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Abstract 28 

A new homogenization scheme is proposed to model the effects of surface phenomena 29 

occurring at the pore fluid/solid interface on the effective transport properties of multiscale and 30 

reactive geosystems, e.g., clayey geomaterials. This new scheme is a generalization of the so-31 

called differential scheme (DS) used to infer the effective properties of a composite made up of 32 

several materials. It is named the fractional differential scheme and is based on two key 33 

elements: (i) the concept of realizability of the DS itself and (ii) a fractional integral formulation 34 

of the DS for a porous medium considered as a two-component composite. The formulation of 35 

the fractional DS introduces two parameters: a cementation exponent m and a fractional order 36 

. The cementation exponent m is related to the microstructure of the material. The fractional 37 

order  accounts for the amplitude of the “surface” transport of ions resulting from the physico-38 

chemical interactions between hydrated cations and swelling clay minerals. Both parameters m 39 

and  are inverted from two sets of data: electrical conductivity measurements obtained on 40 

clayey rocks and effective diffusion coefficient measurements acquired from a Na-41 

montmorillonite geomaterial. The inversion results demonstrate that the fractional DS model is 42 

able to capture the dependence of the cation concentration on the effective transport properties 43 

of the clayey materials under study. Our results also show that the fractional order  can be 44 

considered an indirect indicator of the amplitude of physico-chemical interactions between 45 

hydrated cations and swelling clay minerals occurring at the pore fluid/solid interface. 46 

 47 

Keywords: differential scheme, fractional integral, clayey geomaterials, transport properties, 48 

electrical conductivity, diffusion coefficient, reactive porous media. 49 
50 
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1. Introduction 51 

There are different approaches for estimating the effective properties of a composite 52 

made up of several materials. Rigorous procedures exist for composites with well-characterized 53 

or ideal (i.e., periodic) microstructures (e.g., [1]). However, these procedures are not applicable 54 

when the underlying microstructure is random or multiscale. In this case, the typical approach 55 

is to use one of several “effective medium approximations” (EMAs). Among these 56 

approximations are the self-consistent approximation (SCA) and the differential scheme (DS), 57 

which differ in the way in which they treat the components constituting a symmetric or 58 

nonsymmetric basis in the final equations2. SCA was developed for polycrystalline 59 

microstructures or N-component composites where all components are treated equally, with no 60 

one material identified as the host to be described. In contrast to SCA, the DS does not treat the 61 

components equally. In the simplest case of a two-component composite, one component is 62 

taken as the host and the other, considered to be an inclusion, is added incrementally “in a such 63 

a way that the newly added material is always in dilute approximation with respect to the current 64 

effective medium”3. Reviews of the relevant studies on these EMAs can be found in Hashin4, 65 

Berryman5 and Böhm1. We note that SCA is also known as the symmetrical effective medium 66 

theory, the coherent potential approximation, or simply the effective medium approximation; 67 

the DS is known as the unsymmetrical effective medium theory, iterated dilute approximation, 68 

self-similar model, or differential effective medium scheme6-11. 69 

The DS is particularly popular in geophysics because it predicts the empirical Archie 70 

relationships for the effective electrical conductivity of rocks6, 12 and for the effective diffusion 71 

coefficient of geomaterials13-15. Moreover, the DS approach is widely and successfully used to 72 

model the following properties of sedimentary rocks and soils: (1) elastic properties related to 73 

seismic velocities10, 16-19 and (2) dielectric properties for a wide range of frequencies20-26. It 74 

should be noted that a major part of the geomaterials involved in these studies are often seen as 75 
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saturated random porous media or simply as two-phase composites composed of a pore solution 76 

and solid grains. More recently, the DS approach has been modified to quantify the effective 77 

properties of a composite material near the percolation thresholds of different physical types15, 78 

27-29. 79 

Despite its ability to model the effective transport properties of porous geomaterials, the 80 

DS has not been conceptually designed to account for complex physico-chemical interactions 81 

existing in the pore solution in contact with the solid phase, such as cation exchanges, 82 

electrostatic attractions/repulsions or surface complexation reactions, among others. A few 83 

attempts have been made to overcome this conceptual difficulty and to integrate all these 84 

surface effects into DS approaches. In these approaches, all the surface phenomena are brought 85 

together to be encapsulated in a “grain” property, sometimes through a theoretical physico-86 

chemical approach, e.g., electrical double or triple layer theory12, 25, 30-31. This “grain” property, 87 

which is not a proper interface property, accounts for both the surface conduction and other 88 

interactions occurring at the fluid/grain interface and the transport inside the solid grain, which 89 

is mostly negligible in practice. We note that all these DS contributions deal with clayey 90 

geomaterials that are especially rich in smectite clay minerals containing a substantial excess 91 

of fixed negative charges, which must be compensated by dissolved counter cations. The 92 

presence of these charged clay minerals and their associated dissolved counter cations originate 93 

from the so-called electrical double (or triple) layer existing in these minerals at nanopore scale 94 

(typically a few nanometers)32. 95 

Moreover, it should be mentioned that EMAs different from the DS exist, where all the 96 

physico-chemical phenomena at the surface can be embedded in an additional interfacial zone, 97 

spatially separated from the solid-grain phase and the fluid-pore phase33-34. However, as far as 98 

we know, these EMAs have not been validated on data acquired from dense porous materials 99 

or even from geomaterials. 100 
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In this paper, a new DS is developed and used to quantify the effects of surface physico-101 

chemical phenomena occurring at the pore fluid/solid interface on the effective transport 102 

properties of reactive geosystems, e.g., clayey materials. This new scheme, which requires 103 

neither a particular “grain” transport property nor an interfacial zone, is based on two key 104 

elements: (i) the realizability of the DS itself and (ii) an integral formulation of the DS for two-105 

component composites. Regarding the first element, an EMA is called realizable if we can 106 

describe a construction process that makes a composite with effective property predicted by the 107 

corresponding theory3, 5, 35. In the case of the DS, for a two-component composite of materials 108 

1 and 2, the construction process starts with a matrix of component 1, for instance, and 109 

embedded inclusions of phase 2 in dilute concentration. The next stage involves embedding the 110 

grains of component 2 that are, in terms of size, an order of magnitude larger than the previous 111 

ones, and this process continues until component 2 occupies its assigned volume fraction (e.g., 112 

[3,36]). This construction process leads to a multiscale or “fractal-like” microstructure 113 

constituted by a set of many inclusions of many orders of magnitude. Note that this textural or 114 

microstructural feature is typical of clayey materials37-41. 115 

Regarding the second key element, the integral formulation of the DS for a two-116 

component composite allows us to introduce the kernel of the Riemann-Liouville integral with 117 

a fractional exponent that is related to the amplitude of additional interactions occurring 118 

between the solid inclusions themselves and the pore solution. The amplitude of these additional 119 

interactions can be modulated in the construction process previously described, following the 120 

sizes of the added inclusions. As explained further, these additional interactions, which can be 121 

amplified even for the smallest solid inclusions, i.e., at nanoscale, are interpreted as physico-122 

chemical interactions occurring in the considered reactive porous medium. 123 

The theoretical foundations of this new DS, hereafter called the fractional DS, are 124 

presented in the first section of this paper. In the second part, this fractional DS is used and 125 
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tested on transport properties data taken from the literature, i.e., electrical conductivity and 126 

diffusion coefficient acquired from clayey geomaterials. 127 

2. Theoretical background 128 

2.1 differential scheme: a realizable scheme for multiscale materials 129 

In this section, the theoretical basis of the DS is briefly recalled. Let us consider the simplest 130 

case: a two-component composite made of grains or inclusions named phase 2 embedded in a 131 

matrix called phase 1. It is well known, e.g., from Hashin42, that when this two-component 132 

material is subjected to the average gradient 𝐺̅ of a state variable (e.g., the voltage 133 

gradient/electrical field, concentration gradient, or temperature gradient), the effective 134 

conductivity tensor K* is expressed as follows: 135 

𝑲∗ = 𝑲1 + (𝑲2 − 𝑲1)𝑨 𝜙2         (1) 136 

where 𝑲1 and 𝑲2 are the conductivity tensors of the components that have the volume fractions 137 

1 and 2, respectively, and the so-called concentration tensor A is defined by: 138 

𝐺̅2 =
1

𝑉2
∫ 𝐺𝑑𝑉

𝑉2

= 𝑨𝐺̅ 
(2) 

G is the actual gradient throughout V2, which is the volume occupied by the included phase 139 

within a representative volume range42-43. In the case of small concentrations, i.e., 2<<1, in 140 

which it is assumed that the inclusions are fully isolated with no interaction with each other, it 141 

can be shown that the concentration tensor A is only a function of the conductivity tensors of 142 

the components and the geometrical parameters of the inclusions g: 143 

𝑨 = 𝑨(𝑲1, 𝑲2, 𝑔)          (3) 144 

Note that for inclusions with simple geometries (i.e., spheres, spheroids, and ellipsoids), 145 

the tensor A can be written in an analytical way1, 4, 5. 146 

Following the DS, which is an iterative process, the effective property of the composite 147 

is explicitly calculated from an initial material through a series of incremental additions of 148 
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inclusions or elementary units. In our case where we have a two-component composite, the 149 

procedure begins with the initial material 1 corresponding to a conductivity K1 in a volume V0. 150 

