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Abstract
The effect of magnetic field ripple on tokamak plasma without turbulence is studied numerically
and augmented with a reduced analytical model that includes neoclassical processes in the
presence of non-axisymmetric perturbation and stochastic transport. For this study, a magnetic
field ripple perturbation has been implemented in the GYSELA gyrokinetic code. This
implementation has been verified thanks to a test of toroidal angular momentum conservation.
The GYSELA code was then successfully benchmarked against the NEO code, which solves the
drift kinetic equation, and against the reduced model in the collisionality range ν⋆ ∈ [0.05–0.5]
for several amplitudes of the magnetic ripple. An observation, shared by the model, the NEO
code and GYSELA simulations is that the thermal drive of the mean poloidal
velocity—measured by the kVP coefficient—decreases sharply for large yet experimentally
relevant magnetic ripple amplitudes, and may even change sign.

Keywords: neoclassical transport, stochastic transport, plasma flow,
full-f gyrokinetic simulations

(Some figures may appear in colour only in the online journal)

1. Introduction

The impact of non-axisymmetric magnetic perturbations on
flows is of prime importance to understand confinement. This
is particularly true for stellarators. However tokamaks also
exhibit such perturbations which can fundamentally modify
transport even at small amplitudes [1, 2]. Here special atten-
tion is paid to the magnetic field ripple, caused by the dis-
crete number of toroidal coils. Magnetic ripple impacts trans-
port by modifying both neoclassic and turbulent transport.
Only the former is studied here, while the impact of turbulent
effects is described in [3]. In the absence of turbulence, mag-
netic ripple modifies the particle trajectories in many ways.
First, magnetic ripple causes a loss of axisymmetry of the sys-
tem and therefore of the associated invariant of motion: the

∗
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canonical toroidal momentum. Confinement is then breached,
leading to non-vanishing radial transport as a result of the local
toroidal trapping that occurs between two consecutive tor-
oidal coils. Particles trapped in these magnetic wells undergo
vertical magnetic drift that is not compensated anymore by
the motion along the helical magnetic field lines (except in
the presence of strong E×B drift). Consequently, ripple can
lead to transport even in collisionless plasmas. Secondly,
neoclassical effects, i.e. collisional processes enhanced by
particle trajectories, are substantially changed and modify
flows in consequence. In particular, a well-established res-
ult of the neoclassical theory in an axisymmetric magnetic
configuration is the degeneracy between the toroidal velocity
VT and the radial electric field Er. Ripple breaks axisym-
metry and forces VT and Er to converge toward well-defined
values. Finally, non-turbulent stochastic transport can arise
above a ripple amplitude threshold. Particles then describe a
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chaotic motion resulting in an effective diffusion that leads to
transport.

The accurate simulation of these transport properties
requires a kinetic approach. To study these effects, magnetic
field ripple has been implemented in the gyrokinetic code
GYSELA [4]. In this study, this implementation is verified
thanks to the toroidal momentum conservation equation since
ripple is responsible for an additional toroidal torque, usu-
ally called Neoclassical Toroidal Viscosity [5, 6]. The ripple
implementation is then confronted with a reduced analytical
model of neoclassical [7] and stochastic loss [8] physics.
Good agreement is found on neoclassical transport coefficients
used to predict the toroidal velocity, the poloidal velocity and
the radial electric field. A benchmark with the drift-kinetic
solver NEO [9, 10] is also performed and found in fair agree-
ment with GYSELA results. A peculiar additional observa-
tion, shared by GYSELA, NEO and the analytical model is the
strong effect of ripple on the poloidal velocity even for typical
tokamak ripple amplitudes.

The rest of this paper is organized as follows. Neoclas-
sical and stochastic transport mechanisms in the presence of
ripple perturbation are recalled in section 2. where the model
is defined. The predictions of the model on flows are compared
with asymptotic studies in section 3. The numerical model of
the GYSELA code is presented in section 4. In section 5, the
verification of the implementation of the magnetic perturb-
ation in GYSELA is detailed. Then, neoclassical theoretical
predictions are compared with GYSELA and NEO simula-
tions in section 6. The modification of the poloidal velocity
by neoclassical effects with ripple is discussed in section 7. A
summary is given in section 8.

2. Theoretical neoclassical predictions

In this study, a simplified geometry is considered where mag-
netic surfaces are taken circular and concentric. In toroidal
coordinates (r,θ,φ), and in the limit of large aspect ratio and
small ripple magnitude, the magnetic field amplitude B can be
approximated as follows:

B= B0(1− ε(r)cosθ︸ ︷︷ ︸
1/R decay

+δ(r,θ)cos(Ncφ)︸ ︷︷ ︸
magnetic ripple

). (1)

Here, B0 is a reference magnetic field amplitude taken on
the magnetic axis and in between two coils, ε= r/R0 with R0

the major radius, δ is the ripple amplitude and Nc the number
of toroidal coils. The 1/R magnetic field decay is responsible
for banana trapping. Ripple is also responsible for so-called
local trapping in between two consecutive toroidal coils that
create a magnetic well where particles can bounce back and
forth. Without turbulence, particle motion is constrained by
the magnetic configuration and collisions. Those constraints
account for neoclassical and stochastic transport. The deriv-
ation of the neoclassical part heavily relies on the existence
of invariants of motion that are not valid with chaos. Con-
sequently, in order to have consistency in the complete model,
the neoclassical part is considered to hold only in the adia-
batic limit NcΩD ≪ ΩB where ΩD and ΩB are the precession

and banana-bounce frequencies. The origin of this limit is
explained below. Let us detail the neoclassical and stochastic
aspects separately.

First, neoclassical transport at low collisionality is due to
the resonant enhancement of collisional processes. It owes its
existence to trapped particles. Indeed, in the vicinity of bounce
points, the particle parallel velocity v∥ vanishes and the mag-
netic drift becomes dominant; this corresponds to the reson-
ance. Now, if the plasma is collisionless, transport can only
occur if particle trajectories are not confined. It is possible with
magnetic field ripple as particles trapped between two coils
undergo a vertical magnetic drift which is not compensated
by the motion along the magnetic field lines. In the axisym-
metric case, there would be no transport at all. Adding colli-
sions to this problem accounts for the so-called neoclassical
theory. When the collision frequency becomes comparable to
the bounce frequency of the considered trapped population,
a random walk with a characteristic step linked to the reson-
ance prevails. Considering banana trapping for example, this
step would be roughly the banana width. Subtleties also appear
when accounting for the synergies between the different trap-
pings. For example, the ripple causes banana bounce points to
drift radially in such a way that they undergo a random walk
process. The reduced model is meant to describe all those pro-
cesses. It relies on a kinetic derivation of the equilibrium dis-
tribution function for the considered species. Each population
(trapped or passing) tends to relax toward a Maxwellian equi-
librium under the effect of collisions. The resulting total distri-
bution function can however be non-Maxwellian and therefore
leads to finite fluxes.

