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ScienceDirect
Interest in understanding hybrid seed failure (HSF) has

mushroomed, both in terms of identifying underlying molecular

processes and their evolutionary drivers. We review phenotypic

and molecular advances with a focus on the ‘effective ploidy’

concept, witnessing a recent revival after long obscurity.

Endosperm misdevelopment has now been shown to underlie

HSF in many inter-specific, homoploid crosses. The consistent

asymmetries in seed size and developmental trajectories likely

reflect parental divergence in key, dosage-sensitive processes.

Transcriptomic and epigenomic studies reveal genome-wide,

polarized expression perturbations and shifts in parental

expression proportions, consistent with small-RNA imbalances

between parental roles. Among-species differences in levels of

parental conflict over resource allocation enjoy strong support

in explaining why differences in effective ploidy may evolve.
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Introduction
The build-up of reproductive isolation is a fundamental

component of the speciation process, ultimately underly-

ing the genesis of biodiversity. Here, we focus on hybrid

seed failure (HSF), a postzygotic reproductive barrier

widespread among flowering plants but traditionally

underrepresented in the plant speciation literature

[1,2]. While we draw on functional insights gained from

experimental work using parents of different ploidies (i.e.

interploidy crosses), our conceptual focus is on incidences

of HSF between species of the same ploidy, that is, seed

lethality revealed by inter-specific, homoploid crosses.

Seminal crossing studies generated convincing evidence
www.sciencedirect.com 
that endosperm failure, rather than intrinsic F1 hybrid

incompatibilities, is the major cause of embryo and seed

abortion in numerous examples [3–6]. In flowering plants,

the normally triploid endosperm arises by fusion of one of

the two haploid sperm cells with the hypomethylated

diploid central cell of the female gametophyte; it is this

2:1 ratio of maternal:paternal genomes—and the right

balance of their epigenomic landscapes—that is required

for normal endosperm development, at least for intra-

specific crosses [7–9]. Importantly, this 2:1 genomic ratio

contributes to asymmetries in relatedness between the

maternal sporophyte and the filial seed compartments

(fertilization products) endosperm and embryo, with the

source and diversity of pollen donors playing an important

role. These asymmetries are widely thought to underlie

conflicts of interest over maternal seed provisioning

[5,10–12]. Our review attempts to unite studies on plant

model systems with a mechanistic focus and conceptually

oriented work pursued mostly by plant evolutionary

geneticists.

Compromised endosperm development as
the major cause of HSF
The last five years have witnessed a revival of interest in

HSF from the dual perspectives of underlying molecular

mechanisms and potentially rapid mode of speciation

among flowering plants [13]. Prominent examples include

work in the genera Arabidopsis [14], Capsella [15,16�],
Solanum [17,18] and Mimulus [19–23]. Histological and/

or seed size data from these inter-specific, mostly homo-

ploid crosses revealed both maternal and paternal effects,

similar to those known from many interploidy crosses

[5,6,24] (Figure 1). Specifically, reciprocal hybrid seeds

differ markedly in size, with both classes of hybrid seeds

often smaller than normally developing pure-species

seeds [14,18], or one cross direction yielding larger-

than-normal seeds [15,22]. These phenotypic patterns

unite examples of nuclear-type (early syncytial phase

before cellularization; Arabidopsis, Capsella) and cellular

endosperm development (cell walls are formed from the

first mitotic division; Solanum, Mimulus). Histologically,

the patterns of endosperm misdevelopment differ

between the two types of endosperm, but the relative

timing and/or speed of developmental trajectories (pre-

cocious or delayed; Figure 2) is consistent in direction.

Based on both phenotypic and molecular evidence, an

accelerated versus slowed-down cell cycle may underlie

these patterns [18,25,26,27��]. In the interest of facilitat-

ing the narrative, we use the established terms ‘maternal-

excess’ and ‘paternal-excess’ [5,6] to characterize the
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Figure 1
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Schematic comparison of reciprocal interploid crosses (left) and inter-specific, homoploid crosses between species with diverged (D) EBN (right).