A small fraction of inclusions 2, 2, is embedded in matrix 1, and the effective conductivity of 151 

this mixture is calculated relative to a dilute suspension of particles 2 in matrix 1 (i.e., equations 152 

(1) and (3)). Now, in the volume V0, the mixture has a homogenized effective conductivity K* 153 

and constitutes the initial matrix of the next step, during which a new small fraction of 154 

inclusions 2, 2, is embedded. The homogenized effective conductivity K* of this new mixture 155 

with a fraction of inclusions 22) is calculated, and the construction process continues until: 156 

(1) at each stage, the embedded inclusion 2 is in dilute concentration and (2) the required 157 

volume ratio of the inclusions is satisfied. 158 

This construction process can be mathematically described by a differential equation. 159 

Indeed, since at each step of this construction process, a small concentration of inclusions is 160 

added (2<<1) the dilute approximation (equations (1) and (3)) holds: 161 

𝑲∗(𝜙2 + 𝛿𝜙2) = 𝑲∗(𝜙2) + (𝑲2 − 𝑲∗(𝜙2))𝑨 (𝑲∗(𝜙2), 𝑲2, 𝑔)𝛿𝜙2  (4) 

 Thus, for the limit 2→0, equation (4) yields the following differential equation: 162 

𝑑𝑲∗

𝑑𝜙2
= (𝑲2 − 𝑲∗)𝑨 

(5) 

which must be solved with the initial condition: 163 

𝑲∗(𝜙2 = 0) = 𝑲𝟏 (6) 

 As shown by McLaughlin44, 2 is not the proper equivalent of a small concentration of 164 

inclusions in equation (4), but 2/(1-2) is instead. Since the inclusions are assumed to be 165 

dispersed randomly in the matrix, the added inclusions for a given step essentially replace 166 

matrix material, but they also replace a portion of the previously added inclusions: only a 167 

fraction 1 (or 1- 2) of 2 contributes to the increase in 2 in the DS construction process. This 168 

remark results in the following differential initial value problem 44: 169 
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𝑑𝑲∗

𝑑𝜙2
=

(𝑲𝟐 − 𝑲∗)

1 − 𝜙2
𝑨 , 

 

𝑲∗(𝜙2 = 0) = 𝑲𝟏 
(7) 

 To our knowledge, the physical interpretation of the DS construction process and the 170 

associated differential initial value problem has been provided by Roscoe36. Following 171 

Roscoe’s interpretation, the microgeometries or microstructures of the composites associated 172 

with the DS are made up of many inclusions of many orders of magnitude. The main physical 173 

idea can be seen in equation (4), which states that the added inclusions at a given step of the 174 

construction process “see” an effective medium. If the added inclusions “see” an effective 175 

medium, then it means that these inclusions are much larger than the current ones. In fact, 176 

following this physical interpretation, the construction process can be considered as a filling 177 

process that begins with the smallest inclusions and continues in increasing order of magnitude 178 

to obtain in fine a multiscale or “fractal-like” microstructure. According to many authors3, 5, 7, 8, 179 

the existence of such microgeometry characterizes the DS as a realizable scheme. 180 

As illustration, the previous differential initial value problem (7) can be rewritten for 181 

randomly oriented spheroidal inclusions (e.g., ellipsoids of revolution) embedded in an 182 

isotropic matrix11, 45: 183 

𝑑𝑘∗

𝑑𝜙2
=

(𝑘2 − 𝑘∗)

1 − 𝜙2
 
𝑘∗

3
∑

1

𝑘2𝐿𝑖 + 𝑘∗(1 − 𝐿𝑖)
𝑖=𝑥,𝑦,𝑧

 , 
 

𝑘∗(𝜙2 = 0) = 𝑘1 
(8) 

where k*, k1 and k2 are the overall scalar effective conductivity, the scalar conductivity of 184 

component 1 and the scalar conductivity of component 2, respectively. The depolarization 185 

factors Li of the spheroidal inclusions obey the following equations: 186 

𝐿𝑧 = 𝐿 ,  𝐿𝑥 = 𝐿𝑦 =
1

2
(1 − 𝐿) 

(9) 

The value of L is determined by the eccentricity e of the spheroid. For prolate spheroids 187 

with semiaxes (ax>ay=az), L is given by46: 188 

𝐿 =
1 − 𝑒2

2𝑒3 (𝑙𝑛
1 + 𝑒

1 − 𝑒
− 2𝑒) 

(10) 
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with 189 

𝑒 = √1 −
𝑎𝑦

2

𝑎𝑧
2 

(11) 

while for oblate spheroids with ax=ay>az, L becomes: 190 

𝐿 =
1 + 𝑒2

𝑒3
(𝑒 − 𝑡𝑎𝑛−1𝑒) 

(12) 

with 191 

𝑒 = √
𝑎𝑦

2

𝑎𝑧
2 − 1 

(13) 

For spherical inclusions, the depolarization factors are simply given by: 192 

𝐿𝑧 =  𝐿𝑥 = 𝐿𝑦 =
1

3
 

(14) 

Note that the differential initial value problem (7) can also be written for the general 193 

anisotropic case, for which the phases are anisotropic materials47. 194 

In the following, the porous media of interest are composed of insulating grains, i.e., 195 

k2=0, and the electrolyte-filled pores are viewed as matrix 1. In this case, the previous 196 

differential initial value problem (8) can be simplified as follows: 197 

𝑑𝑘∗

𝑑𝜙
= 𝑚

𝑘∗

𝜙
 , 

 

𝑘∗(𝜙 = 1) = 𝑘1 = 𝑘𝑤 
(15) 

where for the sake of lightening notation, =1=1- 2 is the porosity, kw is the water conductivity 198 

or the electrolyte conductivity of the pores, and the parameter m, often called the “cementation 199 

exponent”, is given by 45, 48-49: 200 

𝑚 =
5 − 3𝐿

3(1 − 𝐿2)
 

(16) 

For spherical grains, it is easy to check that m=1.5 by using equations (14) and (16). 201 

The differential initial value problem can also be expressed in the following integral form: 202 
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∫
𝑑𝑘

𝑘

𝑘∗

𝑘𝑤

= 𝑚 ∫
𝑑𝑣

𝑣

𝜙

1

= −𝑚 ∫
𝑑𝜙

1 − 𝜙

𝜙2

0

 

 

(17) 

The integration of (17) leads to the so-called Archie relationship: 203 

𝑘∗ = 𝑘𝑤𝜙𝑚 =
𝑘𝑤

𝐹
 

(18) 

where F, called the formation factor, is defined by 204 

𝐹 =
𝑘𝑤

𝑘∗ = 𝜙−𝑚 
 

(19) 

or 205 

𝑙𝑛𝐹 = −𝑚 𝑙𝑛𝜙 (20) 

The term “formation factor” was originally used by Archie because it was approximately 206 

constant for any given geological formation. Regarding its physical meaning, the formation 207 

factor, and particularly the cementation exponent m, are inextricably related to the concept of 208 

tortuosity, a term used to define the connectivity of the pore space as it affects transport 209 

processes through porous media50-51. The cementation exponent m intrinsically associated with 210 

the concept of the formation factor is clearly a microstructure-dependent parameter of porous 211 

media52-53. 212 

Although Archie’s relationship (18) was derived from electrical measurements on a 213 

relatively small number of only a few types of sedimentary rocks, it has been successfully used 214 

for a wide range of porous media and for diffusion coefficients13-14. All these porous media are 215 

made up of a nonconductive mineral skeleton immersed in a single conductive phase, i.e., a 216 

liquid that completely saturates the connected pore space54. However, Archie’s relationship is 217 

no longer valid for geomaterials such as clay materials containing nanopores of only a few 218 

nanometers in length that are filled with an electrolyte possessing special transport properties. 219 

These particular transport properties, existing at nanopore scale, result from complex surface 220 

physico-chemical phenomena occurring at the liquid-mineral interface; these include chemical 221 

reactions at mineral surface sites, electrostatic interactions between the surface and ions, 222 
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wettings, and electrokinetic couplings55-57. All these surface physico-chemical phenomena 223 

often refer to surface conduction12, 30, 32, 58 or surface diffusion59-60. To account for this surface 224 

transport, the previous DS that led to Archie’s relationship is modified by introducing concepts 225 

from fractional calculus, as explained in the next section. 226 

2.2 A fractional differential scheme 227 

We focus on the last case presented in the previous section, i.e., a porous medium viewed as a 228 

two-component composite made of nonconductive grains immersed in a single conductive 229 

liquid. Following the DS approach, the effective transport property of a such composite is 230 

governed by equations (15) or (17), which can be expressed in an incremental way as follows: 231 

𝑘(𝑖+1)
∗ = 𝑘(𝑖)

∗ (1 − 𝑚
𝛿𝜙2

1 − 𝜙2 (𝑖)
) 

(21) 

where 𝑘(𝑖+1)
∗  and 𝑘(𝑖)