This physics is captured by the gyrokinetic code GYSELA.
Figure 1 shows the impact of the 1/Rmagnetic field decay and
magnetic ripple on the distribution function in the (θ,v∥) and
(φ,v∥) spaces. Magnetic ripple produces islands in the (φ,v∥)
space corresponding to particles trapped toroidally between
coils. The island in the (θ,v∥) space, corresponding to the
banana trapping, is also modified with ripple. As discussed
previously, the effect is maximum at v∥ = 0 where the reson-
ance takes place. A similar mechanism also exists for particles
in ripple wells.

To get the expression of the distribution function and asso-
ciated transport, one must start with the drift kinetic equation
(DKE). The first step of the derivation then relies on solving
the DKE for each perturbation, i.e. the 1/R magnetic field
decay or ripple, independently. They are labeled ‘primary’
perturbations. Solving the DKE with the 1/R magnetic field
decay as primary perturbation leads to the axisymmetric neo-
classical theory. Doing the same for the ripple perturba-
tion amounts to consider collisional processes in a tokamak
without curvature, i.e. a rippled cylinder, with equally spaced
coils leading to local trapping. The next step is to perturb the
trapped population by the primary perturbation with the other
one, labeled ‘secondary’ perturbation. If ripple is the second-
ary perturbation, it then accounts for the radial drift of the
banana bounce point induced by ripple. If the 1/R magnetic
field decay is the secondary perturbation, it then accounts for
the bounce points of the ripple-induced trapped trajectories
drifting vertically due to the magnetic curvature drift. Those
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Figure 1. Distribution function of trapped particles without (left) and with (right) ripple, obtained with GYSELA, with Nc = 16. Ripple
accounts for an additional trapping in the toroidal direction and also modifies the island of banana trapped particles near bounce points.

four contribution branches to neoclassical transport can be
summed up in this list [11]:

• the axisymmetric branch is the neoclassical contribution of
unperturbed banana particles;

• the helically symmetric branch is the neoclassical contribu-
tion of unperturbed ripple-induced trapping;

• the banana drift branch is the neoclassical contribution from
ripple effect on banana trapped particles;

• the ripple-wells drift branch is the neoclassical contribution
from the 1/Rmagnetic field decay effect on particles trapped
in ripple-induced magnetic wells.

Let us now talk about stochastic transport. It refers to a col-
lisionless diffusion that can arise in the presence of ripple for
some banana-trapped particles. Here is the principle. As men-
tioned before, ripple causes a radial jump ∆r of the banana-
trapped particles at the bounce point locations. This jump is
either inward or outward depending on the relative toroidal
angleφB of the bounce point relative to the two nearest coils. It
can be expressed as∆r= λρiδ cos(NcφB−π/4) where |λ| ∼√
Nc(q/ε)3/2 [12] with q the safety factor and φB the tor-

oidal angle of bounce points. In most tokamaks, an estimate
at the edge is

√
⟨∆r2⟩φ ∼ 2− 3ρi where ⟨.⟩φ is the toroidal

average. If∆r> 0 (outward) in between two coils, then∆r<
0 (inward) in the vicinity of the coils. As trapped particles
drift toroidally at the precession frequencyΩD, they undergo a
different radial shift at each bounce point. After each bounce
period 2π/ΩB, one can define a toroidal phase shift ∆φB =
φB(t− 2π/ΩB)−φB(t). If ∆φB is small with respect to the
toroidal angle span separating two coils ∆φC = 2π/NC, the
consecutive radial shifts exerted on the particle are expected to
be as often inward as outward, resulting in a zero mean radial
displacement. However, in the other limit, namely NCΩD ≫
ΩB, ∆φB becomes comparable to ∆φC. In this scenario, con-
secutive bounce point positions follow no particular order
and stochasticity appears. This mechanism is illustrated in
figure 2.

The whole analytical calculation of neoclassical and
stochastic transport is a formidable task that will not be
detailed in this paper. The interested reader can look at [11,
13–23] for the neoclassical part and at [8, 12, 24] for the
stochasticity part. The model considered in this paper is based
on the review by Garbet et al [7] on top of which stochastic
transport has been added. It leads to a transport matrix that
links the equilibrium fluxes of particles Γ and heatQ as well as
the magnetic drag force M with the thermodynamic gradient
forces, the mean toroidal velocity VT and the radial electric

3
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Figure 2. (a) Schematic view in toroidal section of bounce point for
trapped particles either below the stochasticity limit (red) or above
(blue). Green arrow shows the direction and amplitude of the radial
shift∆r exerted on particle by ripple. (b) Successive radial positions
of the bounce point for each case.

field Er. For a single ion species, it can be expressed in this
compact way:

 ΓN
ΓVT
ΓT

=−DP

 d0 + d̃0 d0 d1 + d̃1
d0 d0 + d̂0 d1

d1 + d̃1 d1 d2 + d̃2


·

 AN
AVT
AT

 (2)

where ΓN = Γ
n , ΓVT =

M
neBp

, ΓT =
Q
nT , AN = 1

n
dn
dr −

eEr
T , AVT =

eBp
T VT, AT =

1
T
dT
dr with n the density, T the temperature, e the

electric charge and BP the poloidal component of the magnetic

field. DP =
qR0

Vthi

(
T

eB0R0

)2
is a reference diffusion coefficient,

whereVthi =
√
T/m is the ion thermal velocity and q the safety

factor.
The transport matrix coefficients are detailed in

appendix A. They only depend on three dimensionless para-
meters: ν⋆, δ/ε and Ncq (with q the safety factor). The coeffi-
cients di are independent of δ/ε. Without ripple, i.e. d̃i = 0 and
d̂i = 0, one recovers the classic coefficients resulting from the
axisymmetric neoclassical theory at lower order in ε. In that
case, it is clear that the two first lines of the transport matrix are
identical. This degeneracy explains why axisymmetric neo-
classical theory cannot predict AN and AVT independently, and
hence treats the radial electric field and the toroidal velocity
as a single unknown.

