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NONLOCAL PERIMETERS AND CURVATURE FLOWS ON1

GRAPHS WITH APPLICATIONS IN IMAGE PROCESSING AND2

HIGH-DIMENSIONAL DATA CLASSIFICATION3

IMAD EL BOUCHAIRI∗, ABDERRAHIM ELMOATAZ∗, AND M. JALAL FADILI∗4

Abstract. In this paper, we revisit the notion of perimeter on graphs, introduced in [22], and5
we extend it to so-called inner and outer perimeters. We will also extend the notion of total variation6
on graphs. Thanks to the co-area formula, we show that discrete total variations can be expressed7
through these perimeters. Then, we propose a novel class of curvature operators on graphs that8
unifies both local and nonlocal mean curvature on Euclidean domain. These lead us to translate and9
adapt the notion of the mean curvature flow on graphs as well as the level set mean curvature, which10
can be seen as approximate schemes. Finally, we exemplify the usefulness of these methods in image11
processing, 3D-point cloud and high dimensional data classification.12

Key words. Perimeter, total variation, graph cuts, mean curvature flow, image processing, data13
clustering, PdE on graph, data clustering.14

AMS subject classifications. 68Q25, 68R10, 68U0515

1. Introduction.16

1.1. Context and motivations. Partial Differential Equations (PDEs) and17

variational methods involving the notion of perimeters and curvatures have and still18

generate a lot of interest in both continuous and discrete domains. These operators19

under their different local or nonlocal forms, arise not only from subfields within math-20

ematics such as differential geometry and analysis, but also in numerous PDEs and21

objective functionals related to many applications fields in sciences and engineering.22

For instance, in mathematical image processing and computer vision, the notion23

of perimeter is a key idea for the regularization of many inverse ill-posed problems24

such as denoising, restoration, inpainting, segmentation, etc. Regularizing such prob-25

lems is often used to find suitable clusters among data, to obtain image partitions for26

segmentation purposes, to denoise or to inpaint images while preserving sharp bound-27

aries. It is worth noting that perimeters appear in the two most popular variational28

models for image processing and segmentation, namely the total variation and the29

Mumford-Shah models [15, 40, 37]30

Motion by mean curvature and flows involving mean curvature in general play an31

important role in geometry and analysis. Many continuous models, involving a front32

propagation with a velocity depending on the mean curvature and their simulations33

by level set methods, are used in different application fields such as data processing,34

computer vision, fluid mechanics. For an overview and applications see the books35

[42, 38, 10] and references therein.36

In recent literature, an intense mathematical study has been performed on nonlo-37

cal counterpart of the classical perimeters and curvature flows. A notion of fractional38

perimeters and nonlocal curvature was first introduced by Caffarelli, Roquejoffre and39

Savin in [11]. The main idea of fractional perimeters is that any point inside an40

Euclidean set ”interact” with any point outside the set, given a functional whose41

minimization is taken account. Then many works have been proposed to study func-42

tional involving nonlocal perimeters or nonlocal curvature flows, e.g [1, 14]. See also43

the recent monograph Mazon et al. [34]. We can notice that, in the latter, the44
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2 I. EL BOUCHAIRI, A. ELMOATAZ, AND M.J. FADILI

authors have introduced a large class of perimeters and curvature flows on random45

metric graphs which embedded local and nonlocal perimeters on Euclidean domains46

and graphs [36, 35].47

On the other hand, graphs and networks have been successfully used in a variety48

of fields such as machine learning, data mining, image analysis and social sciences that49

are confronted with the analysis and modelling high dimensional datasets. In machine50

learning, image analysis many tasks, such as classification, clustering or segmentation51

, can be often given in term of minimizing a graph perimeter (graph cut) or a related52

functional (normalized cut, ratio cut, balanced cut, etc). The cut size is, in this53

case, generally defined as the sum of the weight of edges between the considered set54

and its complement, which is closely related to the notion of the perimeter of a set.55

Such graph problems are traditionally solved by methods from combinatorial, graph56

theory or spectral analysis [29, 43, 45, 50, 9]. In recent years, there has been increasing57

interest in applying the models and techniques from variational methods and PDEs to58

solve problems in data science, see [48, 8, 25, 26] and references herein. The demand59

and the interest for such methods are motivated by existing and potential future60

applications in data science. PDEs analysis tools originally developed for Euclidean61

spaces and regular lattices are now being extended to general settings of graphs in62

order to analyse geometric and topological structures as well as data measured on63

them.64

In this work, we are going to translate and solved different PDEs on graph. For65

this purpose, we adopt nonlocal calculus on weighted graphs, see e.g. [25, 23, 26],66

which consists in replacing continuous partial differential operators (e.g. gradient,67

divergence), with a reasonable discrete analogue. It allows to transfer many important68

tools and results from the continuous setting to the discrete one. It also allows graph69

theory to have new connections to analysis. Based on this framework, we revisit70

and extend the discrete notions of perimeters, mean curvatures, Cheeger cut and71

total variation, which lead us to adapt and transcribe level set equations on weighted72

graphs.73

1.2. Outline of the paper. The remainder of the paper is organized as follows.74

In Section 2 we start by reviewing some basic notations and recalling some preliminary75

material necessary to our exposition. In Section 3, we revisit the notion of boundary76

sets on graphs as well as discrete perimeters on graphs. In Section 4, we prove an77

analogue version of the co-area formula on weighted graphs which allows us to derive78

relation with discrete p-total variations with discrete perimeters. In Section 5, we79

introduced a family of the mean curvature flows on graphs. We also propose an80

adaptation and a transcription of the mean curvature level set equations on general81

discrete domains, weighted graphs, in Section 6. Finally, we expose some applications82

in image and data processing to illustrate the potential and the behaviour of this83

mean curvature formulation.84

2. Notations and preliminaries.85

2.1. Basics on functions on graphs. A weighted graph G = (V,E, ω) consists86

of a finite set V of N ∈ N vertices, a finite set E ⊆ V × V of edges, and a weight87

function ω : V × V → [0, 1]. The weight of an edge (u, v) is denoted by ωuv, belongs88

to the interval [0, 1], and is a measure of similarity between the two vertices. The89

neighborhood of a vertex u is the set of vertices adjacent to u, and is denoted by90

N (u). In the following, we adopt the notation u ∼ v to denote two adjacent vertices91

(i.e., (u, v) ∈ E). The degree δ(u) of a vertex u ∈ V is defined as δ(u) =
∑

v∼u

√
ωuv.92
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NONLOCAL PERIMETERS AND CURVATURE FLOWS ON GRAPHS 3

Throughout this paper, for a subset A of V , Ac is its complement, and χA is the93

characteristic function of A that taking 1 on A and 0 otherwise.94

Let G = (V,E, ω) be a weighted graph. We denote by H(V ) the space of real-95

valued functions on the vertices of G, i.e., each function f : V → R in H(V ) assigns96

a real-value f(u) to each vertex u ∈ V .97

For a function f ∈ H(V ) the ℓp(V )-norm of f is98

∥∥f∥∥
p
=

(∑
u∈V

∣∣f(u)∣∣p) 1
p

, 1 ⩽ p < ∞, and
∥∥f∥∥∞ = max

u∈V

∣∣f(u)∣∣.99

The spaceH(V ) endowed with the inner product: ⟨f, g⟩H(V ) =
∑

u∈V f(u)g(u), f, g ∈100

H(V ), is a Hilbert space. Similarly, let H(E) be the space of real-valued functions101

defined on the edges of the graph, i.e., each function H : E → R in H(E) assigns102

a real-valued H(u, v) to each edge (u, v) ∈ E. The space H(E) endowed with the103

following inner product: ⟨H,F ⟩H(E) =
∑

(u,v)∈E H(u, v)F (u, v), H, F ∈ H(E), is a104

Hilbert space.105

2.2. Partial difference operators on graphs. Let us recall some weighted106

partial difference operators on graphs that are essential in our paper. We refer to107