∗  are the effective properties at steps (i+1) and (i) in the DS construction 232 

process, respectively. The quantity 
𝛿𝜙2

1−𝜙2 (𝑖)
 is the volumetric amount of grains added in the 233 

effective medium of property 𝑘(𝑖)
∗  to obtain the property at step (i+1). 234 

Equation (21) is interesting because it combines two concepts: the differential initial 235 

value problem (15) and the construction process underlying the DS approach. In equation (21), 236 

the term in brackets on the right-hand side can be considered an “interaction term”. At a given 237 

step of the construction process, it defines the interactions between the added inclusions and 238 

the current ones. Following the DS construction process, the sum of all these interactions 239 

ultimately leads to Archie’s relationship (18) associated with a given transport mechanism, i.e., 240 

a “bulk” transport in the connected conductive/diffuse phase immersing a nonconductive/non-241 

diffuse multiscale solid skeleton. 242 

Consequently, if we want to introduce a new transport mechanism, i.e., one associated 243 

with surface conduction or surface physico-chemical phenomena, then the interaction term in 244 
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(21) has to be modified. The simplest way to modify this term is to introduce a weighted 245 

coefficient K(i) that evolves during the DS construction process: 246 

𝑘(𝑖+1)
∗ = 𝑘(𝑖)

∗ (1 − 𝑚𝐾(𝑖)

𝛿𝜙2

1 − 𝜙2 (𝑖)
) 

(22) 

Following Roscoe’s interpretation of the DS, if we want to introduce new interactions 247 

between inclusions at the smallest scale, one may expect high values of K(i), i.e., much larger 248 

than 1, at the beginning of the filling process, i.e., at small values of (i), for the smallest 249 

inclusions. It should be noted that this coefficient could have been introduced upstream in the 250 

initial Eshelby problem. 251 

The incremental equation (22) can also be reformulated in the following integral form: 252 

∫
𝑑𝑘

𝑘

𝑘∗

𝑘𝑤

= −𝑚 ∫ 𝐾(𝑢)
𝑑𝑢

1 − 𝑢

𝜙2

0

 

(23) 

where the kernel 𝐾(𝑢) must be defined. 253 

In this work, the following candidate is chosen: 254 

𝐾(𝑢) =
𝛼(𝜙2 − 𝑢)𝛼−1

𝜙2
𝛼−1  

(24) 

This choice is interesting for at least two reasons. First, the numerator (𝜙2 − 𝑢)𝛼−1 255 

allows the introduction of the fractional calculus formalism, i.e., the Riemann-Liouville (RL) 256 

fractional integral: 257 

∫
𝛼(𝜙2 − 𝑢)𝛼−1

𝜙2
𝛼−1

𝑑𝑢

1 − 𝑢

𝜙2

0

=  
𝛼

𝜙2
𝛼−1

Γ(𝛼)

Γ(𝛼)
∫

(𝜙2 − 𝑢)𝛼−1 𝑑𝑢

1 − 𝑢

𝜙2

0

=
𝛼Γ(𝛼)

𝜙2
𝛼−1 𝐷0 𝜙2

−𝛼𝑓(𝜙2) 

 

(25) 

where  is the gamma function and 𝑓(𝜙2) =
1

1−𝜙2
. The quantity 𝐷0 𝜙2

−𝛼𝑓(𝜙2) or 𝐷0 𝜙2

−𝛼 (
1

1−𝜙2
) is 258 

the RL fractional integral of the function 1/(1 − 𝜙2) of order . Recall that the RL fractional 259 

integral of the function 𝑓(𝜙2) is defined by61: 260 
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𝐷0 𝜙2

−𝛼𝑓(𝜙2) =
1

Γ(𝛼)
∫ 𝑓(𝑢) (𝜙2 − 𝑢)𝛼−1𝑑𝑢

𝜙2

0

 

 

(26) 

Or, in our case: 261 

𝐷0 𝜙2

−𝛼 (
1

1 − 𝜙2
) =

1

Γ(𝛼)
∫

1

1 − 𝑢
 (𝜙2 − 𝑢)𝛼−1 𝑑𝑢

𝜙2

0

 

 

(27) 

The parameter , the order of the RL integral, obeys the inequality >1, but this 262 

condition can be generalized to Re()>0 if the integral in (27) is an improper Riemann integral 263 

(Miller and Ross, 1993).  264 

The main advantage of this particular choice lies in the parameter  which introduces 265 

a certain flexibility to the kernel 𝐾(𝑢). Note that if >1, the kernel 𝐾(𝑢) is a monotonically 266 

decreasing function of , meaning that 𝐾(𝑢) is at its maximum at the beginning of the integral 267 

path in (23) and thus at the beginning of the DS filling process, when the added inclusions are 268 

the smallest. At this stage, parameter  can be seen as “potentiometer” which controls through 269 

the kernel 𝐾(𝑢)  the amplitude of physico-chemical interactions between the added inclusions 270 

in the DS filling process. As discussed further through an inverse modeling approach, the 271 

fractional order  can be interpreted as an indirect indicator of the amplitude of physico-272 

chemical interactions occurring at the pore fluid/solid interface in clayey geomaterials. 273 

Second, the denominator 𝜙2
𝛼−1 satisfies the following normalization condition: 274 

1

𝜙2
∫ 𝐾(𝑢)𝑑𝑢

𝜙2

0

= 1 

 

(28) 

that is easy to check. 275 

 From (24) and (25), the integral formulation of the DS (23) can be rewritten as follows: 276 

𝑙𝑛 (
𝑘𝑤

𝑘∗ ) = 𝑚
𝛼Γ(𝛼)

𝜙2
𝛼−1  𝐷0 𝜙2

−𝛼 (
1

1 − 𝜙2
) 

 

(29) 

Or, by introducing the formation factor 𝐹 = 𝑘𝑤/𝑘∗ and the porosity 𝜙 = 1 − 𝜙2: 277 
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ln 𝐹 = 𝑚
𝛼Γ(𝛼)

(1 − 𝜙)𝛼−1
 𝐷0 1−𝜙

−𝛼 (
1

𝜙
) 

 

(30) 

In contrast with Archie’s relationship (20), the formation factor F now depends (i) on 278 

the porosity  through the RL fractional integral and (ii) on the fractional order . Equation 279 

(29) defines a fractional DS of a two-phase composite, i.e., a porous medium made of a 280 

connected conductive phase immersing a nonconductive multiscale solid skeleton. 281 

Equation (30) can be rewritten in a simpler way by introducing the incomplete beta 282 

function 𝐵𝑥(𝑎, 𝑏): 283 

𝐵𝑥(𝑎, 𝑏) = ∫ 𝑢𝑎−1 (1 − 𝑢)𝑏−1𝑑𝑢

𝑥

0

   (𝑎, 𝑏 > 0) 

 

(31) 

and by using the following relationship61: 284 

𝐷𝑡
−𝜈

𝑐 (𝑎 − 𝑡)𝜆 =
(𝑎 − 𝑡)𝜆+𝜈

Γ(𝜈)
𝐵𝜏(𝜈; −𝜆 − 𝜈) ,        𝜏 =

𝑡 − 𝑐

𝑎 − 𝑐
 

 

(32) 

If we set c=0, t=1-, a=1, =-1, =, equation (32) becomes: 285 

𝐷1−𝜙
−𝛼

0 (
1

𝜙
) =

𝜙𝛼−1

Γ(𝛼)
𝐵1−𝜙(𝛼; 1 − 𝛼)         𝜏 = 1 − 𝜙 

 

(33) 

and thus equation (30) yields 286 

ln 𝐹 = 𝑚 𝛼 (
𝜙

1 − 𝜙
)

𝛼−1

𝐵1−𝜙(𝛼; 1 − 𝛼) 

 

(34) 

or 287 

ln 𝐹 = 𝑚 Ψ(𝜙, 𝛼)  

(35) 

with 288 

Ψ(𝜙, 𝛼) =  𝛼 (
𝜙

1 − 𝜙
)

𝛼−1

𝐵1−𝜙(𝛼; 1 − 𝛼) 

 

(36) 

From the definition of the formation factor 𝐹 = 𝑘𝑤/𝑘∗, the effective transport property k* is 289 

thus given by: 290 

𝑘∗ = 𝑘𝑤  𝑒−𝑚Ψ(𝜙,𝛼) (37) 
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At this stage, three comments can be made. First, equations (34) and (37) are easier to 291 

handle than equation (30) because the beta incomplete function has been widely studied in the 292 

mathematical literature, especially in statistics. Indeed, the beta incomplete function is available 293 

for all Excel-type spreadsheets and thus can be calculated easily without having to write any 294 

programs. This means that despite the apparent complexity of equations (34) and (37), the 295 

effective conductivity k* can be explicitly and directly calculated in a simple way. 296 

Second, it is easy to check that for =1, equation (34) becomes: 297 

ln 𝐹 = −𝑚 𝑙𝑛𝜙 (38) 

(note that 𝐵1−𝜙(1; 0) = −𝑙𝑛𝜙). Thus, Archie’s relationship (20) is obviously retrieved. 298 

 Third, the interesting asymptotic case >>1 can also be studied by using the following 299 

Newtonian result61-62: 300 

𝐵𝑥(𝑎, 𝑏) = ∫ 𝑢𝑎−1 (1 − 𝑢)𝑏−1𝑑𝑢

𝑥

0

=
𝑥𝑎(1 − 𝑥)𝑏

𝑎
ℱ(𝑎 + 𝑏, 1; 𝑎 + 1; 𝑥)) 

 

(39) 

where ℱ is the hypergeometric series given by63: 301 

ℱ(𝛼1, 𝛼2; 𝛼3; 𝑥) = 1 +
𝛼1𝛼2

𝛼3
 
𝑥

1!
+

𝛼1(𝛼1 + 1)𝛼2(𝛼2 + 1)

𝛼3(𝛼3 + 1)

𝑥2

2!

