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Abstract. The effect of magnetic field ripple on tokamak plasma without turbulence is studied
analytically and numerically. The analytical model includes neoclassical processes in the
presence of non-axisymmetric perturbation and stochastic transport. For the numerical study,
a magnetic field ripple perturbation has been implemented in the GYSELA gyrokinetic code.
Simulations with non-axisymmetric perturbation show good agreement with the neoclassical
reduced model in the collisionality range a★ ∈ [0.05 − 0.5]. In addition, the GYSELA code
was successfully benchmarked against the NEO code, that solves the drift kinetic equation.
Surprisingly, both the model and GYSELA simulations predict that the thermal drive of the
mean poloidal velocity – measured by the 𝑘𝑉𝑃

coefficient – decreases sharply for large yet
experimentally relevant magnetic ripple amplitudes, and may even change sign.

Keywords: neoclassical transport, stochastic transport, plasma flow, full- 𝑓 gyrokinetic
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1. Introduction

The impact of non-axisymmetric magnetic perturbations on flows is of prime importance
to understand confinement. This is particularly true for stellarators. However tokamaks also
exhibit such perturbations which can fundamentally modify transport even at small amplitudes
[1, 2]. Here special attention is paid to the magnetic field ripple, caused by the discrete number
of toroidal coils. Magnetic ripple impacts transport by modifying both neoclassic and turbulent
transport. The former is studied here. In the absence of turbulence, magnetic ripple modifies
the particle trajectories in many ways. First, magnetic ripple causes a loss of axisymmetry of the
system and therefore of the associated invariant of motion: the canonical toroidal momentum.
Confinement is then breached, leading to non-vanishing radial transport as a result of the
local toroidal trapping that occurs between two consecutive toroidal coils. Particles trapped
in these magnetic wells undergo vertical magnetic drift that is not compensated anymore by
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the motion along the helical magnetic field lines (except in the presence of strong E×B drift).
Consequently, ripple can lead to transport even in collisionless plasmas. Secondly, neoclassical
effects, i.e. collisional processes enhanced by particle trajectories, are substantially changed
and modify flows in consequence. In particular, a well established result of the neoclassical
theory in an axisymmetric magnetic configuration is the degeneracy between the toroidal
velocity 𝑉𝑇 and the radial electric field 𝐸𝑟 . Ripple breaks axisymmetry and forces 𝑉𝑇 and 𝐸𝑟
to converge towards well-defined values. Finally, stochastic transport can arise above a ripple
amplitude threshold. Particles then describe chaotic motion resulting in an effective diffusion
that lead to transport.

The accurate simulation of these transport properties requires the kinetic approach. To
study these effects, magnetic field ripple has been implemented in the gyrokinetic code
GYSELA. In this study, this implementation is verified thanks to the toroidal momentum
conservation equation as ripple is responsible for an additional toroidal torque, usually called
Neoclassical Toroidal Viscosity. The ripple implementation is then confronted with a reduced
analytical model of neoclassical physics. Good agreement is found on neoclassical transport
coefficients used to predict the toroidal velocity, the poloidal velocity and the radial electric
field. A benchmark with the drift-kinetic solver NEO is also performed and found in good
agreement with GYSELA results. A peculiar observation, shared by GYSELA and the
analytical model is the strong effect of ripple on the poloidal velocity even for typical tokamak
ripple amplitudes.

The rest of this paper is organised as follows. Neoclassical and stochastic transport
mechanisms in the presence of ripple perturbation are recalled in Sec.2 where the model
is defined. This model is explored and compared with asymptotic studies in Sec.3. The
numerical model of the GYSELA code is presented in Sec.4. In Sec.5, the verification of
the implementation of the magnetic perturbation in GYSELA is detailed. Then, neoclassical
theoretical predictions are compared with GYSELA and NEO simulations in Sec.6. The
modification of the poloidal velocity by neoclassical effects with ripple is discussed in Sec.7.
A summary is given in Sec.8.

2. Theoretical neoclassical predictions

In this study, a simplified geometry is considered where magnetic surfaces are taken circular
and concentric. In toroidal coordinates (𝑟, \, 𝜑), and in the limit of large aspect ratio and small
ripple magnitude, the magnetic field amplitude 𝐵 can be approximated as follows:

𝐵 = 𝐵0(1 − Y(𝑟) cos \︸     ︷︷     ︸
1/R decay

+ 𝛿(𝑟, \) cos (𝑁𝑐𝜑)︸                ︷︷                ︸
magnetic ripple

) (1)

Here, 𝐵0 is a reference magnetic field amplitude taken on the magnetic axis and in between
two coils, Y = 𝑟/𝑅0 with 𝑅0 the major radius, 𝛿 is the ripple amplitude and 𝑁𝑐 the number of
toroidal coils. The 1/𝑅 magnetic field decay is responsible for banana trapping. Ripple is also
responsible for so-called local trapping in between two consecutive toroidal coils that create a
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magnetic well where particles can bounce back and forth. Without turbulence, particle motion
is constrained by the magnetic configuration and collisions. Those constraints account for
neoclassical and stochastic transport. The derivation of the neoclassical part heavily relies on
the existence of invariants of motion that are not valid with chaos. Consequently, in order
to have consistency in the complete model, the neoclassical part is considered to hold only
in the adiabatic limit 𝑁𝑐Ω𝐷 ≪ Ω𝐵 where Ω𝐷 and Ω𝐵 are the precession and banana-bounce
frequencies. The origin of this limit is explained below. Let us detail the neoclassical and
stochastic aspects separately.

First, neoclassical transport is due to the resonant enhancement of collisional processes.
At low collisionality, it owes its existence to trapped particles. Indeed, in the vicinity of bounce
points, the particle parallel velocity 𝑣∥ vanishes and the magnetic drift becomes dominant;
this corresponds to the resonance. Now, if the plasma is collisionless, transport can only
occur if particle trajectories are not confined. It is possible with magnetic field ripple as
particle trapped between two coils undergo a vertical magnetic drift which is not compensated
by the motion along the magnetic field lines. In the axisymmetric case, there would be no
transport at all. Adding collisions to this problem accounts for the so-called neoclassical
theory. When the collision frequency becomes comparable to the bounce frequency of
the considered trapped population, a random walk with a characteristic step linked to the
resonance prevails. Considering banana trapping for example, this step would be roughly the
banana width. Subtleties also appear when accounting for the synergies between the different
trappings. For example, the ripple causes banana bounce points to drift radially in such a way
that they undergo a random walk process. The reduced model is meant to describe all those
processes. It relies on a kinetic derivation of the equilibrium distribution function for the
considered species. Each population (trapped or passing) tend to relax towards a Maxwellian
equilibrium under the effect of collisions. The resulting total distribution function can however
be non-Maxwellian and therefore leads to finite fluxes.