[25, 27, 46, 23], for more detailed description of these operators.108

The weighted finite difference operator of a function u ∈ H(V ), denoted by dω :109

H(V ) → H(E), is defined on a pair of vertices (u, v) ∈ E as:110

dωf(u, v) =
√
ωuv(f(v)− f(u)).111

Note that this difference operator is linear and antisymmetric.112

The adjoint of the difference operator dω, denoted by d∗
ω : H(E) → H(V ), is a113

linear operator, which can be characterized by ⟨dωf,H⟩H(E) = ⟨f,d∗
ωH⟩H(V ) for all114

f ∈ H(V ) and all H ∈ H(E). Using the definitions of the finite weighted difference115

operator and the inner products of H(V ) and H(E), the adjoint operator d∗
ω of a116

function H ∈ H(E) can be expressed at a vertex u ∈ V by the following expression:117

d∗
ωH(u) =

∑
v∼u

√
ωuv(H(v, u)−H(u, v)).118

The divergence operator is defined by119

divω = −d∗
ω,120

measures the net outflow of a function of H(E) at each vertex of the graph. Each121

function H ∈ H(E) has a null divergence over the entire set of vertices. Indeed, from122

the previous definitions, it can be easily shown that
∑

u∈V

∑
v∼u dωf(u, v) = 0, for123

all f ∈ H(V ), and
∑

u∈V divωH(u) = 0, for all H ∈ H(E).124

The weighted directional finite difference of f at a vertex u along the edge (u, v) is125

defined as:126

∂vf(u) =
√
ωuv(f(v)− f(u)).127

Similarly we define the upwind and downwind weighted directional finite differences128

of f at a vertex u along the edge (u, v) as:129

∂±
v f(u) =

√
ωuv (f(v)− f(u))

±
,130
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4 I. EL BOUCHAIRI, A. ELMOATAZ, AND M.J. FADILI

where a+ = max(a, 0) and a− = max(−a, 0), a ∈ R. Based on these definitions, we131

introduce the weighted gradient operator on graphs ∇ω : H(V ) → H(V ), which is132

defined on a vertex u ∈ V as the vector of all weighted finite differences with respect133

to the set of vertices V , that is134

(∇ωf)(u) = (∂vf(u))v∈V .135

From the properties of the weighted partial difference operators, it gets clear that136

the weighted gradient is linear and antisymmetric. Similarly we define the upwind137

downwind weighted gradient operators on graphs ∇±
ω : H(V ) → H(V )138

(∇±
ω f)(u) = (∂±

v f(u))v∈V , for all u ∈ V.139

A family of gradient norms
∥∥ · ∥∥

p
◦∇ω,

∥∥ · ∥∥
p
◦∇±

ω : H(V ) → (R+)|V | with 1 ⩽ p ⩽ ∞140

is given as:141

∥∥(∇ωf)(u)
∥∥
p

=

(∑
v∼u

(ωuv)
p
2

∣∣f(v)− f(u)
∣∣p) 1

p

, 1 ⩽ p < ∞142 ∥∥(∇ωf)(u)
∥∥
∞ = max

v∼u
(
√
ωuv

∣∣f(v)− f(u)
∣∣)143

and likewise for the operator ∇±
ω instead of ∇ω. The integral of a function f in H(V )144

(with respect to the empirical measure on V ) is defined by:145

E(f) =
∑
u∈V

f(u).146

147

p-Laplacians Using the difference and the divergence operators, as in the con-148

tinuous settings, the p-Laplacian operator for 1 ≤ p < ∞) is149

(∆ω,2f)(u) =
1

2
divω

(
|dωf |p−2 · dωf

)
(u).150

151

By developing we equivalently obtain152

(∆ω,2f)(u) =
∑
v∈V

ω
p
2
uv

∣∣f(v)− f(u)
∣∣p−2

(f(v)− f(u)).153

154

Notable particular cases are:155

p = 2 : (∆ω,2f)(u) =
∑
u∈V

ωuv(f(v)− f(u)) which is the Laplacian,156

p = 1 : (∆ω,1f)(u) =
∑
u∈V

√
ωuv

f(v)− f(u)∣∣f(v)− f(u)
∣∣ which is the 1-Laplacian.157

158

The graph p-Laplacian have been used as a discretization of the continuous local and159

nonlocal p-Laplacian see [20, 13] and [28, 21], respectively.160

The ∞-Laplacian on graphs is defined by161

(∆ω,∞f)(u) =
1

2

(∥∥∇+
ω f(u)

∥∥
∞ −

∥∥∇−
ω f(u)

∥∥
∞

)
.162
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NONLOCAL PERIMETERS AND CURVATURE FLOWS ON GRAPHS 5

Game p-Laplacians Based on the above definition of the p-Laplacian, the game163

p-Laplacian is given as follows164

(∆G
ω,pf)(u) =

{
2
p (∆ω,2f)(u) +

p−2
p (∆ω,∞f)(u), for 2 ≤ p ≤ ∞,

2(p−1)
p (∆ω,2f)(u) +

2−p
p (∆ω,1f)(u), for 1 ≤ p ≤ 2.

(2.1)165

166

See [24] for more details. Observe that the game p-Laplacian can be interpreted as167

discrete version of the continuous game p-Laplacian, [39].168

3. Generalized perimeters on graphs.169

3.1. Boundaries on graphs. We start by defining the notion of boundaries on170

graphs171

Definition 3.1. The outer and inner vertex boundaries, and the vertex bound-172

ary, of a subset A ⊂ V , are respectively defined by:173

∂+A def
= {u ∈ Ac : ∃v ∈ A, v ∼ u} ,(3.1)174

∂−A def
= {u ∈ A : ∃v ∈ Ac, v ∼ u} ,(3.2)175

∂A def
= ∂+A ∪ ∂−A.(3.3)176177

Note that ∂+Ac = ∂−A, ∂A = ∂Ac and ∂+A ∩ ∂−A = ∅.178

The following proposition gives relationships between the discrete gradients and179

the above boundary sets, which will be useful to define the discrete perimeters on180

graphs. The proof is a simple computation of the p-norm of the characteristic function181

and we omit here for the sake of brevity.182

Proposition 3.1. Let A ⊂ V ,183

(i) For 1 ≤ p < ∞, we have the following relations:184

∥(∇+
ωχA)(u)∥p =

(∑
v∈A

(ωuv)
p
2

) 1
p

χ∂+A(u),(3.4)185

∥∥(∇−
ωχA)(u)

∥∥
p
=

(∑
v∈Ac

(ωuv)
p
2

) 1
p

χ∂−A(u),(3.5)186 ∥∥(∇ωχA)(u)
∥∥
p
=
∥∥(∇+

ωχA)(u)
∥∥
p
+
∥∥(∇−

ωχA)(u)
∥∥
p
.(3.6)187

188

(ii) For p = ∞, we have the following relations:189

∥(∇+
ωχA)(u)∥∞ =

(
max
v∈A

(
√
ωuv)

)
· χ∂+A(u),190

∥∥(∇−
ωχA)(u)

∥∥
∞ =

(
max
v∈Ac

(
√
ωuv)

)
· χ∂−A(u),191 ∥∥(∇ωχA)(u)

∥∥
∞ =

∥∥(∇+
ωχA)(u)

∥∥
∞ +

∥∥(∇−
ωχA)(u)

∥∥
∞.192193

(iii) For p ∈ [1,+∞], we have the following relations:194 ∥∥(∇+
ωχA)(u)

∥∥
p
=
∥∥(∇−

ωχAc)(u)
∥∥
p∥∥(∇ωχA)(u)

∥∥
p
=
∥∥(∇ωχAc)(u)

∥∥
p
.