The horizontal dotted line indicates fertilization, with the central cell (grey ellipses) and sperm cell (white circles) above and the endosperm (grey

ellipses) below this line. Ploidies are represented by colored rods: paternal genomes in blue and maternal genomes in red. The unequal width of

rods and ‘+’ and ‘�’ signs in the right half indicate diverged effective ploidies. Arrows symbolize the union of central cell (red) and sperm cell

(blue), generating the endosperm. Mature seeds (bottom) are drawn to qualitatively convey the observed size differences in reciprocal crosses.

EBN, endosperm balance number; n, ploidy level; m, genome of maternal origin; p, genome of paternal origin.
consistent asymmetries in hybrid seed size and develop-

ment, even though most of the discussed examples refer

to crosses among diploids (Figure 1).

Changing perceptions of misregulated
genomic imprinting in HSF
Parental effects on seed size have long attracted interest

from theoreticians and were mostly interpreted as reflect-

ing the action of imprinted genes (IGs) [5,28,29�],
although credible alternatives based on more inclusive

dosage-dependent interactions have been proposed [30–

32]. Genomic imprinting refers to parent-of-origin-

dependent expression, with expression at Maternally

Expressed Genes (MEGs) mostly of maternal origin,

and vice versa at Paternally Expressed Genes (PEGs).

Epigenetic asymmetries such as differences in methyla-

tion patterns and/or histone modification are established

before fertilization and thus generate epigenetically

unequal parental landscapes [8,9]. The correct balance

of these parental landscapes underlies imprinting and

modulates gene expression, with consequences for seed

development and mature seed size [33]. Hence, the

plausible idea of misexpressed IGs underlying HSF

has been pursued vigorously. Studies in Arabidopsis
[34,35], Mimulus [21], Solanum [36] and Oryza [37] indeed
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revealed expression perturbations of IGs in crosses

subject to HSF, but also provide evidence for global

misexpression of genes [35,36], transposable elements

(TEs) [34], and small RNAs [37,38] in failing hybrid

endosperm. Rather than being able to pinpoint causal

genes, these parent-specific patterns of genome-wide

perturbations may provide insights into the epigenetic

machinery underlying dosage imbalances.

The recent discovery of allelic dosage being mediated by

a small-RNA pathway engaged in RNA-directed DNA

methylation (RdDM) in Arabidopsis endosperm may have

far-reaching implications [38,39,40��]. A mutant version of

the gene coding for the largest subunit of RNA Polymer-

ase IV (Pol IV; nrpd1) was shown to shift genome-wide

expression in the endosperm to higher maternal propor-

tions, and a normally inviable 2n � 4n interploidy cross

produced mostly viable seeds when the tetraploid father

(or both parents) carried the nrpd1 mutation [38,39].

Follow-up work using a larger suite of mutants for RdDM

pathway and downstream genes implies that expression

differences distinguishing viable from lethal seed devel-

opment are rather subtle, and appear to rule out models of

HSF based on derepressed TEs and misexpressed IGs

[40��]. These discoveries may precipitate a modified

view recognizing deregulated imprinting—and
www.sciencedirect.com
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Figure 2
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Schematic view of altered growth trajectories in abortive, parental-

excess seeds compared to viable seeds from intra-specific crosses.

Continuous lines refer to the endosperm and dashed lines to the

embryo. In abortive seeds, embryo arrest is typically observed at (or

shortly after) the globular stage. This qualitative drawing illustrates

commonalities among results from hybrid crosses in taxa with cellular

endosperm (Solanum [18,26], Mimulus [21]) and those with nuclear-

type endosperm such as rice and maize ([24,26], and references

therein). The dotted green area indicates the potential for the

endosperm to persist (endospermic seeds such as in rice) or

degenerate after the globular stage (non-endospermic seeds such as

in tomato).
altered maternal:paternal expression ratios genome-wide

[36,39]—as a downstream consequence of epigenomic

imbalances, possibly mediated by small RNAs that define

the endosperm methylation landscape [38,40��]. Unbal-

anced epigenomic states may lead to cascading effects if

key regulatory genes are impacted, with repercussions for

seed viability. Naturally, it remains to be established to

what extent these experimental findings in Arabidopsis
can be extrapolated to homoploid crosses among nonmo-

del species resulting in partial or complete HSF [17–23].