This physics is captured by the gyrokinetic code GYSELA. Fig.1 shows the impact of
the 1/𝑅 magnetic field decay and magnetic ripple on the distribution function in the (𝜑, 𝑣∥)
and (\, 𝑣∥) spaces. Magnetic ripple produces islands in the (𝜑, 𝑣∥) space corresponding to
particles trapped toroidally between coils. The island in the (\, 𝑣∥) space, corresponding to the
banana trapping, is also modified with ripple. As discussed previously the effect is maximum
at 𝑣∥ = 0 where the resonance takes place. A similar mechanism also exists for particles in
ripple wells.

To get the expression of the equilibrium distribution function, one must start with the drift
kinetic equation (DKE). The first step of the derivation then relies on solving the DKE for each
perturbation, i.e. the 1/𝑅 magnetic field decay or ripple, independently. They are labelled
‘primary’ perturbations. Solving the DKE with the 1/𝑅 magnetic field decay as primary
perturbation leads to the axisymmetric neoclassical theory. Doing the same for the ripple
perturbation amounts to consider collisional processes in a tokamak without curvature, i.e. a
rippled cylinder, with equally spaced coils leading to local trapping. The next step is to perturb
the trapped population by the primary perturbation with the other one, labelled ‘secondary’
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Figure 1: Distribution function of trapped particles without (left) and with (right) ripple,
obtained with GYSELA, with 𝑁𝑐 = 16. Ripple accounts for an additional trapping in the
toroidal direction and also modifies the island of banana trapped particles near bounce points.

perturbation. If ripple is the secondary perturbation, it then accounts for the radial drift of
the banana bounce point induced by ripple. If the 1/𝑅 magnetic field decay is the secondary
perturbation, it then accounts for the bounce points of the ripple-induced trapped trajectories
drifting vertically due to the magnetic curvature drift. Those four contribution branches to
neoclassical transport can be summed up in this list:

• the axisymmetric branch is the neoclassical contribution of unperturbed banana particles;
• the helically symmetric branch is the neoclassical contribution of unperturbed ripple-

induced trapping;
• the banana drift branch is the neoclassical contribution of ripple on banana trapped

particles;
• the ripple-wells drift branch is the neoclassical contribution of the 1/𝑅 magnetic field

decay on particles trapped in ripple-induced magnetic wells.

Let us now talk about stochastic transport. It refers to a collisionless diffusion that can
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Figure 2: (a) Schematic view in toroidal section of bounce point for trapped particles either
below the stochasticity limit (red) or above (blue). Green arrow shows the direction and
amplitude of the radial shift Δ𝑟 exerted on particle by ripple. (b) Successive radial positions
of the bounce point for each case.

arise in the presence of ripple for some banana trapped particles. Here is the principle.
As mentioned before, ripple causes a radial jump Δ𝑟 of the banana trapped particles at the
bounce point locations. This jump is either inward or outward depending on the relative
toroidal angle 𝜑𝐵 of the bounce point relative to the two nearest coils. It can be expressed
Δ𝑟 = _𝜌𝑖𝛿 cos (𝑁𝑐𝜑𝐵 − 𝜋/4) where |_ | ∼

√
𝑁𝑐 (𝑞/Y)3/2 [3] with 𝑞 the safety factor and 𝜑𝐵 the

toroidal angle of bounce points. In most tokamaks an estimate at the edge is
√︁
⟨Δ𝑟2⟩𝜑 ∼ 2−3𝜌𝑖

where ⟨.⟩𝜑 is the toroidal average. If Δ𝑟 > 0 (outward) in between two coils, then Δ𝑟 < 0
(inward) in the vicinity of the coils. As trapped particles drift toroidally at the precession
frequency Ω𝐷 , they undergo a different radial shift at each bounce point. After each bounce
period Ω−1

𝐵
, one can define a toroidal phase shift Δ𝜑𝐵 = 𝜑𝐵 (𝑡 −Ω−1

𝐵
) − 𝜑𝐵 (𝑡). If Δ𝜑𝐵 is small

with respect to the toroidal angle span separating two coils Δ𝜑𝐶 = 2𝜋/𝑁𝐶 , the consecutive
radial shifts exerted on the particle are expected to be as often inward as outward, resulting
in a zero mean radial displacement. However, in the other limit, namely 𝑁𝐶Ω𝐷 ≫ Ω𝐵, Δ𝜑𝐵
becomes comparable to Δ𝜑𝐶 . In this scenario, consecutive bounce point positions follow no
particular order and stochasticity appears. This mechanism is illustrated in Fig.2.

The whole analytical calculation of neoclassical and stochastic transport is a formidable
task that will not be detailed in this paper. The interested reader can look at [4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14] for the neoclassical part and at [3, 15, 16] for the stochasticity part. The model
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considered in this paper is based on the review by Garbet et al. [17] for which stochastic
transport have been added. It leads to a transport matrix that links the the equilibrium fluxes
of particles Γ and heat 𝑄 as well as the magnetic drag force M with the thermodynamical
gradients, the mean toroidal velocity 𝑉𝑇 and the radial electric field 𝐸𝑟 . For a single ion
species, it can be expressed in this compact way:

©«
Γ𝑁

Γ𝑉𝑇

Γ𝑇

ª®®¬ =
©«
𝑑0 + 𝑑0 𝑑0 𝑑1 + 𝑑1
𝑑0 𝑑0 + 𝑑0 𝑑1

𝑑1 + 𝑑1 𝑑1 𝑑2 + 𝑑2

ª®®¬ ·
©«
𝐴𝑁

𝐴𝑉𝑇
𝐴𝑇

ª®®¬ (2)

Where Γ𝑁 = Γ
𝑛
, Γ𝑉𝑇 = M

𝑛𝑒𝐵𝑝
, Γ𝑇 =

𝑄

𝑛𝑇
, 𝐴𝑁 = 1

𝑛
𝑑𝑛
𝑑𝑟

− 𝑒𝐸𝑟

𝑇
, 𝐴𝑉𝑇 =

𝑒𝐵𝑝

𝑇
𝑉𝑇 , 𝐴𝑇 = 1

𝑇
𝑑𝑇
𝑑𝑟

with
𝑛 the density, 𝑇 the temperature, 𝑒 the electric charge and 𝐵𝑃 the poloidal component of the

magnetic field. 𝐷𝑃 =
𝑞𝑅0
𝑉𝑡ℎ𝑖

(
𝑇

𝑒𝐵0𝑅0

)2
is a reference diffusion coefficient, where 𝑉𝑡ℎ𝑖 is the ion

thermal velocity and 𝑞 the safety factor.
The transport matrix coefficients are detailed in Appendix A. They only depend on three

dimensionless parameters: a★, 𝛿/Y and 𝑁𝑐𝑞 (with 𝑞 the safety factor). The coefficients 𝑑𝑖 are
independent of 𝛿/Y. Without ripple, i.e. 𝑑𝑖 = 0 and 𝑑𝑖 = 0, one recovers the classic coefficients
resulting from the axisymmetric neoclassical theory at lower order in Y. In that case, it is clear
that the two first lines of the transport matrix are identical. This degeneracy explains why
axisymmetric neoclassical theory cannot predict 𝐴𝑁 and 𝐴𝑉𝑇 independently, hence treating
the radial electric field and the toroidal velocity as a single unknown.