195

196

Remark 3.1. For unweighted graphs i.e. ωuv ∈ {0, 1}, we have that:197
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6 I. EL BOUCHAIRI, A. ELMOATAZ, AND M.J. FADILI

• ∥(∇+
ωχA)(u)∥1 corresponds to the number of edges connecting the vertex u ∈198

Ac with the vertices in A. Therefore
∑
u∈V

∥∥(∇+
ωχA)(u)

∥∥
1
is just the size of199

the usual edge boundary of A.200

• ∥(∇+
ωχA)(u)∥∞ is the indicator of ∂+A, and so

∑
u∈V

∥∥(∇+
ωχA)(u)

∥∥
∞ is the201

size of the outer vertex boundary of A, while
∑
u∈V

∥∥(∇−
ωχA)(u)

∥∥
∞ is the size202

of the inner vertex boundary.203

For weighted graphs i.e. ωuv ∈ [0, 1], we observe that:204

• ∥(∇+
ωχA)(u)∥p and

∥∥(∇−
ωχA)(u)

∥∥
p
are the weighted sizes of edge boundaries205

of A for ∂+A× ∂−A and ∂−A× ∂+A respectively.206

•
∑
u∈V

∥∥(∇+
ωχA)(u)

∥∥
∞ is the weighted size of the outer vertex boundary of A207

while
∑
u∈V

∥∥(∇−
ωχA)(u)

∥∥
∞ is the weighted size of the inner vertex boundary208

of A.209

Remark 3.2. The outer and inner vertex boundaries, and the vertex boundary210

can be expressed through the characteristic function of A as:211

∂+A =
{
u ∈ V :

∥∥(∇+
ωχA)(u)

∥∥
p
> 0
}
,212

∂−A =
{
u ∈ V :

∥∥(∇−
ωχA)(u)

∥∥
p
> 0
}
,213

∂A =
{
u ∈ V :

∥∥(∇ωχA)(u)
∥∥
p
> 0
}
.214

215

3.2. Discrete perimeters on graphs. Based on the interpretation of Propo-216

sition 3.1, we recall the definition of the family of weighted perimeters on graphs217

introduced in [22].218

Definition 3.2. For 1 ≤ p < ∞ and A ⊂ V , the family of weighted perimeters219

of A is defined as follows:220

Per+ω,p(A)
def
= E(

∥∥∇+
wχA

∥∥
p
) =

∑
u∈Ac

(∑
v∈A

ω
p
2
uv

) 1
p

,221

Per−ω,p(A)
def
= E(

∥∥∇−
ωχA

∥∥
p
) =

∑
u∈A

(∑
v∈Ac

ω
p
2
uv

) 1
p

,222

Perω,p(A)
def
= E(

∥∥∇ωχA
∥∥
p
) =

∑
u∈Ac

(∑
v∈A

ω
p
2
uv

) 1
p

+
∑
u∈A

(∑
v∈Ac

ω
p
2
uv

) 1
p

.223

224

For p = ∞, the family of weighted perimeters of A is defined as follows:225

Per+ω,∞(A)
def
= E(

∥∥∇+
ωχA

∥∥
∞) =

∑
u∈Ac

(
max
v∈A

√
ωuv

)
,226

Per−ω,∞(A)
def
= E(

∥∥∇−
ωχA

∥∥
∞) =

∑
u∈A

(
max
v∈Ac

√
ωuv

)
,227

Perω,∞(A)
def
= E(

∥∥∇ωχA
∥∥
∞) =

∑
u∈Ac

(
max
v∈A

√
ωuv

)
+
∑
u∈A

(
max
v∈Ac

√
ωuv

)
.228

229
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NONLOCAL PERIMETERS AND CURVATURE FLOWS ON GRAPHS 7

By definition we have, for 1 ≤ p ≤ ∞, the following relations:230

Perω,p(A) = Per+ω,p(A) + Per−ω,p(A),231

Per+ω,p(A) = Per−ω,p(Ac),232

Perω,p(A) = Perω,p(Ac),233

Perω,1(A) = 2Per+ω,1(A).234235

Proposition 3.2. Let Pω belongs to {Per±ω,1, Per±ω,∞, ; Perω,1, Perω,∞}. In the236

case p = ∞, we asume that the weight function ω is a {0, 1}-value. We have the237

following properties:238

(i) Pω(∅) = 0;239

(ii) Pω(V ) = 0;240

(iii) Pω is submodular, i.e. for all A, B ⊂ V we have241

Pω(A ∪ B) + Pω(A ∩ B) ≤ Pω(A) + Pω(B).242

Proof : Claims (i) and (ii) are straightforward. We thus focus on claim (iii). For243

p = 1, it is enough to prove the inequality for Per+ω,1 since Perω,1 = 2Per+ω,1 = 2Per+ω,1.244

We have245

Per+ω,1 (A ∪ B) =
∑

u∈A∪B

∑
v∈(A∪B)c

√
ωuv246

=
∑
u∈A

∑
v∈Ac

√
ωuv +

∑
u∈B

∑
v∈Bc

√
ωuv −

∑
u∈A∩B

∑
v

∈ (A ∪ B)c
√
ωuv247

−
∑
u∈A

∑
v∈B\(A∪B)c

√
ωuv −

∑
u∈B

∑
v∈A\(A∪B)c

√
ωuv,248

249

and250

Per+ω,1 (A ∩ B) =
∑

u∈A∩B

∑
v∈(A∩B)c

√
ωuv251

=
∑

u∈A∩B

∑
v∈(A∪B)c

√
ωuv +

∑
u∈A∩B

∑
v∈A\(A∪B)c

√
ωuv252

+
∑

u∈A∩B

∑
v∈B\(A∪B)c

√
ωuv.253

254

For Per±ω,∞, claim (iii) is a consequence of the following inequality, which is easy255

to verify,256

max
v∼u

(χA∪B(v)− χA∪B(u))
±
+max

v∼u
(χA∩B(v)− χA∩B(u))

±
257

≤ max
v∼u

(χA(v)− χA(u))
±
+max

v∼u
(χB(v)− χB(u))

±
,258

259

for all u ∈ V . For Perω,∞, the result holds from the following equality Perω,∞ =260

Per+ω,∞ +Per−ω,∞. □261

262

As a consequence, we have the following result for p = 1.263

Corollary 3.1. Let A, B ⊂ V with A ∩ B = ∅, then264

Per±ω,1(A ∪ B) = Per±ω,1(A) + Per±ω,1(B)− 2
∑
A

∑
B

√
ωuv,265
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8 I. EL BOUCHAIRI, A. ELMOATAZ, AND M.J. FADILI

Perω,1(A ∪ B) = Perω,1(A) + Perω,1(B)− 4
∑
A

∑
B

√
ωuv.266

267

If moreover, there are no edges between A and B, i.e., ∂A ∩ B = ∅ or equivalently268

∂B ∩ A = ∅, then269

Per±ω,1(A ∪ B) = Per±ω,1(A) + Per±ω,1(B),270

Perω,1(A ∪ B) = Perω,1(A) + Perω,1(B).271272

Proof : By definition, we have273

Perω,1(A ∪ B) =
∑
u∈V

∑
v∈V

√
ωuv (χA∪B(v)− χA∪B(u))

2
274

=
∑
u∈V

∑
v∈V

√
ωuv (χA(v) + χB(v)− χA(u)− χB(u))

2
275

=
∑
u∈V

∑
v∈V

√
ωuv (χA(v)− χA(u))

2
+
∑
u∈V

∑
v∈V

√
ωuv (χB(v)− χB(u))

2
276

+ 2 ·
∑
u∈V

∑
v∈V

√
ωuv (χA(v)− χA(u)) · (χB(v)− χB(u))277

= Perω,1(A) + Perω,1(B)− 4 ·
∑
A

∑
B

√
ωuv.278

279

We obtain the result for Per±ω,1 immediately from the following relation Per±ω,1 =280
1
2 Perω,1. □281

