (2, 35.27) (2, 35.27)
20 A 6 (2, 43.72) (2, 42.25) (2, 42.24)
20 A 7 (2, 40.11) (2, 38.67) (2, 38.63)
20 A 8 (2, 39.15) (2, 36.85) (2, 36.85)
20 A 9 (2, 29.93) (2, 29.61) (2, 29.61)
20 A 10 (2, 41.23) (2, 39.67) (2, 39.66)
30 A 1 (3, 41.3) (3, 40.75) (3, 40.75)
30 A 2 (3, 46.65) (3, 45.66) (3, 45.64)
30 A 3 (3, 50.98) (3, 49.18) (3, 49.4)
30 A 4 (3, 46.32) (3, 43.76) (3, 43.76)
30 A 5 (3, 48.4) (3, 47.04) (3, 47.04)
30 A 6 (3, 51.63) (3, 49.58) (3, 49.58)
30 A 7 (3, 45.53) (3, 45.54) (3, 45.53)
30 A 8 (3, 45.36) (3, 43.69) (3, 43.93)
30 A 9 (3, 41.84) (3, 41.14) (3, 41.14)
30 A 10 (3, 49.53) (3, 46.88) (3, 47.16)
40 A 1 (3, 59.17) (3, 59.17) (3, 59.17)
40 A 2 (3, 58.51) (3, 58.51) (3, 59.66)
40 A 3 (3, 63.16) (3, 62.91) (3, 62.91)
40 A 4 (3, 50.36) (3, 50.36) (3, 50.36)
40 A 5 (4, 52.76) (4, 51.74) (4, 51.74)
40 A 6 (3, 63.08) (3, 61.27) (3, 61.27)
40 A 7 (3, 57.78) (3, 54.9) (3, 54.82)
40 A 8 (4, 56.37) (4, 56.32) (4, 55.99)
40 A 9 (3, 56.47) (3, 56.36) (3, 56.36)
40 A 10 (3, 57.7) (3, 57.7) (3, 57.69)
50 A 1 (4, 60.51) (4, 56.99) (4, 56.99)
50 A 2 (4, 62.49) (4, 62.15) (4, 60.59)
50 A 3 (4, 65.88) (4, 63.87) (4, 63.67)
50 A 4 (4, 58.22) (4, 57.93) (4, 56.94)
50 A 5 (4, 64.18) (4, 64.12) (4, 64.96)
50 A 6 (4, 66.14) (4, 65.03) (4, 65.35)
50 A 7 (4, 63.71) (4, 63.71) (4, 63.82)
50 A 8 (4, 70.89) (4, 69.78) (4, 68.82)
50 A 9 (4, 58.2) (4, 58.73) (4, 58.2)
50 A 10 (4, 60.79) (4, 61.23) (4, 60.78)

Table A.6: Comparison with the VNS of Coindreau et al. (2019) and the matheuristic of Cabrera et al. (2022)
(Coindreau’s instances)
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Instance filter-r5 filter-r10 filter-r15 filter-k5 filter-k10 filter-k15 sort-r5 sort-r10 sort-r15 sort-k3 sort-k5 sort-k10 no filter

nantes-50-1 (3, 394.13) (3, 364.97) (3, 329.83) (3, 328.97) (3, 326.5) (3, 329.4) (3, 330.65) (3, 330.45) (3, 329.83) (3, 330.27) (3, 330.45) (3, 329.08) (3, 329.35)
nantes-50-2 (4, 462.58) (4, 466.15) (3, 362.6) (3, 363.42) (3, 364.53) (3, 365.25) (3, 363.08) (3, 366.15) (3, 363.72) (3, 363.05) (3, 363.73) (3, 363.08) (3, 363.4)
nantes-50-3 (4, 423.97) (4, 390.85) (4, 307.35) (4, 306.88) (4, 306.12) (4, 307.32) (4, 306.55) (4, 305.95) (4, 307.65) (4, 307.23) (4, 305.73) (4, 307.48) (4, 306.88)
nantes-50-4 (4, 397.18) (4, 367.58) (4, 324.9) (4, 324.72) (4, 323.78) (4, 323.98) (4, 324.32) (4, 326.23) (4, 325.62) (4, 323.98) (4, 324.55) (4, 324.35) (4, 324.83)
nantes-50-5 (3, 393.63) (3, 365.82) (3, 324.42) (3, 324.62) (3, 324.73) (3, 324.37) (3, 324.28) (3, 323.87) (3, 324.02) (3, 324.62) (3, 324.98) (3, 324.1) (3, 324.58)
nantes-50-6 (4, 365.07) (4, 360.85) (4, 339.98) (4, 340.07) (4, 340.1) (4, 340.03) (4, 340.22) (4, 337.75) (4, 340.82) (4, 339.32) (4, 339.25) (4, 337.72) (4, 339.13)