A revival of the Endosperm Balance Number
(EBN) hypothesis
Classical work on diploid and polyploid wild potato

species (Solanum) spurred the important insight

that what was conceptualized as EBN or ‘effective

ploidy’—and not necessarily the karyotypic ploidy

[7]—must conform to a 2:1 maternal:paternal endo-

sperm ratio to allow viable seed formation in inter-

specific crosses [41–43]. Three decades ago, it was

recognized that only few genes might underlie inter-

specific differences in EBN, and thus the possibility of

rapid speciation due to HSF; experimental crosses using

rare F1 hybrids suggested a system of three unlinked

loci [42,43]. While this body of work facilitated predic-

tions of breeding success between untested combina-

tions of germplasm, it was underutilized regarding its

conceptual contribution to models of speciation and
www.sciencedirect.com 
dosage phenomena [13]. The ‘weak inbreeder/strong

outbreeder’ (WISO) hypothesis [44] connects the effec-

tive-ploidy concept with differences in levels of paren-

tal conflict as the proposed evolutionary driving force

for diverged EBNs. At the mechanistic level, parental

expression differences at dosage-sensitive genes might

occur asymmetrically between reciprocal hybrid

crosses [16�,27��], driving phenotypic polarization

between maternal-excess and paternal-excess types in

endosperm and seed development upon hybridization

[30,31].

Molecular correlates and evolutionary drivers
of effective ploidy
A few recent studies have leveraged endosperm tran-

scriptomes of normal and failing hybrid seeds to probe for

molecular correlates of HSF and differences in effective

ploidy. Comparisons among three diploid Capsella species

with different mating systems and/or antiquity of self-

fertilization uncovered near-absolute HSF between the

obligate outcrosser Capsella grandiflora (Cg) and the

ancient selfer Capsella orientalis (Co), but also between

the latter and the more recent selfer Capsella rubella (Cr),
with inferred effective ploidies ranking Cg > Cr > Co
[16�]. These patterns are entirely consistent with the

WISO hypothesis because the species’ mating systems

(or their duration since transition from ancestral outcross-

ing) should maintain the highest level of parental conflict

in Cg and the lowest in Co. Transcriptomic data revealed

that relative PEG abundance also scales Cg > Cr > Co, as

do PEG expression levels Cg > Cr. Moreover, there are

associations of TEs with many of the species-specific

PEGs and differential TE spread dynamics among

lineages [16�], consistent with differences in TE abun-

dance among the three Capsella species [45] and the

proposed role for TE insertions in establishing imprinted

expression at nearby genes [46].

Using laser-assisted microdissection of developing endo-

sperm and transcriptomic analyses, studies in green-

fruited wild tomato species (Solanum section Lycopersicon)
have contributed to our understanding of genomic

imprinting [47] and altered gene expression patterns in

failing hybrid endosperm [27��,36]. In addition to per-

turbed imprinting, we uncovered genome-wide maternal

expression biases in both (failing) hybrid endosperms

between S. peruvianum (Sp) and Solanum chilense (Sc),
with stronger maternal bias in the maternal-excess cross

Sp � Sc [36]. Intriguingly, this transcriptomic signal

mimics the patterns seen in both homoploid and 2n �
4n Arabidopsis thaliana crosses with mutated nrpd1 gene in

the pollen donor (both cross types) or both parents

(homoploid cross) [39,40��]. Additional allele-specific

expression data in Sp, Sc and a third lineage of wild

tomatoes (Solanum arcanum var marañón, Sa) [18,47]

confirm the maternal expression bias of hybrid endo-

sperms, with larger bias in maternal-excess crosses
Current Opinion in Plant Biology 2019, 61:102015
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(MR, AMFR, TS, unpublished data). These results

obtained in Solanum challenge the interpretation

that maternal expression bias somehow buffers the

effects of an additional paternal endosperm genome in

Arabidopsis [39,40��].