282

Remark 3.3. The notion of nonlocal perimeter was introduced in [5, 17] and283

was thoroughly studied in [7, 34]. For the singular kernels, we recall the nonlocal284

s-perimeter, s ∈]0, 1[, which is given for a subset A ⊂ Rn as285

Pers(A) =

∫
A

∫
Ac

1∣∣x− y
∣∣n+s dydx.286

It has been proven that the usuel notion of perimeter is recovered by the limit287

lim
s→1

(1− s) Pers(A) = Per(A) =

∫
RN

∣∣DχA
∣∣,288

see [4, 7, 12, 17].289

In turn, we will show that the definition of the (s-)perimeter can be recovered by our290

definition, as the number of the vertices goes to infinity. Indeed, set J : x 7→ 1
|x|n+s ,291

and let {Jk}k be a sequence of symmetric positive functions in L1(Rn) satisfying:292

(i) for all k, Jk of compact support and Jk =
∑

x∈ 1
kZn

αxχQk
x
, where αx ∈ R+ and293

Qk
x = x+ 1

kn [0, 1[
n.294

(ii) {Jk}k converges to J strongly in L1(Rn).295

Fix k ∈ N⋆. Consider Gk = (Vk, Ek, ωk) where Vk = 1
kZ

n and the weight function296

is given ωk(x,y) = (k2nJk(x − y))2, ∀x, y ∈ Vk. For all A ⊂ Rn, we set Ad
k =297 {

x ∈ Vk : Qk
x ∩ A ≠ ∅

}
and Ak =

⋃
x∈Ad

k

Qk
x. Then298

Perωk,1(Ad
k) =

∑
y∈Ad

k

∑
x∈(Ad

k)c

√
ωk(x,y) =

∫
Ak

∫
(Ak)c

Jk(x− y)dxdy.299
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300

By construction, we can easy check that301

lim
k

∫
Ak

∫
(Ak)c

Jk(x− y)dxdy =

∫
A

∫
Ac

J(x− y)dxdy.302

303

Hence304

lim
k

Perωk,1(Ad
k) =

∫
A

∫
Ac

J(x− y)dxdy305

= Pers(A).306307

4. Generalized total variation on graphs. In this section, we extend the308

notion of total variation, for p = 1, on graphs to upwind and downwind p-total309

variations and also for p ∈ [1,∞]. We show that the result of the co-area formula310

provided in [22, 48] is still valid for p = ∞ on unweighted graphs.311

Definition 4.1. For 1 ≤ p < ∞, the p-total variation on graphs is defined as312

follows:313

TVω,p(f) = E
(∥∥∇ωf

∥∥
p

)
=
∑
u∈V

(∑
v∈V

ω
p
2
uv

∣∣f(v)− f(u)
∣∣p) 1

p

314

TV±
ω,p(f) = E

(∥∥∇±
ω f
∥∥
p

)
=
∑
u∈V

(∑
v∈V

ω
p
2
uv

(
(f(v)− f(u))±

)p) 1
p

.315

316

Similarly we define the ∞-total variations for p = ∞:317

TVω,∞(f) = E
(∥∥∇ωf

∥∥
∞

)
=
∑
u∈V

(
max
v∈V

√
ωuv

∣∣f(v)− f(u)
∣∣)318

TV±
ω,∞(f) = E

(∥∥∇±
ω f
∥∥
∞

)
=
∑
u∈V

(
max
v∈V

√
ωuv(f(v)− f(u))±

)
.319

320

321

It is known that in the continuous case that the perimeter is linked to the total322

variation via co-area formula. A similar results have been exposed in [22, 48] for the323

discrete case. For the reader’s convenience, we recall this result and their extension324

to the upwind and downwind p-total variations, for p ∈ {1,∞}.325

Proposition 4.1. For any function f : V → R, we have:326

TV±
ω,1(f) =

∫ +∞

−∞
TV±

ω,1(χ{f>t})dt,(4.1)327

TVω,1(f) =

∫ +∞

−∞
TVω,1(χ{f>t})dt.(4.2)328

329

In particular, for all A ⊂ V we have330

TV±
ω,1(χA) = Per±ω,1(A) and TVω,1(χA) = Perω,1(A).331332

333
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Proof : See [48] for a detailed proof of (4.2). The proof of (4.1) holds from (4.2)334

and the following relationship:335

TV±
ω,1(f) =

1

2
TVω,1(f), for every function f ∈ H(V ).336

□337

338

For p = ∞, the co-area formula holds for unweighted graphs, as the following339

proposition shows. To remove confusion on the notation, we denote ω = 1 to signify340

that the considered graph is unweighted.341

Proposition 4.2. For any function f : V → R, we have:342

TV±
ω=1,∞(f) =

∫ +∞

−∞
TV±

ω=1,∞(χ{f>t})dt,343

TVω=1,∞(f) =

∫ +∞

−∞
TVω=1,∞(χ{f>t})dt.344

345

346

Proof : Let u ∈ V and let vu ∈ N (u) such that
∥∥∇±

ω=1f(u)
∥∥
∞ = (f(vu)− f(u))±,347

we can easy to see that
∥∥∇±

ω=1χ{f>t}(u)
∥∥
∞ =

(
χ{f>t}(vu)− χ{f>t}(u)

)±
for all t ∈ R.348

Then349

∥∇±
ω=1f(u)∥∞ = (f(vu)− f(u))

±
350

=

∫ +∞

−∞

(
χ{f>t}(vu)− χ{f>t}(u)

)±
dt351

=

∫ +∞

−∞
∥∇±

ω=1χ{f>t}(u)∥∞dt352
353

Hence,354

TV±
ω=1,∞(f) =

∫ +∞

−∞
E
(∥∥∇±

ω=1χ{f>t}
∥∥
∞

)
dt =

∫ +∞

−∞
TV±

ω=1,∞(χ{f>t})dt.355
356

Using the fact that TVω=1,∞(f) = TV+
ω=1,∞(f) + TV−

ω=1,∞(f), one gets the last357

equality. □358

359

Remark 4.1. For p = ∞, the co-area formula doesn’t hold for a general weighted360

graphs. Indeed, let G be a weighted graph with the vertex set V = {1, 2, 3} and the361

weight function is given by362

ω2
ij =


1, if (i, j) = (1, 2),

1/4, if (i, j) = (1, 3),

1/3, if (i, j) = (2, 3).

363

364

Consider the following function defined on V by f(1) = 0, f(2) = 1, f(3) = 4. By a365

simple computations one gets that366

TV±
ω,∞(f) = 2 <

11

4
=

∫ +∞

−∞
TV±

ω,∞(χ{f>t})dt,367
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TVω,∞(f) = 3 < 5 =

∫ +∞

−∞
TVω,∞(χ{f>t})dt.368

369

We close this subsection with an application of co-area formulas to an equivalent370

result on functional inequalities.371

Let G be a non-empty set of pairs (g1, g2) functions on V an let L be a functional372

generated by G as follow:373

(4.3) L(f) = sup
(g1,g2)∈G

E(f+g1 + f−g2).374

We say that the functional L admits a quasi-linear representations. As noted in [47],375

many functionals have this representation, for example:376

L(f) =
(
E
(∣∣f ∣∣p))1/p , for 1 ≤ p ≤ ∞,377

L(f) =
(
E
(∣∣f − E(f)

∣∣p))1/p , for 1 ≤ p ≤ ∞,378

L(f) = inf
a∈R

(
E
(∣∣f − a

∣∣p))1/p for 1 ≤ p ≤ ∞.379
380

The co-area formula implies the following equivalence.381

Proposition 4.3. Let λ > 0, and either p = 1 or p = ∞ with ω ∈ {0, 1}, the382

following are equivalent:383

(i) L(f) ≤ λE(
∥∥∇±

ω f
∥∥
p
) for all f : V → R.384

(ii) L(χA) ≤ λE(
∥∥∇±

ωχA
∥∥
p
) and L(−χA) ≤ λE(

∥∥∇±
ω (−χA)