3. Flow predictions with the analytical model

In this section, the previous model is used to predict mean-
ingful quantities relevant to the plasma flow, and is compared
with common asymptotic regimes. Let us first define these
‘meaningful quantities’. First, there are thermal drive coef-
ficients that link the equilibrium toroidal velocity VT,eq, pol-
oidal velocity VP,eq and the radial electric field Er,eq to the
temperature gradient, labeled kVT , kN and kVP respectively.
The thermal drive coefficient expressions are obtained when
considering that both ΓN and ΓVT go to zero at equilibrium
(without external sources of particles and momentum).

Under these conditions, equation (2) gives the equalities

kVT
∇Teq
eBP

= VT,eq (3)

kVP
∇Teq
eBT

= VP,eq (4)

kN
∇Teq
Teq

=
eEr,eq
Teq

−
∇neq
neq

(5)

where the ‘eq’ subscript denotes values taken at equilibrium
and BT ,BP are the toroidal and poloidal components of the
magnetic field B.

These equations can also be written in an dimensionless
form:

AVT = kVTAT (6)

AVP = kVPAT (7)

AN =−kNAT. (8)

The explicit expressions of the thermal drives when these two
fluxes vanish are

kVT =
d0d̃1 − d1d̃0

(d0 + d̃0)(d0 + d̂0)− d20
(9)

kN =
(d0 + d̂0)(d1 + d̃1)− d0d1
(d0 + d̃0)(d0 + d̂0)− d20

(10)

kVP = 1+ kVT − kN (11)

where the thermal drive kVP has been obtained with the force
balance equation AVP =

eBT
T VP = AN+AVT +AT. This force

balance is used as a constraint, but note that this model solves
a kinetic transport equation and thus treats the toroidal and
poloidal components of the velocity self-consistently. Know-
ing those thermal drive coefficients as well as the temperature
gradient, one can make predictions on the final flow.

These coefficients are commonly considered in some
asymptotic regimes of collisionality and ripple amplitude.
These regimes depend among others on the parameter
Y(r,θ) = ε| sinθ|

δNcq
. Regions with Y < 1 are characterized by local

magnetic wells in between two toroidal field coils. Conversely,
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Figure 3. Condition of existence of ripple-induced magnetic wells in the Tore Supra tokamak (a) a radially gaussian ripple centered at
mid-radius and poloidally symmetric with a δ = 3% peak (b) and a δ = 0.5% peak (c). There are no magnetic wells in Y > 1 areas (blue) so
no local trapping can occur.

Table 1. Asymptotic values of kVT , kN and kVP for different ranges of δ/ε, ν
⋆ and Ncq.

Y > 1 Y < 1 (Local mirrors) ∀Y

∀δ/ε δ/ε < 1 δ/ε > 1 ∀δ/ε

ν⋆ ≪ (Ncq)−2 (Ncq)−2 ≪ ν⋆ ≪ 1 ν⋆ < (δ/ε)3/2 ν⋆ < 1 ν⋆ ≫ 1

kN 3.37 1.5 3.37 3.37 1.5
kVP 1.17 1.17 1.17 −2.37 −0.5
kVT 3.54 1.67 3.54 0.0 0.0

for Y > 1, such magnetic wells do not exist so there is no
ripple-induced trapping in those regions.

This subtle point is worth discussing as predictions are sig-
nificantly different between regions with or without ripple-
induced magnetic wells. It indicates that a poloidal depend-
ence must be taken into account. Indeed, for the same ripple
amplitude but different ripple shapes, the thermal drive pre-
dictions can be different. For this reason, and for numerical
convenience explained below, the considered ripple perturba-
tion for this academic work is poloidally symmetric. Figure 3
displays the poloidal map of Y for the Tore Supra tokamak and
for two radially gaussian ripple amplitude profiles centered at
mid-radius. That said, the asymptotic regimes of kVT , kN and
kVP are summarized in table 1.

In this table, one can observe that thermal drive coefficients
change substantially depending on collisionality regimes. For
example, kVT can double in regions without magnetic wells
under the sole effect of collisionality. It means that for a
given temperature gradient, the toroidal velocity can change
drastically when the collisionality evolves (due to heating for
example). Similar effects can be observed for kN and kVP . How-
ever, this table can easily be misleading for several reasons.
First, the model is poloidally averaged so the resulting thermal
drive can be a mix between their predictions in Y > 1 regions
and Y < 1 regions. Then, those asymptotic regimes hide that
those thermal drives actually depend non-linearly on δ/ε and
ν⋆. Consequently, the transition between those regimes has no
reason to be smooth or even monotonous.

Although less accurate than simulation codes, the reduced
model has the advantage over simulation codes to provide

transport coefficients effortlessly. In other words, it can be
used to perform scans on wide ranges of δ/ε, ν⋆ andNcq. Now
and for the remaining of the paper, a fixed Ncq= 16× 1.4 is
considered. The thermal drive coefficients kVT , kN or kVP are
scanned for the ranges of δ/ε and ν⋆ as shown in figure 4.

All asymptotic regimes are recovered. It should be men-
tioned however that the so-called Pfirsch–Schlüter regime
is expected to play a role for ν⋆ ≫ 10. This regime is not
included in the model and is expected to change kVP toward
even more negative values [25] (indeed the prediction in
axisymmetric configuration is kVP →−2.1). The transitions
between the different regimes are mainly due to the (δ/ε)−1

dependence of Y. Indeed, as (δ/ε) increases, the size of
the regions where ripple-induced magnetic wells exist also
increases. In the range of the (δ/ε) parameter where the
Y < 1 regions become dominant compared with Y > 1 regions,
important variations of kVT , kN and kVP are observed. In par-
ticular, kVP decreases toward negative values with increasing
ripple amplitude. Section 7 of this document is dedicated to
a discussion of this effect. In section 6, these observations,
obtained with the analytical model, are confronted to the sim-
ulation codes GYSELA and NEO.

Another interesting quantity can be defined to assess the
dynamics of the toroidal flow: the neoclassical toroidal friction
νφ. It corresponds to the characteristic relaxation frequency—
set by ripple-induced neoclassical processes—of the toroidal
flow toward its predicted equilibrium value (governed by kVT).
Regarding the analytical model, this quantity appears when
a situation out of equilibrium is considered. Subtracting the
second line from the first one in equation (2) reads

5
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Figure 4. Scan in ripple amplitude of thermal drives kVT , kN and kVP for a wide range of ν
⋆. Red plain lines represent the asymptotic values

that appear in table 1.