3. Exploring the model

In this section, the previous model is used to compute meaningful quantities and is compared
with common asymptotic regimes. Let us first define those "meaningful quantities". First,
there are the thermal drives coefficients that link the equilibrium toroidal velocity, poloidal
velocity and the radial electric field to the temperature gradient, labelled 𝑘𝑉𝑇 , 𝑘𝑁 and 𝑘𝑉𝑃
respectively. Their expressions are obtained when considering that both Γ𝑁 and Γ𝑉𝑇 go to zero
at equilibrium (without external sources of particles and momentum). Under those conditions,
Eq.2 gives the equalities 𝐴𝑉𝑇 = 𝑘𝑉𝑇 𝐴𝑇 and 𝐴𝑁 = −𝑘𝑁𝐴𝑇 such that

𝑘𝑉𝑇 =
𝑑0𝑑1 − 𝑑1𝑑0

(𝑑0 + 𝑑0) (𝑑0 + 𝑑0) − 𝑑2
0

(3)

𝑘𝑁 =
(𝑑0 + 𝑑0) (𝑑1 + 𝑑1) − 𝑑0𝑑1

(𝑑0 + 𝑑0) (𝑑0 + 𝑑0) − 𝑑2
0

(4)

Then, one can use the force balance 𝐴𝑉𝑃 =
𝑒𝐵𝑇
𝑇
𝑉𝑃 = 𝐴𝑁+𝐴𝑉𝑇 +𝐴𝑇 with𝑉𝑃 the equilibrium

poloidal velocity and 𝐵𝑇 the toroidal component of B, to define the thermal drive 𝑘𝑉𝑃 such
that 𝐴𝑉𝑝 = 𝑘𝑉𝑃𝐴𝑇 where 𝑘𝑉𝑃 = 1 + 𝑘𝑉𝑇 − 𝑘𝑁 . Knowing those thermal drive coefficients as
well as the temperature gradient, one can make predictions on the final flow.

These coefficients are commonly considered in some asymptotic regimes of collisionality
and ripple amplitude. These regimes depend among others on the parameter 𝑌 (𝑟, \) = Y | sin \ |

𝛿𝑁𝑐𝑞
.
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Figure 3: Condition of existence of ripple-induced magnetic wells for the Tore Supra tokamak
(left) and a radially gaussian ripple centered at mid-radius with a 𝛿 = 3% peak (right). There
is no magnetic wells in 𝑌 > 1 zone (blue) so no local trapping can occur.

Regions with 𝑌 < 1 are characterised by local magnetic wells in between two toroidal field
coils. Conversely, for𝑌 > 1, such magnetic wells do not exist so that there is no ripple-induced
trapping in those regions.

This subtle point is worth discussing as predictions are significantly different between
regions with or without ripple induced magnetic wells. It indicates that a poloidal dependence
must be taken into account. Indeed, for the same ripple amplitude but different ripple shapes,
the thermal drive predictions can be different. For this reason, and for numerical convenience
explained below, the considered ripple perturbation for this academic work is poloidally
symmetric. Fig.3 displays the poloidal map of 𝑌 for the Tore Supra tokamak and for a radially
gaussian ripple centered at mid-radius. That said, the asymptotic regimes of 𝑘𝑉𝑇 , 𝑘𝑁 and 𝑘𝑉𝑃
are summarized in Tab.1.

𝑌 > 1 𝑌 < 1 (Local mirrors) ∀𝑌
∀𝛿/Y 𝛿/Y < 1 𝛿/Y > 1 ∀𝛿/Y

a★ ≪ (𝑁𝑐𝑞)−2 (𝑁𝑐𝑞)−2 ≪ a★ ≪ 1 a★ < (𝛿/Y)3/2 a★ < 1 a★ ≫ 1
𝑘𝑁 3.37 1.5 3.37 3.37 1.5
𝑘𝑉𝑃 1.17 1.17 1.17 -2.37 -0.5
𝑘𝑉𝑇 3.54 1.67 3.54 0.0 0.0

Table 1: Asymptotic values of 𝑘𝑉𝑇 , 𝑘𝑁 and 𝑘𝑉𝑃 for different ranges of 𝛿/Y, a★ and 𝑁𝑐𝑞.

In this table, one can observe that thermal drive coefficients change substantially
depending of collisionality regimes. For example, 𝑘𝑉𝑇 can double in regions without magnetic
wells under the sole effect of collisionality. It means that for a given temperature gradient,
the toroidal velocity can change drastically when the collisionality evolves (due to heating for
example). Similar effects can be observed for 𝑘𝑁 and 𝑘𝑉𝑃 . However, this table can easily be
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misleading for several reasons. First, the model is poloidally averaged so the resulting thermal
drive can be a mix between their predictions in 𝑌 > 1 regions and 𝑌 < 1 regions. Then, those
asymptotic regimes hide that those thermal drives actually depend non-linearly on 𝛿/Y and
a★. Consequently, the transition between those regimes have no reason to be smooth or even
monotonous.

Although less accurate than simulation codes, the reduced model has the advantage over
simulation codes to provide transport coefficients effortlessly. In other words, it can be used
to perform scans on wide ranges of 𝛿/Y, a★ and 𝑁𝑐𝑞. Now and for the remaining of the paper,
a fixed 𝑁𝑐𝑞 = 16 × 1.4 is considered. The thermal drives 𝑘𝑉𝑇 , 𝑘𝑁 or 𝑘𝑉𝑃 are scanned for the
ranges of 𝛿/Y and a★ as shown in Fig.4.

All asymptotic regimes are recovered. It should be mentioned however that the so-called
Pfirsch–Schlüter regime is expected to play a role for a★ ≫ 10. This regime is not included
in the model and is expected to change 𝑘𝑉𝑃 towards even more negative values [18] (indeed
the prediction in axisymmetric configuration is 𝑘𝑉𝑃 → −2.1). The transitions between the
different regimes are mainly due to the (𝛿/Y)−1 dependence of 𝑌 . Indeed, as (𝛿/Y) increases,
the size of the regions where ripple-induced magnetic wells exist also increases. In the range
of the (𝛿/Y) parameter where the 𝑌 < 1 regions become dominant compared with 𝑌 > 1
regions, important variations of 𝑘𝑉𝑇 , 𝑘𝑁 and 𝑘𝑉𝑃 are observed. In particular, 𝑘𝑉𝑃 decreases
toward negative values with increasing ripple amplitude. Sec.7 of this document is dedicated
to a discussion on this effect. In Sec.6, these observations, obtained with the analytical model,
are confronted to the simulation codes GYSELA and NEO.