∥∥
p
), for all A ⊂ V .385

Proof : The implication (i) =⇒ (ii) is straightforward, it is enough to apply (i)386

to f = χA and f = −χA. Conversely, let g1, g2 ∈ G, it is easy to see E(
∥∥∇±

ωχA
∥∥
p
) =387

E(
∥∥∇±

ω (−χAc)
∥∥
p
) for all A ⊂ V . Therefore388

E(
∥∥∇±

ω f
∥∥
p
) =

∫ +∞

0

E(
∥∥∇±

ωχ{f>t}
∥∥
p
)dt+

∫ 0

−∞
E(
∥∥∇±

ωχ{f>t}
∥∥
p
)dt389

=

∫ +∞

0

E(
∥∥∇±

ωχ{f>t}
∥∥
p
)dt+

∫ 0

−∞
E(
∥∥∇±

ω (−χ{f≤t})
∥∥
p
)dt390

≥ λ−1

∫ ∞

0

E[g1 · χ{f>t}]dt+ λ−1 ·
∫ 0

−∞
E
(
χ{f≤t}g2

)
dt391

= λ−1E(g1f
+) + λ−1 · E(f−g2).392393

We get the desired inequality by taking the supremum over all function g1, g2 ∈ G.394

□395

396

5. Discrete mean curvature flow on graphs.397

5.1. Mean curvature on graphs. We first introduce a class of mean curvatures398

on graphs based on the definition of the nonlocal perimeters on graphs defined above.399

As in the nonlocal continuum case [14], we define the mean curvature as the first400

variation of the perimeter. We denote by δ(u) the degree of a vertex u ∈ V which is401

given by δ(u) =
∑

v∼u

√
ωuv.402
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Definition 5.1. Let A ⊂ V , and u0 ∈ V . We define the upwind and downwind403

mean curvature as follow:404

κ+
ω,1(u0,A)

def
=

Per+ω,1(A ∪ {u0})− Per+ω,1(A)

δ(u0)
,405

κ−
ω,1(u0,A)

def
=

Per−ω,1(A)− Per−ω,1(A \ {u0})
δ(u0)

.406
407

Finally, we define then the mean curvature for u0 ∈ V as:408

κω,1(u0,A)
def
=

{
κ+
ω,1(u0,A), if u0 ∈ Ac,

κ−
ω,1(u0,A), if u0 ∈ A.

409

Observe that by a simple development of the definition of the perimeters, we show410

that411

Per+ω,1(A ∪ {u0})− Per+ω,1(A) =

{∑
v∈Ac

√
ωu0v −

∑
v∈A

√
ωu0v, if u0 ∈ Ac,

0, if u0 ∈ A,
412

413

and414

Per−ω,1(A)− Per−ω,1(A \ {u0}) =

{∑
v∈Ac

√
ωu0v −

∑
v∈A

√
ωu0v, if u0 ∈ A,

0, if u0 ∈ Ac.
415

416

Therefore, one gets an explicit formula of the discrete mean curvature.417

Proposition 5.1. For all A ⊂ V and all u0 ∈ V , we have:418

κω,1(u0,A) =

∑
v∈Ac

√
ωu0v −

∑
v∈A

√
ωu0v

δ(u0)

= −
∑

v∈V

√
ωu0v(χA − χAc)

δ(u0)
.

(5.1)419

Remark 5.1. (i) We can interpreted the formula (5.1) as a discrete version420

of the nonlocal J-mean curvature introduced in [34, Definition 3.2], which is421

given by422

HJ
∂E(x)

def
= −

∫
Rn

J(x− y)(χE(y)− χE(x))dy, x ∈ Rn,423

where E ⊂ Rn measurable set and J is a nonnegative radial measurable func-424

tion in L1(Rn).425

(ii) Based on the equation (5.1), we can extend the notion of the mean curvature426

to any function f on graphs by considering its level sets. Indeed, let f : V → R427

and u ∈ V . The mean curvature κω,1 (we keep the same notion) of f at u on428

a graph is defined as429

κω,1(u, f)
def
= κω,1(u, {f ≥ f(u)})430

=

∑
v∈{f≥f(u)}

√
ωuv −

∑
v∈{f<f(u)}

√
ωuv

δ(u)
431

=

∑
v∈V

√
ωu0v sign(f(v)− f(u))

δ(u)
,432
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433

where434

sign(r) =

{
1, if r ≥ 0,

−1, if r < 0.
435

(iii) In the continuum (local) setting, the mean curvature, for a given smooth436

hypersurface Γ ⊂ RN , at a point x of Γ is given by the following formula437

(5.2) κ(x) = −div(nx),438

where nx, x ∈ Γ, is the unit normal vector field.439

As in the continuous case, we are going to expose a discrete version of (5.2)440

on graphs, introduced in [48]. Let G = (V,E, ω) be a weighted graph. For a441

nonempty set A ⊂ V , the analogue of (5.2) on graph is given as follow:442

(5.3) κloc
ω,1(u,A) = divw(nA)(u) =

{∑
v∈Ac

√
ωuv, if u ∈ A,

−
∑

v∈A
√
ωuv, if u ∈ Ac,

443

where nA is the discrete normal vector which is defined as444

nA(u, v) =


1 if u ∼ v and (u, v) ∈ A×Ac,

−1 if u ∼ v and (u, v) ∈ Ac ×A,

0 else.

445

The formula given in [48] of the mean curvature is relatively different from446

this one, this difference returns to the definition of divergences considered.447

Observe that, the sign of the mean curvature, given by (5.3), depends only on448

the side that contains the vertex u and not on the weights function, while it449

is not in the case of the mean curvature considered in Definition 5.1, which450

makes a difference in the study of the data processing especially the nonlocal451

ones. In the rest of this work, we adopt Definition 5.1 for the discrete mean452

curvature.453

6. Level set formulation of mean curvature flows on graphs. Based in454

a discretization of the gradients and curvatures on a general domain, graph, we can455

adapt a large PDEs models on graphs involving mean curvature or variants of mean456

curvature. In this section we consider two general models used extensively to solve457

several tasks in image processing and computer vision. The level power mean cur-458

vature flows for image denoising, enhancement or simplification and the PDEs level459

set active contours for image segmentation and object detection. We will show that460

the transposition of these models on graphs leads to partial differences equations with461

coefficients that depend on data and their applications are naturally extend to the462

processing of any data and for data classification.463

6.1. Level set power mean curvature flow on Euclidean domain. The464

level set method for front propagation has been used with great success in both465

pure and applications and in different applications in image processing and computer466

vision. The level set approach was first proposed by Osher and Sethian [42] to model467

evolving fronts with curvature, see also the recent works [38, 10]. The level set is468

used to analyse its subsequent motion under a normal velocity c(x, t). The idea is469

to represent the evolving front as a level set of a function ϕ(x, t) for x ∈ Rn and t470
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is the time. The initial front is given by Γ0 = {x : ϕ(x, 0) = 0 = ϕ0}, where ϕ0 is a471

smooth function defined on Rn, and the evolving front is described for all later time472

as Γt = {x : ϕ(x, t) = 0}. The evolving front is governed by the following equation:473

(6.1)

{
∂ϕ
∂t (x, t) = c(x, t)

∥∥∇ϕ(x, t)
∥∥
2
, (x, t) ∈ Rn × (0, T )

ϕ(x, 0) = ϕ0(x), x ∈ Rn.
474

For c(x, t) =
∣∣κ(x, t)∣∣α−1

κ(x, t) where κ presents the usual mean curvature, we475

have the level set power mean curvature equation, [41]. In particular, when α = 1476

this equation corresponds to the mean curvature flow filter which finds important477

applications in image processing [42], while the case when α → 0, we obtain so478

called conditional erosion/dilatation based on the sign of the mean curvature used in479

mathematical morphology. A variant for positive/negative curvature flows are used480

in [33] for image enhancement in addition to noise removal.481

482

In the case, where ϕ0 is an implicit representation of a front (surface), we get the483

active contour/snake model which is one of the most successful variational models in484

image segmentation. It consists of evolving a contour in images toward the bound-485

aries of objects. Its success is based on strong mathematical properties and efficient486

numerical schemes via the level sets method. A general formula of this method can487

be written as follows488

(6.2)