nantes-50-7 (4, 423.83) (4, 413.93) (4, 343.6) (4, 342.95) (4, 344.88) (4, 343.2) (4, 343.65) (4, 344.93) (4, 343.38) (4, 344.22) (4, 343.92) (4, 342.95) (4, 343.93)
nantes-50-8 (4, 429.28) (4, 403.98) (4, 335.15) (4, 333.72) (4, 334.23) (4, 335.25) (4, 334.32) (4, 336.93) (4, 335.47) (4, 337.07) (4, 333.75) (4, 334.53) (4, 334.52)
nantes-50-9 (4, 413.73) (4, 402.15) (4, 343.7) (4, 341.62) (4, 341.7) (4, 342.45) (4, 341.98) (4, 344.27) (4, 343.63) (4, 341.55) (4, 343.18) (4, 341.57) (4, 343.92)
nantes-50-10 (4, 421.1) (4, 406.82) (4, 345.8) (4, 344.93) (4, 348.83) (4, 347.75) (4, 345.38) (4, 344.18) (4, 346.58) (4, 344.85) (4, 346.37) (4, 345.65) (4, 347.22)
nantes-100-1 (7, 716.07) (7, 701.25) (7, 618.18) (7, 619.42) (7, 604.97) (7, 610.1) (7, 621.0) (7, 610.43) (7, 628.93) (7, 611.4) (7, 615.47) (7, 613.65) (7, 615.63)
nantes-100-2 (7, 655.6) (7, 643.8) (7, 579.77) (7, 579.95) (7, 576.83) (7, 580.52) (7, 576.62) (7, 576.65) (7, 582.43) (7, 577.37) (7, 578.13) (7, 575.03) (7, 572.72)
nantes-100-3 (6, 658.38) (6, 628.42) (6, 533.52) (6, 530.25) (6, 530.55) (6, 525.7) (6, 527.92) (6, 531.25) (6, 532.98) (6, 526.43) (6, 527.18) (6, 532.12) (6, 530.63)
nantes-100-4 (6, 683.22) (6, 623.9) (6, 531.95) (6, 529.78) (6, 530.27) (6, 524.63) (6, 531.97) (6, 528.73) (6, 528.55) (6, 524.9) (6, 525.27) (6, 529.17) (6, 529.68)
nantes-100-5 (7, 662.05) (7, 640.22) (7, 557.35) (7, 554.28) (7, 559.87) (7, 554.17) (7, 551.5) (7, 557.67) (7, 558.6) (7, 556.35) (7, 558.43) (7, 560.68) (7, 555.0)
nantes-100-6 (7, 686.48) (7, 671.5) (7, 588.95) (7, 580.12) (7, 579.23) (7, 582.92) (7, 582.28) (7, 585.8) (7, 584.43) (7, 582.62) (7, 583.5) (7, 587.33) (7, 582.7)
nantes-100-7 (7, 702.68) (7, 700.88) (7, 619.55) (7, 617.02) (7, 613.4) (7, 617.38) (7, 617.3) (7, 621.7) (7, 625.27) (7, 614.25) (7, 615.9) (7, 615.28) (7, 616.18)
nantes-100-8 (6, 611.92) (6, 589.85) (6, 525.98) (6, 527.13) (6, 530.08) (6, 530.85) (6, 529.5) (6, 534.82) (6, 530.23) (6, 532.82) (6, 529.05) (6, 530.17) (6, 523.97)
nantes-100-9 (7, 741.35) (7, 715.7) (7, 640.07) (7, 633.95) (7, 638.17) (7, 634.38) (7, 644.07) (7, 633.22) (7, 635.92) (7, 634.68) (7, 631.42) (7, 629.47) (7, 634.17)
nantes-100-10 (7, 750.45) (7, 704.55) (7, 621.38) (7, 621.0) (7, 619.9) (7, 621.32) (7, 626.65) (7, 619.75) (7, 620.53) (7, 622.57) (7, 622.23) (7, 625.0) (7, 624.68)
nantes-200-1 (13, 1166.72) (13, 1096.33) (13, 1015.5) (13, 994.3) (13, 999.38) (13, 1011.32) (13, 1003.48) (13, 1017.07) (13, 1007.73) (13, 989.22) (13, 993.8) (13, 997.65) (13, 984.42)
nantes-200-2 (12, 1221.25) (12, 1143.72) (12, 1024.23) (12, 1006.42) (12, 1003.43) (12, 993.67) (12, 1009.37) (12, 1007.25) (12, 1010.52) (12, 1002.42) (12, 989.85) (12, 1003.32) (12, 1012.12)