ΓVT −ΓN =−DP

(
d̂0AVT − d̃0AN− d̃1AT

)
. (12)

The resulting neoclassical toroidal friction νφ is then the
coefficient that multiplies AVT . Its expression significantly
changes depending on the assumptions taken on the fluxes.
Indeed, if one considers that neither the particle flux nor the
momentum flux vanishes in this out-of-equilibrium situation,
i.e. ΓN ̸= 0 and ΓVT ̸= 0, the neoclassical friction then reads
νφ = d̂0.

However, keeping the ambipolarity constraint ΓN = 0 but
with a finite momentum flux, i.e. ΓVT ̸= 0, equation (2) gives
ΓVT =−DPν

ΓN=0
φ (AVT − kVTAT) with

νΓN=0
φ = d̂0 +

d0d̃0
d0 + d̃0

. (13)

Notice that, since d̂0 and d̃0 go to zero when δ/ε→
0, the neoclassical friction always (i.e. regardless of the

6
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assumption on the fluxes) vanishes in the axisymmetric case as
a consequence of the degeneracy: without ripple the toroidal
velocity does not relax toward any prescribed value. Further-
more, d̂0 and d̃0 increase with δ/ε so that the system relaxes
faster with higher ripple amplitude, as one would expect on
the basis of qualitative physical arguments. In section 6, the
neoclassical friction is assessed with the GYSELA code. Doc-
umentation on this neoclassical friction can be found in ref-
erences focused on externally applied magnetic perturbations
[26–29]. However, none of the references known to the authors
actually clearly addresses this neoclassical toroidal friction
due to magnetic ripple in tokamaks, neither through analytical
study nor numerical simulations.

4. Ripple implementation in GYSELA

The aim of this section is to recall the basic set of equations of
the GYSELA code and explain how magnetic ripple is imple-
mented. A detailed description of the GYSELA code can be
found in Grandgirard et al [4]. In the electrostatic regime con-
sidered in this paper, GYSELA solves a kinetic equation per
considered species coupled to the quasi-neutrality constraint.
The gyrokinetic Fokker-Planck equation associated with each
species s reads:

∂F̄s
∂t

+
dxG
dt

·∇F̄s+
dvG∥
dt

∂F̄s
∂vG∥

= C(F̄s) (14)

where xG and vG∥ are the position and velocity of the gyro-
center, F̄s is the gyrocenter distribution function, and C is a
collision operator.

The electrostatic quasi-neutrality equation (15), here
expressed in the case of adiabatic electrons and in the limit
of long wavelengths (with respect to the thermal ion Larmor
radius), reads:

e [ϕ−⟨ϕ⟩]
Te

−
∑
s

1
neq,s

∇⊥ ·
[
msneq,s
esB2

∇⊥ϕ

]
=
∑
s

1
neq,s

¨ 2πB⋆
∥,s

ms
dvG∥dµJ (F̄s− F̄eq,s) (15)

where ⟨.⟩ denotes a flux-surface average, J is the gyroaverage
operator, ϕ is the electric potential, Te is the electron temper-
ature and e the ion charge. For each ion species s, ms is the
mass, es is the charge and B⋆

∥,s is the Jacobian of the coordinate
transform. The density neq,s is calculated with the equilibrium
Maxwellian gyroaveraged distribution function F̄eq,s. This is
the set of equations solved in the simulation code GYSELA.

The current version of the GYSELA code uses a set of tor-
oidal coordinates labeled

{
xi
}
= (r,θ,φ), where r is the radial

position, θ the poloidal geometric angle, and φ the toroidal
angle. In this paper, the magnetic surfaces are set circular and
concentric such that the Jacobian in space readsJx = rRwhere
R(r,θ) = R0 + rcosθ. The axisymmetric magnetic field B is
defined as

B=
B0R0

R(r,θ)

[
r

q(r)R0
êθ + êφ

]
(16)

where êθ = r∇θ and êφ = R∇φ are unit vectors in the pol-
oidal and toroidal periodic direction respectively, and q is
the safety factor. In this case, the electrostatic gyrokinetic
equations of motion solved in GYSELA are

B⋆
∥
dxG
dt

= vG∥B
⋆ +

b
es

×∇H (17)

B⋆
∥ms

dvG∥
dt

=−B⋆ ·∇H (18)

where b= B/B is the unit vector parallel to the mag-
netic field direction, B⋆ = B+

msvG∥
es

∇×b and H= ms
2 v

2
G∥ +

µsB+ esJ [ϕ] is the axisymmetric Hamiltonian, with ϕ the
electric potential. In principle, the ripple perturbation δB
should be included by modifying both the magnetic field vec-
tor B and its modulus. Modifying the vector B in such a heavy
code is very challenging. Indeed, adding a toroidal compon-
ent to the magnetic field would change the magnetic surface
shape such that the metrics would become 3D. This tremend-
ous work is unnecessary, as modifying only the Hamilto-
nian is sufficient for acceptable accuracy. Indeed, it can be
shown that this simplification changes the expression of the
magnetic braking torque Ms, which is the main effect of

ripple, from Ms =−
´
d3vFs

{
(msv2G∥ +µsB)R

(êφ·∇)B
B

}
to

Ms =−
´
d3vFs {µsR(êφ ·∇)B}. At low collisionality, mag-

netic ripple impacts mainly the trapped particles so the error
on Ms can not exceed ε for banana-trapped particles and δ
for locally trapped particles. This reasonable assumption is
detailed in [30] that discusses the non-axisymmetric perturb-
ation implementation in the gyrokinetic code GT5D. The new
effective Hamiltonian reads

Heff =
ms

2
v2G∥ +µs(B+ δB)+ esJ [ϕ] (19)

where δB= B0δ(r,θ)cos(Ncφ)
The magnetic drift vDs, the electric drift vE×Bs and the par-

allel force f∥s appear when developing equations (17) and (18)
such that

vDs =
msv2G∥ +µsB

esB⋆
∥

B×∇B
B2

, (20)

vE×Bs =
B×∇ϕ̄

BB⋆
∥

, (21)

f∥s =−µs(b⋆s ·∇)B, (22)

themotion equations of GYSELA are thenmodified as follows

dxG
dt

= vG∥b
⋆
s+ vDs+ δvDs+ vE×Bs (23)

ms
dvG∥
dt

= f∥s+ δf∥s− eb⋆s ·∇ϕ̄+
msvG∥
B

vE×Bs ·∇B (24)

7
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where b∗s =
1
B∗
∥s

(
B+

msvG∥
esB

∇×B
)
. The new terms due to

ripple and yield

δvDs =
msv2G∥ +µsB

esB⋆
∥

B×∇δB
B2

(25)

