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A parametric geometric metamodel is built for a nonlinear magnetostatic problem, using proper orthogonal decomposition approach 

combined with radial basis functions interpolation. Furthermore, the geometrical variation of the problem is modeled using a RBF 

interpolation for smooth mesh deformation. The metamodel is applied for a single-phase EI inductance, the aim is to create precise flux 

cartographies based on few solutions of the original finite element (FE) model. The results show that the POD-RBF approach can reduce 

efficiently the evaluation time of a parametric nonlinear magnetostatic problem. 

Index Terms— Model Order Reduction, Proper Orthogonal Decomposition, Radial Basis Function, mesh deformation. 

 

I. INTRODUCTION 

HE finite element (FE) method is widely used to model 

electromagnetic devices. This method ensures precise 

results at the expense of a consequent computation time, 

especially when dealing with parametric problems. Then, 

model order reduction (MOR) methods had proven their 

efficiency in reducing the computation time for parametric 

studies. The proper orthogonal decomposition (POD) is one of 

the most popular MOR approaches [1]. Based on the solutions 

of the FE model for different values of parameters (called 

snapshots), the POD approximates the solution of the FE model 

in a reduced basis. Then, the parametric FE model is projected 

onto a reduced basis, decreasing the order of the numerical 

model to be solved for new values of parameters. Another 

approach consists in constructing a metamodel by interpolating 

the parametric FE solution expressed in a reduced basis for new 

values of parameters without solving the matrix system and 

avoiding the nonlinear iterative scheme. Based on the principle, 

different approaches had been proposed in the literature, such 

as the POD with interpolation (PODI) [2], using an 

optimization process, or the orthogonal interpolation method 

(OIM) [3], using polynomial interpolations, for example. 

Another approach has also been proposed combining the POD 

with the radial basis function (RBF) interpolation. Initially 

developed for mechanical and thermal problems [4] [5], it had 

been also applied to a nonlinear magnetostatic problem [6]. 

Moreover, when the problem involves geometric parameters, an 

adaption of the FE mesh is required. Remeshing the geometry 

at each modification can deteriorate the precision of the FE 

model by introducing significant numerical noise. A solution to 

preserve the problem's consistency is to deform the initial mesh 

using the RBF interpolation [7][8]. The method consists of 

imposing a displacement on a set of nodes and interpolating the 

remaining nodes' position.  

In this work, we propose to build a metamodel of a nonlinear 

magnetostatic parametric problem involving geometric and 

electric parameters using the POD-RBF approach to 

approximate the FE solution and the RBF interpolation for the 

mesh deformation. First, the study case and the FE model are 

represented in sections II and III. The RBF interpolation 

method is introduced in section IV. In section V, results for 

mesh deformation using the RBF interpolation are presented. 

The approach to build the POD-RBF metamodels is explained 

in section VI, and the results are presented in section VII.     

II. STUDY CASE 

The study case is a 2D single-phase EI inductance, with one 

electrical parameter and two geometrical parameters. An initial 

geometry is meshed with 36859 elements and 18553 nodes 

(Fig. 1.). The geometric parameters are the thickness of the air 

gap 𝑒 varying from 0.1 𝑚𝑚 to 0.9 𝑚𝑚, the width of the central 

column of the magnetic core 𝑑 varying from 20 𝑚𝑚 to 40 𝑚𝑚. 

The electric parameter is the phase current 𝑖 of the winding 

defined in the interval [0,50] 𝐴. 

 
Fig. 1.  The single-phase EI inductance (a) and associated mesh (𝑑 = 30 𝑚𝑚 

and 𝑒 = 0.5 𝑚𝑚) (b). 

III. FINITE ELEMENT MODEL 

The governing equations for the nonlinear magnetostatic FE 

model are derived from Maxwell’s equations. The vector 

potential formulation used to solve the problem is given by:  

𝒄𝒖𝒓𝒍(𝜈(𝑩) 𝒄𝒖𝒓𝒍(𝑨)) = 𝑱𝒔                        (1) 

where 𝜈 is the reluctivity depending on the magnetic flux 

density 𝑩, 𝑨 the magnetic vector potential and 𝑱𝒔 the source 

current density depending on the current 𝑖. The discretized 

nonlinear 2D FE equation system can be expressed by: 

𝑺(𝑿). 𝑿 = 𝑭                                   (2) 

where 𝑿 ∈ 𝑹𝑛 is the vector of unknowns corresponding to 

the components of the magnetic vector potential, 𝑺(𝑿)𝑛×𝑛 the 

curl-curl stiffness matrix and 𝑭 ∈ 𝑹𝑛 the source vector. Then, 

the FE solution 𝑿 depends on the current 𝑖, the width of the 

central column 𝑑 and thickness of the air gap 𝑒. 