Another interesting quantity can be defined: the neoclassical toroidal friction a𝜑. It
corresponds to the characteristic relaxation frequency – set by ripple-induced neoclassical
processes – of the toroidal flow toward its predicted equilibrium value (governed by 𝑘𝑉𝑇 ).
Regarding the analytical model, this quantity appears when a situation out of equilibrium is
considered. Subtracting the second line from the first one in Eq.2 reads

Γ𝑉𝑇 − Γ𝑁 = −𝐷𝑃

(
𝑑0𝐴𝑉𝑇 − 𝑑0𝐴𝑁 − 𝑑1𝐴𝑇

)
(5)

The resulting neoclassical toroidal friction a𝜑 is then the coefficient that multiply 𝐴𝑉𝑇 .
Its expression significantly changes regarding the assumptions taken on the fluxes. Indeed,
is one considers that neither the particle flux nor the momentum flux vanishes in this out-of-
equilibrium situation, i.e. Γ𝑁 ≠ 0 and Γ𝑉𝑇 ≠ 0, the neoclassical friction then reads a𝜑 = 𝑑0.

However, keeping the ambipolarity constraint Γ𝑁 = 0 but with a finite momentum flux,
i.e. Γ𝑉𝑇 ≠ 0, Eq.2 gives Γ𝑉𝑇 = −𝐷𝑃a

Γ𝑁=0
𝜑 (𝐴𝑉𝑇 − 𝑘𝑉𝑇 𝐴𝑇 ) with

a
Γ𝑁=0
𝜑 = 𝑑0 +

𝑑0𝑑0

𝑑0 + 𝑑0
(6)

As 𝑑0 and 𝑑0 go to zero when 𝛿/Y → 0, for both cases the neoclassical friction vanishes in
the axisymmetric case as a consequence of the degeneracy: without ripple the toroidal velocity
does not relax toward any prescribed value. Furthermore, 𝑑0 and 𝑑0 increase with 𝛿/Y so that
the system relaxes faster with higher ripple amplitude, which seems intuitive. Documentation
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Figure 4: Scan in ripple amplitude of thermal drives 𝑘𝑉𝑇 , 𝑘𝑁 and 𝑘𝑉𝑃 for a wide range of a★.
Red dashed lines represent the asymptotic values that appear in Tab.1.

on this neoclassical friction can be found in references focused on externally applied magnetic
perturbations [19, 20, 21]. However, none of the references known to the authors actually
clearly addresses this neoclassical toroidal friction due to magnetic ripple in tokamaks, neither
through analytical study nor numerical simulations.



Impact of magnetic ripple on neoclassical equilibrium in gyrokinetic simulations. 10

4. Ripple implementation in GYSELA

The aim of this section is to recall the basic set of equations of the GYSELA code and explain
how magnetic ripple is implemented. A more detailed description of the GYSELA code can
be found in Grandgirard et al. [22]. In the electrostatic regime considered in this paper,
GYSELA solves a kinetic equation per considered species coupled to the quasi-neutrality
constraint. Only one ion species and adiabatic electrons are considered in this paper. The
kinetic equation is the gyrokinetic Fokker-Planck equation (Eq.7), where the full gyrocenter
distribution function �̄� evolves in a 5D phase space (X , 𝑣∥ , `). X is the gyrocenter position
vector in the toroidal coordinates (𝑟, \, 𝜑), 𝑣∥ its velocity along the magnetic field lines and `
its magnetic moment. It reads

𝜕�̄�

𝜕𝑡
+ 𝑣∥∇∥ �̄� + (v𝑬×𝑩 + vD) · ∇�̄� +

𝑑𝑣∥
𝑑𝑡

𝜕 �̄�

𝜕𝑣∥
= C(�̄�) (7)

Where v𝑬×𝑩 is the electric drift, vD the magnetic drift and C the collision operator [23].
The quasi-neutrality equation (Eq.8) in the case of adiabatic electrons and in the limit of long
wavelengths (with respect to the thermal ion Larmor radius), reads:

𝑛𝑒 [𝜙 − ⟨𝜙⟩]
𝑇𝑒

− ∇⊥ ·
[ 𝑚𝑛
𝑒𝐵2∇⊥𝜙

]
=

∬ 2𝜋𝐵★∥
𝑚

𝑑𝑣∥𝑑`�̄� − (�̄�𝑖𝑛𝑖𝑡) (8)

Where 𝜙 is the electric potential, ⟨.⟩ denotes a flux-surface average, 𝑇𝑒 is the electron
temperature, 𝑚 is the ion mass, 𝐵★∥ is the Jacobian of the coordinate transform and �̄�𝑖𝑛𝑖𝑡 is the
initial ion gyroaveraged distribution function.

The axisymmetric magnetic field B𝒂𝒙𝒊 is defined as

B𝒂𝒙𝒊 =
𝐵0𝑅0
𝑅(𝑟, \)

[
𝑟

𝑞(𝑟)𝑅0
eθ + eφ

]
(9)

where eθ and eφ are unit vectors in the poloidal and toroidal direction respectively, and
𝑅(𝑟, \) = 𝑅0 + 𝑟 cos \. The total magnetic field is written B = B𝒂𝒙𝒊 +B𝒓𝒊 𝒑 where B𝒓𝒊 𝒑 is the
magnetic field perturbation due to ripple.

The electrostatic gyrokinetic equations of motion solved in GYSELA are{
𝐵★∥

𝑑X
𝑑𝑡

= 𝑣∥B
⋆ + b

𝑒
× ∇H

𝐵★∥
𝑑𝑣 ∥
𝑑𝑡

= −B⋆ · ∇H
(10)

where b =
B𝒂𝒙𝒊
𝐵𝑎𝑥𝑖

,B⋆ = B𝒂𝒙𝒊+
𝑚𝑣 ∥
𝑒
∇×b andH = H𝑎𝑥𝑖+H𝑟𝑖𝑝 withH𝑎𝑥𝑖 = 𝑚𝑣

2
∥+`𝐵𝑎𝑥𝑖+𝑒𝜙

(with 𝜙 the gyroaveraged electric potential) and H𝑟𝑖𝑝 = `𝐵0𝛿 cos (𝑁𝑐𝜑). In GYSELA, the
ripple perturbation is then only kept in the gyro-center Hamiltonian H . It can be show
that this simplification changes the expression of the magnetic braking, which is the main
effect of ripple, from M = −

∫
𝑑3𝑣

{
(𝑚𝑣2

∥/2 + `𝐵) 1
𝐵
𝜕𝐵
𝜕𝜑
𝐹

}
to M = −

∫
𝑑3𝑣

{
` 𝜕𝐵
𝜕𝜑
𝐹

}
. At

low collisionality, magnetic ripple impacts the trapped particles so the error on M can not
exceed

√
Y for banana trapped particles and

√
𝛿 for locally trapped particles. This reasonable
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assumption is detailed in reference [24] that discusses the non-axisymmetric perturbation
implementation in the gyrokinetic code GT5D.