δf∥s =−µs(b⋆s ·∇)δB (26)

such that the magnetic ripple only adds a term δvD to the mag-
netic drift and a parallel force f∥s in the parallel momentum
conservation equation. With the notation wDs =

µs

esB∗
∥s
JxB

, the

contravariant components of the new magnetic drift term δvD
are

δvrDs = wDs

(
Bθ
∂δB
∂φ

−Bφ
∂δB
∂θ

)
(27)

δvθDs = wDsBφ
∂δB
∂r

(28)

δvφDs =−wDsBθ
∂δB
∂r

. (29)

The parallel force f∥s reads

f∥s =−µs
(
∂δB
∂r

b∗rs +
∂δB
∂θ

b∗θs +
∂δB
∂φ

b∗φs

)
where the contravariant coordinates of b⋆s read

b∗is = (b∗s ·∇)xiG =
1
B∗
∥s

(
Bi+

msvG∥
es

(∇×B)i

B

)
or more specifically

b∗rs = 0 ; b∗θs =
Bθ

B∗
∥s

;

b∗φs =
1
B∗
∥s

(
Bφ +

msvG∥
es

(∇×B)φ

B

)
.

In practice, ∂δB
∂r and ∂δB

∂θ are negligible compared to ∂δB
∂φ .

Consequently, only ∂δB
∂φ has been added to the code to avoid

unnecessary additional calculations and increased simulation
time. The following sections are dedicated to the verification
and validation of this implementation.

5. Verification through toroidal angular momentum
conservation

From now on, only a single ion species is considered so
the subscript s is omitted. To verify the implementation of
the ripple perturbation in GYSELA, a scan in ripple amp-
litude is performed to check the conservation of toroidal
angular momentum. One of the major effects of a non-
axisymmetric magnetic perturbation is an additional toroidal

Table 2. Simulation parameters. LN and LT are the density and
temperature gradient’s length, ρi is the ion Larmor radius.

Species Deuterium

Aspect ratio R0/a 3.2
Safety factor q= 0.854+ 2.184(r/a)2

Density gradient R0/LN = 6
Temperature gradient R0/LT = 6
Collisionality at r/a= 0.5 ν⋆ = 0.1
ρi/a at r/a= 0.5 ρ⋆ = 1/150
Number of coils Nc = 16

torque: the magnetic dragM. The flux surface averaged angu-
lar momentum conservation [31] involves this new term:

m
∂⟨nRVT⟩

∂t
=−⟨∇ ·Πφ⟩− ⟨Tφ⟩+ ⟨J ·∇ψ⟩+ ⟨M⟩ (30)

where VT = 1
n

´
d3v
{
v∥(Bφ/B)F

}
is the gyrocenter mean tor-

oidal velocity (Bφ is the toroidal component of the magnetic
field),Πφ the toroidal Reynolds stress, Tφ a polarization term,
J the sum of radial currents due to the magnetic and electric
drifts respectively and ψ the poloidal magnetic flux normal-
ized to (−2π).

Boundary physics, inevitably present either in global codes
or in experiments, acts as a momentum sink which is not
included in the analytical model. For this reason, the con-
sidered profile of the ripple amplitude in the following simu-
lations is taken radially gaussian and maximum at mid-radius.
Also, no poloidal dependence is accounted for. It reads δsim =

δ0e−32(r/a−0.5)2 with δ0 the mid-radius ripple amplitude. The
usual way to perform simulations for neoclassical studies is to
artificially filter out all toroidal Fourier modes of the electric
potential ϕ except the axisymmetric component. This cannot
be done here as ripple adds toroidal harmonics with Nc peri-
odicity. The chosen solution to avoid turbulence is then to ini-
tiate the simulations below the instability threshold, i.e. with a
sufficiently weak temperature gradient. It is also verified that
ripple-induced mode amplitudes are low enough such that the
inequality eϕkNc ≪ µBkNc , with k= 1,2, . . . , is satisfied, which
ensures that the hamiltonian considered in the reduced model
is a relevant approximation for those cases. The parameters of
the simulations are summarized in table 2.

Four simulations using different ripple amplitudes are ana-
lyzed. The lhs of equation (30), which is a standard output of
GYSELA, is compared with the sum of the contributions in the
rhs for each simulation. The radial profiles of these quantities
are plotted in figure 5 and show a satisfactory agreement for
all ripple amplitudes attesting good momentum conservation
in the code. The negligible disparity between plain and dashed
lines is a measure of the numerical error in the code. Without
turbulence, magnetic braking quickly becomes the dominant
contribution as indicated in figure 6 that shows the radial pro-
file of the rhs terms of the toroidal torque conservation. This
torque induced by ripple then drives the mean toroidal velo-
city. The implementation of a ripple magnetic perturbation
being successful, the code GYSELA can be confronted to the
analytical neoclassical reduced model and NEO.

8
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Figure 5. Radial profile of the time derivative of toroidal angular
momentum (dashed) and the sum of the expected contributions
(plain) for different radially gaussian ripple amplitudes such that
δsim(r) = δ0 exp[−32(r/a− 0.5)2] at t= 32500 [ω−1

c0 ].

6. Comparison of GYSELA global simulations with
neoclassical predictions and NEO

In this section, the ability of GYSELA to assess neoclassical
processes is tested against two different tools. The first one
is the aforementioned reduced model. The other one is the
drift kinetic solver NEO which captures all the neoclassical
physics. A perfect benchmark would compare all the transport
matrix coefficients from both codes and the model for a wide
range of δ/ε, ν⋆ andNcq. However, it would require a too large
quantity of simulations and a subsequent post-treatment.