Reciprocal hybrid crosses among the wild tomato species

Sp, Sc and Sa show clear patterns of paternal and maternal

excess, suggesting that effective ploidy ranks Sp > Sc > Sa
[18].Recenttranscriptomesurveysrevealedthat for thetwo

inter-specific crosses resulting in complete, bidirectional

HSF, the largest expression divergence is between recip-

rocal hybrids—which have the exact same parents but in

inverted parental roles—with high congruence between

independent sets of maternal-excess and paternal-excess

endosperms [27��]. This strong expression polarization is

alsoevident for functionally important classes ofgenes such

as MADS-Box transcription factors, E3 ubiquitin ligases,

and genes related to the cell cycle. However, unlike in the
Figure 3

Simplified schematic of major ecological and evolutionary factors that impa

Other factors being equal, lower Ne should lead to higher relatedness amon

(roughly estimated by nucleotide diversity p at selectively neutral genome re

which may manifest as altered expression levels at dosage-sensitive genes

may or may not change during divergence) are in light-grey boxes, and maj

Refs. [48,49]) are in light-blue boxes. HSF, hybrid seed failure; SC, self-com
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Capsella study [16�], thenumberandexpression levelof IGs

is not statistically different between the three lineages [47].

Using the idea that differences in levels of parental

conflict may lead to divergence in effective ploidy [44]

allows us to broaden the scope of the WISO hypothesis

beyond the strict dichotomy of inbred versus outbred

mating systems [29�]. Indeed, kin conflict should

decrease with increasing relatedness of mates [10,28],

and evolutionary processes that modulate effective

population size (Ne) might all play a role, such as

demographic history, population subdivision and con-

nectivity, and persistent soil seed banks [48] (Figure 3).

Because the coalescent history of gene samples is

affected by these demographic and life-history charac-

teristics, levels of nucleotide diversity (p) of species or

regional populations should reflect their long-term Ne

[48,49]. Roth et al. [27��] used this rationale to unite
Current Opinion in Plant Biology

ct the effective population size (Ne) of diverging populations or species.

g mates, thus lowering levels of parental conflict. Divergence in Ne

gions) is hypothesized to facilitate divergence in effective ploidy (EBN),

 or other molecular changes. Ecological and life-history features (that

or evolutionary factors/processes that impact Ne (for more details, see

patibility; SI, self-incompatibility.
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phenotypic, transcriptomic, and p estimates for the

three Solanum species, where levels of p perfectly

mirror the inferred ranking of effective ploidies (Sp
> Sc > Sa). These data suggest that HSF can evolve

rapidly and without a fundamental change in mating

system [18,27��,36], and imply that levels of p may be a

reasonable proxy to gauge reproductive compatibility

between recently diverged species. Our arguments

received support from studies in the Mimulus guttatus
complex, where p was likewise found to scale with

inferred effective ploidy, which in turn predicts the

severity and asymmetries of hybrid seed defects [22].

Mechanistically, however, the link between Ne and effec-

tive ploidy is largely a black box; previous suggestions

that quantitative or qualitative inadequacies between

parental sRNA populations may lead to HSF [38,50],

for example, due to sequence mismatches or copy-num-

ber variations, may point in the right direction. If diver-

gence in dosage-sensitive genes and/or upstream changes

in the DNA methylation pathway are involved (Figure 3),

it will be difficult to disentangle their effects from com-

parative endosperm expression data alone. One plausible

avenue is to study the effects of candidate-gene mutants

in a comparative framework.

Potential links between EBN and parental
conflict over resource allocation
Evolutionary models predict parental (or kin) conflicts to

mediate seed development, in particular regarding levels

of maternal resource allocation that, in turn, impact seed

size and organismal fitness [5,10–12,28,51]. An important

assumption regarding conflict over seed provisioning is

the ability of sires to affect seed weight via the expression

of paternal alleles in endosperm and/or the embryo, yet

this has rarely been rigorously tested. Using a novel

statistical approach, Cailleau et al. [52��] showed in maize

(Zea mays) that half-sib endosperms aggressively compete

for maternal resources, and that different sires have

different competitive abilities; maternal resources were

‘wasted’ due to male–male competition via unrelated

male alleles in adjacent kernels. Similarly, interpopula-

tion crosses in Dalechampia scandens (Euphorbiaceae)

revealed modest but significant effects on seed size,

depending on whether the more outcrossed population

served as pollen or seed parent, yielding paternal-excess

or maternal-excess phenotypes, respectively [29�]; similar

results were previously obtained in Arabidopsis lyrata [53].