T 

winding 
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IV. RADIAL BASIS FUNCTION INTERPOLATION METHOD 

The RBF interpolation consists in approximating a 

multivariate function 𝑓(𝒙), using a linear combination of basis 

functions 𝜙, pre-calculated for 𝑁𝑡 training points. The 

approximation of 𝑓(𝒙) is given by: 

𝑓(𝒙) ≈ ∑ 𝛼𝑖𝜙𝑖(𝒙)𝑁𝑡
𝑖=1                            (3) 

Where 𝜙𝑖(𝒙) = 𝜙(‖𝒙 − 𝒙𝑖‖) is a radial function depending 

on the Euclidean distance between 𝒙 and 𝒙𝑖; and 𝛼𝑖 is its 

associated coefficient. Different kinds of functions can be used 

to define 𝜙𝑖(𝒙) such as Gaussian functions for example. The 

determination of the coefficients 𝛼𝑖 can be done by solving the 

matrix system: 

𝒀 = 𝑮𝜶                                       (4) 

with 𝒀 = [𝑓(𝒙1), … , 𝑓(𝒙𝑁𝑡
)]

𝑡
 ,𝜶 = [𝛼1, … , 𝛼𝑁𝑡

]
𝑡
                                

  and 𝑮 = [

𝜙1(𝒙1) ⋯ 𝜙1(𝒙𝑁𝑡
)

⋮ ⋱ ⋮
𝜙𝑁𝑡

(𝒙1) ⋯ 𝜙𝑁𝑡
(𝒙𝑁𝑡

)

]             

This approach can be generalized for vector function 𝒇(𝒙) ∈
𝑹𝑞 by interpolating each component. 

For a new set of inputs 𝒙𝑛𝑒𝑤, 𝑓(𝒙𝑛𝑒𝑤) can be approximated 

by: 

𝑓𝑗(𝒙𝑛𝑒𝑤) = ∑ 𝛼𝑖
𝑗
𝜙𝑖(𝒙𝑛𝑒𝑤)𝑁𝑡

𝑖=1                     (5) 

Where 𝑓𝑗 is the 𝑗𝑡ℎ component of the function 𝑓 and 𝛼𝑗 is its 

corresponding coefficients. 

V. MESH DEFORMATION BASED ON RBF INTERPOLATION 

In order to model the geometric variation of the problem, 

mesh deformation is performed using the RBF interpolation 

[7][8] for two consecutive times to consider the two varying 

geometric parameters 𝑒 and 𝑑. For each mesh deformation, two 

sets of nodes are defined, 𝑁𝑓 nodes where the displacements are 

imposed and 𝑁𝑖 nodes where the displacements are 

approximated. In this case, the function to be interpolated is the 

displacement function denoted 𝒅(𝒙). By applying the RBF 

interpolation, the displacement 𝒅(𝒙𝑘)  for a node 𝑛𝑘 ∈ 𝑁𝑖 is 

approximated by: 

𝒅(𝒙𝑘) = ∑ 𝛼𝑖𝜙𝑖(𝒙𝑘)
𝑁𝑓

𝑖=1
                         (6) 

An indicator for the conformity of the mesh 𝑑𝑒 is defined by: 

𝑑𝑒 =
𝑑𝑒𝑡𝑒_𝑑𝑒𝑓

𝑑𝑒𝑡𝑒_𝑖𝑛𝑖𝑡
                                    (7) 

with 𝑑𝑒𝑡𝑒_𝑑𝑒𝑓 and 𝑑𝑒𝑡𝑒_𝑖𝑛𝑖𝑡 are the determinants of the 

deformed and the initial element 𝑒, respectively. The indicator 

is positive in the case of a conformal mesh, a negative indicator 

indicates an overlapping between the elements, and thus the 

non-conformity of the deformed mesh. Figure 2 presents an 

example of mesh deformation.  

 

Fig. 2.  Deformed geometry (a) and the distribution of the deformation 

indicator (b), for 𝑑 = 20 𝑚𝑚 and 𝑒 = 0.1 𝑚. 
 