The comparison between the reducedmodel, GYSELA and
NEO is performed in the range of collisionalities ν⋆ ∈ [0.05–
0.5] and for three ripple amplitudes: δ = 0.5%, δ = 1% and
δ = 3% at ε= 0.16 and at a fixed Ncq= 1.4× 16. Figure 7
shows a ν⋆ scan of kVT for those three ripple amplitudes
obtained with GYSELA, NEO and the reduced model. A fair
agreement is found between GYSELA and NEO, where the
average relative error is less than 10%. These results show
that the model collision operator used in GYSELA is well
designed to describe neoclassical processes in the collision-
ality range ν⋆ ∈ [0.05,0.5]. Agreement between both codes
and the neoclassical model in non-axisymmetric configura-
tions is also obtained regarding the thermal drives. However
the δ = 0.5% case with GYSELA does not seem to undergo
the 1/ν⋆ trend followed by the model and NEO. One possible
explanation is that this is the only case not dominated by Y < 1
regimes (cf section 3). In other words, only this case is dom-
inated by the effect of banana-trapped particles. The point is
that at low ν⋆, other regimes affecting only banana trapped
particles exist [28, 32, 33]. They are sometimes labeled super-
banana regimes, and correspond to the effect of higher order

electric and magnetic drifts at bounce points, negligible at
higher collisionalities. These regimes are not included in the
present reduced model, nor in the present NEO simulations.
However they are treated by GYSELA, which could explain
this discrepancy at low collisionality. Note that NEO can actu-
ally compute those drifts [34]. This option was not switched
on as the methodology here used to retrieve kVT in NEO is not
compatible if those drifts are activated. However, a few tests
with reasonable parameters for those drifts were performed
in NEO and showed a reduction of kVT even for collision-
ality around ν⋆ ≈ 0.1. Furthermore, the discrepancy at high
ν⋆ also observed at δ = 0.5% between GYSELA and NEO
is higher than for other cases. This mismatch is likely due to
a numerical inaccuracy enhanced by the fact that, when the
ripple amplitude decreases, the system approaches the axisym-
metry degenerate limit where the toroidal velocity cannot be
predicted separately from the radial electric field (cf discussion
in section 2). This benchmark then indicates that one should be
cautious when using GYSELA in the low ripple amplitude and
high collisionality limits for simulations without turbulence.
Let us note however that turbulence removes this degeneracy
thanks to a turbulent toroidal viscosity.

Overall, the model which is derived in the large aspect ratio
limit ε≪ 1 is showing a fair agreement with NEO. Alleviating
this latter limit actually already modifies neoclassical predic-
tions in the axisymmetric case quite substantially. In fact, for
the axisymmetric neoclassical theory, i.e. without ripple, the
finite aspect-ratio corrections [35] can change kVP = 1.17 to
kVP ∼ 0.6 for ε= 0.17 as observed in GYSELA [36]. To our
knowledge, there is no analytical derivation of the aspect ratio
correction for the neoclassical theory with ripple. The agree-
ment is then unexpectedly good, especially at high δ/ε where
the condition Y < 1 dominates.

The benchmark on the toroidal friction is shown in figure 8.
Both expressions derived in section 2, i.e. νφ and νΓN=0

φ are
displayed on this figure. It was expected that the expression
with the zero particle flux assumption, i.e. νΓN=0

φ , should be
the best approximation as the electron are adiabatic in these
simulations. However, it appears that the toroidal friction
obtained in GYSELA is about 5–10 times lower than νΓN=0

φ .
The expression of the neoclassical friction obtained by consid-
ering a finite particle flux however is in reasonable agreement
with GYSELA. The reason for this behavior is still an open
issue.

7. Impact of ripple on the poloidal velocity

On the basis of the previous section, our reduced model in
the presence of non-axisymmetric perturbations captures well
the collisional processes in a broad range of collisionalities
that roughly encompasses ν⋆ ∈ [10−2,1]. Except for the very
edge of the plasma, likely dominated by wall interactions and
orbit losses, this range is relevant for tokamaks. As mentioned
in section 3, an unexpected result of the model is the effect
of neoclassical processes with ripple on the thermal drive of
the poloidal velocity kVP . Figure 9 shows the kVP =

eBT
∇TVP,eq

dependency with δ/ε in the ν⋆ range of interest for ν⋆ = 0.05

9
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Figure 6. Radial profile of each term that composes the toroidal angular momentum conservation for two simulations with radially gaussian
ripple amplitudes such that δsim(r) = δ0 exp[−32(r/a− 0.5)2] at t= 32500 [ω−1

c0 ].

Figure 7. Collisionality scan of kVT obtained with the reduced model, GYSELA and NEO for δ = 0.5% (left), δ = 1% (middle) and δ = 3%
(right) at fixed ε= 0.16 and Ncq= 16× 1.4.

and ν⋆ = 0.5 obtained with the model and with the NEO code.
Both recover the same trend, even though there is a disparity
presumably due to the finite aspect-ratio corrections accounted
in NEO but not the model.

Values of kVP at δ/ε= 10−2 approach the predictions of the
axisymmetric neoclassical theory (in particular, kVP = 1.17 in
the banana regime at low ν⋆, cf table 1). At larger δ/ε, kVP is
found to decrease, with a sharp drop off around δ/ε∼ 4.10−2.
It can even reverse sign at low collisionality and become neg-
ative at δ/ε∼ 2.10−1, meaning that the poloidal velocity itself
could change sign. This observation is surprising, as the clas-
sical asymptotic limits at low collisionality defined in table 1
predict that kVP can become negative only when δ > ε. This
conundrum is solved when refining the asymptotic limit to

different classes of particle energy. Defining the normalized
energy u= (v⊥/Vthi)

2 with v⊥ the particle velocity compon-
ent perpendicular to magnetic field lines, it is indeed pos-
sible to show that the previous criterion on the ripple amp-
litude applies for particles of energy u> (δ/ε)−3/2ν⋆/(Ncq).
However, for particles of lower energy, the criterion actually
reads δ > εν⋆(Ncq)−1/2 which is reached at way lower ripple
amplitudes. In our simulations, this criterion roughly applies
for particles of energy u< ν⋆ which concern a non-negligible
fraction of total particles.

To ensure the validity of this result, some gyrokinetic simu-
lations with the GYSELA code were run with different ripple
amplitudes. As mentioned in section 6 and appendix B, reach-
ing a neoclassical equilibrium in gyrokinetic simulations is

10
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Figure 8. Collisionality scan of νφ and νΓN=0
φ obtained with the reduced model and GYSELA for δ = 0.5% (left), δ = 1% (middle) and

δ = 3% (right) at fixed ε= 0.16 and Ncq= 16× 1.4.