5. Verification through toroidal momentum conservation

To verify the implementation of the ripple perturbation in GYSELA, a scan in ripple amplitude
is performed to check the conservation of toroidal momentum. One of the major effects of
a non-axisymmetric magnetic perturbation is an additional toroidal force: the magnetic drag
M. The flux surface averaged momentum conservation [25] involves this new term:

𝑚𝑅0
𝜕 ⟨𝑛𝑉𝑇 ⟩
𝜕𝑡

= −⟨∇ · Π𝜑⟩ − ⟨𝑇𝜑⟩ + ⟨J𝐷⟩ + ⟨J𝐸⟩ + ⟨M⟩ (11)

Where 𝑉𝑇 = 1
𝑛

∫
𝑑3𝑣

{
𝑣∥ (𝐵𝜑/𝐵)𝐹

}
is the gyrocenter mean toroidal velocity (𝐵𝜑 is the

toroidal component of the magnetic field), Π𝜑 the toroidal Reynolds stress, 𝑇𝜑 a polarization
term, J𝐷 and J𝐸 the radial currents due to the magnetic and electric drifts respectively.

Boundary physics, inevitably present either in global codes or in experiments, acts as
a momentum sink which is not included in the analytical model. For this reason, the
considered profile of the ripple amplitude in the following simulations is taken radially
gaussian and maximum at mid-radius. Also, no poloidal dependence is accounted for. It reads
𝛿𝑠𝑖𝑚 = 𝛿0𝑒

−4(𝑟/𝑎−0.5)2 with 𝛿0 the mid-radius ripple amplitude. The usual way to perform
simulations for neoclassical studies is to artificially filter out all toroidal Fourier modes of
the electric potential 𝜙 except the axisymmetric component. This cannot be done here as
ripple adds toroidal harmonics with 𝑁𝑐 periodicity. The chosen solution to avoid turbulence
is then to initiate the simulations below the instability threshold, i.e. with a sufficiently weak
temperature gradient. It is also verified that ripple-induced mode amplitudes are low enough
such that the inequality 𝑒𝜙𝑘𝑁𝑐

≪ `𝐵𝑘𝑁𝑐
, with 𝑘 = 1, 2, ..., is satisfied, which ensures that the

hamiltonian considered in the reduced model is a relevant approximation for those cases. The
parameters of the simulations are summarized in Tab.2.

Species Deuterium
Aspect ratio 𝑅0/𝑎 3.2
Safety factor 𝑞 = 0.854 + 2.184(𝑟/𝑎)2

Density gradient 𝑅0/𝐿𝑁 = 6
Temperature gradient 𝑅0/𝐿𝑇 = 6
Collisionality at 𝑟/𝑎 = 0.5 a★ = 0.1
𝜌𝑖/𝑎 at 𝑟/𝑎 = 0.5 𝜌★ = 1/150
Number of coils 𝑁𝑐 = 16

Table 2: Simulation parameters. 𝐿𝑁 and 𝐿𝑇 are the density and temperature gradient’s length,
𝜌𝑖 is the ion Larmor radius.

Four simulations using different ripple amplitudes are analyzed. The l.h.s of Eq.11,
which is a standard output of GYSELA, is compared with the sum of the contributions in
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Figure 5: Radial profile of the total toroidal momentum (dashed) and the sum of the expected
contributions (plain) for different ripple amplitudes 𝛿0.

the r.h.s for each simulation. The radial profiles of these quantities are plotted in Fig.5 and
show a good agreement for all ripple amplitudes attesting good momentum conservation in
the code. Without turbulence, magnetic braking quickly becomes the dominant contribution
and drives the mean toroidal velocity. The implementation of a ripple magnetic perturbation
being successful, the code GYSELA can be confronted to the analytical neoclassical reduced
model and NEO.

6. Comparison of GYSELA global simulations with neoclassical predictions and NEO

In this section, the ability of GYSELA to assess neoclassical processes is tested against two
different tools. The first one is the aforementioned reduced model, directly comparable to
GYSELA. The other one is the drift kinetic solver NEO which captures all the neoclassical
physics. A perfect benchmark would compare all the transport matrix coefficients from both
codes and the model for a wide range of 𝛿/Y, a★ and 𝑁𝑐𝑞. However, it would require a too large
quantity of simulations and a subsequent post-treatment. Commonly, the neoclassical theory
in axisymmetric configurations is benchmarked by comparing the thermal drive coefficient
𝑘𝑉𝑃 of the poloidal velocity 𝑉𝑃 such that its equilibrium value reads 𝑉𝑃,𝑒𝑞 = 𝑘𝑉𝑃

∇𝑇
𝑒𝐵𝑇

. This
exercise has already been done to benchmark GYSELA against the axisymmetric neoclassical
theory [26]. In the case of non-axisymmetric magnetic perturbation, the transport matrix is
not degenerate so this exercise can be extended to the toroidal velocity and also the radial
electric field through the thermal drive coefficients 𝑘𝑉𝑇 and 𝑘𝑁 (cf Sec.3). The focus is here
on the thermal drive of the toroidal velocity 𝑘𝑉𝑇 and the neoclassical toroidal friction a𝜑. The
methodologies to retrieve those coefficients in GYSELA and NEO are described in details in
Appendix B.
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The comparison between the reduced model, GYSELA and NEO is performed in the range
of collisionalities a★ ∈ [0.05 − 0.5] and for three ripple amplitudes: 𝛿 = 0.5%, 𝛿 = 1% and
𝛿 = 3% at Y = 0.16 and at a fixed 𝑁𝑐𝑞 = 1.4× 16. Fig.6 shows a a★ scan of 𝑘𝑉𝑇 for those three
ripple amplitudes obtained with GYSELA, NEO and the reduced model. A good agreement
if found between GYSELA and NEO, where the average relative error is less than 10%. One
of the conclusions is that the model collision operator used in GYSELA is well designed
to describe neoclassical processes in the collisionality range a★ ∈ [0.05, 0.5]. Agreement
between both codes and the neoclassical model in non-axisymmetric configurations is also
obtained regarding the thermal drives. However the 𝛿 = 0.5% case with GYSELA does not
seem to undergo the 1/a★ trend followed by the model and NEO. One possible explanation
is that this is the only case not dominated by 𝑌 < 1 regimes (cf Sec.3). In other words, only
this case is dominated by the effect of banana trapped particles. The point is that at low a★,
other regimes affecting only banana trapped particles exist [27, 28, 20]. They are sometimes
labelled super-banana regimes, and correspond to the effect of higher order electric and
magnetic drifts at bounce points, negligible at higher collisionalities. These regimes are not
included in the present reduced model, nor in the present NEO simulations. However they
are treated by GYSELA, which could explain this discrepancy at low collisionality. Note that
NEO can actually compute those drifts [29]. They are here not included as the methodology
used to retrieve 𝑘𝑉𝑇 in NEO is not compatible if those drifts are activated. However, a few test
with reasonable parameters for those drift were performed in NEO and showed a reduction
of 𝑘𝑉𝑇 even for collisionality around a★ ≈ 0.1. Furthermore, still for the 𝛿 = 0.5% case, the
discrepancy at high a★ between GYSELA and NEO is higher than for other cases. It remains
unexplained, but still in an acceptable agreement with NEO and the reduced model.

