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Abstract—The design of new methods and models when only
weakly-labeled data are available is of paramount importance in
order to reduce the costs of manual annotation and the consid-
erable human effort associated with it. In this work, we address
Sound Event Detection in the case where a weakly annotated
dataset is available for training. The weak annotations provide
tags of audio events but do not provide temporal boundaries. The
objective is twofold: 1) audio tagging, i.e. multi-label classification
at recording level, 2) sound event detection, i.e. localization of
the event boundaries within the recordings. This work focuses
mainly on the second objective. We explore an approach inspired
by Multiple Instance Learning, in which we train a convolutional
recurrent neural network to give predictions at frame-level, using
a custom loss function based on the weak labels and the statistics
of the frame-based predictions. Since some sound classes cannot
be distinguished with this approach, we improve the method
by penalizing similarity between the predictions of the positive
classes during training. On the test set used in the DCASE 2018
challenge, consisting of 288 recordings and 10 sound classes, the
addition of a penalty resulted in a localization F-score of 34.75%,
and brought 10% relative improvement compared to not using
the penalty. Our best model achieved a 26.20% F-score on the
DCASE-2018 official Eval subset close to the 10-system ensemble
approach that ranked second in the challenge with a 29.9% F-
score.

Index Terms—Sound event detection, weakly supervised learn-
ing, multiple instance learning, recurrent convolutional neural
networks

I. INTRODUCTION

With today’s technologies, large corpora of annotated audio

data are still required to train state of the art models such

as deep neural networks (DNN). This holds true in many

audio related applications, e.g. speech recognition, acoustic

scene classification and sound event detection (SED), the

topic covered in this article. In speech processing, a bunch

of research work has been devoted to design automatic tools

to process the so-called under-resourced or less-represented

languages [1], [2]. In the context of SED, low resource may

refer to different situations: a lack of audio data, a lack of

reference annotations created manually (ground truth labels),

the availability of partial annotations only. In this article, we

are concerned with this last situation where so-called weak

labels only are available. In SED, weak labels refer to ground

truth labels that describe a recording at a global level, with no

temporal information on the onset nor offset of audio events.

They are therefore opposed to strong labels that do provide

time boundaries. Weak labels are enough to build an audio

tagging (AT) system but innovative methods are required to

fulfill a SED task which consists in determining the temporal

location of target audio events.

With the availability of weakly-labeled large datasets such

as Audioset [3], comprised of Terabytes of audio extracts

from video along with audio tags produced by YouTube users,

the design of new models and methods to infer the missing

temporal boundaries of events has gained momentum recently.

In the recent literature, attention mechanisms are a popular

choice [4], [5]. In [4], for instance, a single DNN is trained on

a weakly-labeled dataset to perform both AT and SED. The

authors proposed an architecture where the fully-connected

output layer is duplicated with neuron units utilizing a sig-

moid function and counterparts utilizing a softmax activation

function that points out to which acoustic frames the model

should attend to make AT predictions.

A different approach is geared towards weakly-supervised

training and the Multiple Instance Learning (MIL, [6])

paradigm in particular, in which this work is based. MIL is

adapted to learning scenarios where the training examples are

ambiguous: they are arranged in sets called bags comprised

of both positive and negative instances of a class of interest.

This is the case most of the time in SED where an audio

recording is analyzed at short duration frames. An audio

event may occur in some but not all the acoustic frames of

a recording labeled as positive for the corresponding audio

event class. MIL has recently been used in SED [7], [8].

In our own recent work [9], we generalized to a multi-label

classification task a MIL-inspired loss function proposed for

binary classification in [8]. We trained a recurrent neural

network for the polyphonic SED task of the DCASE 2018

challenge [10]. While yielding interesting results, we noticed

that some classes were not distinguished by this approach. This

happens when two classes often occur simultaneously in the

training subset, impeding the model to distinguish between

them. To tackle this issue, we propose to introduce in the

learning objective function a similarity penalty between the

model predictions of the positive classes. We show in this

article that a cosine-similarity penalty forces the model to

output distinct class-specific temporal predictions. We apply

this approach on the DCASE 2018 challenge data (task 4)

and show that a penalized MIL objective brings a significant

 



performance gain and outperforms an attention-based model

of the same size.

