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Introduction

There are different approaches for estimating the effective properties of a composite made up of several materials. Rigorous procedures exist for composites with well-characterized or ideal (i.e., periodic) microstructures (e.g., [1]). However, these procedures are not applicable when the underlying microstructure is random or multiscale. In this case, the typical approach is to use one of several "effective medium approximations" (EMAs). Among these approximations are the self-consistent approximation (SCA) and the differential scheme (DS), which differ in the way in which they treat the components constituting a symmetric or nonsymmetric basis in the final equations [START_REF] Bruggeman | Berechnung Verschiederner Physikalischer Konstanten von Hetärogenen Substanzen[END_REF] . SCA was developed for polycrystalline microstructures or N-component composites where all components are treated equally, with no one material identified as the host to be described. In contrast to SCA, the DS does not treat the components equally. In the simplest case of a two-component composite, one component is taken as the host and the other, considered to be an inclusion, is added incrementally "in a such a way that the newly added material is always in dilute approximation with respect to the current effective medium" [START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF] . Reviews of the relevant studies on these EMAs can be found in Hashin [START_REF] Hashin | Analysis of Composite Materials[END_REF] , Berryman [START_REF] Berryman | Mixture theories for rock properties[END_REF] and Böhm [START_REF] Böhm | A short introduction to continuum micromechanics[END_REF] . We note that SCA is also known as the symmetrical effective medium theory, the coherent potential approximation, or simply the effective medium approximation; the DS is known as the unsymmetrical effective medium theory, iterated dilute approximation, self-similar model, or differential effective medium scheme [START_REF] Sen | A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads[END_REF][START_REF] Norris | A generalized differential effective medium theory[END_REF][START_REF] Avellaneda | Iterated homogenization, differential effective medium theory and applications[END_REF][START_REF] Hashin | The differential scheme and its application to cracked materials[END_REF][START_REF] Le Ravalec | High-and low-frequency elastic moduli for a saturated porous/cracked rock -differential self-consistent and poroelastic theories[END_REF][START_REF] Phan-Thien | Differential multiphase models for polydispersed spheroidal inclusions: thermal conductivity and effective viscosity[END_REF] .

The DS is particularly popular in geophysics because it predicts the empirical Archie relationships for the effective electrical conductivity of rocks [START_REF] Sen | A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads[END_REF][START_REF] Bussian | Electrical conductance in a porous medium[END_REF] and for the effective diffusion coefficient of geomaterials [START_REF] Shackelford | Diffusion in saturated soil. I: Background[END_REF][START_REF] Van Loon | Anion exclusion effects in compacted bentonites: towards a better understanding of anion diffusion[END_REF][START_REF] Timothy | A micromechanics model for molecular diffusion in materials with complex pore structure[END_REF] . Moreover, the DS approach is widely and successfully used to model the following properties of sedimentary rocks and soils: (1) elastic properties related to seismic velocities [START_REF] Le Ravalec | High-and low-frequency elastic moduli for a saturated porous/cracked rock -differential self-consistent and poroelastic theories[END_REF][START_REF] Sheng | Effective-medium theory of sedimentary rocks[END_REF][START_REF] Berryman | A differential scheme for elastic properties of rocks with dry or saturated cracks[END_REF][START_REF] Markov | Elastic properties of double-porosity rocks using the differential effective medium model[END_REF][START_REF] David | Elastic moduli of solids containing spheroidal pores[END_REF] and (2) dielectric properties for a wide range of frequencies [START_REF] Feng | Geometrical model of conductive and dielectric properties of partially saturated rocks[END_REF][START_REF] De Lima | A generalized Maxwell-Wagner theory for membrane polarization in shaly sands[END_REF][START_REF] Chelidze | Electrical spectroscopy of porous rocks: A review-I. Theoretical models[END_REF][START_REF] Cosenza | Differential effective medium schemes for investigating the relationship between high-frequency relative dielectric permittivity and water content of soils[END_REF][START_REF] Cosenza | A physical model of the low-frequency electrical polarization of clay rocks[END_REF][START_REF] Leroy | A mechanistic model for the spectral induced polarization of clay materials[END_REF][START_REF] Okay | Spectral induced polarization of clay-sand mixtures: Experiments and modeling[END_REF] . It should be noted that a major part of the geomaterials involved in these studies are often seen as saturated random porous media or simply as two-phase composites composed of a pore solution and solid grains. More recently, the DS approach has been modified to quantify the effective properties of a composite material near the percolation thresholds of different physical types [START_REF] Timothy | A micromechanics model for molecular diffusion in materials with complex pore structure[END_REF][START_REF] Markov | Generalized DEM model for the effective conductivity of a two-dimensional percolating medium[END_REF][START_REF] Markov | Determination of effective electromagnetic parameters of concentrated suspensions of ellipsoidal particles using Generalized Differential Effective Medium approximation[END_REF][START_REF] Timothy | Cascade continuum micromechanics model for the effective permeability of solids with distributed microcracks: Self-similar meanfield homogenization and image analysis[END_REF] .

Despite its ability to model the effective transport properties of porous geomaterials, the DS has not been conceptually designed to account for complex physico-chemical interactions existing in the pore solution in contact with the solid phase, such as cation exchanges, electrostatic attractions/repulsions or surface complexation reactions, among others. A few attempts have been made to overcome this conceptual difficulty and to integrate all these surface effects into DS approaches. In these approaches, all the surface phenomena are brought together to be encapsulated in a "grain" property, sometimes through a theoretical physicochemical approach, e.g., electrical double or triple layer theory [START_REF] Bussian | Electrical conductance in a porous medium[END_REF][START_REF] Leroy | A mechanistic model for the spectral induced polarization of clay materials[END_REF][START_REF] De Lima | A grain conductivity approach to shaly sandstones[END_REF][START_REF] Revil | Electrical conductivity in shaly sands with geophysical applications[END_REF] . This "grain" property, which is not a proper interface property, accounts for both the surface conduction and other interactions occurring at the fluid/grain interface and the transport inside the solid grain, which is mostly negligible in practice. We note that all these DS contributions deal with clayey geomaterials that are especially rich in smectite clay minerals containing a substantial excess of fixed negative charges, which must be compensated by dissolved counter cations. The presence of these charged clay minerals and their associated dissolved counter cations originate from the so-called electrical double (or triple) layer existing in these minerals at nanopore scale (typically a few nanometers) [START_REF] Revil | Nature of surface electrical conductivity in natural sands, sandstones, and clays[END_REF] .

Moreover, it should be mentioned that EMAs different from the DS exist, where all the physico-chemical phenomena at the surface can be embedded in an additional interfacial zone, spatially separated from the solid-grain phase and the fluid-pore phase [START_REF] Endres | A model for incorporating surface phenomena into the dielectric response of a heterogeneous medium[END_REF][START_REF] Levin | Effective electromagnetic properties of microheterogeneous materials with surface phenomena[END_REF] . However, as far as we know, these EMAs have not been validated on data acquired from dense porous materials or even from geomaterials.

In this paper, a new DS is developed and used to quantify the effects of surface physicochemical phenomena occurring at the pore fluid/solid interface on the effective transport properties of reactive geosystems, e.g., clayey materials. This new scheme, which requires neither a particular "grain" transport property nor an interfacial zone, is based on two key elements: (i) the realizability of the DS itself and (ii) an integral formulation of the DS for twocomponent composites. Regarding the first element, an EMA is called realizable if we can describe a construction process that makes a composite with effective property predicted by the corresponding theory [START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF][START_REF] Berryman | Mixture theories for rock properties[END_REF][START_REF] Milton | The coherent potential approximation is a realizable effective medium scheme[END_REF] . In the case of the DS, for a two-component composite of materials 1 and 2, the construction process starts with a matrix of component 1, for instance, and embedded inclusions of phase 2 in dilute concentration. The next stage involves embedding the grains of component 2 that are, in terms of size, an order of magnitude larger than the previous ones, and this process continues until component 2 occupies its assigned volume fraction (e.g., [3,36]). This construction process leads to a multiscale or "fractal-like" microstructure constituted by a set of many inclusions of many orders of magnitude. Note that this textural or microstructural feature is typical of clayey materials [START_REF] Krohn | Fractal measurements of sandstones, shales and carbonates[END_REF][START_REF] Van Damme | Scale invariance and hydric behaviour of soils and clays[END_REF][START_REF] Ougier-Simonin | Microfracturing and microporosity in shales[END_REF][START_REF] Ma | Correlative multi-scale imaging of shales: a review and future perspectives[END_REF][START_REF] Sun | Fractal characteristics of pore structure of compacted bentonite studied by ESEM and MIP methods[END_REF] .

Regarding the second key element, the integral formulation of the DS for a twocomponent composite allows us to introduce the kernel of the Riemann-Liouville integral with a fractional exponent that is related to the amplitude of additional interactions occurring between the solid inclusions themselves and the pore solution. The amplitude of these additional interactions can be modulated in the construction process previously described, following the sizes of the added inclusions. As explained further, these additional interactions, which can be amplified even for the smallest solid inclusions, i.e., at nanoscale, are interpreted as physicochemical interactions occurring in the considered reactive porous medium.