+
𝛼1(𝛼1 + 1)(𝛼1 + 2)𝛼2(𝛼2 + 1)(𝛼2 + 2)

𝛼3(𝛼3 + 1)(𝛼3 + 2)
 
𝑥3

3!
+ ⋯ 

(40) 

For x=1-, a=, b=1- and for a large , equations (40) and (39) give 302 

ℱ(1,1; 𝛼 + 1; 1 − 𝜙)~1 and 𝐵1−𝜙(𝛼, 1 − 𝛼)~
𝜙1−𝛼(1−𝜙)𝛼

𝛼
. Thus, the formation factor in (34) is 303 

simply: 304 

ln 𝐹 ~𝑚 (1 − 𝜙)  (41) 

or 305 

𝐹~𝑒𝑚 (1−𝜙)  (42) 

Equation (42) provides two results. First, similar to Archie’s relationship, for a high-306 

porosity medium (𝜙~1), the formation factor F tends toward unity and therefore, 𝑘∗~𝑘𝑤. 307 
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Second, for a low-porosity medium (𝜙~0), F tends toward a finite value 𝑒𝑚  and therefore, 308 

𝑘∗~𝑘𝑤𝑒−𝑚. This unexpected result shows that even if the porous medium is mainly constituted 309 

of a nonconductive solid, it is still significantly conductive with a conductivity function of kw, 310 

that is, equal to 𝑘𝑤𝑒−𝑚. This physical inconsistency with regard to the initial assumptions 311 

highlights that our DS approach should not be used for very low-porosity media associated with 312 

large values of .  313 

2.3 Analysis of the sensitivity lnF to the fractional order  314 

The fractional DS introduces a new parameter, i.e., the fractional order  whose influence on 315 

the effective formation factor F, especially on the effective property k*, must be investigated. 316 

This sensitivity analysis is conducted by calculating lnF as a function of the parameter 317 

 over a wide range of porosity and cementation exponent values (equation (34), (35), or (36)). 318 

The porosity range used here is from 0.05 to 0.4 (i.e., 5-40%) and is representative of a large 319 

class of clayey porous media. The cementation exponent m ranges between 0.2 and 2.7. These 320 

lower and upper limits are taken from Revil et al.32 and Dashtian et al.64. 321 

Figure 1 displays the results of this sensitivity analysis for the ranges of both the porosity 322 

and the cementation exponent m. This plot indicates the following results: 323 

 lnF significantly changes as the value  values changes incrementally from 1 to 324 

10, regardless of the values of  and m. For  values greater than 100, lnF is 325 

almost constant and tends toward the asymptotic limit 𝑚 (1 − 𝜙) , as established 326 

previously (see equation 41). 327 

 The sensitivity of lnF to  is largest for the smallest porosity values, all things 328 

being equal. 329 

 The sensitivity of lnF to  is strongly influenced by the cementation exponent 330 

m. There exists almost a full order of magnitude between the lnF values of the 331 
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left vertical scale and those of the right vertical scale. This strong sensitivity is 332 

obviously due to the fact that lnF is directly proportional to m, all things being 333 

equal (see equation (34), (35), or (36)); there is indeed an order of magnitude 334 

between both m limits, i.e., between 0.2 and 2.7. 335 

These results are confirmed by a logF-log plot, which is usually used in petrophysics 336 

to illustrate departures from Archie’s relationship (Figure 2). These departures are interpreted 337 

as being due to the existence of electrical surface conduction associated with clay minerals, as 338 

evidenced from electrical resistivity measurements acquired for a large class of clayey 339 

geomaterials31, 58, 65-66. Figure 2 also displays the numerical results obtained from an empirical 340 

model55 based on the well-known experimental results obtained from clayey rocks by Waxman 341 

58,67. 342 

In comparison with Figure 1, Figure 2 provides two additional results. First, it shows 343 

that the fractional DS is able to describe, at least qualitatively, the “curvilinear” trend observed 344 

in a logF-logrelationship associated with surface conduction. The shape and amplitude of this 345 

“curvilinear” trend are clearly controlled by the value of the fractional order . Small deviations 346 

from the unity value of , i.e., =1.2, induce significant deviations from Archie’s relationship. 347 

Second, the empirical model indicates that surface conduction in clay rocks significantly 348 

depends on the amplitude of liquid conductivity. The F- relationship must reflect this 349 

dependence, as the fractional DS cannot do so directly (see equation 34). Thus, this comparison 350 

with experimental data strongly suggests that the fractional order should itself depend on the 351 

liquid conductivity kw. In other words, in the theoretical framework of the fractional DS, an 352 

additional relationship linking  and kw should be introduced. This observation is not surprising 353 

because most surface physico-chemical phenomena occurring at the solution/solid interface, 354 

e.g., the electrical double (triple) layer, are controlled by the concentrations of ions in solution 355 

(such as salinity), which in turn depend on the solution conductivity (at least the electrical 356 
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solution conductivity)32. Now, if the fractional order  is supposed to reflect the amplitude of 357 

the interfacial solid-pore interactions, then it must also depend in some way on the 358 

concentrations of ions and therefore on the solution conductivity. This dependence is illustrated 359 

in the following applications. 360 

3. Applications 361 

3.1 Clayey geomaterials as multiscale and reactive materials 362 

Data on transport properties, mainly the electrical conductivity and diffusion coefficients of 363 

clayey materials, are now compared to predictions obtained from the fractional DS presented 364 

in the previous section (i.e., equations (34), (35) and (36)). Here, it is worth remembering that 365 

clayey materials are involved in many geoenvironmental issues. These geological materials are 366 

studied as natural or engineered barriers for deep geological radioactive waste repositories and 367 

form the main geological caps of many hydrocarbon reservoirs. 368 

Clayey materials are preferred here for at least two reasons. First, as previously 369 

mentioned, clayey soils or rocks often show microstructural patterns that are observed in 370 

multiscale materials37-41, 68. They exhibit a complex hierarchical organization at microstructural 371 

levels observed with space scales of several orders of magnitude, typically from nanometers to 372 

millimeters69. Despite the technical difficulty of acquiring these observations, recent 373 

quantitative petrography studies showed that the histograms of nonclay grain sizes71-72 (Figure 374 

3a) and pore sizes39, 72 (Figure 3b) obey, at the first order, a power law for a wide range of sizes 375 

of heterogeneities, ranging from micrometric size to one tenth of a millimeter. Thus, these 376 

results attest to the existence of a multiscale or “fractal-like” system or microstructure 377 

composed of a set of many heterogeneities of many sizes, and this system is the main textural 378 

signature associated with the DS. 379 

Second, clay-rich materials are known to be reactive porous media, i.e., porous media 380 

where complex physicochemical interactions between the pore solution and solid-phase occur. 381 
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This reactivity is mainly due to the existence of smectite clay minerals containing a substantial 382 

excess of fixed negative charges that have to be neutralized by dissolved counter cations. The 383 

presence of these charged clay minerals and their associated dissolved counter cations originate 384 

from the so-called electrical double (or triple) layer existing on these minerals at nanopore scale 385 

(typically a few nanometers)32. Moreover, the presence of nanopores between the clay minerals 386 

induces the existence of “bound” water or “interlayer” water with thermodynamic, 387 

hydrodynamic and spectroscopic properties that appear close to those of ice73. In this interlayer 388 

space, these water molecules can organize themselves in the form of (up to three) molecular 389 

layers74. These adsorbed water molecules are subjected to physicochemical forces of a complex 390 

nature: electrostatic attraction or repulsion, hydration or "structural" forces of the Derjaguin 391 

type75. The upscaling of these physicochemical interactions and their associated transport 392 

processes up to the (sample) scale of the engineer is obviously a challenging issue57. 393 

3.2 Electrical conductivity of clay rocks 394 

The fractional DS is now applied to electrical conductivity data of water-saturated clayey rocks 395 

taken from the database compiled by Waxman and Smits58. 396 

In the first stage, five samples from this database are selected to obtain a wide 397 

distribution of cation exchangeable capacity (CEC) values. CEC is usually expressed in 398 

milliequivalents per 100 g of dry material and quantifies the exchangeable cations neutralizing 399 

negative charges in porous material76. A high CEC value for a given porous medium is 400 

interpreted as the medium having a high potential for adsorption of hydrated cations at the 401 

solution-mineral interface. Consequently, CEC can be considered for use with swelling clayey 402 

materials as an indirect measure of their ability to adsorb cations and, more broadly, to 403 

electrochemically react with the pore solution since the electrical double (triple) layer is directly 404 

linked to counter cations adsorption. The objective of this preliminary selection is to handle a 405 

panel of samples representative of a wide range of CEC values and therefore representative of 406 
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a wide range of reactive materials. Table 1 shows the CEC values, the clay mineral 407 

compositions and the porosity values of these five samples. This illustrates that the higher the 408 

content of reactive clay minerals (i.e., montmorillonite) is, the higher the measured CEC value. 409 