Overall, the model which is derived in the large aspect ratio limit Y ≪ 1 is showing
a surprisingly good agreement with NEO. Alleviating this latter limit actually already
modifies neoclassical predictions in the axisymmetric case quite substantially. In fact, for
the axisymmetric neoclassical theory, i.e. without ripple, the finite aspect-ratio corrections
[30] can change 𝑘𝑉𝑃 = 1.17 to 𝑘𝑉𝑃 ∼ 0.6 for Y = 0.17 as observed in GYSELA [26]. To our
knowledge, there is no analytical derivation of the aspect ratio correction for the neoclassical
theory with ripple. The agreement is then unexpectedly good, especially at high 𝛿/Y where
the condition 𝑌 < 1 dominates.

The benchmark on the toroidal friction is shown in Fig.7. Both expressions derived in
Sec.2, i.e. a𝜑 and aΓ𝑁=0

𝜑 are displayed on this figure. It was expected that the expression with
the zero particle flux assumption, i.e. aΓ𝑁=0

𝜑 , should be the best approximation as the electron
are adiabatic in these simulations. However, it appears that the toroidal friction obtained in
GYSELA is about 5 to 10 times lower than aΓ𝑁=0

𝜑 . The expression of the neoclassical friction
obtained by considering a finite particle flux however is in good agreement with GYSELA.
The reason for this behaviour is still an open issue. An explanation could be that, rigorously,
the particle flux in GYSELA is usually negligible but never strictly zero. Numerical noise
always account for a residual Γ𝑁 that could actually play a role for the neoclassical friction.
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Figure 6: Collisionality scan of 𝑘𝑉𝑇 obtained with the reduced model, GYSELA and NEO for
𝛿 = 0.5% (left), 𝛿 = 1% (middle) and 𝛿 = 3% (right) at fixed Y = 0.16 and 𝑁𝑐𝑞 = 16 × 1.4.
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Figure 7: Collisionality scan of a𝜑 and aΓ𝑁=0
𝜑 obtained with the reduced model and GYSELA

for 𝛿 = 0.5% (left), 𝛿 = 1% (middle) and 𝛿 = 3% (right) at fixed Y = 0.16 and 𝑁𝑐𝑞 = 16× 1.4.

7. Impact of ripple on the poloidal velocity

On the basis of the previous section, our reduced model in the presence of non-axisymmetric
perturbations captures well the collisional processes in a broad range of collisionalities that
roughly encompasses a★ ∈ [10−2, 10]. Except for the very edge of the plasma, likely dominated
by wall interactions and orbit losses, this range is relevant for tokamaks. As mentioned in
Sec.3, an unexpected result of the model is the effect of neoclassical processes with ripple on
the thermal drive of the poloidal velocity 𝑘𝑉𝑃 . Fig.8 shows the 𝑘𝑉𝑃 =

𝑒𝐵𝑇
∇𝑇 𝑉𝑃,𝑒𝑞 dependency

with 𝛿/Y in the a★ range of interest.
Values of 𝑘𝑉𝑃 at 𝛿/Y = 10−2 approach the predictions of the axisymmetric neoclassical

theory (in particular, 𝑘𝑉𝑃 = 1.17 in the banana regime at low a★, cf. Tab.I). At larger 𝛿/Y, 𝑘𝑉𝑃
is found to decrease, with a sharp drop off around 𝛿/Y ∼ 4.10−2. It can even reverse sign at low
collisionality and become negative at 𝛿/Y ∼ 2.10−1, meaning that the poloidal velocity itself
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could change sign. This suggests that locally trapped particles have an unexpectedly strong
impact even for relatively low ripple amplitudes where local trapping is expected to be weak.

To ensure the validity of this result, some gyrokinetic simulations were run with different
ripple amplitudes. As mentioned in Sec.6 and Appendix B, reaching a neoclassical equilibrium
in gyrokinetic simulations is tricky. Indeed, the characteristic time for the system to reach such
an equilibrium is of the order of the energy confinement time. Simulations that long would
be numerically expensive and all the thermodynamical gradients would evolve significantly.
Consequently, no equilibrium would be reached until density and temperature profiles are
flat. For this reason, simulations are here used only to get a trend on the poloidal velocity
evolution. The simulation parameters are the same as in Tab.2. The initial poloidal velocity is
zero. Fig.9a then shows the radial profile of the poloidal velocity at 𝜔𝑐𝑡 = 5.104 for the ripple
amplitude displayed Fig.9b. For the axisymmetric case, i.e. without ripple, 𝑉𝑃 is essentially
diamagnetic and thus follow the pressure gradient. With ripple, it appears that 𝑉𝑃 increases
significantly and monotonously with the 𝛿/Y shape. This effect is particularly strong for the
“Gaussian 3%" case near mid-radius and the Tore Supra case near plasma edge. Again, this
figure only shows a trend and not accurate results. Especially, the temperature profile is not
exactly the same in each simulation as the neoclassical heat flux (not discussed in this paper)
is also modified by ripple and consequently temperature evolves differently for each case.
However a clear effect on the poloidal velocity is clearly identified.

To have a more accurate idea of the effect of ripple in a realistic plasma, simulations
involving more physics were run. They involve ITG turbulence, a heat source keeping a steady
temperature profile and the presence of a limiter [31]. The main simulation parameters at
𝑟/𝑎 = 0.5 are 𝜌★ = 1/250, a★ = 0.1, 𝑅0/𝐿𝑇 = 8, 𝑅0/𝐿𝑁 = 2.2 and 𝑞 = 1.4. Fig.10 shows
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Figure 9: (a) Radial profile of poloidal velocity at 𝜔𝑐𝑡 < 5.104 for the poloidally averaged
ripple amplitudes in (b). Velocity is normalized to the ion thermal velocity 𝑉𝑡ℎ𝑖 in GYSELA.

the radial profiles of the coarse-grained poloidal velocity 𝑉𝑃 for a case without ripple and
another with the Tore Supra ripple perturbation. The coarse-graining procedure consists in a
temporal averaging between 6.104 < 𝜔𝑐𝑡 < 9.104 and a radial sliding average with a window
of about 50𝜌𝑖. This procedure is necessary to smooth the important fluctuations that appear
in the presence of turbulence. As previously, these simulations are not fully converged as
reaching a neoclassical equilibrium would require too many numerical resources. However,
they provide reliable hints as to the long term behaviour of flows. As for the neoclassical cases
discussed just before, the poloidal velocity without ripple is mainly diamagnetic up to an offset
due to turbulent contributions. The case with the Tore Supra ripple amplitude displays the
same increasing of 𝑉𝑃 seen in Fig.9a. It shows that a realistic magnetic configuration could
lead to 𝑉𝑃 being affected strongly at the edge and mildly at mid-radius. The fact that realistic
ripple impacts plasma this far from edge is that the 𝛿/Y ratio is not negligible near mid-radius.
Ripple contribution to the poloidal velocity is then significant, especially at the plasma edge.