The theoretical foundations of this new DS, hereafter called the fractional DS, are presented in the first section of this paper. In the second part, this fractional DS is used and tested on transport properties data taken from the literature, i.e., electrical conductivity and diffusion coefficient acquired from clayey geomaterials.

Theoretical background

differential scheme: a realizable scheme for multiscale materials

In this section, the theoretical basis of the DS is briefly recalled. Let us consider the simplest case: a two-component composite made of grains or inclusions named phase 2 embedded in a matrix called phase 1. It is well known, e.g., from Hashin [START_REF] Hashin | Assessment of the self-consistent scheme approximation: conductivity of particulate composites[END_REF] , that when this two-component material is subjected to the average gradient 𝐺 ̅ of a state variable (e.g., the voltage gradient/electrical field, concentration gradient, or temperature gradient), the effective conductivity tensor K* is expressed as follows:

𝑲 * = 𝑲 1 + (𝑲 2 -𝑲 1 )𝑨 𝜙 2 (1) 
where 𝑲 1 and 𝑲 2 are the conductivity tensors of the components that have the volume fractions 1 and 2, respectively, and the so-called concentration tensor A is defined by:

𝐺 ̅ 2 = 1 𝑉 2 ∫ 𝐺𝑑𝑉 𝑉 2 = 𝑨𝐺 ̅ (2) 
G is the actual gradient throughout V2, which is the volume occupied by the included phase within a representative volume range [START_REF] Hashin | Assessment of the self-consistent scheme approximation: conductivity of particulate composites[END_REF][START_REF] Adessina | Micromechanical model for the diffusion properties of materials embedding complex structures[END_REF] . In the case of small concentrations, i.e.,  2 <<1, in which it is assumed that the inclusions are fully isolated with no interaction with each other, it can be shown that the concentration tensor A is only a function of the conductivity tensors of the components and the geometrical parameters of the inclusions g:

𝑨 = 𝑨(𝑲 1 , 𝑲 2 , 𝑔) (3) 
Note that for inclusions with simple geometries (i.e., spheres, spheroids, and ellipsoids), the tensor A can be written in an analytical way [START_REF] Böhm | A short introduction to continuum micromechanics[END_REF][START_REF] Hashin | Analysis of Composite Materials[END_REF][START_REF] Berryman | Mixture theories for rock properties[END_REF] .

Following the DS, which is an iterative process, the effective property of the composite is explicitly calculated from an initial material through a series of incremental additions of inclusions or elementary units. In our case where we have a two-component composite, the procedure begins with the initial material 1 corresponding to a conductivity K1 in a volume V0.

A small fraction of inclusions 2, 2, is embedded in matrix 1, and the effective conductivity of this mixture is calculated relative to a dilute suspension of particles 2 in matrix 1 (i.e., equations

(1) and ( 3)). Now, in the volume V0, the mixture has a homogenized effective conductivity K* and constitutes the initial matrix of the next step, during which a new small fraction of inclusions 2, 2, is embedded. The homogenized effective conductivity K* of this new mixture with a fraction of inclusions 22) is calculated, and the construction process continues until:

(1) at each stage, the embedded inclusion 2 is in dilute concentration and (2) the required volume ratio of the inclusions is satisfied.

This construction process can be mathematically described by a differential equation.

Indeed, since at each step of this construction process, a small concentration of inclusions is added (2<<1) the dilute approximation (equations ( 1) and ( 3)) holds:

𝑲 * (𝜙 2 + 𝛿𝜙 2 ) = 𝑲 * (𝜙 2 ) + (𝑲 2 -𝑲 * (𝜙 2 ))𝑨 (𝑲 * (𝜙 2 ), 𝑲 2 , 𝑔)𝛿𝜙 2 (4) 
Thus, for the limit 2→0, equation (4) yields the following differential equation:

𝑑𝑲 * 𝑑𝜙 2 = (𝑲 2 -𝑲 * )𝑨 (5) 
which must be solved with the initial condition:

𝑲 * (𝜙 2 = 0) = 𝑲 𝟏 (6) 
As shown by McLaughlin 44 , 2 is not the proper equivalent of a small concentration of inclusions in equation ( 4), but 2/(1-2) is instead. Since the inclusions are assumed to be dispersed randomly in the matrix, the added inclusions for a given step essentially replace matrix material, but they also replace a portion of the previously added inclusions: only a fraction 1 (or 1-2) of 2 contributes to the increase in 2 in the DS construction process. This remark results in the following differential initial value problem [START_REF] Mclaughlin | A study of the differential scheme for composite materials[END_REF] :

𝑑𝑲 * 𝑑𝜙 2 = (𝑲 𝟐 -𝑲 * ) 1 -𝜙 2 𝑨 , 𝑲 * (𝜙 2 = 0) = 𝑲 𝟏 (7) 
To our knowledge, the physical interpretation of the DS construction process and the associated differential initial value problem has been provided by Roscoe [START_REF] Roscoe | The viscosity of suspensions of rigid spheres[END_REF] . Following Roscoe's interpretation, the microgeometries or microstructures of the composites associated with the DS are made up of many inclusions of many orders of magnitude. The main physical idea can be seen in equation ( 4), which states that the added inclusions at a given step of the construction process "see" an effective medium. If the added inclusions "see" an effective medium, then it means that these inclusions are much larger than the current ones. In fact, following this physical interpretation, the construction process can be considered as a filling process that begins with the smallest inclusions and continues in increasing order of magnitude to obtain in fine a multiscale or "fractal-like" microstructure. According to many authors [START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF][START_REF] Berryman | Mixture theories for rock properties[END_REF][START_REF] Norris | A generalized differential effective medium theory[END_REF][START_REF] Avellaneda | Iterated homogenization, differential effective medium theory and applications[END_REF] , the existence of such microgeometry characterizes the DS as a realizable scheme.

As illustration, the previous differential initial value problem (7) can be rewritten for randomly oriented spheroidal inclusions (e.g., ellipsoids of revolution) embedded in an isotropic matrix [START_REF] Phan-Thien | Differential multiphase models for polydispersed spheroidal inclusions: thermal conductivity and effective viscosity[END_REF][START_REF] Mendelson | The effect of grain anisotropy on the electrical properties of sedimentary rocks[END_REF] :

𝑑𝑘 * 𝑑𝜙 2 = (𝑘 2 -𝑘 * ) 1 -𝜙 2 𝑘 * 3 ∑ 1 𝑘 2 𝐿 𝑖 + 𝑘 * (1 -𝐿 𝑖 ) 𝑖=𝑥,𝑦,𝑧 , 𝑘 * (𝜙 2 = 0) = 𝑘 1 (8) 
where k*, k 1 and k 2 are the overall scalar effective conductivity, the scalar conductivity of component 1 and the scalar conductivity of component 2, respectively. The depolarization factors Li of the spheroidal inclusions obey the following equations:

𝐿 𝑧 = 𝐿 , 𝐿 𝑥 = 𝐿 𝑦 = 1 2 (1 -𝐿) (9) 
The value of L is determined by the eccentricity e of the spheroid. For prolate spheroids with semiaxes (ax>ay=az), L is given by [START_REF] Landau | Electrodynamics of. Continuous Media[END_REF] :

𝐿 = 1 -𝑒 2 2𝑒 3 (𝑙𝑛 1 + 𝑒 1 -𝑒 -2𝑒) (10) 
with

𝑒 = √ 1 - 𝑎 𝑦 2 𝑎 𝑧 2 (11) 
while for oblate spheroids with ax=ay>az, L becomes:

𝐿 = 1 + 𝑒 2 𝑒 3 (𝑒 -𝑡𝑎𝑛 -1 𝑒) (12) 
with

𝑒 = √ 𝑎 𝑦 2 𝑎 𝑧 2 -1 (13) 
For spherical inclusions, the depolarization factors are simply given by:

𝐿 𝑧 = 𝐿 𝑥 = 𝐿 𝑦 = 1 3 (14) 
Note that the differential initial value problem (7) can also be written for the general anisotropic case, for which the phases are anisotropic materials [START_REF] Giraud | Effective electrical conductivity of transversely isotropic rocks with arbitrarily oriented ellipsoidal inclusions[END_REF] .

In the following, the porous media of interest are composed of insulating grains, i.e., k2=0, and the electrolyte-filled pores are viewed as matrix 1. In this case, the previous differential initial value problem (8) can be simplified as follows:

𝑑𝑘 * 𝑑𝜙 = 𝑚 𝑘 * 𝜙 , 𝑘 * (𝜙 = 1) = 𝑘 1 = 𝑘 𝑤 (15) 
where for the sake of lightening notation, =1=1-2 is the porosity, kw is the water conductivity or the electrolyte conductivity of the pores, and the parameter m, often called the "cementation exponent", is given by [START_REF] Mendelson | The effect of grain anisotropy on the electrical properties of sedimentary rocks[END_REF][START_REF] Archie | The electrical resistivity log as an aid in determining some reservoir characteristics[END_REF][START_REF] Sen | Grain shape effects on dielectric and electrical properties of rocks[END_REF] :

𝑚 = 5 -3𝐿 3(1 -𝐿 2 ) (16)
For spherical grains, it is easy to check that m=1.5 by using equations (14) and (16).