This article is organized as follows. In Section II, we

describe the MIL framework and derived existing methods

applied to SED. We then introduce our contribution that

consists in adding a cosine similarity penalty to the MIL loss

function. We report our experiments in Section V, analyze the

results and discuss limitations.

II. MULTIPLE INSTANCE LEARNING

The Multiple Instance Learning or Multi-Instance Learning

(MIL) paradigm was first coined by Dietterich et al. [6] for

drug activity prediction. Their objective was to tackle what

they called the ”Multiple Instance Problem”, in which the

training examples are ambiguous: they are arranged in sets

called bags comprised of both positive and negative instances

of a class of interest. Since then, MIL has been studied,

adapted, and applied to many tasks involving weakly labeled

data. In [11], a survey dedicated to multiple-instance (binary)

classification, the author illustrates MIL with a clear example:

image classification. If the target class to be detected is

”beach”, then a positive image is one where both sand and

the sea appear in at least one region of the image. The other

regions of the image, such as the sky, mountains or trees are,

thus, negative instances.

In our case, weakly-supervised sound event detection, we

face exactly the same MI situation. Indeed, instead of im-

age regions as instances, we work with acoustic frames as

instances. In a given recording weakly labeled as Dog, some

acoustic frames will comprise dog barking and others will

not. Our end goal is to make predictions at frame-level, the

so-called ”strong” annotations, whereas the reference tags

available for training are ”weak labels” at file-level.

More formally, we may denote a recording X as a bag

comprised of T frames/instances: X = {x1, . . .xT}, where

the xi are feature vectors such as filter-bank coefficients,

for instance. We are provided with a weakly-labeled training

set of M bags together with their global labels y: T =
{(X1, y1), . . . , (XM , yM )}. In the case of binary classifi-

cation, we have y ∈ {0, 1}, whereas in our case, we are

concerned with multi-label classification where the y labels

are binary vectors of size the number of target classes C:

y ∈ {0, 1}C . Our goal is to estimate two classification

functions: one to infer weak labels ŷ and one to infer strong

labels ŷt at frame-level, where t is a frame index. For the

first one, the training set corresponds to the normal supervised

learning scenario, and a binary cross-entropy (binCE) loss can

be used, for instance, to train a neural network to fulfill the

task.

For the second objective, the MIL one, a straightforward

solution is the so-called ”False Strong Labeling” (FSL here-

after), in which one considers that all the frames/instances are

positive when a bag is labeled as positive: y = 1 ⇒ ∀t, yt = 1.

We will use FSL as our baseline method. Of course, this

strong approximation is suboptimal and MIL instead consists

in considering that at least one instance is positive. Therefore,

the highest scored instance in a bag should match the weak

label of its bag, either a negative or a positive label.

This idea may be formalized in the following form for

a given training example: maxt ŷtc = yc, where ŷtc is the

prediction score for frame t and class c, and yc the reference

tag for class c, either 0 or 1.

In order to train a neural network, we will then use a multi-

label binary cross-entropy loss between yc and maxt ŷtc, as

formulated in (1) for a given training bag k:

loss({Xk, ykc }) = binCE(ykc ,max
t

ŷ
k

tc
) (1)

This loss, that we will refer to as the MIL loss henceforth,

will be our baseline objective function.

Recently, in [8], the authors proposed a variant of this loss

function that they call a MIL MMM loss, where MMM stands

for Max, Mean and Min to denote the three terms that compose

their loss function. They noticed that the training of model with

a MIL objective function focuses only on the highest scored

frames and ignore the other ones. They proposed to add to

the ”max”-based term in the MIL loss formulation two extra

terms: one that takes into account the frames with the lowest

prediction scores (”min”), which should tend towards zero,

and another term (”mean”) to impose a 0.5 average value of

the model predictions throughout a recording. This last term

is based on the naı̈ve assumption that, in general, a specific

event will be present in half of the frames.