Such subtle effects do not interfere with successful endo-

sperm/seed development, but more strongly asymmetric

resource allocation—whether driven by diverged levels of

parental conflict or other factors [54�]—might cause

strongly compromised endosperm development resulting

in HSF. We thus envision a continuous scale of effective

ploidy, with success or failure of particular parental
www.sciencedirect.com 
combinations reflecting the extent of unbalanced

resource allocation to developing seeds.

Conclusions and future prospects
To achieve representative assessments of both molecular

mechanisms and evolutionary drivers of HSF, the field

needs more studies on nonmodel taxa, representing a

range of life-history and mating systems among closely

related species within such groups. Study systems of

special interest from ecological and evolutionary vantage

points due to their exceptional diversity, but also

with increasing genomic resources such as Solanum and

Mimulus, offer great potential to move beyond phenotypic

studies of HSF [17–19,23] and expand to molecular

surveys of normal and failing seed development

[20,21,55]. Methodologically, technical challenges are

shared between model and nonmodel species, such as

potential contamination of endosperm and/or embryo

samples with maternal seed coat tissue that confounds

allele-specific expression estimates [56]. In addition,

novel approaches to assess influential evolutionary

hypotheses with molecular data [57��], or by exploiting

ancient plant lineages with nonstandard endosperm com-

position and seed development [58�], may also offer

crucial insights. The still rather fragmentary nature of

our understanding of the ‘how and why’ of HSF in

nonmodel systems may not warrant firm conclusions,

but genome-wide assessments of (altered) endosperm

gene expression [27��], parent-specific expression

patterns [36,40��] and epigenomic landscapes [16�,40��]
are consistent with small-RNA-mediated dosage

imbalances underlying HSF. Finally, we ought to remain

open-minded regarding the evolutionary drivers of this

now increasingly appreciated type of inter-specific post-

zygotic barrier.
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Roth M, Florez-Rueda AM, Städler T: Differences in effective
ploidy drive genome-wide endosperm expression polarization
and seed failure in wild tomato hybrids. Genetics 2019,
212:141-152

This study provides transcriptomic evidence for pervasive polarization of
endosperm gene expression between reciprocal, parental-excess hybrid
crosses. The authors identify some candidates (genes, gene families) for
underlying differences in effective ploidy, and argue for a more inclusive
view of which evolutionary factors—beyond a switch in mating system—
might promote divergence in effective ploidy.

28. de Jong TJ, van Dijk H, Klinkhamer PGL: Hamilton’s rule,
imprinting and parent–offspring conflict over seed mass in
partially selfing plants. J Evol Biol 2005, 18:676-682.

29.
�

Raunsgard A, Opedal ØH, Ekrem RK, Wright J, Bolstad GH,
Armbruster WS, Pélabon C: Intersexual conflict over seed size
is stronger in more outcrossed populations of a mixed-mating
plant. Proc Natl Acad Sci U S A 2018, 115:11561-11566

This study offers an elegant experimental test of the WISO hypothesis in a
self-fertile plant species, using populations with different outcrossing rates.
As predicted, seed size was significantly smaller when the maternal parent
was from a more outcrossing population, and larger when the sire was from
a more outcrossing population. The authors’ interpretation of their pheno-
typic data, however, is limited to the proposed involvement of IGs.

30. Dilkes BP, Comai L: A differential dosage hypothesis for
parental effects in seed development. Plant Cell 2004, 16:3174-
3180.

31. Birchler JA, Veitia RA: Gene balance hypothesis: connecting
issues of dosage sensitivity across biological disciplines. Proc
Natl Acad Sci U S A 2012, 109:14746-14753.

32. Birchler JA: Interploidy hybridization barrier of endosperm as a
dosage interaction. Front Plant Sci 2014, 5:281.

33. Pignatta D, Novitzky K, Satyaki PRV, Gehring M: A variably
imprinted epiallele impacts seed development. PLoS Genet
2018, 14:e1007469.

34. Josefsson C, Dilkes B, Comai L: Parent-dependent loss of gene
silencing during interspecies hybridization. Curr Biol 2006,
16:1322-1328.

35. Burkart-Waco D, Ngo K, Lieberman M, Comai L: Perturbation of
parentally biased gene expression during interspecific
hybridization. PLoS One 2015, 10:e0117293.

36. Florez-Rueda AM, Paris M, Schmidt A, Widmer A, Grossniklaus U,
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