The RBF interpolation can also be used to model a more 

complex mesh deformation; another example is to impose a 

sinusoidal displacement 𝑑𝑥 on the nodes on the border of the 

central column of the magnetic core, such as: 

𝑑𝑥 = ±10sin ((20.5 − 𝑦)𝜋 60⁄ )                   (8) 

The deformed mesh and the distribution of the deformation 

indicator are represented in Fig. 3. 

 
Fig. 3.  Deformed geometry (a) and the distribution of the deformation 

indicator (b), for a sinusoidal displacement. 

VI. METAMODEL BASED ON POD-RBF 

A. Principle of POD combined with RBF 

The POD-RBF approach is applied to the parametric FE 

model [4][5][6]. The method consists of first gathering a set of 

data, using the method of snapshots, by solving the original FE 

model (2) for a set of parameter values: 

𝑴𝒔 = [𝑿1 ⋯ 𝑿𝑚]                            (9) 

Where 𝑴𝒔 is the snapshots matrix, 𝑚 is the number of 

snapshots and 𝑿𝑖  is the FE solution at the 𝑖𝑡ℎ set of parameter 

values. Then, the snapshots matrix is decomposed using the 

singular value decomposition (SVD). 

𝑴𝒔 = 𝒀𝚺𝑾𝑡                                 (10) 

The left orthogonal matrix of the SVD decomposition 𝒀 

corresponds to the reduced basis, and the right orthogonal 

matrix 𝑾 is composed of the FE solution projected into the 

reduced basis for each set of parameter values. The POD 

reduced basis 𝚿 of size 𝑛 × 𝑚, is given by: 

𝚿 = 𝒀𝚺                                     (11) 

For any new set 𝒙𝑛𝑒𝑤 of parameter values, the approximated 

solution 𝑿𝑎𝑝, can then be defined by: 

𝑿𝑎𝑝 = 𝚿𝑽𝑡(𝒙𝑛𝑒𝑤)                            (12) 

Where 𝑽𝑡(𝒙𝑛𝑒𝑤) is obtained by performing a RBF 

interpolation on the right orthogonal matrix 𝑾𝑡, each element 

𝑣𝑙  for 𝑙 = 1, … , 𝑚 is interpolated for the new set 𝒙𝑛𝑒𝑤 by: 

𝑣𝒍(𝒙𝑛𝑒𝑤) = ∑ 𝛼𝑙𝑖𝜙𝑖(𝒙𝑛𝑒𝑤)𝑚
𝑖=1                   (13) 

The coefficients 𝛼𝑙𝑖 are determined by solving an equation 

system as in (4).  

B. Greedy algorithm 

The choice of snapshots has an impact on the precision and 

the efficiency of the POD-RBF approach, the aim is to build a 

precise metamodel using a low number of snapshots. Two 

greedy algorithms are proposed, one based on a precomputed 

snapshots library [6], where the exact error of the metamodel 

can be computed, and the other based on the evaluation of the 

residual of (2) with approximated solution from (12) to obtain 
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an error approximation without having to solve the FE model 

for a large number of parameter values sets. We denote 𝒑 a 

coordinate in the parameter space such as 𝒑 = (𝑖, 𝑒, 𝑑). 

The first algorithm consists of; first, calculating a sufficiently 

large snapshots library 𝑴𝑋, for a set of parameters chosen based 

on the knowledge of the engineer of each studied device . Then, 

an iterative process is initiated, where at each iteration a new 

snapshot corresponding to the maximum relative error of 

coordinate 𝒑𝑚 is considered to update the POD-RBF 

metamodel. The metamodel and the error are evaluated in the 

grid of parameters space used to precompute the snapshots 

library. The process is repeated until the stop criterion is 

satisfied. 

For the second algorithm, the metamodel and the norm of 

residual 𝒓 are evaluated on a sufficiently large grid of 

parameters space 𝛀, defined by the user. At each iteration a new 

snapshot is added for the coordinate 𝒑𝑚 corresponding to the 

greatest norm of the residual. The process is repeated until the 

stop criterion set on the residual norm is met.  