In one of our own submissions to the DCASE 2018 task

4, we successfully generalized this MMM loss to the multi-

label SED task with a C > 2 number of target classes [9]. In

the present work, we instead use the basic max MIL loss as

formulated in (1) as our baseline objective function. This is

for several reasons, we wanted: 1) to keep the loss function as

simple as possible, 2) to avoid potential unwanted interactions

between the different loss terms and/or the penalty that we

will introduce in the next section.

III. COSINE-SIMILARITY AS A PENALTY

As we shall see in the experiment section, there is an issue

with the MIL approach as formulated by the max MIL loss

function in (1). This issue is specifically related to multi-

label classification problems, where multiple classes occur in

a given bag. In this type of problems, if two classes almost

always co-occur in the training samples, there is no way for

the classification model to distinguish between them, and the

prediction scores for these two classes will be identical, or

rather, highly correlated. In the DCASE 2018 task 4 training

dataset in particular, the Dishes and Frying events co-occur in

most of the training samples: on the 170 examples of Frying,

only 30 examples feature Frying alone, all the others feature

either Dishes, Speech or both. As we will report hereafter,

the predictions for Dishes and Frying are highly correlated,

although these two sounds are very distinct in nature: Dishes

corresponds to very short percussive sounds between dishes

and cutlery whereas Frying are noisy long sounds that last the

whole 10-s recordings. As a result, very poor accuracy was

 

  



Fig. 1. Overview of the proposed system. C: number of target classes, T : number of acoustic frames.

found for Dishes confused with Frying. This did not happen

with Speech since there are many more training examples for

this class, and although speech never occur alone, speech co-

occur with all the other target classes, guarantying enough

variability to properly model Speech.

In order to remedy this issue, we propose to introduce an

additional term in (1) to penalize the similarity between the

frame-level prediction scores of the different target classes.

This penalty takes the form of the cosine similarity measure

between the scores predicted for the positive classes only. We

do not penalize the similarity the negative classes’ predictions

since they all are expected to show low values constant in time,

and, thus, are expected to be very correlated. We also chose to

penalize positive similarity values only. The new loss function

definition is given in (2) for a given class c = 1, 2, . . . , C and

a given bag for which we omit the k index for ease of reading:

loss({X, yc}) = binCE(yc,max
t

ŷtc)

+ α yc

C∑

l 6=c

yl max(0, cos(ŷ:l, ŷ:c)) (2)

where α is a regularization weight, yc and yl the weak

groundtruth binary labels for classes c and l, and ŷ:l, ŷ:c the

probability vectors for classes c and l, where ”:” denotes the

frame varying index. Indeed, the cosine similarity is computed

by taking the dot product along the time axis:

cos(ŷ:l, ŷ:c) =
ŷT

:l
· ŷ:c

‖ŷ:l‖ ‖ŷ:c‖
(3)

IV. SYSTEM DESCRIPTION AND EVALUATION

Figure 1 shows our proposed approach. It is based on two

convolutional (recurrent) neural networks (CNN/CRNN): a

CNN for audio tagging (top branch in the figure), trained

with the binary cross-entropy loss, a CRNN for SED (bottom

branch in the figure), trained with our custom MIL loss with

and without the cosine penalty. The audio tagging network

outputs a vector of binary predictions ŷ ∈ {0, 1}C whereas the

SED one outputs a matrix of scores S of size T ×C, where T

and C are the number of acoustic frames and the number of

classes, respectively. The binary predictions ŷ are obtained

using class-dependent thresholds that have been optimized

with a genetic algorithm inspired by simulated annealing [12].

This method reaches optimal values much faster than grid

search.

The two networks share a similar architecture, which will be

described in details in Section V. The first part of the networks,

the feature representation block, has the same architecture: re-

peated blocks comprised of convolution, batch-normalization,

activation function (REctifier Linear Unit, ReLU), pooling

and dropout layers. The main difference lies in the head of

the networks. The AT network uses fully-connected decision

layers with sigmoid as activation function of the output layer’s

units, as is standard for multi-label classification. For SED, we

instead use a bi-directional Gated Recurrent Unit (GRU) layer

followed by a ”time-distributed” dense layer comprised of C

units, in order to obtain temporal predictions in the form of

the score matrix S.