∂ϕ
∂t (x, t) =

(
α div

(
∇ϕ(x,t)∥∥∇ϕ(x,t)

∥∥
2

)
+ β F (I, ϕ(x, t))

)∥∥∇ϕ(x, t)
∥∥
2
,

ϕ(x, 0) = ϕ0(x),

489

where I : Ω → R is the initial image, α, β ∈ R and F is a halting function of the490

active contour model.491

492

In particular, Chan-Vese model for active contours [16, 49] is a powerful and493

flexible method which detects objects whose boundaries are not necessarily detected494

by the gradient. This model is based on an energy minimization problem, which495

can be reformulated in the level set formulation, leading to an easier way to solve496

the problem. Chan-Vese model has achieved well performance in image segmentation497

task due to its ability of obtaining a larger convergence range and handling topological498

changes naturally.499


∂ϕ
∂t (x, t) =

(
α div

(
∇ϕ(x,t)∥∥∇ϕ(x,t)

∥∥
2

)
− λ1(I − c1)

2 + λ2(I − c2)
2

)∥∥∇ϕ(x, t)
∥∥
2
,

ϕ(x, 0) = ϕ0(x).

(6.3)

500

501

where α, λ1, λ2 > 0 are the fitting parameters, I corresponds to the initial image,502

ϕ0 is a smooth function, c1 the average of I on ϕ(x, t) ≥ 0, and c1 the average of I503

on ϕ(x, t) ≤ 0.504

6.2. Transcription of power mean curvature flow on graphs. We are505

interested in translating on graphs two PDEs models involving mean curvature. Let506

G = (V,E, ω) be a weighted graph, based on the definition of discrete gradient and507
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the boundary set which are given above, our formulation for the level set power mean508

curvature equation (6.1) on graphs can be expressed as follows:509

(6.4)


∂ϕ
∂t (u, t) =

(∣∣κω(ϕ(u, t))
∣∣α−1

κω(ϕ(u, t))
)+ ∥∥∇+

ωϕ(u, t)
∥∥
p

−
(∣∣κω(ϕ(u, t))

∣∣α−1
κω(ϕ(u, t))

)− ∥∥∇−
ωϕ(u, t)

∥∥
p
,

ϕ(u, 0) = ϕ0(u),

510

where ϕ0(·, t) ∈ H(V ), α ∈ [0, 1], p ∈ [1,+∞] and511

κω(ϕ(u, t)) = κω,1 (u, {y | ϕ(v, t) ≥ ϕ(u, t)}) .512

We use the forward/explicit Euler scheme in the time to approximate the above513

problem, for that let 0 < t1 < t2 < · · · < tℓ = T be an equispaced partition of514

[0, T ], T > 0. i.e. ti =
i
ℓT, i ∈ [ℓ].515

∂ϕ

∂t
(u, t) =

ϕi+1(u)− ϕi(u)

∆t
,516

where ϕi(u) = ϕ(u, i∆t) with ∆t = T
ℓ and the equation (6.4) can be rewritten as the517

following iterative equation:518

ϕi+1(u)− ϕi(u) = ∆t

((∣∣κω(ϕ
i(u))

∣∣α−1
κω(ϕ

i(u))
)+ ∥∥∇+

ωϕ
i(u)

∥∥
p

519

−
(∣∣κω(ϕ

i(u))
∣∣α−1

κω(ϕ
i(u))

)− ∥∥∇−
ωϕ

i(u)
∥∥
p

)
.520

521

In particular, for α = 1 the equation (6.4) can rewritten as the following iterative522

equation:523

(6.5)



ϕi+1(u) = ϕi(u) + ∆t

((
κω(ϕ

i(u))
)+ ∥∥∇+

ωϕ
i(u)

∥∥
p

−
(
κω(ϕ

i(u))
)− ∥∥∇−

ωϕ
i(u)

∥∥
p

)
,

ϕ0(u) = ϕ0(u).

524

When p = ∞, we across the scheme considered in [22, Section 3.3]. Now, let us525

consider the case that when α → 0 and p = ∞. Similarly by using the explicit Euler526

method as above, one gets the following iterative equation :527

(6.6)



ϕi+1(u) = ϕi(u) + ∆t

(
sign

(
κω(ϕ

i(u))
) ∥∥∇+

ωϕ
i(u)

∥∥
∞

+sign
(
κω(ϕ

i(u))
) ∥∥∇−

ωϕ
i(u)

∥∥
∞

)
,

ϕ0(u) = ϕ0(u).

528

In the case where ∆t = 1, this previous equation can be interpreted as529

(6.7) ϕi+1(u) =

{
ϕi(u) +

∥∥∇+
ωϕ

i(u)
∥∥
∞, if κω(ϕ

i(u)) ≥ 0,

ϕi(u)−
∥∥∇−

ωϕ
i(u)

∥∥
∞, if κω(ϕ

i(u)) < 0.
530
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6.3. Transcription of the active contour on graphs. In this section, we531

present a transcription of geometric PDEs on weighted graphs of arbitrary topology.532

A front evolving on G is defined as a subset A0 ⊂ V , and is implicitly represented533

by a level set function ϕ0 = χA0 − χAc
0
. In other word ϕ0 equal 1 in A0 and −1 on534

its complementary. From the general equation (6.1) transposed on graph, the front535

propagation can be expressed in general by536

(6.8)

{
∂ϕ
∂t (u, t) = c(u, t) ·

∥∥∇ωϕ(u, t)
∥∥
p

(u, t) ∈ V × [0, T )

ϕ(u, 0) = ϕ0(u),
537

with c(·, t) ∈ H(V ). Based on the previous definition of discrete dilation and erosion538

on graphs, the front propagation can be expressed as a morphological process with539

the following sum of dilation and erosion.540 {
∂ϕ
∂t (u, t) = (c(u, t))

+ ·
∥∥∇+

ωϕ(u, t)
∥∥
p
− (c(u, t))

− ·
∥∥∇−

ωϕ(u, t)
∥∥
p

ϕ(u, 0) = ϕ0(u).
541

To solve this dilation and erosion process, on the contrary to the PDEs case, no542

spatial discretization is needed thanks to derivatives directly expressed in a discrete543

form. Then, the general iterative scheme to compute ϕ at time t+ 1 for all u ∈ V is544

given by:545

ϕi+1(u) = ϕi(u) + ∆t

(
(c(u, t))+

∥∥(∇+
ωϕ

i)(u)
∥∥− (c(u, t))−

∥∥(∇−
ωϕ

i)(u)
∥∥).546

547

At each time i + 1, the new value at a vertex u only depends on its value at548

time i and the existing values in its neighborhood. This equation can be split in two549

independent equations, in function of the sign of c(·, ·):550

ϕi+1(u) =

{
ϕi(u) + ∆t(c(u, t))

∥∥(∇+
ωϕ

i)(u)
∥∥, if c(u, t) > 0,

ϕi(u) + ∆t(c(u, t))
∥∥(∇−

ωϕ
i)(u)