The stop criterion for the first algorithm 𝜖1 is set to a 

maximum error between the FE solution and the metamodel 

solution lower than 5%. While for the second algorithm, the 

stop criterion 𝜖2 is set to a maximum norm of the residual lower 

than 5. It is important that the snapshots library 𝑴𝑋 for the first 

algorithm, and the grid 𝛀 for the second algorithm, are large 

enough. Because, in the first case, the snapshots are selected 

from the library, and in the second, the snapshots are chosen 

within the coordinates of the grid. Having a reduced library or 

a coarse grid will reduce the precision of the metamodel. 

VII. RESULTS 

A. FE model 

First, the original FE model in (2) is solved for a regular grid 

of 2574 points, for 9 air gap thicknesses 𝑒 from 0.1 𝑚𝑚 to 

0.9 𝑚𝑚, 11 𝑑 values from 20 𝑚𝑚 to 40 𝑚𝑚 and 26 current 

values 𝑖 from 0 to 50 𝐴. Magnetic flux associated with the 

winding is calculated as a function of the three varying 

parameters. Cartographies of linkage flux as a function of 𝑑 and 

current 𝑖, for fixed values of 𝑒, are represented in Fig. 4. 

 
Fig. 4.  Original FE model flux cartographies as a function of 𝑑 and current 𝑖 
for 𝑒 = 0.1 𝑚𝑚 (a) and 𝑒 = 0.9 𝑚𝑚 (b). 
 

The required time to solve the FE model for the 2574 

calculation points is 16 min, using an i7 CPU with a 16 Go 

RAM. The results of the original FE model are taken as a 

reference. Fig. 5 presents the distribution of the magnitude of 

the magnetic flux density 𝑩. 

 
Fig. 5.  Magnitude distribution of 𝑩(𝑇) for 𝑒 = 0.1 𝑚𝑚, 𝑑 = 0.9 𝑚𝑚 and 𝑖 =
40𝐴. 

B. POD-RBF metamodel using algorithm 1 

A POD-RBF-based metamodel is built using the first greedy 

algorithm. The snapshots library 𝑴𝑿 is composed of the FE 

model solutions for the 2574 defined calculation points. To 

satisfy the stop criterion, the greedy algorithm selects 151 

snapshots. Once the snapshots library is calculated, the total 

time required for the greedy algorithm convergence and the 

evaluation of the POD-RBF metamodel for the 2574 calculation 

points, is 4 𝑚𝑖𝑛, an additional 16 𝑚𝑖𝑛 is required to create the 

snapshots library. To assess the precision of the metamodel, the 

Algorithm 1 Greedy algorithm with exact error evaluation 

Input: 𝑴𝑿 = [𝑿1 ⋯ 𝑿𝑄], 𝒑1 

Output:  𝚿, 𝛼𝑙𝑖 

   - 𝑚 = 0 

   while 𝑚𝑎𝑥(𝒆) > 𝜖1 do 

      - 𝑚 = 𝑚 + 1 

      if 𝑚 > 1 then 

         - select the coordinate corresponding to the  

         maximum error such as 𝒑𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝒆) 

      end if 

      - 𝒑 ← [𝒑, 𝒑𝑚] 

      - 𝑴𝒔 ← [𝑴𝒔, 𝑿𝒑𝑚
] 

      - perform a SVD on 𝑴𝒔, update 𝚿 and 𝛼𝑙𝑖 

      - evaluate the error 𝒆 = [𝑒𝑘]𝑘=1
𝑄

 with 𝑒𝑘 =
‖𝑿𝑘−𝑿𝑘

𝑎𝑝
‖

2

‖𝑿𝑘‖2
  

      and 𝑿𝑘
𝑎𝑝

 computed by (12)                               

   end while 

 

 

Algorithm 2 Greedy algorithm with residual evaluation 

Input: 𝒑1, 𝛀 = [𝜔1, … , 𝜔𝑄] 

Output:  𝚿, 𝛼𝑙𝑖 

   - 𝑚 = 0 

   while 𝑚𝑎𝑥(𝒓) > 𝜖2 do 

      - 𝑚 = 𝑚 + 1 

      if 𝑚 > 1 then 

         - select the coordinate corresponding to the  

         greatest residual such as 𝒑𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝒓) 

      end if 

      - 𝒑 ← [𝒑, 𝒑𝑚] 

      - 𝑴𝒔 ← [𝑴𝒔, 𝑿𝒑𝑚
] 