We tested an alternative regarding the representation extrac-

tion part of the SED network by replacing the ReLU activation

by a trainable gated linear unit (GLU) that has been first

introduced for language modeling [13] and successfully used

for AT and SED [4]. GLU introduces an attention mechanism

to all the convolution layers by controlling the amount of

information of the data flow between layers. The input time-

frequency representation or the intermediate feature maps from

a given convolution layer are passed through two convolution

layers in parallel, one with a linear activation and one with a

sigmoid activation. They are then element-wise multiplied to

each other. The sigmoid branch acts as a forget gate and allows

the network to learn on what time-frequency sub-regions to

attend to fulfill the task at best. It is worth noting that replacing

ReLU by GLU doubles the size of the model in terms of

number of trainable parameters.

Once audio tags and temporal predictions are obtained, we

only keep the temporal predictions of the classes detected as

positive by the audio tagging network. Then, they are rescaled

 

  



to the [0, 1] interval and smoothed with a sliding-average

window. The final segments are obtained by using a single

threshold for all the classes to detect the onsets and offsets

of the events. We tested more complicated methods to derive

these event segments such as hysteresis thresholds, which lead

to slightly better results, but these methods require some tuning

and we preferred to stick to a very simple threshold method

for fair comparison between our approaches.

Since this work focuses on the event localization part of

the task and not much on audio tagging, we used the same

audio tag predictions in all our tests, for the sake of fair

comparison between the SED models. We ran our best audio

tagging model once and used its tag predictions for all our

localization models.

Besides comparing the performance of SED models trained

with and without the cosine penalty, we also trained a baseline

model with ”False Strong Labels” (FSL), a model with the

same architecture as the SED CRNN. As written earlier,

this baseline consists in considering that the strong labels

correspond to the weak labels, meaning that if there is the

Dog tag for a file, then all the acoustic frames of this file are

considered positive in regards to the Dog class.

We also tested a model similar to the DCASE 2017 winning

solution based on GLUs [4]. In this approach, that we will

refer to as the ATT model (ATT for attention), a single

DNN is trained on a weakly-labeled dataset to perform both

AT and SED. The authors proposed an architecture where

the fully-connected output layer is duplicated with neuron

units utilizing a sigmoid function and counterparts utilizing a

softmax activation function that points out to which acoustic

frames the model should attend to make AT predictions. Sig-

moid allows for multi-label sound classification and softmax

is responsible for pointing out to which acoustic frames the

model should attend to make AT predictions. The softmax

layer, thus, performs event localization.

Finally, performance was assessed in terms of an event-

based metric with a 200 ms collar on onsets and a 200 ms/20%

of the events length collar on offsets. This metric is a F-

measure, called F-score hereafter, that was proposed and used

in the framework of the DCASE task 4 challenge [14].

V. EXPERIMENTAL SETUP

A. Audio material

In this work, we used the data from the DCASE 2018 Task 4

challenge [14] and more precisely the labeled in-domain set.

The corpus is comprised of 10-second clips extracted from

Youtube user videos and are part of the Audioset corpus [3].

The recordings most often contain several overlapping event

categories. The audio events correspond to a set of 10 sound

categories occurring in domestic environments: Speech, Dog,

Cat, Alarm/Bell ringing, Dishes, Frying, Blender, Running

water, Vacuum cleaner, and Electric shaver/toothbrush.

We use the weakly-labeled training subset of 1578 clips

(2244 class occurrences, 4.4h of audio data), for which the

weak annotations (audio tags) have been verified and cross-

checked manually, and the test subset comprised of 288

files for which strong labels are available. We will report

performance results on this subset, which is different from

the challenge evaluation set that is not publicly available.

We used 20% of the training set as a development set in

order to set hyperparameters such as the number of epochs,

the learning rate, etc.

B. Audio features

As input to the networks, 64 log-Mel filter-bank (F-BANK)

coefficients were extracted every 23 ms on 100 ms duration

frames, with 20 Hz and 11025 Hz as minimum and maximum

frequency values to compute the Mel bands, respectively.

Hence, for each 10-second file, a 431×64 matrix is extracted.

This matrix is used as a single input image fed to the networks.