nantes-200-3 (12, 1182.07) (12, 1126.3) (12, 1020.77) (12, 1000.47) (12, 978.95) (12, 999.38) (12, 1015.95) (12, 997.27) (12, 997.68) (12, 991.92) (12, 998.75) (12, 985.85) (12, 993.87)
nantes-200-4 (12, 1067.12) (12, 1071.67) (12, 984.5) (12, 977.88) (12, 977.57) (12, 986.95) (12, 995.92) (12, 989.03) (12, 997.43) (12, 968.28) (12, 976.77) (12, 987.97) (12, 995.1)
nantes-200-5 (12, 1094.37) (12, 1092.02) (12, 991.13) (12, 998.15) (12, 994.5) (12, 1000.63) (12, 1007.22) (12, 1015.18) (12, 997.03) (12, 976.8) (12, 987.5) (12, 993.47) (12, 991.78)
nantes-200-6 (12, 1081.63) (12, 1087.07) (12, 991.4) (12, 957.02) (12, 967.5) (12, 978.33) (12, 975.43) (12, 990.98) (12, 989.45) (12, 958.97) (12, 940.2) (12, 966.95) (12, 968.93)
nantes-200-7 (12, 1126.8) (12, 1077.27) (12, 990.83) (12, 986.55) (12, 980.43) (12, 996.12) (12, 978.4) (12, 1012.07) (12, 993.63) (12, 981.23) (12, 970.15) (12, 980.52) (12, 968.8)
nantes-200-8 (13, 1116.5) (13, 1051.87) (13, 938.15) (13, 934.18) (13, 940.7) (13, 932.62) (13, 928.63) (13, 943.7) (13, 941.58) (13, 923.9) (13, 936.35) (13, 921.73) (13, 938.38)
nantes-200-9 (13, 1109.72) (13, 1052.28) (13, 981.4) (13, 971.88) (13, 969.87) (13, 976.13) (13, 992.15) (13, 985.47) (13, 989.02) (13, 967.87) (13, 973.72) (13, 970.33) (13, 972.65)
nantes-200-10 (12, 1123.42) (12, 1083.02) (12, 1003.97) (12, 978.9) (12, 968.48) (12, 971.12) (12, 997.38) (12, 996.72) (12, 994.4) (12, 989.82) (12, 983.85) (12, 984.73) (12, 990.05)
nantes-300-1 (18, 1625.17) (18, 1637.25) (18, 1420.27) (18, 1384.92) (18, 1378.35) (18, 1398.98) (18, 1409.67) (18, 1442.97) (18, 1450.47) (18, 1407.18) (18, 1389.55) (18, 1383.2) (18, 1402.13)
nantes-300-2 (18, 1487.53) (18, 1489.1) (18, 1381.03) (18, 1337.13) (18, 1358.18) (18, 1348.87) (18, 1378.48) (18, 1361.38) (18, 1378.52) (18, 1331.9) (18, 1338.57) (18, 1341.0) (18, 1339.2)
nantes-300-3 (19, 1618.9) (19, 1560.13) (19, 1396.48) (19, 1376.3) (19, 1369.07) (19, 1386.07) (19, 1404.98) (19, 1427.65) (19, 1402.15) (19, 1373.37) (19, 1383.88) (19, 1376.72) (19, 1400.75)
nantes-300-4 (18, 1656.42) (18, 1633.35) (18, 1400.62) (18, 1401.47) (18, 1379.23) (18, 1414.65) (18, 1397.32) (18, 1408.3) (18, 1452.85) (18, 1416.75) (18, 1401.82) (18, 1370.55) (18, 1385.2)
nantes-300-5 (19, 1559.87) (19, 1524.55) (19, 1339.23) (19, 1341.6) (19, 1322.23) (19, 1335.07) (19, 1347.22) (19, 1374.43) (19, 1348.68) (19, 1343.12) (19, 1341.38) (19, 1340.37) (19, 1347.92)
nantes-300-6 (18, 1667.8) (18, 1577.6) (18, 1399.07) (18, 1380.77) (18, 1385.08) (18, 1374.3) (18, 1434.87) (18, 1396.4) (18, 1414.38) (18, 1371.25) (18, 1361.97) (18, 1366.3) (18, 1371.17)
nantes-300-7 (18, 1541.17) (18, 1530.37) (18, 1308.28) (18, 1295.32) (18, 1285.2) (18, 1293.52) (18, 1301.9) (18, 1313.13) (18, 1322.07) (18, 1282.25) (18, 1261.27) (18, 1266.67) (18, 1287.12)