The differential initial value problem can also be expressed in the following integral form:

∫ 𝑑𝑘 𝑘 𝑘 * 𝑘 𝑤 = 𝑚 ∫ 𝑑𝑣 𝑣 𝜙 1 = -𝑚 ∫ 𝑑𝜙 1 -𝜙 𝜙 2 0 (17)
The integration of (17) leads to the so-called Archie relationship:

𝑘 * = 𝑘 𝑤 𝜙 𝑚 = 𝑘 𝑤 𝐹 (18) 
where F, called the formation factor, is defined by

𝐹 = 𝑘 𝑤 𝑘 * = 𝜙 -𝑚 (19) 
or

𝑙𝑛𝐹 = -𝑚 𝑙𝑛𝜙 (20) 
The term "formation factor" was originally used by Archie because it was approximately constant for any given geological formation. Regarding its physical meaning, the formation factor, and particularly the cementation exponent m, are inextricably related to the concept of tortuosity, a term used to define the connectivity of the pore space as it affects transport processes through porous media [START_REF] Clennell | Tortuosity: a guide through the maze[END_REF][START_REF] Glover | A generalized Archie's law for n phases[END_REF] . The cementation exponent m intrinsically associated with the concept of the formation factor is clearly a microstructure-dependent parameter of porous media [START_REF] Salem | The cementation factor of Archie's equation for shaly sandstone reservoirs[END_REF][START_REF] Han | Determination of effective grain geometry for electrical modeling of sedimentary rocks[END_REF] .

Although Archie's relationship (18) was derived from electrical measurements on a relatively small number of only a few types of sedimentary rocks, it has been successfully used for a wide range of porous media and for diffusion coefficients [START_REF] Shackelford | Diffusion in saturated soil. I: Background[END_REF][START_REF] Van Loon | Anion exclusion effects in compacted bentonites: towards a better understanding of anion diffusion[END_REF] . All these porous media are made up of a nonconductive mineral skeleton immersed in a single conductive phase, i.e., a liquid that completely saturates the connected pore space [START_REF] Yonezawa | Granular effective medium approximation[END_REF] . However, Archie's relationship is no longer valid for geomaterials such as clay materials containing nanopores of only a few nanometers in length that are filled with an electrolyte possessing special transport properties.

These particular transport properties, existing at nanopore scale, result from complex surface physico-chemical phenomena occurring at the liquid-mineral interface; these include chemical reactions at mineral surface sites, electrostatic interactions between the surface and ions, wettings, and electrokinetic couplings [START_REF] Worthington | The uses and abuses of the Archie equations, 1: The formation factor-porosity relationship[END_REF][START_REF] Tyagi | Multi-scale micro-structure generation strategy for up-scaling transport in clays[END_REF][START_REF] Rotenberg | Multiscale modelling of transport in clays from the molecular to the sample scale[END_REF] . All these surface physico-chemical phenomena often refer to surface conduction [START_REF] Bussian | Electrical conductance in a porous medium[END_REF][START_REF] De Lima | A grain conductivity approach to shaly sandstones[END_REF][START_REF] Revil | Nature of surface electrical conductivity in natural sands, sandstones, and clays[END_REF][START_REF] Waxman | Electrical conductivities in oil-bearing shaly sands[END_REF] or surface diffusion [START_REF] Glaus | Diffusion of 22 Na and 85 Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction[END_REF][START_REF] Charlet | Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue[END_REF] . To account for this surface transport, the previous DS that led to Archie's relationship is modified by introducing concepts from fractional calculus, as explained in the next section.

A fractional differential scheme

We focus on the last case presented in the previous section, i.e., a porous medium viewed as a two-component composite made of nonconductive grains immersed in a single conductive liquid. Following the DS approach, the effective transport property of a such composite is governed by equations ( 15) or (17), which can be expressed in an incremental way as follows:

𝑘 (𝑖+1) * = 𝑘 (𝑖) * (1 -𝑚 𝛿𝜙 2 1 -𝜙 2 (𝑖) ) (21) 
where 𝑘 (𝑖+1) *

and 𝑘 (𝑖) * are the effective properties at steps (i+1) and (i) in the DS construction process, respectively. The quantity

𝛿𝜙 2 1-𝜙 2 (𝑖)
is the volumetric amount of grains added in the effective medium of property 𝑘 (𝑖) * to obtain the property at step (i+1).

Equation ( 21) is interesting because it combines two concepts: the differential initial value problem (15) and the construction process underlying the DS approach. In equation ( 21), the term in brackets on the right-hand side can be considered an "interaction term". At a given step of the construction process, it defines the interactions between the added inclusions and the current ones. Following the DS construction process, the sum of all these interactions ultimately leads to Archie's relationship ( 18) associated with a given transport mechanism, i.e., a "bulk" transport in the connected conductive/diffuse phase immersing a nonconductive/nondiffuse multiscale solid skeleton.

Consequently, if we want to introduce a new transport mechanism, i.e., one associated with surface conduction or surface physico-chemical phenomena, then the interaction term in (21) has to be modified. The simplest way to modify this term is to introduce a weighted coefficient K(i) that evolves during the DS construction process:

𝑘 (𝑖+1) * = 𝑘 (𝑖) * (1 -𝑚𝐾 (𝑖) 𝛿𝜙 2 1 -𝜙 2 (𝑖) ) (22) 
Following Roscoe's interpretation of the DS, if we want to introduce new interactions between inclusions at the smallest scale, one may expect high values of K(i), i.e., much larger than 1, at the beginning of the filling process, i.e., at small values of (i), for the smallest inclusions. It should be noted that this coefficient could have been introduced upstream in the initial Eshelby problem.

The incremental equation ( 22) can also be reformulated in the following integral form:

∫ 𝑑𝑘 𝑘 𝑘 * 𝑘 𝑤 = -𝑚 ∫ 𝐾(𝑢) 𝑑𝑢 1 -𝑢 𝜙 2 0 (23)
where the kernel 𝐾(𝑢) must be defined.

In this work, the following candidate is chosen:

𝐾(𝑢) = 𝛼(𝜙 2 -𝑢) 𝛼-1 𝜙 2 𝛼-1 (24) 
This choice is interesting for at least two reasons. First, the numerator (𝜙 2 -𝑢) 𝛼-1 allows the introduction of the fractional calculus formalism, i.e., the Riemann-Liouville (RL) fractional integral:

∫ 𝛼(𝜙 2 -𝑢) 𝛼-1 𝜙 2 𝛼-1 𝑑𝑢 1 -𝑢 𝜙 2 0 = 𝛼 𝜙 2 𝛼-1 Γ(𝛼) Γ(𝛼) ∫ (𝜙 2 -𝑢) 𝛼-1 𝑑𝑢 1 -𝑢 𝜙 2 0 = 𝛼Γ(𝛼) 𝜙 2 𝛼-1 𝐷 0 𝜙 2 -𝛼 𝑓(𝜙 2 ) ( 25 
)
where  is the gamma function and

𝑓(𝜙 2 ) = 1 1-𝜙 2 . The quantity 𝐷 0 𝜙 2 -𝛼 𝑓(𝜙 2 ) or 𝐷 0 𝜙 2 -𝛼 ( 1 1-𝜙 2
) is the RL fractional integral of the function 1/(1 -𝜙 2 ) of order . Recall that the RL fractional integral of the function 𝑓(𝜙 2 ) is defined by 61 :

𝐷 0 𝜙 2 -𝛼 𝑓(𝜙 2 ) = 1 Γ(𝛼) ∫ 𝑓(𝑢) (𝜙 2 -𝑢) 𝛼-1 𝑑𝑢 𝜙 2 0 (26)
Or, in our case:

𝐷 0 𝜙 2 -𝛼 ( 1 1 -𝜙 2 ) = 1 Γ(𝛼) ∫ 1 1 -𝑢 (𝜙 2 -𝑢) 𝛼-1 𝑑𝑢 𝜙 2 0 ( 27 
)
The parameter , the order of the RL integral, obeys the inequality >1, but this condition can be generalized to Re()>0 if the integral in ( 27) is an improper Riemann integral (Miller and Ross, 1993).

The main advantage of this particular choice lies in the parameter  which introduces a certain flexibility to the kernel 𝐾(𝑢). Note that if >1, the kernel 𝐾(𝑢) is a monotonically decreasing function of , meaning that 𝐾(𝑢) is at its maximum at the beginning of the integral path in ( 23) and thus at the beginning of the DS filling process, when the added inclusions are the smallest. At this stage, parameter  can be seen as "potentiometer" which controls through the kernel 𝐾(𝑢) the amplitude of physico-chemical interactions between the added inclusions in the DS filling process. As discussed further through an inverse modeling approach, the fractional order  can be interpreted as an indirect indicator of the amplitude of physicochemical interactions occurring at the pore fluid/solid interface in clayey geomaterials.

