N
N

N

HAL

open science

Identify the factors of creep behavior on small clear
wood

Tai-Yun Hsieh, Cédric Montero, Tancrede Almeras, Sandrine Bardet

» To cite this version:

Tai-Yun Hsieh, Cédric Montero, Tancrede Almeras, Sandrine Bardet. Identify the factors of creep
behavior on small clear wood. 10e Journées Scientifiques du GDR des Sciences du Bois, Nov 2021,

Montpellier, France. . hal-03631350

HAL Id: hal-03631350
https://hal.science/hal-03631350

Submitted on 5 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03631350
https://hal.archives-ouvertes.fr

N 1 = N ¥ AN * . ’a® .I ,,".."' 7 S _\.,’, 7 - AL i~ - e | -7 . o o Pe 99 44
).‘ \f.\ . ok “ A\ !.' A .. . .o "i"\.".:-!p ’19'. ° .o 2 ",:.".‘f." :..:_'.“;‘-"\‘i'/_-/,’,"?: R D (& o et | .'::"- Sl :' o0 | s ez 3
DARRHLS et R A i et e T TRCRCA TS

Sciences du Bois

../fr

R e ‘ \ g\ @ ‘ Q
AL 0‘ A'\.f et ". '.‘-.‘.. \ \ " ‘0 @Q ‘-“ ‘\ , =

\

Context and objectives

)

i

Identlfy the factors of creep."b"ehavmr on small clear wood

HSIEH Tai-Yun!, MONTERO Cédricl, ALMERAS Tancréde!, BARDET Sandrinel

1 Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, France
tai-yun.hsieh@umontpellier.fr

B6

ST N AT, J _
Thesis work: October 2019 - September 2022

Wood has been used in architecture  Dynamic mechanical analysis Vibration test
scene to ancient time. As a structure fi—f Af
material, its long-term behavior 3 2 142 Quality Factor Q™" = = —~tand
! g _ 5 E™: Complex modulus 48 pl™f fr fr
=== needs to be considered and = E’: Storage modulus E = A2
Ll controlled E* E”: Loss modulus N
= ' o 1. 4
i . : A= —-In— = m Xtand
IS |n controlled conditions, wood is a E: Dynamic MOE Al oroam | | n A
7711 S R e . . . . . _ / el ' ) 1 | @
i\i\ liner viscoelastic material which E*=E +iE p: Density | = 3
| : - |- Length of the specimen 5 W
Alfred-Alexandre Delauney, between  “Drift” Sculpture py Matthigs ShOWS d dEIa‘y deforma‘tlon durlng En h: thickness of the Specimen % E I _vA
Libay of Congress P and ot con oo™ loading and dynamic mechanical tan 8 = — f: resonance frequency S
rgogggrg‘fgisd'v's'on under the digital ( ParametricArchitecture, 2018) anal SiS E ! m=4.73 < ‘ . 5
a. . y . fi fr fo Frequency (Hz)
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The vibration test results and the information of the specimens were
considered in the sampling. In this study, 9 specimens were selected to
have the most wiled density diversity and the closest specific modulus
for the creep test. There were 3 Douglas fir, 2 Poplar, 3 European
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A series of vibration signal was given by the electromagnet to the metal = . L 010
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from vibration test and the static
MOE, it had also a good correlation
with a 10% increment.
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The static MOE can well-predict
the creep behavior.
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Conclusion

In this study, we can find a linear relationship between dynamic and static MOE. It
means that vibration tests can well measure the characteristics of wood, and we can also
observe the rheological behavior. Under stable environment, when the specific modulus
of the specimens was controlled, we can assume that all the wood specimens have
similar cell wall structure. In this case, density was a strong predictor of creep behavior.
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