nantes-300-8 (18, 1568.02) (18, 1698.68) (18, 1394.57) (18, 1377.95) (18, 1386.05) (18, 1423.38) (18, 1412.95) (18, 1419.5) (18, 1472.08) (18, 1389.57) (18, 1367.65) (18, 1380.85) (18, 1392.12)
nantes-300-9 (19, 1570.82) (19, 1484.25) (19, 1369.03) (19, 1349.72) (19, 1364.68) (19, 1364.65) (19, 1373.45) (19, 1374.73) (19, 1386.53) (19, 1361.72) (19, 1356.28) (19, 1359.73) (19, 1386.53)
nantes-300-10 (19, 1596.87) (19, 1579.23) (19, 1417.85) (19, 1378.28) (19, 1395.42) (19, 1384.38) (19, 1407.3) (19, 1418.43) (19, 1425.57) (19, 1379.4) (19, 1375.97) (19, 1399.62) (19, 1373.07)
nantes-400-1 (25, 2061.32) (25, 2050.38) (25, 1785.22) (25, 1774.08) (25, 1766.75) (25, 1811.77) (25, 1771.32) (25, 1807.92) (25, 1809.03) (25, 1785.57) (25, 1771.83) (25, 1811.85) (25, 1814.4)
nantes-400-2 (24, 2022.18) (24, 1951.85) (24, 1743.28) (24, 1690.55) (24, 1701.23) (24, 1710.03) (24, 1757.77) (24, 1734.48) (24, 1772.07) (24, 1723.28) (24, 1713.9) (24, 1686.92) (24, 1734.43)
nantes-400-3 (25, 1943.32) (25, 1971.98) (25, 1706.42) (25, 1707.93) (25, 1650.48) (25, 1707.3) (25, 1696.75) (25, 1697.4) (25, 1742.3) (25, 1692.95) (25, 1686.45) (25, 1680.73) (25, 1693.4)
nantes-400-4 (25, 2008.33) (25, 1990.68) (25, 1723.57) (25, 1682.8) (25, 1687.45) (25, 1677.05) (25, 1724.35) (25, 1724.52) (25, 1737.23) (25, 1690.27) (25, 1693.88) (25, 1710.68) (25, 1706.22)
nantes-400-5 (24, 2121.28) (24, 2090.17) (24, 1804.73) (24, 1778.63) (24, 1803.63) (24, 1805.47) (24, 1812.75) (24, 1829.4) (24, 1844.47) (24, 1783.32) (24, 1806.4) (24, 1800.18) (24, 1797.43)
nantes-400-6 (24, 1933.15) (24, 1931.48) (24, 1751.58) (24, 1734.1) (24, 1716.92) (24, 1729.7) (24, 1784.22) (24, 1764.17) (24, 1801.03) (24, 1723.18) (24, 1757.55) (24, 1732.95) (24, 1736.43)
nantes-400-7 (24, 1966.78) (24, 2013.65) (24, 1711.0) (24, 1692.52) (24, 1717.43) (24, 1737.25) (24, 1761.03) (24, 1711.5) (24, 1768.63) (24, 1702.48) (24, 1714.48) (24, 1685.37) (24, 1737.9)
nantes-400-8 (25, 2017.52) (25, 2015.9) (25, 1767.53) (25, 1719.48) (25, 1729.77) (25, 1755.25) (25, 1775.63) (25, 1777.77) (25, 1787.73) (25, 1713.75) (25, 1725.78) (25, 1715.77) (25, 1751.38)
nantes-400-9 (24, 1989.23) (24, 2021.07) (24, 1690.33) (24, 1659.85) (24, 1705.75) (24, 1673.42) (24, 1692.43) (24, 1711.08) (24, 1723.52) (24, 1659.27) (24, 1668.98) (24, 1674.32) (24, 1688.73)
nantes-400-10 (25, 2009.97) (25, 1879.88) (25, 1710.65) (25, 1679.7) (25, 1691.43) (25, 1700.32) (25, 1695.63) (25, 1684.68) (25, 1698.0) (25, 1646.53) (25, 1655.9) (25, 1656.2) (25, 1667.6)

Table A.7: Detailed comparison of parking selection strategies. For each strategy and each instance, the table present the number of vehicles and overall working time.
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