∥∥, if c(u, t) < 0,
551

Such decomposition of the process in two independent equations for erosion and di-552

lation processes enhances the computation of the solution because one only has to553

compute one morphological gradient at each iteration, for a given vertex. Moreover,554

one can remark that at initialization both two gradients are zero everywhere, except555

for vertices which lies in the inner and outer boundaries of A0. Then, the set of556

vertices to be updated at each iteration can be restricted to two inner and outer557

narrow bands, initialized respectively with ∂−A0 and ∂+A0 and updated over time558

with neighbours of vertices already in. The narrow bands growth follows the fronts559

evolution and to avoid them to become too large, the narrow bands are reinitialized560

periodically. Thus, each τ iterations,which correspond to a step k, the front is given561

by the set Ak =
{
u ∈ V : ϕkτ (u) > 0

}
and the associated level set function is also562

reinitialized as ϕk(u) = Uk = χAk
(u) − χAc

k
(u). Then, the inner and outer narrow563

bands are respectively reinitialized as ∂−Ak and ∂+Ak.564

565

Remark 6.1. Using previous definitions of morphological evolution equations,566

one can formulate the same relation and obtain a PdEs-based version of the Eikonal567

equation, defined on weighted graphs of arbitrary topology. Indeed, let c = 1 and568

ϕ(·, t) = t − φ(·) on the whole domain V , with φ ∈ H(V ). We obtain a discrete569
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adaptation of the Eikonal equation on graph, which describes a morphological erosion570

process, and defined as571

(6.9)

{∥∥ (∇−
ωφ) (u)

∥∥ = 1, u ∈ V0,

φ(u) = 0, u ∈ V \ V0,
572

where V0 ⊂ V . Numerical schemes and algorithms to solve such equation have pro-573

vided in [18]. These shemes allow to compute weighted geodesic distances, see [18,574

Section 5.2].575

7. Numerical experiments. In this section, we present our numerical experi-576

ments to illustrate the potentialities of our formulations of the level set power mean577

curvature equation, through two models: power mean curvature flows and Chan-Vese578

model for active contour. These allow us to process both images and 3D-point clouds.579

Different graph structures and weight functions are also used to show the flexibility580

of our approach.581

7.1. Weighted graph construction. There exist several popular methods to582

transform discrete data {u1, · · · , un} into a weighted graph structure. Considering a583

set of vertices V such that the data are embedded by functions of H(V ), the construc-584

tion of such a graph consists in modeling the neighborhood relationships between the585

data through the definition of a set of edges E and using a pairwise distance measure586

µ : V ×V → R+. In the particular case of images, graph construction methods based587

on geometric neighborhoods are particularly well-adapted to represent the geometry588

of the space, as well as the geometry of the function defined on that space. We589

distinguish the following types of graphs:590

• Grid graphs, which are the most natural structures to describe an image with591

a graph. Each pixel is connected by an edge to its adjacent pixels. Classical592

grid graphs are 4-adjacency grid graphs and 8-adjacency grid graphs. Larger593

adjacency can be used to obtain nonlocal grid graphs.594

• Region adjacency graphs (RAGs), which provide very useful ways of describ-595

ing the structure of a picture: vertices represent regions and edges represent596

region adjacency relationship.597

• k-nearest neighborhood graphs (k-NNGs), where each vertex u is connected598

with its k-nearest neighbors according to the distance measure µ. Such con-599

struction implies building a directed graph as the neighborhood relationship is600

not symmetric. Nevertheless, an undirected graph can be obtained by adding601

an edge between two vertices u and v if u is among the k-nearest neighbors602

of v or if v is among the k-nearest neighbors of u.603

• k-extended RAGs (k-ERAGs), which are RAGs extended by a k-NNG. Each604

vertex is connected to adjacent regions vertices and to its k most similar605

vertices of V .606

The similarity between two vertices is computed with respect to an appropriate mea-607

sure s : E → R+, which satisfies608

ωuv =

{
s(u, v), if (u, v) ∈ E,

0, otherwise.
609

Examples for common similarity functions are as follows:610

• s0(u, v) = 1;611

• s1(u, v) = exp(−d(u, v)/σ2), with σ > 0, where d is a metric controlling the612

similarity between edges, and σ is a scale parameter.613
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• For patch-based methods, the similarity function is614

s2(u, v) = exp(−µ(u, v)2/σ2), with σ > 0,615

where now µ(u, v) =
∥∥P(u) − P(v)

∥∥
2
, and P : u ∈ V 7→ P(u) ∈ Rm is616

the patch extraction operator at u. For each node/vertex u, P(u) is an m-617

dimensional real vector containing, e.g., spatial coordinates, intensities, etc.,618

of the neighbours of u. This definition of patches is valid only for grid-graphs619

and cannot be considered for arbitrary graphs. To compute the patch on a620

3D point cloud, the reader is referred to [32].621

Several choices can be considered as feature vectors computed from the given data,622

depending on the nature of the features to be used for graph processing. In the623

context of image processing one can use the simple grayscale or color feature vector624

Fu, or a patch feature vector F τ
u =

⋃
v∈Wτ (u) Fv (i.e., the set of values Fv, where v625

is in a square window Wτ (u) of size (2τ + 1)× (2τ + 1) centered at a vertex pixel u)626

incorporating nonlocal features such as texture.627

7.2. Mean curvature flow. This paragraph illustrates the mean curvature flow628

filtering real image data, defined both on two-dimensional regular grid and three-629

dimensional point cloud. Figure 1 presents filtering results of an image using the630

formulation of the mean curvature flow (6.4), with p = 2 and different graph con-631

struction (local and nonlocal). We used two types of local graphs, both are built as632

a usual 4-adjacency grid graph where ω = s0 for the first one, while ω = s1 for the633

second (pixels are characterized by their color feature vectors). The nonlocal graph is634

built using a k-NNG in a 11×11 neighborhood window and each pixel is characterized635

by a 5×5 patch of color feature vectors (the weight function holds similarity between636

patches, with ω = s2).637

Figure 2 presents filtering results obtaining of 3D-point cloud using the same638

formulation. In this example, we applied our formulation using two graphs. Both639

built from the same 3D-points clouds using k-NNGs, with k = 8 and ω = s0 for the640

first one, which their correspond result is given by (b). For the second graph, we took641

k = 10 and ω = exp(−d(ϕ0(u), ϕ0(v))/10
2), which their correspond result is given by642

(c), where ϕ0 (RGB color vectors) represents the initial datum and d is the Euclidean643

distance between ϕ0(u) and ϕ0(v).644

7.3. Active contour model on graphs.645

Image segmentation using local and non-local graph. In this paragraph, we illus-646

trate the behaviour of the Chan-Vese model (6.3). An advantage of our graph-based647

formulation is that the proposed formula can be applied to any graph, and therefore648

any graph representing images. To illustrate such an adaptive behaviour, we propose649

to use other image structures for image segmentation. Figure 3 and Figure 4 present650

results segmentation, with local and nonlocal graphs, respectively. The local graph is651

built as a usual 4-adjacency grid graph where each pixel is characterized by its color652

feature vector. The nonlocal one is built using a k-NNG in a 11 × 11 neighborhood653

window and each pixel is characterized by a 5× 5 patch of color feature vectors.654

Image segmentation using region adjacency graph. The following example will655

illustrate graph-based versions of eikonal equation and active contours, with our for-656

mulation of PDEs level sets on graphs, in a unique application. For this example,657

we adapt Chan and Vese active contour model (6.3), on weighted graphs. The active658

contour evolution is performed on a reduced version of the initial image, a region adja-659

cency graph (RAG), obtained from a superpixel decomposition. Such decomposition660
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(a) Original image (b) ω = s0

(c) ω = s1 (d) ω = s2

Fig. 1: Colored image filtering with mean curvature flows.(a) Original image.(b) and
(c) present results with 4-adjacency grid graph, where ω = s0 and ω = s1, respectively.
(d) presents result with k-NNG. See text for more detail.

(a) Original image

(b) ω = s0 (c) ω = s1

Fig. 2: Colored point cloud filtering with mean curvature flows. (a) Original image. (b)

presents results obtained using local k-NNGs (k = 8 and ω = 1). (c) presents results under

the same configuration but with different similarity function (ω =colour, which depends on

the colour similarity between different 3D-points), obtained using 20-NNGs.
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(a) Initial contour (b) Final contour

Fig. 3: Illustration of Chan-Vese segmentation with two phases, using a local 4-adjacency

grid graph where each pixel is characterized by it’s color feature vector.