Different normalization and feature scaling methods were

tested as pre-processing such as global mean removal, mean

and variance standardization, but no gains were observed

compared to using raw F-BANK.

Fig. 2. Architecture of the audio tagging and SED Networks.

C. Neural networks and post-processing

As stated in Section IV, we used two networks, one for AT,

one for SED. They architecture is shown in Figure 2.

The two networks share a similar feature representation

extraction part: three convolution blocks, each comprised of

64 filters (3x3) followed by batch-normalization, a Rectifier

Linear Unit (ReLU) activation function and max-pooling (4)

along the frequency axis only.

In the case of the AT model, we used 2-d spatial dropout

(p=20%), which means that a percentage of entire feature maps

are randomly set to zero instead of isolated pixels as in the case

of standard dropout. Spatial dropout is recommended when the

 

  



TABLE I
GLOBAL MACRO AND CLASS-WISE SED F-SCORES ON THE TEST SUBSET. FSL: FALSE STRONG LABELING, ATT: ATTENTION-BASED AT AND SED

MODEL. +cos: GLU-MIL TRAINED WITH THE COSINE PENALTY, +AT oracle: GLU-MIL+COS WHEN USING THE GROUND TRUTH AUDIO TAGS INSTEAD

OF PREDICTED ONES. STD: STANDARD DEVIATION. 1-BEST: BEST MODEL.

Approach FSL ATT MIL GLU-MIL +cos +cos (1-best) +AT oracle +AT oracle (1-best)

F-score (%) 15.27 16.80 28.90 30.15 31.50 34.75 37.93 42.39
Std (F-score) (%) 1.95 0.79 1.83 2.36

Alarm / bell / ringing 2.5 15.8 32.9 34.6 32.8 38.4 36.2 43.3
Blender 10.7 14.0 20.6 20.7 27.4 26.4 49.7 49.5
Cat 3.3 3.2 49.3 45.6 47.3 53.2 47.3 54.4
Dishes 0.0 18.0 0.0 0.0 4.1 16.0 6.1 25.1
Dog 2.4 9.9 16.4 27.4 28.6 26.7 31.8 29.4
Electric shaver / toothbrush 40.9 13.5 27.8 30.9 37.8 41.7 37.7 41.9
Frying 30.6 14.9 27.8 34.1 27.0 31.2 40.8 45.9
Running water 8.2 14.7 14.9 13.1 13.7 15.4 20.9 22.5
Speech 0.0 36.0 36.6 35.8 37.0 38.4 36.8 38.4
Vacuum cleaner 54.3 28.0 62.7 59.2 59.3 60.3 72.0 73.4

TABLE II
RESULTS ON THE EVAL SUBSET OF THE MODELS THAT PERFORMED BEST ON THE TEST SUBSET. THE TWO FIRST RANKED TEAMS’ PERFORMANCE ARE

SHOWN IN THE LAST TWO COLUMNS.

Approach Official Baseline MIL GLU-MIL GLU-MIL+cos JiaKai [15] Liu [16]

F-score (%) 10.8 18.86 22.60 26.20 32.4 29.9

Alarm / bell / ringing 4.8 30.1 29.0 30.4 49.9 46.0
Blender 12.7 28.8 23.3 27.7 38.2 27.1
Cat 2.9 22.8 28.7 30.3 3.6 20.3
Dishes 0.4 1.0 0.0 19.0 3.2 13.0
Dog 2.4 20.1 19.8 20.9 18.1 26.5
Electric shaver / toothbrush 20.0 7.7 6.2 19.1 48.7 37.6
Frying 24.5 0.0 27.6 21.2 35.4 10.9
Running water 10.1 17.9 13.3 13.2 31.2 23.9
Speech 0.1 36.7 37.6 35.0 46.8 43.1
Vacuum cleaner 30.2 23.5 40.6 45.2 48.3 50.0

input data presents high local correlations. Our preliminary

AT experiments tended to show slight improvements thank to

spatial dropout but this would need to be further explored and

this is not the focus of the present work. No dropout was

used in the convolution blocks of the SED model as we found

slight decrease in performance when using it. To prevent from

overfitting, we train the SED model for ten epochs only. In

any case, the loss function curves show a plateau after around

seven epochs.