Second, the denominator 𝜙 2 𝛼-1 satisfies the following normalization condition:

1 𝜙 2 ∫ 𝐾(𝑢)𝑑𝑢 𝜙 2 0 = 1 (28) 
that is easy to check.

From ( 24) and ( 25), the integral formulation of the DS ( 23) can be rewritten as follows:

𝑙𝑛 ( 𝑘 𝑤 𝑘 * ) = 𝑚 𝛼Γ(𝛼) 𝜙 2 𝛼-1 𝐷 0 𝜙 2 -𝛼 ( 1 1 -𝜙 2 ) (29) 
Or, by introducing the formation factor 𝐹 = 𝑘 𝑤 /𝑘 * and the porosity 𝜙 = 1 -𝜙 2 :

ln 𝐹 = 𝑚 𝛼Γ(𝛼) (1 -𝜙) 𝛼-1 𝐷 0 1-𝜙 -𝛼 ( 1 𝜙 ) (30) 
In contrast with Archie's relationship (20), the formation factor F now depends (i) on the porosity  through the RL fractional integral and (ii) on the fractional order . Equation ( 29) defines a fractional DS of a two-phase composite, i.e., a porous medium made of a connected conductive phase immersing a nonconductive multiscale solid skeleton.

Equation ( 30) can be rewritten in a simpler way by introducing the incomplete beta function 𝐵 𝑥 (𝑎, 𝑏):

𝐵 𝑥 (𝑎, 𝑏) = ∫ 𝑢 𝑎-1 (1 -𝑢) 𝑏-1 𝑑𝑢 𝑥 0 (𝑎, 𝑏 > 0) (31) 
and by using the following relationship [START_REF] Miller | An introduction to the fractional calculus and fractional differential equations[END_REF] :

𝐷 𝑡 -𝜈 𝑐 (𝑎 -𝑡) 𝜆 = (𝑎 -𝑡) 𝜆+𝜈 Γ(𝜈) 𝐵 𝜏 (𝜈; -𝜆 -𝜈) , 𝜏 = 𝑡 -𝑐 𝑎 -𝑐 (32) 
If we set c=0, t=1-, a=1, =-1, =, equation ( 32) becomes:

𝐷 1-𝜙 -𝛼 0 ( 1 𝜙 ) = 𝜙 𝛼-1 Γ(𝛼) 𝐵 1-𝜙 (𝛼; 1 -𝛼) 𝜏 = 1 -𝜙 (33) 
and thus equation (30) yields

ln 𝐹 = 𝑚 𝛼 ( 𝜙 1 -𝜙 ) 𝛼-1 𝐵 1-𝜙 (𝛼; 1 -𝛼) (34) 
or

ln 𝐹 = 𝑚 Ψ(𝜙, 𝛼) (35) 
with

Ψ(𝜙, 𝛼) = 𝛼 ( 𝜙 1 -𝜙 ) 𝛼-1 𝐵 1-𝜙 (𝛼; 1 -𝛼) (36) 
From the definition of the formation factor 𝐹 = 𝑘 𝑤 /𝑘 * , the effective transport property k* is thus given by:

𝑘 * = 𝑘 𝑤 𝑒 -𝑚Ψ(𝜙,𝛼) (37) 
At this stage, three comments can be made. First, equations ( 34) and ( 37) are easier to handle than equation (30) because the beta incomplete function has been widely studied in the mathematical literature, especially in statistics. Indeed, the beta incomplete function is available for all Excel-type spreadsheets and thus can be calculated easily without having to write any programs. This means that despite the apparent complexity of equations ( 34) and ( 37), the effective conductivity k* can be explicitly and directly calculated in a simple way.

Second, it is easy to check that for =1, equation ( 34) becomes:

ln 𝐹 = -𝑚 𝑙𝑛𝜙 (38) 
(note that 𝐵 1-𝜙 (1; 0) = -𝑙𝑛𝜙). Thus, Archie's relationship ( 20) is obviously retrieved.

Third, the interesting asymptotic case >>1 can also be studied by using the following Newtonian result [START_REF] Miller | An introduction to the fractional calculus and fractional differential equations[END_REF][START_REF] Dutka | The incomplete Beta function-a historical profile[END_REF] :

𝐵 𝑥 (𝑎, 𝑏) = ∫ 𝑢 𝑎-1 (1 -𝑢) 𝑏-1 𝑑𝑢 𝑥 0 = 𝑥 𝑎 (1 -𝑥) 𝑏 𝑎 ℱ(𝑎 + 𝑏, 1; 𝑎 + 1; 𝑥)) (39) 
where ℱ is the hypergeometric series given by [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] :

ℱ(𝛼 1 , 𝛼 2 ; 𝛼 3 ; 𝑥) = 1 + 𝛼 1 𝛼 2 𝛼 3 𝑥 1! + 𝛼 1 (𝛼 1 + 1)𝛼 2 (𝛼 2 + 1) 𝛼 3 (𝛼 3 + 1) 𝑥 2 2! + 𝛼 1 (𝛼 1 + 1)(𝛼 1 + 2)𝛼 2 (𝛼 2 + 1)(𝛼 2 + 2) 𝛼 3 (𝛼 3 + 1)(𝛼 3 + 2) 𝑥 3 3! + ⋯ (40) 
For x=1-, a=, b=1- and for a large , equations ( 40) and (39) give

ℱ(1,1; 𝛼 + 1; 1 -𝜙)~1 and 𝐵 1-𝜙 (𝛼, 1 -𝛼)~𝜙 1-𝛼 (1-𝜙) 𝛼 𝛼
. Thus, the formation factor in ( 34) is simply:

ln 𝐹 ~𝑚 (1 -𝜙) (41) 
or

𝐹~𝑒 𝑚 (1-𝜙) (42) 
Equation ( 42) provides two results. First, similar to Archie's relationship, for a highporosity medium (𝜙~1), the formation factor F tends toward unity and therefore, 𝑘 * ~𝑘𝑤 .

Second, for a low-porosity medium (𝜙~0), F tends toward a finite value 𝑒 𝑚 and therefore, 𝑘 * ~𝑘𝑤 𝑒 -𝑚 . This unexpected result shows that even if the porous medium is mainly constituted of a nonconductive solid, it is still significantly conductive with a conductivity function of kw, that is, equal to 𝑘 𝑤 𝑒 -𝑚 . This physical inconsistency with regard to the initial assumptions highlights that our DS approach should not be used for very low-porosity media associated with large values of .

Analysis of the sensitivity lnF to the fractional order 

The fractional DS introduces a new parameter, i.e., the fractional order  whose influence on the effective formation factor F, especially on the effective property k*, must be investigated.

This sensitivity analysis is conducted by calculating lnF as a function of the parameter  over a wide range of porosity and cementation exponent values (equation ( 34), (35), or (36)).

The porosity range used here is from 0.05 to 0.4 (i.e., 5-40%) and is representative of a large class of clayey porous media. The cementation exponent m ranges between 0.2 and 2.7. These lower and upper limits are taken from Revil et al. [START_REF] Revil | Nature of surface electrical conductivity in natural sands, sandstones, and clays[END_REF] and Dashtian et al. [START_REF] Dashtian | Nonuniversality of the Archie exponent due to multifractality of resistivity well logs[END_REF] .  The sensitivity of lnF to  is largest for the smallest porosity values, all things being equal.

 The sensitivity of lnF to  is strongly influenced by the cementation exponent m. There exists almost a full order of magnitude between the lnF values of the left vertical scale and those of the right vertical scale. This strong sensitivity is obviously due to the fact that lnF is directly proportional to m, all things being equal (see equation ( 34), (35), or (36)); there is indeed an order of magnitude between both m limits, i.e., between 0.2 and 2.7.

These results are confirmed by a logF-log plot, which is usually used in petrophysics to illustrate departures from Archie's relationship (Figure 2). These departures are interpreted as being due to the existence of electrical surface conduction associated with clay minerals, as evidenced from electrical resistivity measurements acquired for a large class of clayey geomaterials 31, 58, 65-66. Figure 2 also displays the numerical results obtained from an empirical model [START_REF] Worthington | The uses and abuses of the Archie equations, 1: The formation factor-porosity relationship[END_REF] based on the well-known experimental results obtained from clayey rocks by Waxman [START_REF] Waxman | Electrical conductivities in oil-bearing shaly sands[END_REF][START_REF] Waxman | Electrical conductivities in oil-bearing shaly sands: I. The relation between hydrocarbon saturation and resistivity index. II. The temperature coefficient of electrical conductivity[END_REF] .

In comparison with Figure 1, Figure 2 provides two additional results. First, it shows that the fractional DS is able to describe, at least qualitatively, the "curvilinear" trend observed in a logF-logrelationship associated with surface conduction. The shape and amplitude of this "curvilinear" trend are clearly controlled by the value of the fractional order . Small deviations from the unity value of , i.e., =1.2, induce significant deviations from Archie's relationship.