In the second stage, five electrical conductivity measurements acquired at five fluid 410 

salinities and measured on each of the five preselected samples are considered (see the data in 411 

Figures 4a and 4b). These five fluid salinity concentrations correspond to the lowest values of 412 

equilibrium solution conductivity from Waxman and Smits’s database, i.e., in the range of 2.085 413 

dS.m-1 up to 28.22 dS.m-1. In this low-salinity range, the bulk of the conductivity of a given 414 

rock increases sharply and nonlinearly with the solution conductivity, thus violating Archie’s 415 

relationship (equation 18) (see the data in Figures 4b). This nonlinear increase in conductivity 416 

with the increase in the concentration of electrolytes in the low-salinity range is attributed to 417 

the so-called surface conduction or surface effects, as explained previously. In contrast, at high 418 

electrolyte concentrations, i.e., in the high-salinity domain corresponding to solution 419 

conductivity values greater than 28.22 dS.m-1, the rock conductivity increases proportionally 420 

with the solution conductivity, i.e., following 1:1 a ratio, as predicted by Archie’s relationship 421 

(Figure 4a). In this high-salinity domain, the electrical conduction is purely electrolytic, i.e., 422 

controlled by the conductivity of the bulk solution. As mentioned previously, the rock 423 

conductivity values in the high-salinity domain are not considered in this application. 424 

This selection of electrical data is used to invert the parameters of the fractional DS 425 

model, the fractional order , and the cementation exponent m in the following four cases: 426 

 Case 1. Both parameters, the fractional order and the cementation exponent m, are 427 

assumed to be independent of the solution salinity. In other words, they are supposed 428 

to be constant for a given rock sample and do not depend on the solution electrical 429 

conductivity w. This simplest case is considered as a reference case with regard to the 430 

other cases that follow. 431 



21 

 

 Case 2. The cementation exponent m is assumed to be independent of the solution 432 

salinity, but the fractional order  nonlinearly evolves with the solution conductivity, 433 

following this simple relationship: 434 

𝛼 = 1 +
𝜎𝑤

0

𝜎𝑤
 

(43) 

where the unknown parameter 𝜎𝑤
0  must be inverted. This case is suggested by 435 

experimental observations that show that the formation factor and thus the effective 436 

conductivity decrease nonlinearly with the solution conductivity55, 66 (Figure 2). It can 437 

be seen from (43) that for the high-salinity limit, if 𝜎𝑤 → ∞, then 𝛼 → 1, and Archie’s 438 

relationship is retrieved as expected. 439 

 Case 3. The fractional order  is assumed to be independent of the solution salinity, 440 

but the cementation exponent m nonlinearly evolves with the solution conductivity, 441 

following this simple relationship: 442 

𝑚 = 𝑎 + 𝑏 𝑙𝑛𝜎𝑤 (44) 

where a and b are parameters to be inverted. The particular mathematical form of 443 

equation (44) is suggested by the increase in rock conductivity as the solution 444 

conductivity increases, as indicated in Figure 4b. This nonlinearity (44) is introduced 445 

by the fact that the changes in solution conductivity imply some swelling or shrinkage 446 

of the reactive clay aggregates, which in turn should significantly modify the electrical 447 

tortuosity and rock microstructure. The impact of this swelling or shrinkage of clay 448 

aggregates on transport properties is rarely considered in the literature. 449 

 Case 4. Both parameters, the fractional order  and the cementation exponent m, are 450 

assumed to be dependent on the solution salinity, following the relationships in (43) 451 

and (44). 452 
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The unknown parameters involved in these four cases are inverted by means of an 453 

optimization scheme based on Monte Carlo sampling77-78, and they are applied to the five 454 

electrical conductivity measurements of each of the five preselected samples. This scheme, 455 

considered a Markov chain Monte Carlo (MCMC) approach, is a probabilistic technique whose 456 

basic principle consists of an oriented random walk exploration of the parameter space to avoid 457 

large time-consuming computations. This type of technique is also particularly able to account 458 

explicitly for the experimental uncertainties that are assumed to follow a Gaussian distribution 459 

(see details in Tarantola78). 460 

It should be noted that cases 1 and 2 imply that there are two parameters to be inverted, 461 

whereas cases 3 and 4 use three parameters, (, a, b) and (a, b, 𝜎𝑤
0 ), respectively. For the 462 

objective of carrying out the simplest modeling approach and inverting the same number of 463 

unknown parameters for all four cases, the smallest number of parameters (two parameters) is 464 

considered in the following analysis. Thus, to invert only two parameters for each of the four 465 

cases, an additional assumption is introduced at this stage. It is assumed that the cementation 466 

exponent value for the selected sample with the highest solution salinity, i.e., 28.22 dS.m-1, is 467 

equal to mHS, which is the cementation exponent value calculated at the highest solution 468 

conductivity (i.e., at the highest salinity) found in the Waxman-Smits database, i.e., 233.5  469 

dS.m-1 (see the mHS values in Table 1). In other words, the cementation exponent is assumed to 470 

be constant between 28.22 dS.m-1 and 233.5 dS.m-1, i.e., a salinity range for which surface 471 

conduction does not impact the electrical tortuosity and rock microstructure. From this 472 

assumption, equation (44) can be rewritten as follows: 473 

𝑚 = 𝑚𝐻𝑆 + 𝑏 𝑙𝑛 (
𝜎𝑤

28.22
) 

(45) 

where the solution electrical conductivity 𝜎𝑤 is now expressed in dS.m-1 and the parameter b is 474 

the sole parameter to be inverted. 475 
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The results of the inversion of each pair of parameters for each of the four cases and for 476 

the five selected samples are given in Table 2. To compare the quality of the inversions 477 

performed for each case, the root-mean-square error (RMSE) is calculated as follows: 478 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (

𝑜𝑏𝑠𝑖 − 𝑠𝑖𝑚𝑖

𝑜𝑏𝑠𝑖
)

2𝑛

𝑖=1

 

 

(46) 

where n is the number of measurements (here, five for each sample) and obsi and simi are the 479 

measured and simulated values, respectively, obtained for each measurement i. Note that the 480 

MCMC optimization scheme is run at least 50 times for each case, and the inverted values 481 

yielding the smallest RMSE (minimum RMSE) are retained as results in Table 2. 482 

In a general way, the results in Table 2 reveal the following features. First, case 1 shows 483 

the highest minimum RMSE values, greater than 46% for all five samples. Moreover, case 1 484 

provides inverted values of both parameters,  and m, over wide ranges, illustrating that several 485 

values of these parameters that are very different yield similar minimum RMSE values. The 486 

poor agreement between the measured and simulated values and the high uncertainties in the 487 

inverted parameters are not surprising. Indeed, case 1 predicts a linear relationship between the 488 

solution conductivity 𝜎𝑤 and the effective rock conductivity 𝜎∗ (see equation 37, where 489 

parameters,  and m, are constant), which is not observed experimentally in this salinity range 490 

(Figure 4b). These results highlight, as expected, that the relationships between the parameters 491 

 and m and between the solution conductivity and salinity are required to fit the Waxman 492 

Smits data. 493 

Thus, in comparison with case 1, case 2 noticeably improves the agreement between the 494 

measured and simulated values. Table 2 indicates for case 2, the minimum RMSE values are in 495 

the range of 14.9-41.6 (%) for all five samples. However, these RMSE values are still high, i.e., 496 

greater than 5%; the improvement of fit is significant in case 3. 497 
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Indeed, case 3 shows minimum RMSE values that are lower than 3.15% for all the 498 

samples. This satisfactory agreement is displayed in Figures 4a and 4b. The slight disagreement 499 

observed for the highest solution conductivity (at 28.22 dS.m-1) in Figure 4b is likely because 500 

at this salinity, the amplitudes of surface conduction and the related physico-chemical effects 501 

are not high. 502 

In contrast with case 3, case 4, which introduces two nonlinearities through equations 503 

(43) and (44), does not significantly improve the agreement between the measured and 504 

simulated values. The minimum RMSE values provided by case 4 are between 3.16% and 505 

6.49%, and they are greater than those of case 3, which are all lower than 3.16% (Table 2). 506 

If we focus now on the results of case 3, which provides the lowest minimum RMSE 507 

values, two comments can be made. First, our inversion results show that the cementation 508 

exponent is extremely sensitive to solution conductivity changes (Figure 5). The inverted values 509 

of the parameter m for all samples significantly increase with solution conductivity. This 510 

sensitivity appears to increase with the sample reactivity. Indeed, it reaches its maximum value 511 

for sample WS26, which exhibits the highest content of reactive clay minerals 512 

(montmorillonite) and thus the highest CEC value, i.e., 1.47 mequiv.cm-3 or 0.164 mequiv.g-1 513 