For the AT model, the last convolution block is followed

by 2-d average- and 2-d max-global pooling layers (GAP and

GMP), then by a dense one with 1024 units, dropout (p=20%)

and a 10-unit dense output layer with sigmoid activation.

In our preliminary tests, this network was found to perform

slightly better than a model using a recurrent layer. It yielded

85.84% and 82.86% f1-scores on our training and validation

subset (proportion: 80/20 % of the weakly labeled training

set).

For the SED model, the feature representation block is

followed by one bi-directional recurrent layer in the form of 64

Gated Recurrent Units GRU with 10% dropout on the input

and on the recurrent states, a tanh activation function, then

a time-distributed dense layer of 64 units with 10% dropout

on the input, followed by a second and final output dense

layer comprised of 10 units with sigmoid activation. This

architecture outputs temporal predictions in the form of a

matrix of dimension 431×10 as described earlier. The number

of trainable parameters is about 100k weights. When using

GLUs, this number doubles to 200k weights.

All the models are trained on weak labels for 100 epochs

for the AT, FSL and ATT models with early stopping after

15 epochs patience with a minimum loss difference threshold

of 1e−4. The MIL-based models were trained for ten epochs

only. We used the Adam optimizer with default parameters.

Regarding the cosine penalty, we will report results obtained

with an α = 0.1 regularization weight. This value was found

by carrying out a coarse grid search.

The score curves are individually rescaled to [0, 1]. The

final event segments are obtained by first smoothing the score

curves with a moving-average filter of size 19 frames. Second,

the curves are binarized with a 0.03 threshold. Neighbor

segments are merged when separated by less than 200 ms,

which is the tolerance margin used for evaluation. Source code

in Keras with Tensorflow as backend is available online1.

1https://github.com/topel/ijcnn19 submission

 

  



VI. RESULTS

A. Results on the test subset

The audio tagging CNN achieved 77.2% AT macro F-score

on the test subset. The best recognized class is Speech (91%

F-score) and the least well recognized ones are Dishes and

Blender (60% F-score). In the case of Dishes, recall is low

(53%) indicating that the model misses occurrences, whereas

for Blender, recall and precision scores are similar.

As described here-above, for the SED experiments reported

here-after, we only consider the temporal predictions of the

classes detected by the AT network. The impact of AT errors

on SED performance will be assessed by using the ground

truth weak labels of the test subset (oracle system) instead of

the error-prone AT predictions.

Table I shows the localization performance results on the

test subset in terms of F-score for the FSL baseline, ATT

and our MIL-based approaches. For each of the latter, we

trained ten models and show the averaged global F-scores with

standard deviation and the averaged class-wise F-scores. We

also show the F-scores obtained by the best model (1-best)

out of the ten ones trained with the penalty (+cos).

FSL achieved a 15.27% F-score and class-wise results sim-

ilar to the FSL baseline provided by the challenge organizers

that yielded 14.06% F-score [14]. By observing the duration

distributions for each class [14], it appears that, as expected,

FSL achieves very poor results for short duration events,

namely Alarm/bell/ringing, Cat, Dishes, Dog, Speech, and bet-

ter results for long events that last the whole 10-s recordings,

namely Blender, Electric shaver/toothbrush, Frying, Vacuum

cleaner, and to a less extent Running water, which has a more

uniform duration distribution. This is of course due to over-

generalization since the FSL model is trained with weak labels

converted as strong labels and, thus, many negative frames are

wrongly considered as positive for short events.

Basic MIL models (MIL column in Table I) outperformed

the FSL baseline by a large margin mainly by achieving better

results on short duration events. For example, FSL and MIL

yielded 3.3% and 49.3% F-scores for Cat, respectively. MIL

also outperformed the attention model ATT that yielded a

16.80% F-score only. It should be noted that we used the same

audio tag predictions as with the other models for the sake of

fair comparison. As a side information, the attention model

also led to poor performance in AT with 68.2% F-score. This

AT score indicates that strong overfitting occurred. These low

performance in both AT and SED are surprising given that the

authors reached much better figures with this kind of approach

in the 2017 DCASE edition on the same task [4]. This could

be explained by the fact that here we used a much smaller

model with a number of parameters comparable to the GLU-

MIL models for the sake of fair comparison. Other differences

with their work are feature standardization on each frequency

bin and mini-batch data balancing that are not used in our

work. It is notable, though, that ATT reached a 18% F-score

for Dishes.