Second, the empirical model indicates that surface conduction in clay rocks significantly depends on the amplitude of liquid conductivity. The F- relationship must reflect this dependence, as the fractional DS cannot do so directly (see equation 34). Thus, this comparison with experimental data strongly suggests that the fractional order should itself depend on the liquid conductivity kw. In other words, in the theoretical framework of the fractional DS, an additional relationship linking  and kw should be introduced. This observation is not surprising because most surface physico-chemical phenomena occurring at the solution/solid interface, e.g., the electrical double (triple) layer, are controlled by the concentrations of ions in solution (such as salinity), which in turn depend on the solution conductivity (at least the electrical solution conductivity) [START_REF] Revil | Nature of surface electrical conductivity in natural sands, sandstones, and clays[END_REF] . Now, if the fractional order  is supposed to reflect the amplitude of the interfacial solid-pore interactions, then it must also depend in some way on the concentrations of ions and therefore on the solution conductivity. This dependence is illustrated in the following applications.

Applications

Clayey geomaterials as multiscale and reactive materials

Data on transport properties, mainly the electrical conductivity and diffusion coefficients of clayey materials, are now compared to predictions obtained from the fractional DS presented in the previous section (i.e., equations ( 34), ( 35) and ( 36)). Here, it is worth remembering that clayey materials are involved in many geoenvironmental issues. These geological materials are studied as natural or engineered barriers for deep geological radioactive waste repositories and form the main geological caps of many hydrocarbon reservoirs.

Clayey materials are preferred here for at least two reasons. First, as previously mentioned, clayey soils or rocks often show microstructural patterns that are observed in multiscale materials [START_REF] Krohn | Fractal measurements of sandstones, shales and carbonates[END_REF][START_REF] Van Damme | Scale invariance and hydric behaviour of soils and clays[END_REF][START_REF] Ougier-Simonin | Microfracturing and microporosity in shales[END_REF][START_REF] Ma | Correlative multi-scale imaging of shales: a review and future perspectives[END_REF][START_REF] Sun | Fractal characteristics of pore structure of compacted bentonite studied by ESEM and MIP methods[END_REF][START_REF] Cosenza | Secondary consolidation of clay as an anomalous diffusion process[END_REF] . They exhibit a complex hierarchical organization at microstructural levels observed with space scales of several orders of magnitude, typically from nanometers to millimeters [START_REF] Cosenza | Statistical representative elementary area of shale inferred by micromechanics[END_REF] . Despite the technical difficulty of acquiring these observations, recent quantitative petrography studies showed that the histograms of nonclay grain sizes [START_REF] Fauchille | Déterminismes microstructuraux et minéralogiques de la fissuration hydrique dans les argilites de Tournemire : apports couplés de la pétrographie quantitative et de la corrélation d'images numériques[END_REF][START_REF] Philipp | The effect of microstructural heterogeneity on pore size distribution and permeability in Opalinus Clay (Mont Terri, Switzerland): insights from an integrated study of laboratory fluid flow and pore morphology from BIB-SEM images[END_REF] (Figure 3a) and pore sizes [START_REF] Ougier-Simonin | Microfracturing and microporosity in shales[END_REF][START_REF] Philipp | The effect of microstructural heterogeneity on pore size distribution and permeability in Opalinus Clay (Mont Terri, Switzerland): insights from an integrated study of laboratory fluid flow and pore morphology from BIB-SEM images[END_REF] (Figure 3b) obey, at the first order, a power law for a wide range of sizes of heterogeneities, ranging from micrometric size to one tenth of a millimeter. Thus, these results attest to the existence of a multiscale or "fractal-like" system or microstructure composed of a set of many heterogeneities of many sizes, and this system is the main textural signature associated with the DS.

Second, clay-rich materials are known to be reactive porous media, i.e., porous media where complex physicochemical interactions between the pore solution and solid-phase occur.

This reactivity is mainly due to the existence of smectite clay minerals containing a substantial excess of fixed negative charges that have to be neutralized by dissolved counter cations. The presence of these charged clay minerals and their associated dissolved counter cations originate from the so-called electrical double (or triple) layer existing on these minerals at nanopore scale (typically a few nanometers) [START_REF] Revil | Nature of surface electrical conductivity in natural sands, sandstones, and clays[END_REF] . Moreover, the presence of nanopores between the clay minerals induces the existence of "bound" water or "interlayer" water with thermodynamic, hydrodynamic and spectroscopic properties that appear close to those of ice [START_REF] Mercury | Thermodynamics of ice polymorphs and 'ice-like'water in hydrates and hydroxides[END_REF] . In this interlayer space, these water molecules can organize themselves in the form of (up to three) molecular layers [START_REF] Sposito | The chemistry of soils[END_REF] . These adsorbed water molecules are subjected to physicochemical forces of a complex nature: electrostatic attraction or repulsion, hydration or "structural" forces of the Derjaguin type [START_REF] Gonçalvès | What is the significance of pore pressure in a saturated shale layer?[END_REF] . The upscaling of these physicochemical interactions and their associated transport processes up to the (sample) scale of the engineer is obviously a challenging issue [START_REF] Rotenberg | Multiscale modelling of transport in clays from the molecular to the sample scale[END_REF] .

Electrical conductivity of clay rocks

The fractional DS is now applied to electrical conductivity data of water-saturated clayey rocks taken from the database compiled by Waxman and Smits [START_REF] Waxman | Electrical conductivities in oil-bearing shaly sands[END_REF] .

In the first stage, five samples from this database are selected to obtain a wide distribution of cation exchangeable capacity (CEC) values. CEC is usually expressed in milliequivalents per 100 g of dry material and quantifies the exchangeable cations neutralizing negative charges in porous material [START_REF] Meunier | Clays[END_REF] . A high CEC value for a given porous medium is interpreted as the medium having a high potential for adsorption of hydrated cations at the solution-mineral interface. Consequently, CEC can be considered for use with swelling clayey materials as an indirect measure of their ability to adsorb cations and, more broadly, to electrochemically react with the pore solution since the electrical double (triple) layer is directly linked to counter cations adsorption. The objective of this preliminary selection is to handle a panel of samples representative of a wide range of CEC values and therefore representative of a wide range of reactive materials. Table 1 shows the CEC values, the clay mineral compositions and the porosity values of these five samples. This illustrates that the higher the content of reactive clay minerals (i.e., montmorillonite) is, the higher the measured CEC value.

In the second stage, five electrical conductivity measurements acquired at five fluid salinities and measured on each of the five preselected samples are considered (see the data in Figures 4a and4b). These five fluid salinity concentrations correspond to the lowest values of equilibrium solution conductivity from Waxman and Smits's database, i.e., in the range of 2.085 dS.m -1 up to 28.22 dS.m -1 . In this low-salinity range, the bulk of the conductivity of a given rock increases sharply and nonlinearly with the solution conductivity, thus violating Archie's relationship (equation 18) (see the data in Figures 4b). This nonlinear increase in conductivity with the increase in the concentration of electrolytes in the low-salinity range is attributed to the so-called surface conduction or surface effects, as explained previously. In contrast, at high electrolyte concentrations, i.e., in the high-salinity domain corresponding to solution conductivity values greater than 28.22 dS.m -1 , the rock conductivity increases proportionally with the solution conductivity, i.e., following 1:1 a ratio, as predicted by Archie's relationship (Figure 4a). In this high-salinity domain, the electrical conduction is purely electrolytic, i.e., controlled by the conductivity of the bulk solution. As mentioned previously, the rock conductivity values in the high-salinity domain are not considered in this application.

This selection of electrical data is used to invert the parameters of the fractional DS model, the fractional order , and the cementation exponent m in the following four cases:

 Case 1. Both parameters, the fractional order and the cementation exponent m, are assumed to be independent of the solution salinity. In other words, they are supposed to be constant for a given rock sample and do not depend on the solution electrical conductivity w. This simplest case is considered as a reference case with regard to the other cases that follow.

 Case 2. The cementation exponent m is assumed to be independent of the solution salinity, but the fractional order  nonlinearly evolves with the solution conductivity, following this simple relationship:

𝛼 = 1 + 𝜎 𝑤 0 𝜎 𝑤 (43) 
where the unknown parameter 𝜎 𝑤 0 must be inverted. This case is suggested by experimental observations that show that the formation factor and thus the effective conductivity decrease nonlinearly with the solution conductivity [START_REF] Worthington | The uses and abuses of the Archie equations, 1: The formation factor-porosity relationship[END_REF][START_REF] Han | Relationships among low frequency (2 Hz) electrical resistivity, porosity, clay content and permeability in reservoir sandstones[END_REF] (Figure 2). It can be seen from ( 43) that for the high-salinity limit, if 𝜎 𝑤 → ∞, then 𝛼 → 1, and Archie's relationship is retrieved as expected.

 Case 3. The fractional order  is assumed to be independent of the solution salinity, but the cementation exponent m nonlinearly evolves with the solution conductivity, following this simple relationship:

𝑚 = 𝑎 + 𝑏 𝑙𝑛𝜎 𝑤 (44) 
where a and b are parameters to be inverted. The particular mathematical form of equation ( 44) is suggested by the increase in rock conductivity as the solution conductivity increases, as indicated in Figure 4b. This nonlinearity ( 44) is introduced by the fact that the changes in solution conductivity imply some swelling or shrinkage of the reactive clay aggregates, which in turn should significantly modify the electrical tortuosity and rock microstructure. The impact of this swelling or shrinkage of clay aggregates on transport properties is rarely considered in the literature.