(Table 1). The cementation exponent of sample WS26 increases from 0.34 to 2.30. This is an 514 

increase of 576% with respect to the initial cementation exponent at the lowest solution 515 

conductivity, i.e., 2.085 dS.m-1. In contrast, this sensitivity to the solution conductivity is 516 

minimal for sample WS17, which has the lowest CEC value, i.e., 0.33 mequiv.cm-3 or 0.02 517 

mequiv.g-1 (Table 1). The cementation exponent of sample WS17 increases from 0.90 to 1.85. 518 

This is an increase of 106% with respect to the initial cementation exponent at the lowest 519 

solution conductivity. This increase is five times less than that observed for the WS26 sample. 520 

This dependence of the sensitivity of m on clay-rock reactivity can be also illustrated in Figure 521 

6 which displays a clear positive correlation between the parameter b in equation (45) and the 522 
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cation exchange capacity. Consequently, it can be suggested here that the cementation exponent 523 

should account for the microstructural evolution associated with the swelling/shrinkage of clay 524 

minerals or aggregates directly due to salinity changes in clayey rocks. The microstructural 525 

evolution may correspond to changes in pore connectivity and tortuosity and, more generally, 526 

to the evolution of the geometric pore space of the clayey rock under study. 527 

Second, the fractional order  is also dependent on the rock reactivity. Figures 6a and 528 

6b indicate that the increase in the parameter  is an almost linear function of the cation 529 

exchange capacity. The best agreement between empirical and simulated values is obtained 530 

with an exponential function exhibiting a regression coefficient of determination R2 equal to 531 

0.98 (Figure 7a). It should be noted that an extrapolation of this exponential fit at CEC=0 leads 532 

to an  value of 1.02, which close to 1 as expected for a nonreactive rock. Consequently, the 533 

results in Figures 7a and 7b suggest that the fractional order could be an interesting indicator 534 

of the amplitude of surface conduction in clayey rocks. To confirm this observation and the 535 

previous observations, the fractional DS will be applied to diffusion coefficient data of saturated 536 

clay montmorillonite. 537 

However, in order to test the predictive nature of the model, two test cases are performed 538 

using two additional samples, named WS21 and WS22 in the Waxman-Smits database. The 539 

values of petrophysical properties of these two additional samples are given in Table 3. 540 

Parameters  and m (through b of equation (45)) are calibrated by using the non-linear 541 

regressions given in Figures 7a. and 6, respectively (see results in Table 3). Figure 8 which 542 

displays the results of these two test cases shows that the model satisfactorily predicts the 543 

measured data. The RMSE between simulated values and measured values of samples WS21 544 

and WS22 are 9.6 % and 10.6 %, respectively. 545 

3.3 Diffusion coefficient of compacted montmorillonite 546 
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The fractional DS is applied to diffusion coefficient data of compacted water-saturated 547 

bentonite acquired from classical through-diffusion tests performed by Glaus et al.59. The clay 548 

portion of bentonite is composed essentially of montmorillonite, a smectite-type clay mineral. 549 

This set of data is preferred for at least four reasons. First, these data were obtained on 550 

montmorillonite, i.e., a swelling clay mineral that is extremely reactive to changes in pore liquid 551 

chemistry. Second, the effective diffusion coefficient was measured with Na+ counter cations, 552 

which are known to physico-chemically interact with montmorillonite more strongly than other 553 

ions59-60, 79.  In the work of Glaus et al.59, their montmorillonite mixture was chemically treated 554 

with a NaCl solution to remove all soluble salts and to convert the clay into a Na-form, i.e., a 555 

Na-montmorillonite. Third, these data were acquired for a very large range of cation 556 

concentrations for the solution in equilibrium with the clayey geomaterial, i.e., over three 557 

decades from 10-2 M to 1 M. This equilibrium concentration is hereafter called the “external 558 

salt concentration”. Fourth, this powder was highly compacted to obtain a dry bulk density of 559 

1950 kg.m-3, i.e., a porosity of 28%. This state of compaction brings us closer to natural rock, 560 

the case encountered in the previous section (3.2). 561 

Now, following equation (19), a “diffusion” formation factor is defined as follows: 562 

𝐹 =
𝐷𝑤

𝐷∗
 

(47) 

where D* is the effective diffusion coefficient of compacted montmorillonite and Dw is the self-563 

diffusion coefficient of bulk liquid water. The coefficient Dw, always greater than D*, is set to 564 

1.33 10-9 m2.s-1 for the cation Na+  80. In contrast with the previous electrical conductivity w of 565 

the bulk solution, which increases with salinity, the coefficient Dw is independent of the external 566 

salt concentration59, 80 and mainly depends on the chemical species under study, which is the 567 

cation Na+ here. 568 

Moreover, compared with the effective electrical conductivity, the effective diffusion 569 

coefficient of cations in compact clayey geomaterials decreases with increasing external salt 570 
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concentration (compare the data in Figure 4a and Figure 9). The classical interpretation of this 571 

evolution is derived from the existence of a “surface” diffusion (often called “interlayer” 572 

diffusion) of counter cations, which are the cations Na+ here. This diffusion mechanism, which 573 

dominates the overall diffusion in compacted Na-montmorillonite, occurs in the “near-surface” 574 

water between smectite clay minerals (i.e., montmorillonite) and free pore water, or in other 575 

words, in the electrical double (or triple) layer (EDL or ETL), existing at the charged surface 576 

of montmorillonite. This near-surface water in the vicinity of these surfaces is dominant in 577 

nanopores and contains more counter cations than the bulk solution to compensate for the 578 

excess of fixed negative charges on the surface of montmorillonite. Following Glaus et al.59, 579 

this surface diffusion is driven by the local cation concentration gradient existing between this 580 

near-surface water and the surrounding bulk water; it is larger at low external salt concentrations 581 

and decreases as the external salt concentration increases. In other words, the larger the external 582 

salt concentration in the bulk liquid is, the lower the local cation concentration gradients 583 

between near surface water and bulk water and finally the lower the amplitude of surface 584 

diffusion. 585 

Similarly to the previous section 3.2, diffusion coefficient data from Glaus et al.59 has 586 

been used to invert the parameters of the fractional DS model, the fractional order, , and the 587 

cementation exponent, m, following four cases: 588 

 Case 1. Both parameters, the fractional order, and the cementation exponent, m, are 589 

assumed to be independent of the external salt concentration. This simplest case is 590 

again considered as a reference case with regard to the following others. 591 

 Case 2. The cementation exponent, m is assumed to be independent of the external salt 592 

concentration named here 𝐶𝑤 but the fractional order, , nonlinearly evolves with the 593 

solution conductivity, following this simple relationship: 594 
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𝛼 = 1 +
𝐶𝑤

0

𝐶𝑤
 

(48) 

where the unknown parameter 𝐶𝑤
0  must be inverted. It can be seen in (48) that for the 595 

high-concentration limit, if 𝐶𝑤 → ∞, then 𝛼 → 1, and Archie’s relationship is retrieved 596 

as expected. 597 

 Case 3. The fractional order  is assumed to be independent of the external salt 598 

concentration 𝐶𝑤, but the cementation exponent m nonlinearly evolves with 𝐶𝑤, 599 

following this relationship: 600 

𝑚 = 𝑎′ + 𝑏′ 𝑙𝑛𝐶𝑤 (49) 

where a’ and b’ are parameters to be inverted. Similar to the case with electrical 601 

conductivity, this nonlinearity (49) is introduced by the fact that the changes in external 602 

salt concentration imply some swelling or shrinkage of the reactive clay aggregates, 603 

which in turn should significantly modify the diffusional tortuosity and rock 604 

microstructure. For the electrical conductivity, it is desirable to conduct the simplest 605 

modeling approach and to invert the same number of unknown parameters for all cases. 606 

Thus, to invert only two parameters for each of the four cases, an additional assumption 607 

is again introduced at this stage. It is assumed that the cementation exponent value at 608 

the highest external salt concentration of our selected data, i.e., 1 M, is equal to mHS, 609 

that is, the cementation exponent value at the highest concentration limit for which 610 

Archie’s relationship is satisfied (i.e., for  equal to 1). In this case, the mHS value is 611 

calculated as 2.79 by using equation (19). From this additional assumption, equation 612 

(49) can be rewritten as follows: 613 

𝑚 = 𝑚𝐻𝑆 + 𝑏′ 𝑙𝑛 (
𝐶𝑤

𝐶𝐻𝑆
) 

(50) 

where b’ is a parameter to be inverted and 𝐶𝐻𝑆 is equal to 1 M. 614 
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 Case 4. Both parameters, the fractional order  and the cementation exponent m, are 615 

assumed to be dependent on the pore solution salinity, following the relationships in 616 

(48) and (50). 617 

The pairs of unknown parameters in these four cases have are inverted for the five values 618 

of external salt concentrations from Glaus et al.59 by running the same optimization scheme 619 

used in the previous section (3.2). 620 

The results given in Table 4 indicate that case 4 provides the lowest minimum RMSE 621 

value, i.e., the best fit between the selected data and the fractional DS model. Although the 622 

minimum RMSE value of 8.94% for case 4 is significant, Figure 9 shows a satisfactory 623 

agreement between the data and the model. The fractional DS model associated with the 624 

nonlinearities in (48) and (50) correctly captures the cation concentration dependence of the 625 

effective diffusion coefficient of compacted Na-montmorillonite. 626 

Figure 10 displays the inversion results of equations (48) and (50) associated with case 627 