8. Conclusion

Magnetic ripple perturbations have been successfully implemented in GYSELA by modifying
the effective hamiltonian. Key verification has been achieved through toroidal momentum
conservation where a new term, the magnetic braking due to the ripple perturbation, becomes
the dominant contribution at large ripple amplitude. GYSELA results have been benchmarked
regarding the neoclassical processes occurring in presence of ripple thanks to an analytical
neoclassical model and the NEO code. Good agreement with the NEO code is found, meaning
GYSELA is able to properly describe ripple-induced neoclassical processes down to relatively
low collisionality a★ ∼ 0.05. GYSELA results are also found to well agree with the model
which is derived in the low collisionality and large aspect ratio limit. One remarkable result
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of the model, which is recovered in GYSELA simulations, is the change of sign of the
poloidal velocity when increasing the ripple amplitude. Such behaviour was expected only for
extremely (unrealistic) large values of ripple amplitude. Our findings show that the neoclassical
contribution to the poloidal velocity is likely to change direction already at moderate ripple
amplitudes. These conditions are expected to be met at the edge of tokamak plasmas like
WEST.
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Appendix A. Explicit expression of the transport matrix coefficients

This section gives the details of the terms that appears in the transport matrix in Sec.2. In the
general case the ripple perturbation amplitude 𝛿 depends on (𝑟, \). It is useful to separate this
amplitude in a poloidal average 𝛿(𝑟) =

∫
𝑑\
2𝜋 𝛿(𝑟, \) and a poloidal modulation 𝛿(𝑟) = 𝛿(𝑟, \)/𝛿.

The transport matrix is symmetrical. Its 6 independent elements are given by the following
expressions:

𝑑𝑛 =

∫ +∞

0
𝑑𝑢

(
𝑢 − 3

2

)𝑛
K(𝑢) (A.1)

𝑑𝑛 =

∫ +∞

0
𝑑𝑢

(
𝑢 − 3

2

)𝑛
K̃ (𝑢) (A.2)

𝑑𝑛 =

∫ +∞

0
𝑑𝑢

(
𝑢 − 3

2

)𝑛
K̂ (𝑢) (A.3)

Where

K(𝑢) =
√︂
𝜋

2
𝑒−𝑢𝑢2𝐾𝑡𝑜𝑟,𝐼 (𝑟, 𝑢) (A.4)

K̃ (𝑢) = 32
9

(
2
𝜋

)3/2 (
𝛿

Y

)3/2
𝐺1
a★
𝑒−𝑢𝑢5/2 1

ā(𝑢) (A.5)

+ 2
(

2
𝜋

)3/2 1
𝑁𝑏𝑞

(
𝛿

Y

)2 1
a★

[1 − 𝐻 (𝑢 − 𝑢𝑐)] 𝑒−𝑢𝑢5/2 1
ā(𝑢)𝐾𝑟𝑖𝑝,𝐼 𝐼 (𝑟, 𝑢)(A.6)

+
√︂
𝜋

2
𝑁𝑏𝑞

(
𝛿

Y

)2
𝐻 (𝑢 − 𝑢𝑐) 𝑒−𝑢𝑢2𝐾𝑠𝑡 (𝑟, 𝑢) (A.7)

K̂ (𝑢) =
√︂
𝜋

2
(𝑁𝑏𝑞)

(
𝛿

𝜖

)2
𝑒−𝑢𝑢2𝐾𝑟𝑖𝑝,𝐼 (𝑟, 𝑢) (A.8)

where 𝐻 is the Heaviside function.
The normalized collision frequency [32] is defined as:

ā(𝑢) = 3
4
√

2𝜋
1
𝑢3/2

(
Φ(𝑢1/2) − 𝐺 (𝑢1/2)

)
where


Φ(𝑢) = 2√

𝜋

∫ 𝑢

0 𝑑𝑥 exp
(
−𝑥2)

𝐺 (𝑢) = 1
2𝑢2

(
Φ(𝑢) − 𝑢 𝑑Φ(𝑢)

𝑑𝑢

)
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The functions 𝐾 provide smooth transitions between various collision regimes:

𝐾𝑟𝑖𝑝,𝐼 (𝑟, 𝑢) = min

(
𝐺′

0, 𝐺
′′
0

4
𝜋
I a★

𝑁𝑐𝑞

(
Y

𝛿

)3/2
ā(𝑢)
𝑢1/2

)
(A.9)

𝐾𝑡𝑜𝑟,𝐼 (𝑟, 𝑢) = min
(
1,

4
𝜋
Ia★ ā(𝑢)

𝑢1/2

)
with I = 1.38 (A.10)

𝐾𝑟𝑖𝑝,𝐼 𝐼 (𝑟, 𝑢) = 1 + 𝜋
2

8
a★(𝑁𝑐𝑞)2 ā(𝑢)

𝑢1/2 (A.11)

𝐾𝑠𝑡 (𝑟, 𝑢) =
(
1 + 1

√
𝜋

𝑚𝑣𝑡ℎ

𝑒𝐵0

(
𝑁𝑐𝑞

Y

)3/2
𝑑𝑞

𝑑𝑟
𝛿𝑢1/2

)−1

(A.12)

Where is defined the continuous functions min(𝑥, 𝑦) = 𝑥𝑦

𝑥+𝑦 .
The so-called form factors𝐺′

0, 𝐺′′
0 , 𝐺1, used to discriminate banana trapped particles and

magnetic wells, are given by the relations:

𝐺′
0(𝑟) =

∫
𝑌<1

𝑑\
2𝜋 𝛿

2(𝑟, \)
𝐺′′

0 (𝑟) =
∫
𝑌<1

𝑑\
2𝜋 𝛿

1
2 (𝑟, \)

𝐺1(𝑟) =
∫
𝑌<1

𝑑\
𝜋
𝛿

3
2 (𝑟, \) sin2 \

(A.13)

Where 𝑌 (𝑟, \) =
Y | sin \ |
𝑁𝑐𝑞𝛿

< 1 is the condition of existence of ripple-induced magnetic
wells.

The transition between neoclassic and stochastic regimes is considered through the
following limit in energy:

𝑢𝑐 =
𝑅0
8𝜋

(
𝑑𝑞

𝑑𝑟

)−1 (
𝑚𝑣𝑡ℎ

𝑒𝐵0

)−2
𝑞−5/2

𝑁
3/2
𝑐

Y3

𝛿
(A.14)

Appendix B. Specific methodology to retrieve 𝑘𝑉𝑇 and â𝜑 in GYSELA and NEO.