 Case 4. Both parameters, the fractional order  and the cementation exponent m, are assumed to be dependent on the solution salinity, following the relationships in (43) and (44).

The unknown parameters involved in these four cases are inverted by means of an optimization scheme based on Monte Carlo sampling [START_REF] Mosegaard | Probabilistic approach to inverse problems[END_REF][START_REF] Tarantola | Inverse problem theory and methods for model parameter estimation[END_REF] , and they are applied to the five electrical conductivity measurements of each of the five preselected samples. This scheme, considered a Markov chain Monte Carlo (MCMC) approach, is a probabilistic technique whose basic principle consists of an oriented random walk exploration of the parameter space to avoid large time-consuming computations. This type of technique is also particularly able to account explicitly for the experimental uncertainties that are assumed to follow a Gaussian distribution (see details in Tarantola [START_REF] Tarantola | Inverse problem theory and methods for model parameter estimation[END_REF] ).

It should be noted that cases 1 and 2 imply that there are two parameters to be inverted, whereas cases 3 and 4 use three parameters, (, a, b) and (a, b, 𝜎 𝑤 0 ), respectively. For the objective of carrying out the simplest modeling approach and inverting the same number of unknown parameters for all four cases, the smallest number of parameters (two parameters) is considered in the following analysis. Thus, to invert only two parameters for each of the four cases, an additional assumption is introduced at this stage. It is assumed that the cementation exponent value for the selected sample with the highest solution salinity, i.e., 28.22 dS.m -1 , is equal to mHS, which is the cementation exponent value calculated at the highest solution conductivity (i.e., at the highest salinity) found in the Waxman-Smits database, i.e., 233.5 dS.m -1 (see the m HS values in Table 1). In other words, the cementation exponent is assumed to be constant between 28.22 dS.m -1 and 233.5 dS.m -1 , i.e., a salinity range for which surface conduction does not impact the electrical tortuosity and rock microstructure. From this assumption, equation ( 44) can be rewritten as follows:

𝑚 = 𝑚 𝐻𝑆 + 𝑏 𝑙𝑛 ( 𝜎 𝑤 28.22 ) (45) 
where the solution electrical conductivity 𝜎 𝑤 is now expressed in dS.m -1 and the parameter b is the sole parameter to be inverted.

The results of the inversion of each pair of parameters for each of the four cases and for the five selected samples are given in Table 2. To compare the quality of the inversions performed for each case, the root-mean-square error (RMSE) is calculated as follows:

𝑅𝑀𝑆𝐸 = √ 1 𝑛 ∑ ( 𝑜𝑏𝑠 𝑖 -𝑠𝑖𝑚 𝑖 𝑜𝑏𝑠 𝑖 ) 2 𝑛 𝑖=1 ( 46 
)
where n is the number of measurements (here, five for each sample) and obsi and simi are the measured and simulated values, respectively, obtained for each measurement i. Note that the MCMC optimization scheme is run at least 50 times for each case, and the inverted values yielding the smallest RMSE (minimum RMSE) are retained as results in Table 2.

In a general way, the results in Table 2 reveal the following features. First, case 1 shows the highest minimum RMSE values, greater than 46% for all five samples. Moreover, case 1 provides inverted values of both parameters,  and m, over wide ranges, illustrating that several values of these parameters that are very different yield similar minimum RMSE values. The poor agreement between the measured and simulated values and the high uncertainties in the inverted parameters are not surprising. Indeed, case 1 predicts a linear relationship between the solution conductivity 𝜎 𝑤 and the effective rock conductivity 𝜎 * (see equation 37, where parameters,  and m, are constant), which is not observed experimentally in this salinity range (Figure 4b). These results highlight, as expected, that the relationships between the parameters  and m and between the solution conductivity and salinity are required to fit the Waxman Smits data. Thus, in comparison with case 1, case 2 noticeably improves the agreement between the measured and simulated values. Table 2 indicates for case 2, the minimum RMSE values are in the range of 14.9-41.6 (%) for all five samples. However, these RMSE values are still high, i.e., greater than 5%; the improvement of fit is significant in case 3. Indeed, case 3 shows minimum RMSE values that are lower than 3.15% for all the samples. This satisfactory agreement is displayed in Figures 4a and4b. The slight disagreement observed for the highest solution conductivity (at 28.22 dS.m -1 ) in Figure 4b is likely because at this salinity, the amplitudes of surface conduction and the related physico-chemical effects are not high.

In contrast with case 3, case 4, which introduces two nonlinearities through equations ( 43) and ( 44), does not significantly improve the agreement between the measured and simulated values. The minimum RMSE values provided by case 4 are between 3.16% and 6.49%, and they are greater than those of case 3, which are all lower than 3.16% (Table 2).

If we focus now on the results of case 3, which provides the lowest minimum RMSE values, two comments can be made. First, our inversion results show that the cementation exponent is extremely sensitive to solution conductivity changes (Figure 5). The inverted values of the parameter m for all samples significantly increase with solution conductivity. This sensitivity appears to increase with the sample reactivity. Indeed, it reaches its maximum value for sample WS26, which exhibits the highest content of reactive clay minerals (montmorillonite) and thus the highest CEC value, i.e., 1.47 mequiv.cm -3 or 0.164 mequiv.g -1 (Table 1). The cementation exponent of sample WS26 increases from 0.34 to 2.30. This is an increase of 576% with respect to the initial cementation exponent at the lowest solution conductivity, i.e., 2.085 dS.m -1 . In contrast, this sensitivity to the solution conductivity is minimal for sample WS17, which has the lowest CEC value, i.e., 0.33 mequiv.cm -3 or 0.02 mequiv.g -1 (Table 1). The cementation exponent of sample WS17 increases from 0.90 to 1.85. This is an increase of 106% with respect to the initial cementation exponent at the lowest solution conductivity. This increase is five times less than that observed for the WS26 sample. This dependence of the sensitivity of m on clay-rock reactivity can be also illustrated in Figure 6 which displays a clear positive correlation between the parameter b in equation ( 45) and the cation exchange capacity. Consequently, it can be suggested here that the cementation exponent should account for the microstructural evolution associated with the swelling/shrinkage of clay minerals or aggregates directly due to salinity changes in clayey rocks. The microstructural evolution may correspond to changes in pore connectivity and tortuosity and, more generally, to the evolution of the geometric pore space of the clayey rock under study.

Second, the fractional order  is also dependent on the rock reactivity. Figures 6a and6b indicate that the increase in the parameter  is an almost linear function of the cation exchange capacity. The best agreement between empirical and simulated values is obtained with an exponential function exhibiting a regression coefficient of determination R 2 equal to 0.98 (Figure 7a). It should be noted that an extrapolation of this exponential fit at CEC=0 leads to an  value of 1.02, which close to 1 as expected for a nonreactive rock. Consequently, the results in Figures 7a and7b suggest that the fractional order could be an interesting indicator of the amplitude of surface conduction in clayey rocks. To confirm this observation and the previous observations, the fractional DS will be applied to diffusion coefficient data of saturated clay montmorillonite.

However, in order to test the predictive nature of the model, two test cases are performed using two additional samples, named WS21 and WS22 in the Waxman-Smits database. The values of petrophysical properties of these two additional samples are given in Table 3.

Parameters  and m (through b of equation ( 45)) are calibrated by using the non-linear regressions given in Figures 7a. and 6, respectively (see results in Table 3). Figure 8 which displays the results of these two test cases shows that the model satisfactorily predicts the measured data. The RMSE between simulated values and measured values of samples WS21 and WS22 are 9.6 % and 10.6 %, respectively.

Diffusion coefficient of compacted montmorillonite

The fractional DS is applied to diffusion coefficient data of compacted water-saturated bentonite acquired from classical through-diffusion tests performed by Glaus et al. [START_REF] Glaus | Diffusion of 22 Na and 85 Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction[END_REF] . The clay portion of bentonite is composed essentially of montmorillonite, a smectite-type clay mineral. This set of data is preferred for at least four reasons. First, these data were obtained on montmorillonite, i.e., a swelling clay mineral that is extremely reactive to changes in pore liquid chemistry. Second, the effective diffusion coefficient was measured with Na + counter cations, which are known to physico-chemically interact with montmorillonite more strongly than other ions [START_REF] Glaus | Diffusion of 22 Na and 85 Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction[END_REF][START_REF] Charlet | Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue[END_REF][START_REF] Kozaki | Self-diffusion of sodium ions in compacted sodium montmorillonite[END_REF] . In the work of Glaus et al. [START_REF] Glaus | Diffusion of 22 Na and 85 Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction[END_REF] , their montmorillonite mixture was chemically treated with a NaCl solution to remove all soluble salts and to convert the clay into a Na-form, i.e., a Na-montmorillonite. Third, these data were acquired for a very large range of cation concentrations for the solution in equilibrium with the clayey geomaterial, i.e., over three decades from 10 -2 M to 1 M. This equilibrium concentration is hereafter called the "external salt concentration". Fourth, this powder was highly compacted to obtain a dry bulk density of 1950 kg.m -3 , i.e., a porosity of 28%. This state of compaction brings us closer to natural rock, the case encountered in the previous section (3.2). Now, following equation (19), a "diffusion" formation factor is defined as follows:

𝐹 = 𝐷 𝑤 𝐷 * (47) 
where D * is the effective diffusion coefficient of compacted montmorillonite and Dw is the selfdiffusion coefficient of bulk liquid water. The coefficient Dw, always greater than D * , is set to 1.33 10 -9 m 2 .s -1 for the cation Na + 80 . In contrast with the previous electrical conductivity w of the bulk solution, which increases with salinity, the coefficient Dw is independent of the external salt concentration [START_REF] Glaus | Diffusion of 22 Na and 85 Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction[END_REF][START_REF] Li | Diffusion of ions in sea water and in deep-sea sediments[END_REF] and mainly depends on the chemical species under study, which is the cation Na + here.