(a) Initial contour (b) Final contour

Fig. 4: Illustration of Chan-Vese segmentation with two phases, using k-NNG. See text for

more detail.

is performed using a regular-grid of seeds, which are dilated on the image 4-adjacency-661

grid graph using the PdEs based version of the eikonal equation (16). The resulting662

region map is then transformed in a second graph (the RAG) where each node is663

associated with a superpixel and edges represent the adjacency between superpixels.664

The two weight functions are computed from pixels intensity, respectively regions665

mean intensity. A detailed description of the method can be found in [19]. One can666

remark that due to its construction the second graph is irregular. Then, the active667

contour evolution is performed on this second graph, using our formulation of active668

contours on weighted graphs. Finally, the contour at convergence of the algorithm is669

transposed from the graph to the region map and then to the original image. Figure670

5 presents each steps of the entire process.671

Data clustering. In this experiment, we show that our level set active contour672

method can also be used for data clustering purposes, when data are represented as673

points cloud. To do so, we have selected a small part of the MNIST dataset [31].674

This dataset is composed of handwritten digits, stored as small images. The subset675

we chose is composed of 2 classes : 0’s and 1’s. For the illustration we picked 200676

elements of each. We constructed a k-nearest neighbors on this dataset, with k = 5.677

To compute the distance between two images, we used the two-sided tangent distance678
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(a) RAG, front and bands (b) Contour reported on
image

(c) After one iteration (d) After one iterations

(e) After 82 iterations (f) After 82 iterations

Fig. 5: Illustration of active contour on a region adjacency graph (RAG). The RAG is built

from a superpixel decomposition of the initial image, where each region is connected to its

adjacent regions. The weight and velocity functions are computed from the mean color

inside regions. Left column shows the RAG, with the front in blue and candidate bands in

red (inner) an green (outer). Right column shows the initial image with the front transposed

from the RAG (using the superpixels boundaries).

[30], an extension of the tangent distance used in [44], especially well suited for this679

dataset. In this experiment, we begin from an initial random partition that we refine680

using our approach. To do so, we initialize both fronts Γ1 (in blue) and Γ2 (in red) as681

two random sets of digits and let them move under the effect of the velocity function682

with an additional curvature term. We use the discrete mean curvature on graphs683

(See Definition 5.1). The graph and several iterations are presented in Figure 6684

High dimensional semi-supervised data classification. Finally, we have tested the685

performance of our proposed framework when applied to semi-supervised classifica-686

tion on three standard databases from the literature: MNIST [31], OPTDIGITS [3],687

and PENDIGITS [2]. We compare two kinds of velocities. The first one is the ac-688

tive contour on the graph-based curvature. We denote it as AC. The second one689

is propagation using the evolution eikonal equation but constant in time and based690

on the characteristic of graph vertices. We denote it as EE. For these databases we691

merged both the training and the test sets (as performed in [6]), resulting in datasets692

of 70000 instances, 5620 instances, and 10992 instances, for MNIST, OPTDIGITS,693

and PENDIGITS, respectively. In our tests, we propose also, to refine the classifi-694

cation results of EE with AC algorithm (i.e., EE is used as seeds for AC), and we695

denote it as EE + AC. In Table 1, we expose a comparainson between these methodes,696
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Fig. 6: Illustration of the algorithm for active contours on points cloud data for clustering.

The graph is built from a small subset of the MNIST database, as a k-NNG (with k = 5).

The weight function is computed using two-sided tangent distance and the velocity is defined

according to graph-based curvature and intra an inter class similarities. Each cluster is

represented by a front, randomly initialized. The clustering is performed by fronts motion

using evolution eikonal equation.

where we vary the amount of initial seeds from 1% to 10%, and compute the average697

classification rate over 10 runs of each algorithm.698

seeds datasets EE AC EE+AC

1%
MNIST

OPTDIGITS
PENDIGITS

97.45%
95.22%
95.75%

98.20%
96.82%
95.71%

98.24%
97.10%
96.25%

2%
MNIST

OPTDIGITS
PENDIGITS

97.64%
97.41%
97.38%

98.24%
97.88%
97.06%

98.29%
97.92%
98.56%

5%
MNIST

OPTDIGITS
PENDIGITS

97.95%
98.09%
98.25%

98.33%
98.38%
98.30%

98.37%
98.35%
98.56%

10%
MNIST

OPTDIGITS
PENDIGITS

98.19%
98.41%
98.94%

98.39%
98.64%
98.92%

98.45%
98.51%
99.10%

Table 1: Classification rates on the three datasets.
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[2] F.Alimoǧlu and E.Alpaydin, Combining multiple representations for pen-based handwritten706
digit recognition, Turkish Journal of Electrical Engineering & Computer Sciences, 9 (2001),707
pp. 1–12.708

[3] E.Alpaydin and C.Kaynak, Optical recognition of handwritten digits, uci machine learning709
repository, 1998.710

[4] L.Ambrosio, G.DePhilippis, and L.Martinazzi, Gamma-convergence of nonlocal perimeter711
functionals, Manuscripta Mathematica, 134 (2011), pp. 377–403.712

[5] J. Bourgan, H.Brezis, and P.Mironescu, Another look at sobolev spaces, in Optimal control713
and partial differential equation. Conference, 2001, pp. 439–455.714

[6] X.Bresson, T. Laurent, D.Uminsky, and J.H. VonBrecht, Multiclass total variation clus-715
tering, arXiv preprint arXiv:1306.1185, (2013).716

[7] H.Brezis, How to recognize constant functions. connections with sobolev spaces, Russian Math-717
ematical Surveys, 57 (2002), p. 693.718

[8] B.Buet, J.-M. Mirebeau, Y. van Gennip, F.Desquilbet, J.Dreo, F. Barbaresco, G.P.719
Leonardi, S.Masnou, and C.-B. Schönlieb, Partial differential equations and varia-720
tional methods for geometric processing of images, The SMAI journal of computational721
mathematics, 5 (2019), pp. 109–128.722

[9] T.Bühler and M.Hein, Spectral clustering based on the graph p-Laplacian, in Proceedings723
of the 26th Annual International Conference on Machine Learning, ICML ’09, New York,724
NY, USA, 2009, ACM, pp. 81–88, doi:10.1145/1553374.1553385, http://doi.acm.org/10.725
1145/1553374.1553385.726

[10] M.Burger, A.C. Mennucci, S.Osher, and M.Rumpf, Level Set and PDE Based Reconstruc-727
tion Methods in Imaging: Cetraro, Italy 2008, Editors: Martin Burger, Stanley Osher,728
vol. 2090, Springer, 2013.729

[11] L.CAFFARELLI, J.-M. ROQUEJOFFRE, and O. SAVIN, Nonlocal minimal surfaces, Com-730
munications on pure and applied mathematics, 63 (2010), pp. 1111–1144.731

[12] L.Caffarelli and E.Valdinoci, Uniform estimates and limiting arguments for nonlocal min-732
imal surfaces, Calculus of Variations and Partial Differential Equations, 41 (2011), pp. 203–733
240.734

[13] J.Calder, The game theoretic p-laplacian and semi-supervised learning with few labels, Non-735
linearity, 32 (2018), p. 301.736

[14] A.Chambolle, M.Morini, and M.Ponsiglione, Nonlocal curvature flows, Archive for Ratio-737
nal Mechanics and Analysis, 218 (2015), pp. 1263–1329.738

[15] A.Chambolle and T.Pock, Approximating the total variation with finite differences or finite739
elements, 2021.740

[16] T.F. Chan and L.A. Vese, Active contours without edges, IEEE Transactions on image pro-741
cessing, 10 (2001), pp. 266–277.742

[17] J.Dávila, On an open question about functions of bounded variation, Calculus of Variations743
and Partial Differential Equations, 15 (2002), pp. 519–527.744
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