      - perform a SVD on 𝑴𝒔, update 𝚿 and 𝛼𝑙𝑖 

      - evaluate the residual 𝒓 = [𝑟𝑘]𝑘=1
𝑄

 with 

       𝑟𝑘 = ‖𝑭 − 𝑺(𝑿𝑘
𝑎𝑝

)𝑿𝑘
𝑎𝑝

‖
2
 and 𝑿𝑘

𝑎𝑝
 computed by (12) 

   end while 
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error between the fluxes calculated by the metamodel 𝚽𝑎𝑝 and 

the FE model 𝚽𝐹𝐸 , is defined as: 

𝒆Φ =
|𝚽𝐹𝐸−𝚽𝑎𝑝|

|𝚽𝐹𝐸|
× 100                           (17) 

The error distributions as a function of 𝑑 and 𝑖 for fixed 𝑒 

values are presented in Fig. 6. 

 
Fig. 6.  First algorithm POD-RBF metamodel error distribution for 𝑒 = 0.1 𝑚𝑚 

(a) and 𝑒 = 0.9 𝑚𝑚 (b). 

 

The global mean relative error between the flux 

cartographies obtained using the metamodel and the original FE 

model is 1.6%, while the maximum local error is 5%. The first 

algorithm chooses the snapshots for the coordinates 

corresponding to the maximum error, thus the maximal local 

error is relatively low and the error distribution is relatively 

even. Fig. 7 presents the difference of the magnitude 

distributions of 𝑩 obtained from the FE model and the POD-

RBF approximation for the same parameter values as in Fig. 5.  

The magnitudes of the error are small compared with those of 

the magnetic flux density (Fig. 5). The maximal values of the 

error are located in the internal corners where the ferromagnetic 

core is saturated. 

 
Fig. 7.  Difference of the magnitude distribution of 𝑩(𝑇) for 𝑒 = 0.1 𝑚𝑚, 𝑑 =
0.9 𝑚𝑚 and 𝑖 = 40𝐴. 

C. POD-RBF metamodel using algorithm 2 

A second POD-RBF metamodel is built, using the residual-

based greedy algorithm. The metamodel is evaluated on a grid 

composed of the same 2574 points where the FE model is 

solved. 206 snapshots are required to reach the stop criterion. 

The convergence of the residual-based algorithm requires 3 ℎ, 

it is significantly higher than the time required by the exact 

error-based algorithm, as in the second algorithm the snapshots 

are not precomputed and thus the FE model must be solved at 

each iteration to get a new snapshot. Furthermore, the 

evaluation of the residual generates an additional computational 

time, as it requires the assembly of the FE matrix for every point 

of the grid and at each iteration. The convergence time of the 

residual-based algorithm is also higher than the required time 

to solve the FE model on the defined grid. Indeed, solving 

equation (2) consumes more time than matrix assembly; 

however, in the iterative process of the residual-based 

algorithm, the matrix assembly step is performed over 500000 

times, which explains the increase of calculation time. The 

distributions of the error on the flux cartographies obtained 

using this metamodel are represented in Fig. 8. 

 
Fig. 8.  Second algorithm POD-RBF metamodel error distribution for 𝑒 =
0.1 𝑚𝑚 (a) and 𝑒 = 0.9 𝑚𝑚 (b). 
 

The global mean error on the flux calculated using the 

residual-based metamodel is 4.1%, while the maximum local 

error can reach 51%. As shown in Fig. 8., the error is mainly 

concentrated around the low values of current. The residual 

used as the criterion of snapshots choice in this algorithm is an 

absolute value; thus, the algorithm often neglects the points 

where the solution is low, even if the relative error in these 

coordinates is high. The residual-based algorithm selected more 

snapshots than the exact error-based algorithm. However, the 

precision of the first algorithm is better. This is due to the fact 

the residual does not give a precise evaluation of the error; 

instead, it gives an approximation of the error without having 

to calculate the exact solution. 

Fig. 9 presents the difference of the magnitude distribution 

of 𝑩 obtained from the FE model and the residual-based 

metamodel for the same parameter values as in Fig. 5.  The 

magnitudes of the error are of the same order as those in Fig. 7. 

 
Fig. 9.  Difference of the magnitude distribution of 𝑩(𝑇) for 𝑒 = 0.1 𝑚𝑚, 𝑑 =
0.9 𝑚𝑚 and 𝑖 = 40𝐴. 