Moreover, compared with the effective electrical conductivity, the effective diffusion coefficient of cations in compact clayey geomaterials decreases with increasing external salt concentration (compare the data in Figure 4a and Figure 9). The classical interpretation of this evolution is derived from the existence of a "surface" diffusion (often called "interlayer" diffusion) of counter cations, which are the cations Na + here. This diffusion mechanism, which dominates the overall diffusion in compacted Na-montmorillonite, occurs in the "near-surface" water between smectite clay minerals (i.e., montmorillonite) and free pore water, or in other words, in the electrical double (or triple) layer (EDL or ETL), existing at the charged surface of montmorillonite. This near-surface water in the vicinity of these surfaces is dominant in nanopores and contains more counter cations than the bulk solution to compensate for the excess of fixed negative charges on the surface of montmorillonite. Following Glaus et al. [START_REF] Glaus | Diffusion of 22 Na and 85 Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction[END_REF] , this surface diffusion is driven by the local cation concentration gradient existing between this near-surface water and the surrounding bulk water; it is larger at low external salt concentrations and decreases as the external salt concentration increases. In other words, the larger the external salt concentration in the bulk liquid is, the lower the local cation concentration gradients between near surface water and bulk water and finally the lower the amplitude of surface diffusion.

Similarly to the previous section 3.2, diffusion coefficient data from Glaus et al. [START_REF] Glaus | Diffusion of 22 Na and 85 Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction[END_REF] has been used to invert the parameters of the fractional DS model, the fractional order, , and the cementation exponent, m, following four cases:

 Case 1. Both parameters, the fractional order, and the cementation exponent, m, are assumed to be independent of the external salt concentration. This simplest case is again considered as a reference case with regard to the following others.

 Case 2. The cementation exponent, m is assumed to be independent of the external salt concentration named here 𝐶 𝑤 but the fractional order, , nonlinearly evolves with the solution conductivity, following this simple relationship:

𝛼 = 1 + 𝐶 𝑤 0 𝐶 𝑤 (48) 
where the unknown parameter 𝐶 𝑤 0 must be inverted. It can be seen in ( 48) that for the high-concentration limit, if 𝐶 𝑤 → ∞, then 𝛼 → 1, and Archie's relationship is retrieved as expected.

 Case 3. The fractional order  is assumed to be independent of the external salt concentration 𝐶 𝑤 , but the cementation exponent m nonlinearly evolves with 𝐶 𝑤 , following this relationship:

𝑚 = 𝑎′ + 𝑏′ 𝑙𝑛𝐶 𝑤 (49) 
where a' and b' are parameters to be inverted. Similar to the case with electrical conductivity, this nonlinearity ( 49) is introduced by the fact that the changes in external salt concentration imply some swelling or shrinkage of the reactive clay aggregates, which in turn should significantly modify the diffusional tortuosity and rock microstructure. For the electrical conductivity, it is desirable to conduct the simplest modeling approach and to invert the same number of unknown parameters for all cases.

Thus, to invert only two parameters for each of the four cases, an additional assumption is again introduced at this stage. It is assumed that the cementation exponent value at the highest external salt concentration of our selected data, i.e., 1 M, is equal to mHS, that is, the cementation exponent value at the highest concentration limit for which Archie's relationship is satisfied (i.e., for  equal to 1). In this case, the m HS value is calculated as 2.79 by using equation (19). From this additional assumption, equation ( 49) can be rewritten as follows:

𝑚 = 𝑚 𝐻𝑆 + 𝑏′ 𝑙𝑛 ( 𝐶 𝑤 𝐶 𝐻𝑆 ) (50) 
where b' is a parameter to be inverted and 𝐶 𝐻𝑆 is equal to 1 M.

 Case 4. Both parameters, the fractional order  and the cementation exponent m, are assumed to be dependent on the pore solution salinity, following the relationships in (48) and (50).

The pairs of unknown parameters in these four cases have are inverted for the five values of external salt concentrations from Glaus et al. [START_REF] Glaus | Diffusion of 22 Na and 85 Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction[END_REF] by running the same optimization scheme used in the previous section (3.2).

The results given in Table 4 indicate that case 4 provides the lowest minimum RMSE value, i.e., the best fit between the selected data and the fractional DS model. Although the minimum RMSE value of 8.94% for case 4 is significant, Figure 9 shows a satisfactory agreement between the data and the model. The fractional DS model associated with the nonlinearities in ( 48) and ( 50) correctly captures the cation concentration dependence of the effective diffusion coefficient of compacted Na-montmorillonite.

Figure 10 displays the inversion results of equations ( 48) and ( 50) associated with case 4. Figure 10 shows two features. First, similar to the electrical cementation exponent, our inversion results show that the diffusion cementation exponent is sensitive to the external salt concentration. The diffusion cementation exponent nonlinearly increases from almost 0 at a concentration of 10 -2 M up to 2.79 at 1 M. Our interpretation of this increase is similar to that provided in section 3.2 for the electrical conductivity. The diffusion cementation exponent appears to account for the microstructural evolution associated with swelling clay minerals or aggregates due to concentration changes in the montmorillonite mixture. These microstructural evolutions can be changes in pore connectivity and tortuosity, likely associated with the swelling/shrinkage and/or aggregation/disaggregation processes of montmorillonite minerals.

Second, the fractional exponent  sharply decreases with increasing salt concentration. The parameter  decreases from 9.6 at 10 -2 M to 1.9 at 0.1 M, and it finally converges to almost 1 at 1 M, which is the highest concentration value. The parameter  reaches its maximum value at the lowest values of external salt concentrations for which the surface diffusion is maximal.

At this stage, it is tempting to compare the inverted values of the parameters m and  for both transport properties, i.e., the diffusion coefficient and electrical conductivity. However, this exercise is a priori difficult for at least three reasons. First, both transport properties do not refer strictly to the same physico-chemical phenomena, e.g., charge carrier movement driven by a gradient of electrical potential for the electrical conductivity and Brownian movement driven by a gradient of chemical potential for the diffusion coefficient. Second, the salt concentration ranges of the two studies are not strictly similar. Glaus et al. [START_REF] Glaus | Diffusion of 22 Na and 85 Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction[END_REF] used a wide salinity range from 10 -2 M to 1 M, while Waxman and Smits 58 used a salinity range from approximately 2.10 -2 M to 0.3 M after converting the solution conductivities to NaCl concentrations using the TDS-total dissolved salt method [START_REF] Santamarina | Soils and waves[END_REF] . Third, a clayey rock and a compacted montmorillonite-rich geomaterial do not have exactly the same microstructure and clay mineral contents. Contrary to the compacted montmorillonite mixture studied by Glaus et al. [START_REF] Glaus | Diffusion of 22 Na and 85 Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction[END_REF] , the clayey rocks in the electrical WS database are not pure clayey material and contain a significant amount of nonclay minerals, e.g., quartz and calcite, whose proportions may reach a few dozen %. Moreover, the microstructure of clayey rocks results from a complex geological story called diagenesis, which involves the mechanical compaction of sediments as well as geochemical processes, i.e., the precipitation and dissolution of minerals.

However, in Figure 10, if we look at the m and  values in a restricted concentration range ([2.10 -2 -0.3] M), which corresponds to the WS database, two remarks can be made. First, the m values for both properties are almost similar, i.e., between 0 and 2 (compare Figure 5 and Figure 8). In a first-order approach, the "electrical" cementation exponent and the "diffusion" cementation exponent respond in the same manner to changes in salt concentrations and thus are sensitive to the same physico-chemical phenomena. Second, the diffusion  values in Figure 10 are significantly higher than those obtained from the electrical conductivity (compare Figure 7a, Figure 7b, and Figure 10 over the restricted range [2.10 -2 -0.3] M). Following our physical definition of the parameter , this would mean that the amplitude of the surface transport of cations resulting from the interactions between hydrated cations and clay minerals would be much higher in Na-montmorillonite than in the clayey rocks under study. This proposition is supported by the mineral composition of the Na-montmorillonite mixture used by Glaus et al.,

which is much richer in montmorillonite-reactive minerals (more than 98%) than the clayey rocks of the WS database.