The GLU-MIL column in the table gives the averaged per-

formance of ten CRNNs where GLU replaces ReLU after all

the convolution layers. As can be seen, GLUs further improved

performance of MIL by reaching 30.15%±0.79% global F-

score. This confirms the interesting impact of introducing an

attention mechanism in the network architecture. Nevertheless,

Dishes is not detected at all. Adding the cos penalty to GLU-

MIL did not significantly improve overall performance but

allowed Dishes’ score to rise from zero achieving a 4.1%

value and even a 16% with the best model out of ten (1-best).

The latter achieved a 34.75% F-score. By way of comparison,

the system ranked first in the competition achieved a score of

25.9% on the same subset [15]. Not all the +cos models had a

positive score for Dishes showing that training with the penalty

does not always ensure the removal of the Dishes/Frying

confusion. There is room for improvement regarding this point.

The second last column shows the averaged results of the same

GLU-MIL+cos models but when AT predictions are replaced

by the ground truth tags: GLU-MIL+cos+oracle. In this case,

errors are only due to the SED models. F-score increased by

about 20% relative compared to GLU-MIL+cos and reached

a 37.93%±2.36% topline value showing that AT errors have

a great impact on the final SED performance. Finally, the last

column shows the 1-best model performance and a 42.39%

topline value.

B. The cosine penalty tends to decorrelate the predictions

It is remarkable that FSL, MIL and GLU-MIL completely

fail for Dishes. By observing the localization predictions, it

appears that Dishes and Frying are not distinguished. In the

training subset, about 46% of the Dishes samples also contain

Frying. There are even more files featuring Dishes and Speech,

namely 52%, and 32% with the three classes together. Dishes

is not confused with Speech probably because there are many

more Speech files than Dishes files: 550 versus 184 files.

To illustrate the Dishes/Frying confusion, we plotted

an example in Figure 3. In the left-hand side plot,

we plotted the smoothed and rescaled probability curves

obtained with GLU-MIL for a test file example (id:

Y5J603SAj7QM 210.000 220.000). Three curves are shown,

for Speech (in blue, dotted line), Dishes (in red, dashed

line) and Frying (in green, plain line). We also represent the

groundtruth segments with transparent rectangles of the same

colours as the curves. As expected, in the left figure, Dishes’

and Frying’s curves are almost identical and they share a very

high Pearson correlation coefficient of 87%.

The right-hand side figure shows the same curves when

training a GLU-CRNN with the penalty: GLU-MIL+cos. This

time the two curves are completely different with a negative

(-20%) correlation value. Clear peaks match the true Dishes

segments. The cosine similarity penalty played its decorrelat-

ing role and improved the detection of Dishes.

To measure this effect on all the classes, Figure 4 illustrates

the Pearson correlation coefficients between the predictions of

the ten classes computed on the test subset, obtained by two

models trained with the MIL-max loss: without penalty (left-

 

  



Fig. 3. Prediction curves of the true positive classes: Speech (in blue, dotted line), Dishes (in red, dashed line) and Frying (in green, plain line), for the
Y5J603SAj7QM 210.000 220.000 test file. Left: when using MIL without penalty, Right: with penalty. The groundtruth is indicated as segments coloured
with the same class colours as the prediction curves. The true Frying segment, in light green, lasts the whole 10 seconds.

Fig. 4. Pearson correlation coefficients between the ten classes predictions computed on the test subset, obtained by two models trained with the MIL loss.
Left: without penalty, Right: with penalty. The correlation between Dishes and Frying is greatly reduced when using the penalty: from 96% to 14%.

hand side), with penalty (right-hand side). Without penalty,

some classes are pretty correlated, such as Dog and Cat,

Blender and Vacuum cleaner. A 96% correlation appears for

Dishes and Frying meaning that the two classes are almost

undistinguished. This correlation is greatly reduced to a 14%

value as can be seen in the right-hand side figure. Overall,

when averaging all the positive correlations of these matrices,

the global correlation value reduces from 12.6% to 6.2%

between the two models.