As the neoclassical theory gives the transport matrix, the quantity to compare between codes
and reduced model are the (𝑑𝑖 𝑗 ) coefficients in GYSELA and NEO which only depend on
𝛿/Y, a★ and 𝑁𝑐𝑞. Then, given the structure of Eq.2, one could determine those coefficients
if enough (𝐴𝑁 , 𝐴𝑉𝑇 , 𝐴𝑇 ) and (Γ𝑁 , Γ𝑉𝑇 , Γ𝑇 ) sets were known. In theory, only 3 sets would
suffice for a given (𝛿/Y, a★, 𝑁𝑐𝑞) set. However the least-square method used as linear solver
proved to be inefficient and would probably need more statistics. In addition, the benchmark
aims at verifying the range of validity of the theory for a wide range of ripple amplitudes and
collisionalities. As discussed below, obtaining a set (𝐴𝑁 , 𝐴𝑉𝑇 , 𝐴𝑇 , Γ𝑁 , Γ𝑉𝑇 , Γ𝑇 ) linked to one
combination of (𝛿/Y, a★, 𝑁𝑐𝑞) basically amounts to running one simulation. The number of
simulations required to retrieve all the matrix coefficient would then be enormous. Instead,
only the thermal drives 𝑘𝑉𝑇 , 𝑘𝑁 and 𝑘𝑉𝑃 (defined in Sec.3 are benchmarked.
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Figure B1: Magnetic braking force Γ𝑉𝑇 versus 𝐴𝑉𝑇 for different ripple amplitudes 𝛿. Each
point corresponds to a simulation with different initial toroidal velocity profiles and represents
the (𝐴𝑉𝑇 , Γ𝑉𝑇 ) retrieved at 𝑟/𝑎 = 0.5 after the GAMs at a★ = 0.1.

Appendix B.1. The GYSELA code

In GYSELA, the main difficulty lies in the boundary conditions that can add extra effects not
taken into account in the reduced model like orbit losses, momentum flux carried by waves or
scrape-off layer interactions. For this reason, a radially gaussian ripple, as used in Sec.5, is
considered. The radial location of interest is then chosen at 𝑟/𝑎 = 0.5. In GYSELA, (𝐴𝑉𝑇 , 𝐴𝑇 )
are inputs and Γ𝑉𝑇 is an output. The temperature gradient 𝐴𝑇 evolves slowly compared with
𝐴𝑉𝑇 and Γ𝑉𝑇 . In all simulations, 𝐴𝑇 is then fixed at the same value and only the initial 𝐴𝑉𝑇
profile is changed. This makes the numerical resolution even more simple and robust, as a
linear regression on Γ𝑉𝑇 (𝐴𝑉𝑇 ) gives a𝜑 and 𝑘𝑉𝑇 which are respectively associated to the slope
and intersection with the x-axis. A (𝐴𝑉𝑇 , Γ𝑉𝑇 ) set is retrieved after the GAM phase which is
here longer than a few collision times in each simulation, the characteristic time needed for
neoclassical effects to establish. This is illustrated in Fig.B1 obtained thanks to 16 simulations
with four different ripple amplitudes, four toroidal velocities, and a single a★ profile.

This exercise has been done for four collisionality profiles for a total of 48 gyrokinetic
simulations. All the input profiles are showed in Fig.B2.
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Figure B2: Initial radial profiles of the effective ripple amplitudes 𝛿/𝜖 (a), the collisionalities
a★ (b) and the normalized toroidal velocities 𝐴𝑉𝑇 (c) used for the scan.

Appendix B.2. The NEO code
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Figure B3: From NEO simulations: Equilibrium particle flux Γ𝑒𝑞 (a), magnetic braking
force M𝑒𝑞 (b) and mean toroidal velocity 𝑉𝑇,𝑒𝑞 (c) for different collisionalities a★ at fixed
𝛿/Y = 0.03/0.16 and 𝑁𝑐𝑞 = 16 × 1.4 over a wide range of 𝐴𝑇 .
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Figure B4: From NEO simulations: Magnetic braking force M (a) and the toroidal velocity
𝑉𝑇 (b) for different collisionalities a★ at fixed 𝛿/Y = 0.03/0.16 and 𝑁𝑐𝑞 = 16× 1.4. The value
of 𝑉𝑇 at 𝐴𝑇 for which M cancels is directly linked to the neoclassical thermal drive 𝑘𝑉𝑇 .

NEO is an Eulerian local code that solves the drift-kinetic equation with a linearized full
Fokker-Planck collision operator [33, 34]. It is considered as a reference code for neoclassical
predictions. The only approximation is the so-called drift-ordering 𝜌★ ≪ 1. As NEO is able
to handle non-axisymmetric flux surface (see [29] for more details), the following simulations
uses the same ripple perturbations used in GYSELA. NEO has to be benchmarked in similar
regime to GYSELA for the benchmark. This require zero particle flux Γ𝑁 = 0, as imposed by
the adiabatic electron response in GYSELA. However, contrary to the axisymmetric version,
here NEO does not enforce ambipolarity so that Γ𝑁 ≠ 0 in the general case. Notice that,
according to Eq.11 at equilibrium, the Γ𝑁 = 0 condition also imposes Γ𝑉𝑇 = 0, hence
𝑉𝑇 = 𝑘𝑉𝑇∇𝑇/𝑒𝐵𝑃 which is an output in NEO. It follows that, in such regime, this methodology
does not allow one to retrieve the neoclassical toroidal friction a𝜑 with NEO. To retrieve 𝑘𝑉𝑇 ,
one must first find an input set of (𝐴𝑁 , 𝐴𝑇 ) for which Γ𝑁 = 0. There is no quasi-neutrality
constraint in NEO, and consequently no onset of non-linearity, even small, due to the electric
potential as in GYSELA. For this reason, the relation between (𝐴𝑁 , 𝐴𝑇 ) and (Γ𝑁 , Γ𝑉𝑇 , Γ𝑇 ) is
linear in NEO. Taking advantage of this, 𝐴𝑁 is set at a constant value while a scan on 𝐴𝑇

is performed. The resulting outputs of interest, i.e. Γ𝑁 , Γ𝑉𝑇 and 𝐴𝑉𝑇 then exhibit a linear
dependency with respect to 𝐴𝑇 , cf Fig.B3. Note that this method could also have been done by
performing a scan on 𝐴𝑁 at fixed 𝐴𝑇 . The Γ𝑁 = 0 condition is then obtained by drawing the
Γ𝑁 (𝐴𝑇 ) line using a few points, each obtained with one simulation, and by retrieving the 𝐴𝑇
value that cancels the particle flux. At this value Γ𝑉𝑇 = 0 as expected and already discussed, so
the output toroidal velocity is equal to 𝐴𝑉𝑇 = 𝑘𝑉𝑇 𝐴𝑇 . This provides the value of 𝑘𝑉𝑇 . Fig.B4
illustrates this procedure, that is repeated for each a★ considered for a given ripple amplitude
𝛿.
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