4. Figure 10 shows two features. First, similar to the electrical cementation exponent, our 628 

inversion results show that the diffusion cementation exponent is sensitive to the external salt 629 

concentration. The diffusion cementation exponent nonlinearly increases from almost 0 at a 630 

concentration of 10-2 M up to 2.79 at 1 M. Our interpretation of this increase is similar to that 631 

provided in section 3.2 for the electrical conductivity. The diffusion cementation exponent 632 

appears to account for the microstructural evolution associated with swelling clay minerals or 633 

aggregates due to concentration changes in the montmorillonite mixture. These microstructural 634 

evolutions can be changes in pore connectivity and tortuosity, likely associated with the 635 

swelling/shrinkage and/or aggregation/disaggregation processes of montmorillonite minerals. 636 

Second, the fractional exponent  sharply decreases with increasing salt concentration. The 637 

parameter  decreases from 9.6 at 10-2 M to 1.9 at 0.1 M, and it finally converges to almost 1 638 
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at 1 M, which is the highest concentration value. The parameter  reaches its maximum value 639 

at the lowest values of external salt concentrations for which the surface diffusion is maximal. 640 

At this stage, it is tempting to compare the inverted values of the parameters m and  641 

for both transport properties, i.e., the diffusion coefficient and electrical conductivity. However, 642 

this exercise is a priori difficult for at least three reasons. First, both transport properties do not 643 

refer strictly to the same physico-chemical phenomena, e.g., charge carrier movement driven 644 

by a gradient of electrical potential for the electrical conductivity and Brownian movement 645 

driven by a gradient of chemical potential for the diffusion coefficient. Second, the salt 646 

concentration ranges of the two studies are not strictly similar. Glaus et al.59 used a wide salinity 647 

range from 10-2 M to 1 M, while Waxman and Smits58 used a salinity range from approximately 648 

2.10-2 M to 0.3 M after converting the solution conductivities to NaCl concentrations using the 649 

TDS-total dissolved salt method81. Third, a clayey rock and a compacted montmorillonite-rich 650 

geomaterial do not have exactly the same microstructure and clay mineral contents. Contrary 651 

to the compacted montmorillonite mixture studied by Glaus et al.59, the clayey rocks in the 652 

electrical WS database are not pure clayey material and contain a significant amount of nonclay 653 

minerals, e.g., quartz and calcite, whose proportions may reach a few dozen %. Moreover, the 654 

microstructure of clayey rocks results from a complex geological story called diagenesis, which 655 

involves the mechanical compaction of sediments as well as geochemical processes, i.e., the 656 

precipitation and dissolution of minerals. 657 

However, in Figure 10, if we look at the m and  values in a restricted concentration 658 

range ([2.10-2-0.3] M), which corresponds to the WS database, two remarks can be made. First, 659 

the m values for both properties are almost similar, i.e., between 0 and 2 (compare Figure 5 and 660 

Figure 8). In a first-order approach, the “electrical” cementation exponent and the “diffusion” 661 

cementation exponent respond in the same manner to changes in salt concentrations and thus 662 

are sensitive to the same physico-chemical phenomena. Second, the diffusion  values in Figure 663 
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10 are significantly higher than those obtained from the electrical conductivity (compare Figure 664 

7a, Figure 7b, and Figure 10 over the restricted range [2.10-2-0.3] M). Following our physical 665 

definition of the parameter , this would mean that the amplitude of the surface transport of 666 

cations resulting from the interactions between hydrated cations and clay minerals would be 667 

much higher in Na-montmorillonite than in the clayey rocks under study. This proposition is 668 

supported by the mineral composition of the Na-montmorillonite mixture used by Glaus et al., 669 

which is much richer in montmorillonite-reactive minerals (more than 98%) than the clayey 670 

rocks of the WS database. 671 

 672 

4. Conclusion 673 

A new DS called the fractional DS is presented in this paper. This semi-analytical 674 

homogenization scheme is introduced to quantitatively investigate the effects of surface 675 

physico-chemical phenomena occurring at the pore fluid/solid interface on the effective 676 

transport properties of reactive geosystems, e.g., clayey materials. This fractional DS, which 677 

requires neither a particular “grain” transport property nor an interfacial zone, is based on two 678 

key elements: (i) the concept of realizability of the DS itself and (ii) a fractional integral 679 

formulation of the DS for a two-component composite. The formulation of the fractional DS 680 

introduces two parameters: a cementation exponent m and a fractional order . The cementation 681 

exponent m is constant for any given material and is inextricably related to the microstructure 682 

of the material. The fractional order  accounts for the amplitude of the “surface” transport of 683 

cations resulting from the physico-chemical interactions between hydrated cations and swelling 684 

clay minerals (i.e., smectite minerals, especially montmorillonite). 685 

The fractional DS is applied to data on electrical conductivity (Waxman and Smits58) 686 

and diffusion coefficients (Glaus et al.59) acquired from natural clayey rocks and a compacted 687 

Na-montmorillonite mixture, respectively. These applications show the main following results: 688 



32 

 

 The fractional DS model is able to correctly capture the dependence of the cation 689 

concentration on the effective transport properties of the clayey materials under 690 

study if at least one of the parameters (m or  is nonlinearly related to the 691 

external salt concentration of the electrolyte in chemical equilibrium with the 692 

pore solution of the materials. 693 

 Considering both effective transport properties, the inverted values the of 694 

cementation exponent m nonlinearly increase from almost 0 at the lowest 695 

external salt concentration (typically 10-2 M) up to values close to 2 at the highest 696 

salt concentrations. This evolution is interpreted as resulting from changes in 697 

pore connectivity and tortuosity and more generally from evolutions of the 698 

geometric pore space likely associated with the swelling/shrinkage and/or 699 

aggregation/disaggregation processes of smectite minerals (i.e., 700 

montmorillonite). 701 

 Our inversion results on electrical conductivity data show that the inverted 702 

values of the parameter  are linearly and positively correlated with the cation 703 

exchange capacity values of the clayey rocks under study. This suggests that the 704 

fractional order  would be a good indirect indicator of (a) the amplitude of 705 

surface conduction in clayey rocks and, more generally, of (b) the physico-706 

chemical reactivity of clayey geomaterials. 707 

This fractional DS model is not intended to replace the numerous conventional models 708 

used to quantitatively describe the electrical conductivity and diffusion coefficients of clayey 709 

geomaterials. However, it aims to propose a very general and semi-analytical homogenization 710 

scheme that accounts for the physico-chemical reactions occurring at the pore fluid/solid 711 

interface involved in the transport process, i.e., leading to “surface” transport. Thus, the very 712 

general characteristics of this approach naturally make it possible to generalize it to other 713 
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transport properties (e.g., thermal conductivity, hydraulic conductivity) of porous media seen 714 

as two-component composites for which semi-analytical formulations can be expected. 715 
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Table captions 929 

Table 1. Ages, compositions of clay fractions (<2m), values of porosity, the cementation 930 

exponent mHS, cation exchangeable capacities Qv (in milliequivalents per cm3 of pore 931 

volume of the rock), and CECs (in milliequivalents per g-1 of dry solid) of the 932 

investigated samples58. The cementation exponent mHS is calculated at the highest pore 933 

solution conductivity (i.e., at the highest salinity) at which surface conduction can be 934 

considered negligible. 935 

Table 2. Calculated minimum RMSE values and inverted values of the parameters of the 936 

fractional DS model for all modeling cases with the five samples from the Waxman-937 

Smits database. 938 

Table 3. Ages, compositions of clay fractions (<2m), values of porosity, the cementation 939 

exponent mHS, cation exchangeable capacities Qv (in milliequivalents per cm3 of pore 940 

volume of the rock), calibrated values of parameters  and b (in equation (45)) of the 941 

two samples used in test cases.  942 

Table 4. Calculated minimum RMSE values and inverted values of the parameters of the 943 

fractional DS model from measurements of the effective diffusion coefficient by Glaus 944 

et al.59. 945 

 946 

Figure captions 947 

Figure 1. Natural logarithm of the formation factor, lnF, as a function of the fractional exponent 948 

. The black and gray lines correspond to cementation exponent values of m=2.7 and 949 

m=0.2, respectively. The dashed and solid lines correspond to porosity values of =0.5 950 

and =0.05, respectively. 951 

Figure 2. Formation factor, F as a function of the porosity  on a log-log scale. The black solid 952 

line is Archie’s relationship with m=2. The black dashed lines correspond to the 953 

fractional DS model with m=2 and  values ranging from 1.2 to 5. The gray dashed 954 

lines correspond to the empirical model of Worthington55 with pore solution 955 

conductivity values ranging from 1 S.m-1 to 20 S.m-1. 956 

Figure 3a. Equivalent grain size distribution (modified from Fauchille71). 957 

Figure 3b. Equivalent pore size distribution (modified from Ougier-Simonin et al.39). 958 