C. Results on the Eval subset

Table II shows the results on the official evaluation subset

of DCASE 2018 obtained with our systems MIL, GLU-MIL

and GLU-MIL+cos, together with the ones of the two best

ranked systems: JiaKai [15] and Liu et al [16]. For our

models, we report performance of single models, namely

the ones that performed the best on the test subset. The

GLU-MIL+cos approach outperforms our other MIL models

with a 26.20% F-score. This system would rank third in the

competition2 (team ranking) as the first two systems reached

32.4% [16] and 29.9% [15] F-scores. The first one used a

semi-supervised approach where the unlabeled in-domain data

were automatically labeled and added to the training subset.

This system is a CRNN based on a mean-teacher learning

procedure. In the present work, we did not explore the use of

the unlabeled data, this remains for future work. Regarding the

system ranked second, it consists of an ensemble of ten models

trained in a strongly-supervised way: a threshold-based event

activity detector was used to strongly annotate the weakly-

annotated subset.

VII. DISCUSSION

With these results and observations, we showed that MIL is

an effective paradigm to handle multi-label SED in a weakly-

2http://dcase.community/challenge2018/

Cosine-similarity penalty to discriminate sound classes in weakly-supervised sound event detection

 



supervised setting and that the cosine penalty increases the

discriminative power of the network.

Penalizing the inner product between the score vectors of

the positive classes tends to force events to not overlap. This

effect is visible in the right-hand side plot in Fig. 3: the Dishes

peaks (red) are in phase with sharp decreases of the Frying

scores (green). In the Speech segment also (in blue), the Frying

and Dishes curves decreased to zero and only the Speech blue

curve has large values although the model should also predict

Frying in that segment. This is a drawback of using this penalty

in cases where different events overlap.

However, in our experiments on this specific dataset, this

effect is globally positive. The accumulated duration of over-

lapping events in the test subset totals 3.81 min whereas it

reaches 11.82 min in the GLU-MIL predicted segments. Using

the penalty, this value significantly decreases to 7.66 min and

even 5.51 min with +oracle, a value close to 3.81 min.

Instead of penalizing colinear predictions, a possibility

would be to penalize the similarity between the prediction dis-

tributions, for example with the Kullback-Leibler divergence.

VIII. CONCLUSION

In this paper, we proposed to tackle weakly-supervised SED

through the Multiple Instance Learning paradigm. Although

effective, an issue was observed due to the use of MIL in

a multi-label context: the model is not able to distinguish

between sound classes that most often occur simultaneously in

the training subset. We enhanced a baseline MIL loss function

by introducing a cosine similarity penalty between the score

outputs of a convolutional recurrent neural network.

Experiments conducted on the data set of Task 4 of the

DCASE 2018 challenge led to the following conclusions:

• MIL is an effective paradigm to handle multi-label

SED in a weakly-supervised setting with very different

types of sounds (short and long sounds, noisy and har-

monic/voiced sounds),

• the cosine penalty significantly increases the discrimina-

tive power of the network by decorrelating the temporal

predictions of the different classes. It seems to lead to a

more balanced performance of the individual classes.

Our experiments also confirm recent results in the literature

that the introduction of an attention mechanism in the form of

Gated Linear Units allows significant performance gains.

Limitations were described. In particular, although it has

a global positive impact on the results, we observed that

penalizing the inner product of predictions tends to ensure that

events do not overlap. This is a drawback for SED since events

often co-occur, in particular in the case of a continuous sound

such as Running water or Frying, other sound events can occur

simultaneously. A future avenue for research will be to explore

penalties on prediction distributions rather than directly on pre-

dictions. The Kullback-Leibler divergence, for example, could

be a good candidate for such a penalty. Another improvement

in our method would be to achieve the same performance

but using a single neural network. Finally, another research

direction is the use of semi-supervised approaches to turn the

MIL approach more robust to unseen recordings. This could

take the form of a mean-teacher learning strategy as the one

used by the first ranked team, for instance.
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