Conclusion

A new DS called the fractional DS is presented in this paper. This semi-analytical homogenization scheme is introduced to quantitatively investigate the effects of surface physico-chemical phenomena occurring at the pore fluid/solid interface on the effective transport properties of reactive geosystems, e.g., clayey materials. This fractional DS, which requires neither a particular "grain" transport property nor an interfacial zone, is based on two key elements: (i) the concept of realizability of the DS itself and (ii) a fractional integral formulation of the DS for a two-component composite. The formulation of the fractional DS introduces two parameters: a cementation exponent m and a fractional order . The cementation exponent m is constant for any given material and is inextricably related to the microstructure of the material. The fractional order  accounts for the amplitude of the "surface" transport of cations resulting from the physico-chemical interactions between hydrated cations and swelling clay minerals (i.e., smectite minerals, especially montmorillonite).

The fractional DS is applied to data on electrical conductivity (Waxman and Smits 58 ) and diffusion coefficients (Glaus et al. [START_REF] Glaus | Diffusion of 22 Na and 85 Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction[END_REF] ) acquired from natural clayey rocks and a compacted Na-montmorillonite mixture, respectively. These applications show the main following results: This fractional DS model is not intended to replace the numerous conventional models used to quantitatively describe the electrical conductivity and diffusion coefficients of clayey geomaterials. However, it aims to propose a very general and semi-analytical homogenization scheme that accounts for the physico-chemical reactions occurring at the pore fluid/solid interface involved in the transport process, i.e., leading to "surface" transport. Thus, the very general characteristics of this approach naturally make it possible to generalize it to other transport properties (e.g., thermal conductivity, hydraulic conductivity) of porous media seen as two-component composites for which semi-analytical formulations can be expected. [START_REF] Glaus | Diffusion of 22 Na and 85 Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction[END_REF] . 2). The dashed lines show the corresponding logarithmic fits. [START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF] of pore volume of the rock), and CECs (in milliequivalents per g -1 of dry solid) of the five investigated samples [START_REF] Waxman | Electrical conductivities in oil-bearing shaly sands[END_REF] .
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The cementation exponent mHS is calculated at the highest pore solution conductivity (i.e., at the highest salinity) at which surface conduction can be considered negligible. 
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 1 Figure 1 displays the results of this sensitivity analysis for the ranges of both the porosity
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  The fractional DS model is able to correctly capture the dependence of the cation concentration on the effective transport properties of the clayey materials under study if at least one of the parameters (m or  is nonlinearly related to the external salt concentration of the electrolyte in chemical equilibrium with the pore solution of the materials. Considering both effective transport properties, the inverted values the of cementation exponent m nonlinearly increase from almost 0 at the lowest external salt concentration (typically 10 -2 M) up to values close to 2 at the highest salt concentrations. This evolution is interpreted as resulting from changes in pore connectivity and tortuosity and more generally from evolutions of the geometric pore space likely associated with the swelling/shrinkage and/Our inversion results on electrical conductivity data show that the inverted values of the parameter  are linearly and positively correlated with the cation exchange capacity values of the clayey rocks under study. This suggests that the fractional order  would be a good indirect indicator of (a) the amplitude of surface conduction in clayey rocks and, more generally, of (b) the physicochemical reactivity of clayey geomaterials.

Figure 1 .

 1 Figure 1. Natural logarithm of the formation factor, lnF, as a function of the fractional exponent . The black and gray lines correspond to cementation exponent values of m=2.7 and m=0.2, respectively. The dashed and solid lines correspond to porosity values of =0.5 and =0.05, respectively.

Figure 2 .

 2 Figure 2. Formation factor, F as a function of the porosity  on a log-log scale. The black solid line is Archie's relationship with m=2. The black dashed lines correspond to the fractional DS model with m=2 and  values ranging from 1.2 to 5. The gray dashed lines correspond to the empirical model of Worthington 55 with pore solution conductivity values ranging from 1 S.m -1 to 20 S.m -1 .
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 3a Figure 3a. Equivalent grain size distribution (modified from Fauchille 71 ).

Figure 3b .

 3b Figure 3b. Equivalent pore size distribution (modified from Ougier-Simonin et al.[START_REF] Ougier-Simonin | Microfracturing and microporosity in shales[END_REF] ).

Figure 4a .

 4a Figure 4a. Measured rock conductivity as a function of solution conductivity. The gray area indicates the transition zone between the low-salinity domain and the high-salinity

Figure 4b .

 4b Figure 4b. Measured rock conductivity as a function of solution conductivity in the low-salinity domain. The fit with the fractional DS model (case 3) is also shown.

Figure 5 .

 5 Figure 5. Cementation exponent m as a function of solution conductivity (equation (45); for the inverted parameters  and b of the DS model for case 3, see Table2). The dashed lines

Figure 6 .

 6 Figure 6. Inverted parameter b in equation (45) as a function of the cation exchange capacity Qv expressed in meq. cm -3 . A logarithmic fit is also shown as dashed lines.

Figure 7a .

 7a Figure 7a. Inverted parameter  (model, case 3) as a function of the cation exchange capacity Qv expressed in meq. cm -3 . A linear and an exponential fit are also shown as dashed lines.

Figure 7b .

 7b Figure 7b. Inverted parameter  (model, case 3) as a function of the CEC expressed in meq.g -1 . A linear and an exponential fit are also shown as dashed lines.
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 8 Figure 8. Test cases. Measured and predicted rock conductivity as a function of solution conductivity in the low-salinity domain.
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 9 Figure 9. Measured effective coefficient of diffusion as a function of external salt concentration from Glaus et al.[START_REF] Glaus | Diffusion of 22 Na and 85 Sr in montmorillonite: Evidence of interlayer diffusion being the dominant pathway at high compaction[END_REF] . The fit with the fractional DS model (case 4) is also shown.
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 10 Figure 10. Inverted fractional order  and inverted cementation exponent m as a function of external salt concentration.
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 2 Figure 2. Formation factor, F as a function of the porosity  on a log-log scale. The black solid line is Archie's relationship with m=2. The black dashed lines correspond to the fractional DS model with m=2 and  values ranging from 1.2 to 5. The gray dashed lines correspond to the empirical model of Worthington 55 with pore solution conductivity values ranging from 1 S.m -1 to 20 S.m -1 .
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 3a Figure 3a. Equivalent grain size distribution (modified from Fauchille 71 ).
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 3b Figure 3b. Equivalent pore size distribution (modified from Ougier-Simonin et al. 39 ).
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 4b Figure 4b. Measured rock conductivity as a function of solution conductivity in the low-salinity domain. The fit with the fractional DS model (case 3) is also shown..
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 5 Figure 5. Cementation exponent m as a function of solution conductivity (equation (45); for the inverted parameters  and b of the DS model for case 3, see Table2). The dashed lines show the corresponding logarithmic fits.

Figure 8 .

 8 Figure 8. Test cases. Measured and predicted rock conductivity as a function of solution conductivity in the low-salinity domain.

Figure 10 .

 10 Figure 10. Inverted fractional order  and inverted cementation exponent m as a function of external salt concentration.

  

  

  

  

  

Table captions Table 1 .

 captions1 Ages, compositions of clay fractions (<2m), values of porosity, the cementation exponent mHS, cation exchangeable capacities Qv (in milliequivalents per cm 3 of pore volume of the rock), and CECs (in milliequivalents per g -1 of dry solid) of the investigated samples[START_REF] Waxman | Electrical conductivities in oil-bearing shaly sands[END_REF] . The cementation exponent mHS is calculated at the highest pore

	solution conductivity (i.e., at the highest salinity) at which surface conduction can be
	considered negligible.

Table 2 .

 2 Calculated minimum RMSE values and inverted values of the parameters of the fractional DS model for all modeling cases with the five samples from the Waxman-

	Smits database.

Table 3 .

 3 Ages, compositions of clay fractions (<2m), values of porosity, the cementation exponent m HS , cation exchangeable capacities Q v (in milliequivalents per cm 3 of pore volume of the rock), calibrated values of parameters  and b (in equation (45)) of the two samples used in test cases.

Table 4 .

 4 Calculated minimum RMSE values and inverted values of the parameters of the fractional DS model from measurements of the effective diffusion coefficient by Glaus et al.

Table 1 .

 1 Ages, compositions of clay fractions (<2m), values of porosity, the cementation exponent mHS, cation exchangeable capacities Qv (in milliequivalents per cm

	Cation	Cation
	Exchangeable	Exchangeable
	Capacity	Capacity CEC
	Qv	(mequiv.g -1 )
	(mequiv.cm -3 )	

Table 2 .

 2 Calculated minimum RMSE values and inverted values of the parameters of the fractional DS model for all modeling cases with the five samples from the Waxman-Smits database.

	1.40-	14.86	8.45-	1.79-	2.23	1.27	0.36	3.54	6.60-	0.13-
	2.65		8.79	1.80					6.62	0.14
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