Figure 4a. Measured rock conductivity as a function of solution conductivity. The gray area 959 

indicates the transition zone between the low-salinity domain and the high-salinity 960 
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domain. The fit with the fractional DS model (case 3) and the 1:1 line (dashed line) are 961 

also shown. 962 

Figure 4b. Measured rock conductivity as a function of solution conductivity in the low-salinity 963 

domain. The fit with the fractional DS model (case 3) is also shown. 964 

Figure 5. Cementation exponent m as a function of solution conductivity (equation (45); for the 965 

inverted parameters  and b of the DS model for case 3, see Table 2). The dashed lines 966 

show the corresponding logarithmic fits. 967 

Figure 6. Inverted parameter b in equation (45) as a function of the cation exchange capacity 968 

Qv expressed in meq. cm-3. A logarithmic fit is also shown as dashed lines. 969 

Figure 7a. Inverted parameter  (model, case 3) as a function of the cation exchange capacity 970 

Qv expressed in meq. cm-3. A linear and an exponential fit are also shown as dashed 971 

lines. 972 

Figure 7b. Inverted parameter  (model, case 3) as a function of the CEC expressed in          973 

meq.g-1. A linear and an exponential fit are also shown as dashed lines. 974 

Figure 8. Test cases. Measured and predicted rock conductivity as a function of solution 975 

conductivity in the low-salinity domain. 976 

Figure 9. Measured effective coefficient of diffusion as a function of external salt concentration 977 

from Glaus et al.59. The fit with the fractional DS model (case 4) is also shown. 978 

Figure 10. Inverted fractional order  and inverted cementation exponent m as a function of 979 

external salt concentration. 980 

 981 

 982 

 983 



 984 

Sample Age Kaolinite 

(%) 

Illite (%) Montmorillonite 

(%) 

Porosity 

(%) 

Cementation 

exponent 

mHS (-) 

Cation 

Exchangeable 

Capacity  

Qv 

(mequiv.cm-3) 

Cation 

Exchangeable 

Capacity CEC 

(mequiv.g-1) 

WS17 Eocene 100 _ _ 14.0 1.85 0.33 0.020 

WS19 Albian 20 40 20 25.9 2.0 0.59 0.078 

WS23 Lower 

Tertiary 

8 8 84 24.2 2.2 1.04 0.125 

WS24 Lower 

Tertiary 

12 8 80 21.6 2.3 0.81 0.084 

WS26 Lower 

Tertiary 

_ _ 100 22.9 2.3 1.47 0.164 

Table 1. Ages, compositions of clay fractions (<2m), values of porosity, the cementation exponent mHS, cation exchangeable capacities Qv (in 985 

milliequivalents per cm3 of pore volume of the rock), and CECs (in milliequivalents per g-1 of dry solid) of the five investigated samples58. 986 

The cementation exponent mHS is calculated at the highest pore solution conductivity (i.e., at the highest salinity) at which surface conduction 987 

can be considered negligible. 988 

 989 

 990 

 991 



Sample Case 1 Case 2 Case 3 Case 4 

Minimum 

RMS Error 

(%) 

Parameter Minimum 

RMS Error 

(%) 

Parameter Minimum 

RMS Error 

(%) 

Parameter Minimum 

RMS Error 

(%) 

Parameter 





m  

 

𝜎𝑤
0  

(S.m-1) 

m  

 





b 

 

𝜎𝑤
0  

(S.m-1) 

b 

 

WS17 46.23 1.00-

4.72 

1.40-

2.65 

14.86 8.45-

8.79 

1.79-

1.80 

2.23 1.27 0.36 3.54 6.60-

6.62 

0.13-

0.14 

WS19 38.90 1.06-

8.69 

1.56-

2.66 

20.44 11.34-

11.69 

1.87-

1.88 

2.22 1.31-

1.32 

0.41 3.16 7.04-

7.11 

0.26 

WS23 50.67 1.01-

4.47 

1.45-

2.52 

36.00 12.84-

13.27 

1.74-

1.75 

2.80 1.86-

1.87 

0.65 6.05 18.07-

18.19 

0.52 

WS24 52.42 1.02-

5.34 

1.58-

2.64 

34.19 12.51-

12.63 

1.94 3.15 1.65 0.62 6.49 13.38-

13.53 

0.45 

WS26 55.69 1.01-

5.41 

1.40-

2.30 

41.63 13.98-

14.45 

1.72 1.43 2.30 0.75 5.24 28.00-

28.19 

0.65 

Table 2. Calculated minimum RMSE values and inverted values of the parameters of the fractional DS model for all modeling cases with the five 992 

samples from the Waxman-Smits database.  993 

 994 

  995 
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 996 

Sample Age Kaolinite 

(%) 

Illite (%) Montmorillonite 

(%) 

Porosity 

(%) 

Cementation 

exponent 

mHS (-) 

Cation 

Exchangeable 

Capacity 

Qv 
(mequiv.cm-3) 

Calibrated 

parameter 

 

Calibrated 

parameter b 

in equation 

(45) 

WS21 Lower 

Tertiary 

12 8 80 23.8 1.8 0.29 1.20 0.29 

WS22 Lower 

Tertiary 

12 8 80 22.5 2.3 0.72 1.53 0.54 

 997 

Table 3. Ages, compositions of clay fractions (<2m), values of porosity, the cementation exponent mHS, cation exchangeable capacities Qv (in 998 

milliequivalents per cm3 of pore volume of the rock), calibrated values of parameters  and b (in equation (45)) of the two samples used in test 999 

cases.  1000 

  1001 
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 1002 

Case 1 Case 2 Case 3 Case 4 

Minimum 

RMS Error 

(%) 

Parameter Minimum 

RMS Error 

(%) 

Parameter Minimum 

RMS Error 

(%) 

Parameter Minimum 

RMS Error 

(%) 

Parameter 





m  

 

𝐶𝑤
0  

   (M) 

m  

 





b’ 

 

𝐶𝑤
0  

   (M) 

b’ 

 

62.54 7.07-

9.39 

4.10-

4.21 

53.09 0.45-

0.46 

2.96-

2.97 

17.06 1.10 0.63 8.94 8.59 

10-1 

0.63 

Table 4. Calculated minimum RMSE values and inverted values of the parameters of the fractional DS model from measurements of the effective 1003 

diffusion coefficient by Glaus et al.59. 1004 

 1005 

 1006 

 1007 



 1008 

 1009 

 1010 

 1011 

Figure 1 Natural logarithm of the formation factor, lnF, as a function of the fractional exponent 1012 

. The black and gray lines correspond to cementation exponent values of m=2.7 and 1013 

m=0.2, respectively. The dashed and solid lines correspond to porosity values of =0.5 1014 

and =0.05, respectively. 1015 

 1016 

 1017 

  1018 
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  1019 

Figure 2. Formation factor, F as a function of the porosity  on a log-log scale. The black solid 1020 

line is Archie’s relationship with m=2. The black dashed lines correspond to the 1021 

fractional DS model with m=2 and  values ranging from 1.2 to 5. The gray dashed 1022 

lines correspond to the empirical model of Worthington55 with pore solution 1023 

conductivity values ranging from 1 S.m-1 to 20 S.m-1. 1024 

 1025 



 
 

Figure 3a. Equivalent grain size distribution (modified from 

Fauchille71). 

Figure 3b. Equivalent pore size distribution (modified from Ougier-

Simonin et al.39). 

 1026 

 1027 



  

Figure 4a. Measured rock conductivity as a function of solution 

conductivity. The gray area indicates the transition zone between the 

low-salinity domain and the high-salinity domain. The fit with the 

fractional DS model (case 3) and the 1:1 line (dashed line) are also 

shown. 

Figure 4b. Measured rock conductivity as a function of solution 

conductivity in the low-salinity domain. The fit with the 

fractional DS model (case 3) is also shown. 

. 
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 1029 

Figure 5. Cementation exponent m as a function of solution conductivity (equation (45); for the 1030 

inverted parameters  and b of the DS model for case 3, see Table 2). The dashed lines 1031 

show the corresponding logarithmic fits. 1032 

  1033 

  1034 
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 1035 

Figure 6. Inverted parameter b in equation (45) as a function of the cation exchange capacity 1036 

Qv expressed in meq. cm-3. A logarithmic fit is also shown as dashed lines. 1037 

 1038 



  

Figure 7a. Inverted parameter  (model, case 3) as a function of the 

cation exchange capacity Qv expressed in meq. cm-3. A linear and an 

exponential fit are also shown as dashed lines. 

Figure 7b. Inverted parameter  (model, case 3) as a function of the 

CEC expressed in meq.g-1. A linear and an exponential fit are also 

shown as dashed lines. 

 1039 



 1040 

Figure 8. Test cases. Measured and predicted rock conductivity as a function of solution 1041 

conductivity in the low-salinity domain. 1042 
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 1044 

  1045 

Figure 9. Measured effective coefficient of diffusion as a function of external salt concentration 1046 

from Glaus et al.59. The fit with the fractional DS model (case 4) is also shown. 1047 

 1048 
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 1050 

 1051 

 1052 

Figure 10. Inverted fractional order  and inverted cementation exponent m  1053 

as a function of external salt concentration. 1054 
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