Figure 9. Scan in ripple amplitude of thermal drive kVP obtained
with the reduced model and NEO for different collisionalities ν⋆ at
Ncq= 16× 1.4.

challenging. Indeed, the characteristic time for the system to
reach such an equilibrium is of the order of the energy con-
finement time. Simulations that long would be numerically
expensive and all the thermodynamical gradients would evolve
significantly. Consequently, no equilibrium would be reached
until density and temperature profiles are flat. For this reason,
simulations are here used only to get a trend on the poloidal
velocity evolution. The simulation parameters are the same as
in table 2. The initial poloidal velocity profile is flat and set to
zero. Figure 10(a) then shows the radial profile of the poloidal
velocity at ωct= 5.104 for ripple amplitude profiles displayed
figure 10(b). For the axisymmetric case, i.e. without ripple, VP
is essentially diamagnetic and thus follow the pressure gradi-
ent. With ripple, it appears that VP increases significantly and

monotonously with the δ/ε value. This effect is particularly
strong for the ‘Gaussian 3%’ case near mid-radius and the Tore
Supra case near plasma edge. Again, this figure only shows
a trend and not accurate results since, for example, the tem-
perature profile is not exactly the same in each simulation as
the neoclassical heat flux (not discussed in this paper) is also
modified by ripple and consequently temperature evolves dif-
ferently for each case. However a clear effect on the poloidal
velocity is identified.

To get a more accurate idea of the effect of ripple in a real-
istic plasma, simulations involving more physics were run.
They involve ITG turbulence, a heat source keeping a steady
temperature profile and the presence of a limiter [37]. The
main simulation parameters at r/a= 0.5 are ρ⋆ = 1/250, ν⋆ =
0.1, R0/LT = 8, R0/LN = 2.2 and q= 1.4. Figure 11 shows the
radial profiles of the coarse-grained poloidal velocity VP for
a case without ripple and another with the Tore Supra ripple
perturbation. The coarse-graining procedure consists in a tem-
poral averaging between 6.104 < ωct< 9.104 and a radial slid-
ing average with a window of about 50ρi. This procedure aims
at smoothing the large fluctuations that appear in the presence
of turbulence. As previously, these simulations are not fully
converged as reaching an equilibrium would require excessive
numerical resources. However, they provide reliable hints as to
the long term behavior of flows. As for the neoclassical cases
discussed just before, the poloidal velocity without ripple is
mainly diamagnetic up to an offset due to turbulent contri-
butions. The case with the Tore Supra ripple amplitude dis-
plays the same increasing of VP seen in figure 10(a). It shows
that a realistic magnetic configuration could lead to VP being
affected strongly at the edge and mildly at mid-radius. The
fact that realistic ripple impacts plasma this far from edge is
a consequence of the δ/ε ratio which is not negligible near
mid-radius. Ripple contribution to the poloidal velocity is then
significant, especially at the plasma edge.
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Figure 10. (a) Radial profile of poloidal velocity at ωct< 5.104 for the poloidally averaged ripple amplitudes in (b). Velocity is normalized
to the ion thermal velocity V thi in GYSELA.

Figure 11. Radial profile of the coarse-gained poloidal velocity
obtained in GYSELA simulations of ITG turbulence in the
axisymmetric case (red) and for the Tore Supra ripple (green).

8. Conclusion

Magnetic ripple perturbations have been successfully imple-
mented in GYSELA by modifying the effective hamiltonian.
Key verification has been achieved through toroidal angu-
lar momentum conservation where a new term, the magnetic
drag due to the ripple perturbation, becomes the dominant
contribution at large ripple amplitude. GYSELA results have
been benchmarked regarding the neoclassical processes occur-
ring in presence of ripple thanks to an analytical neoclas-
sical model and the NEO code. This study is a primordial
step in order to pinpoint the range of parameters where the
code is reliable. Good agreement with the NEO code is found,

meaning GYSELA is able to properly describe ripple-induced
neoclassical processes down to relatively low collisionality
ν⋆ ∼ 0.05. GYSELA results are also found to well agree with
the model which is derived in the low collisionality and large
aspect ratio limit.

In addition to the benchmark, one remarkable result of the
model, which is recovered in GYSELA simulations, is the
change of sign of the poloidal velocity when increasing
the ripple amplitude. Such behavior was expected only for
extremely (unrealistic) large values of ripple amplitude. Our
findings show that the neoclassical contribution to the pol-
oidal velocity is likely to change direction already at moderate
ripple amplitudes. These conditions are expected to be met at
the edge of tokamak plasmas like WEST.
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Appendix A. Explicit expression of the transport
matrix coefficients

This section gives the details of the terms that appears in the
transport matrix in section 2. In the general case the ripple per-
turbation amplitude δ depends on (r,θ). It is useful to separate
this amplitude in a poloidal average δ̄(r) =

´
dθ
2π δ(r,θ) and a

poloidal modulation δ̃(r) = δ(r,θ)/δ̄.
The transport matrix is symmetrical. Its six independent

elements are given by the following expressions:

dn =
ˆ +∞

0
du

(
u− 3

2

)n

K(u) (A.1)

d̃n =
ˆ +∞

0
du

(
u− 3

2

)n

K̃(u) (A.2)

d̂n =
ˆ +∞

0
du

(
u− 3

2

)n

K̂(u) (A.3)

where

K(u) =

√
π

2
e−uu2Ktor,I(r,u) (A.4)

K̃(u) =
32
9

(
2
π

)3/2(
δ̄

ε

)3/2
G1

ν⋆
e−uu5/2

1
ν̄(u)

(A.5)

+ 2

(
2
π

)3/2 1
Nbq

(
δ̄

ε

)2
1
ν⋆

[1−H(u− uc)]

× e−uu5/2
1

ν̄(u)
Krip,II(r,u) (A.6)

+

√
π

2
Nbq

(
δ̄

ε

)2

H(u− uc)e
−uu2Kst(r,u) (A.7)

K̂(u) =

√
π

2
(Nbq)

(
δ̄

ϵ

)2

e−uu2Krip,I(r,u) (A.8)

where H is the Heaviside function.
The normalized collision frequency [38] is defined as:

ν̄(u) =
3
4

√
2π

1
u3/2

(
Φ(u1/2)−G(u1/2)

)
where

{
Φ(u) = 2√

π

´ u
0 dxexp

(
−x2

)
G(u) = 1

2u2

(
Φ(u)− u dΦ(u)

du

)
.

The functions K provide smooth transitions between vari-
ous collision regimes:

Krip,I(r,u) =min

(
G ′

0,G
′ ′
0
4
π
I ν⋆

Ncq

(ε
δ̄

)3/2 ν̄(u)
u1/2

)
(A.9)

Ktor,I(r,u) =min

(
1,

4
π
Iν⋆ ν̄(u)

u1/2

)
with I = 1.38 (A.10)

Krip,II(r,u) =1+
π2

8
ν⋆(Ncq)

2 ν̄(u)

u1/2
(A.11)

Kst(r,u) =

(
1+

1√
π

mvth
eB0

(
Ncq
ε

)3/2 dq
dr
δ̄u1/2

)−1

(A.12)

where is defined the continuous functions min(x,y) = xy
x+y .