D. Comparison 

Two POD-RBF metamodels had been established, for a 

magnetostatic nonlinear parametric problem, allowing to 

approximate the FE solution as a function of three parameters. 

The two metamodels are built using two different algorithms, 

with different choice criteria for the snapshots. These criteria 

will impact the precision of the metamodels and the 

convergence of the algorithms. In order to evaluate the 

convergence rate of the two algorithms, two types of errors are 

defined, the maximum error in the sense of Euclidean norm 𝑒𝑛2, 

representing the maximum local error, and the mean error in the 

sense of Frobenius norm 𝑒𝐹𝑟𝑜, representing the global mean 

error. 
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𝑒𝑛2 = 𝑚𝑎𝑥 (
‖𝑿𝑖−𝑿𝑖

𝑎𝑝
‖

2

‖𝑿𝑖‖2
)

𝑖=1,…,𝑛𝑐
                (14) 

𝑒𝐹𝑟𝑜 =
‖𝑿−𝑿𝑎𝑝‖𝐹𝑟𝑜

‖𝑿‖𝐹𝑟𝑜
                                (15) 

The evolution of error represented by the two norms as a 

function of the number of iterations, for the two algorithms is 

plotted in Fig. 10. 

 
Fig. 10.  Evolution of the error as a function of the number of iterations, in the 

sense of Frobenius norm (a) and Euclidean norm (b). 
 

Although globally converging in the same way (Fig. 10.a), 

the maximum error converges best for the first algorithm. The 

first algorithm chooses at each iteration the snapshots 

corresponding to the higher maximum error, resulting in fast 

convergence of the maximum error. On the other hand, the 

residual-based algorithm chooses the snapshots corresponding 

to the higher residual norm; thus, if the maximum relative error 

does not represent an important residual norm, many iterations 

can pass without any improvement of the maximum relative 

error, which can be seen in the constant parts in Fig. 10.b. The 

impact of the choice criteria on the selected snapshots can be 

seen in Fig.11. The distribution of snapshots coordinates in the 

parameters space selected by the two algorithms is plotted for 

the 151 first snapshots. 

 
Fig. 11.  Snapshots selected by the first (a), and the second algorithm (b). 
 

The distribution of the snapshots coordinates confirms that 

the first algorithm favors the points where the solution is low 

and the relative error is high, these points correspond to the 

lowest current values (Fig. 11.a). Contrariwise, the residual-

based algorithm favors the points where the solution and the 

absolute error are high, these points correspond to the higher 

current values (Fig. 11.b). 

The performances of the metamodels resulting from the two 

algorithms, in terms of precision and computational time for the 

same number of snapshots, are summarized in Table 1. 

The POD-RBF is an interpolation-based method; it offers the 

advantage of approximating the solution without accessing the 

FE full order matrix system. Nevertheless, the residual-based 

algorithm requires the assembly of the FE matrix, for each 

calculation point at each iteration, in an additional time-

consuming step, in comparison with the first algorithm. 

Moreover, the residual only gives an approximation of the exact 

error. The snapshots selected by the residual-based algorithm 

do not necessarily correspond to the most important error; thus, 

more snapshots are required to reach the same precision as the 

first algorithm. 

The evaluation time of a new set of parameter values for the 

POD-RBF-based metamodels is significantly lower than the 

solving time for the FE model. The necessary time to build a 

POD-RBF metamodel depends on the used algorithm. 

Nevertheless, omitting the construction time of the metamodel, 

the use of a POD-RBF-based metamodel can significantly 

reduce the computation time. 

VIII. CONCLUSION 

A parametric nonlinear magnetostatic problem has been 

studied. A consistency preserving mesh deformation is carried 

out using a RBF interpolation. Two POD-RBF metamodels of 

the FE solution are built, following two different algorithms. 

The type of algorithm impacts the choice of snapshots, the 

accuracy and the construction time of the metamodel. The 

established metamodels allow a significant reduction of the 

calculation time. POD-RBF metamodels of the parametric FE 

solution can be used in an optimization process for different 

applications or to be coupled with other numerical models to 

simulate a more complex system. 
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TABLE I 

PERFORMANCES SUMMARY 

Model 
Total time 

(min) 

Time per 

input (ms) 

Mean error 

(%) 

Maximum 

error (%) 

Original FE 16 373 / / 
Algorithm 1 4+16 0.1 1.7 5 

Algorithm 2 90 0.1 5.5 87 

 

 