The so-called form factorsG ′
0,G

′ ′
0 ,G1, used to discriminate

banana trapped particles and magnetic wells, are given by the
relations:

G ′
0(r) =

ˆ
Y<1

dθ
2π
δ̃2(r,θ)

G ′ ′
0 (r) =

ˆ
Y<1

dθ
2π
δ̃

1
2 (r,θ)

G1(r) =
ˆ
Y<1

dθ
π
δ̃

3
2 (r,θ)sin2 θ (A.13)

where Y(r,θ) = ε| sinθ|
Ncqδ

< 1 is the condition of existence of
ripple-induced magnetic wells.

The transition between neoclassic and stochastic regimes is
considered through the following limit in energy:

uc =
R0

8π

(
dq
dr

)−1(mVthi

eB0

)−2 q−5/2

N3/2
c

ε3

δ̄
(A.14)

Appendix B. Specific methodology to retrieve kVT
and ν̂φ in GYSELA and NEO

As the neoclassical theory gives the transport matrix, the
quantity to compare between codes and reduced model are the
(dij) coefficients in GYSELA and NEO which only depend on
δ/ε, ν⋆ and Ncq. Then, given the structure of equation (2), one
could determine those coefficients if enough (AN,AVT ,AT) and
(ΓN,ΓVT ,ΓT) sets were known. In theory, only three sets would
suffice for a given (δ/ε,ν⋆,Ncq) set. However the least-square
method used as linear solver proved to be inefficient andwould
probably needmore statistics. In addition, the benchmark aims
at verifying the range of validity of the theory for a wide range
of ripple amplitudes and collisionalities. As discussed below,
obtaining a set (AN,AVT ,AT,ΓN,ΓVT ,ΓT) linked to one com-
bination of (δ/ε,ν⋆,Ncq) basically amounts to running one
simulation. The number of simulations required to retrieve all
the matrix coefficient would then be enormous. Instead, only
the thermal drives kVT , kN and kVP (defined in section 3 are
benchmarked.

B.1. The GYSELA code

In GYSELA, the main difficulty lies in the boundary con-
ditions that can add extra effects not taken into account in
the reduced model like orbit losses, momentum flux carried
by waves or scrape-off layer interactions. For this reason, a
radially gaussian ripple, as used in section 5, is considered.
The radial location of interest is then chosen at r/a= 0.5.
In GYSELA, (AVT ,AT) are inputs and ΓVT is an output.
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Figure B1. Magnetic braking force ΓVT versus AVT for different ripple amplitudes δ. Each point corresponds to a simulation with different
initial toroidal velocity profiles and represents the (AVT ,ΓVT) retrieved at r/a= 0.5 after the GAMs at ν⋆ = 0.1.

Figure B2. Initial radial profiles of the effective ripple amplitudes δ/ϵ (a), the collisionalities ν⋆ (b) and the normalized toroidal velocities
AVT (c) used for the scan.

The temperature gradient AT evolves slowly compared with
AVT and ΓVT . In all simulations, AT is then fixed at the same
value and only the initialAVT profile is changed. Thismakes the
numerical resolution even simpler and more robust, as a linear
regression on ΓVT(AVT) gives νφ and kVT which are respect-
ively associated to the slope and intersection with the x-axis.
A (AVT ,ΓVT) set is retrieved after the GAMphase which is here
longer than a few collision times in each simulation, the char-
acteristic time needed for neoclassical effects to establish. This
is illustrated in figure B1 obtained thanks to 16 simulations
with four different ripple amplitudes, four toroidal velocities,
and a single ν⋆ profile.

This exercise has been done for four collisionality profiles
for a total of 48 gyrokinetic simulations. All the input profiles
are showed in figure B2.

B.2. The NEO code

NEO is an Eulerian local code that solves the drift-
kinetic equation with a linearized full Fokker-Planck colli-
sion operator [9, 10]. It is considered as a reference code
for neoclassical predictions. The only approximation is the
so-called drift-ordering ρ⋆ ≪ 1. As NEO is able to handle

non-axisymmetric flux surface (see [34] for more details), the
following simulations uses the same ripple perturbations used
in GYSELA. NEO has to be benchmarked in similar regime
to GYSELA for the benchmark. This require zero particle
flux ΓN = 0, as imposed by the adiabatic electron response
in GYSELA. However, contrary to the axisymmetric version,
here NEO does not enforce ambipolarity so that ΓN ̸= 0 in the
general case. Notice that, according to equation (30) at equi-
librium, the ΓN = 0 condition also imposes ΓVT = 0, hence
VT = kVT∇T/eBP which is an output in NEO. It follows that, in
such regime, this methodology does not allow one to retrieve
the neoclassical toroidal friction νφ with NEO. To retrieve
kVT , one must first find an input set of (AN,AT) for which
ΓN = 0. There is no quasi-neutrality constraint in NEO, and
consequently no onset of non-linearity, even small, due to the
electric potential as in GYSELA. For this reason, the relation
between (AN,AT) and (ΓN,ΓVT ,ΓT) is linear in NEO. Taking
advantage of this, AN is set at a constant value while a scan on
AT is performed. The resulting outputs of interest, i.e. ΓN, ΓVT
and AVT then exhibit a linear dependency with respect to AT ,
cf figure B3.

Note that this method could also have been done by per-
forming a scan on AN at fixed AT . The ΓN = 0 condition is
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Figure B3. From NEO simulations: Equilibrium particle flux Γeq

(a), magnetic braking force Meq (b) and mean toroidal velocity
VT,eq (c) for different collisionalities ν⋆ at fixed δ/ε= 0.03/0.16
and Ncq= 16× 1.4 over a wide range of AT .

Figure B4. From NEO simulations: Magnetic braking forceM (a)
and the toroidal velocity VT (b) for different collisionalities ν⋆ at
fixed δ/ε= 0.03/0.16 and Ncq= 16× 1.4. The value of VT at AT
for which M cancels is directly linked to the neoclassical thermal
drive kVT .

then obtained by drawing the ΓN(AT) line using a few points,
each obtained with one simulation, and by retrieving the AT
value that cancels the particle flux. At this value ΓVT = 0 as
expected and already discussed, so the output toroidal velo-
city is equal to AVT = kVTAT. This provides the value of kVT .
Figure B4 illustrates this procedure, that is repeated for each
ν⋆ considered for a given ripple amplitude δ.
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