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ABSTRACT

Although the life-cycle of tropical cyclones is relatively well understood,

many of the underlying physical processes occur at scales below those re-

solved by global climate models (GCMs). Projecting future changes in trop-

ical cyclone characteristics thus remains challenging. We propose a method-

ology, based on dynamical system metrics, to reconstruct the statistics of cy-

clone intensities in coarse-resolution datasets, where maximum wind speed

and minimum sea-level pressure may not be accurately represented. We base

our analysis on 411 tropical cyclones occurring between 2010 and 2020, using

both ERA5 reanalysis data and observations from the HURDAT2 database, as

well as a control simulation of the IPSL-CM6A-ATM-ICO-HR model. Using

ERA5 data, we compute two dynamical system metrics related to the num-

ber of degrees of freedom of the atmospheric flow and to the coupling be-

tween different atmospheric variables, namely the local dimension and the

co-recurrence ratio. We then use HURDAT2 data to develop a univariate

quantile–quantile bias correction conditioned on these two metrics, as well

as a multivariate correction method. The conditional approach outperforms a

conventional univariate correction of the sea-level pressure data only, pointing

to the usefulness of the dynamical systems metrics introduced. We then show

that the multivariate approach can be used to recover a realistic distribution of

cyclone intensities from comparatively coarse-resolution model data.
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1. Introduction44

Tropical cyclones are among the most devastating natural disasters, often causing fatalities and45

extensive economic damage (Smith and Katz 2013; Grinsted et al. 2019). They include several46

collateral hazards that can have significant impacts on people and property, such as rogue waves,47

flooding, extreme winds, and tornadoes. Combined, these weather events interact to increase the48

likelihood of loss of life and extensive property damage. The bulk of costs related to tropical49

cyclones stems from the few, most intense episodes (Emanuel 2021): thus, it is crucial to model50

such cyclones correctly. Unfortunately, even state-of-the-art global and regional climate models51

struggle to reproduce the dynamics of the most severe tropical cyclones (Camargo and Wing 2016;52

Roberts et al. 2020b). This is mainly due to their insufficient resolution, as a grid spacing of the53

order of few kilometers is needed to model intense cyclones (Rotunno et al. 2009; Moon et al.54

2020). Downscaling techniques can be employed to alleviate this issue, but their use is limited by55

computational costs; furthermore, different downscaling approaches can lead to diverging conclu-56

sions (e.g., Caron et al. 2011; Lee et al. 2020; Knutson et al. 2020; Emanuel 2021). The situation is57

complicated by the reduced length of records in available tropical cyclone data sets, which mostly58

rely on satellite data not available before the ’80s (Chang and Guo 2007): this limitation hin-59

ders the emergence from decadal variability of significant changes in tropical cyclone properties60

(Knutson et al. 2019).61

While mid-latitudes synoptic dynamics mostly originate from the chaotic structure of the mo-62

tions associated with baroclinic instability (Lorenz 1990; Schubert and Lucarini 2015), tropical63

cyclones are characterized by a rapid organization of convectively unstable flows whose dynamics64

is turbulent and highly sensitive to boundary conditions (Muller and Romps 2018; Carstens and65

Wing 2020). Here, we investigate whether it may be possible to exploit this high level of flow66
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organization to obtain reliable statistics of intense tropical cyclones from relatively coarse-gridded67

atmospheric data. To achieve this, we compute two metrics that describe cyclones as states of a68

chaotic high-dimensional dynamical system. The first, d, reflects the dimension (i.e. the num-69

ber of active degrees of freedom) of an instantaneous state of the cyclone. The second, α , is70

a proxy for the instantaneous coupling between different atmospheric variables. These metrics71

have recently provided insights on a number of geophysical phenomena, including transitions be-72

tween transient metastable states of the mid-latitude atmosphere (Faranda et al. 2017; Hochman73

et al. 2021), drivers and predictability of extreme events (Hochman et al. 2019; De Luca et al.74

2020; Faranda et al. 2020), palaeoclimate attractors (Brunetti et al. 2019; Messori and Faranda75

2021) slow earthquake dynamics (Gualandi et al. 2020) and changes in mid-latitude atmospheric76

predictability under global warming (Faranda et al. 2019). A benefit over previous dynamical sys-77

tems approaches (e.g Wolf et al. 1985; Cao 1997), is that these metrics can be easily applied to78

computationally demanding datasets, such as climate reanalyses or climate models.79

Applications of d and α in the literature have used a Eulerian approach over a fixed spatio-80

temporal domain, rather than tracking the evolution of specific physical phenomena. Here, we81

apply for the first time the two metrics in a semi-Lagrangian perspective to characterize the struc-82

ture of tropical cyclones in the d−α phase-space. A semi-Lagrangian dynamical systems frame-83

work is particularly convenient to study the complex behavior of convectively unstable flow sys-84

tems (Crisanti et al. 1991; Vulpiani 2010), such as tropical convection. The signature of intense85

cyclones propagates through scales due to the presence of inverse cascades as suggested by Levich86

and Tzvetkov (1985) and, more recently, by Faranda et al. (2018); Dunkerton et al. (2009); Tang87

et al. (2015). Such inverse cascades are associated with potential–kinetic energy conversions and88

are particularly notable for intense storms (Bhalachandran et al. 2020). Such energy conversions89

are related to the deep convection in the eyewall, that redistributes to the upper troposphere the90
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enthalpy gained thanks to surface heat fluxes in the boundary layer: this local process contributes91

to the generation of the storms’ warm core and, ultimately, to wind intensification at the larger,92

sub-synoptic scale of the storm (Emanuel 1986). We hypothesise that these exchanges have a93

signature in both the large-scale horizontal velocity and potential vorticity fields, which are rea-94

sonably well-represented in coarse simulations or reanalyses. If this indeed holds, it would enable95

a correction conditioned on d and α of cyclone intensity statistics in datasets where we cannot96

explicitly access the spatial scales underlying the dynamics of intense tropical cyclones.97

We base our analysis on best track cyclone data from the HURDAT2 database, which we take98

as ground truth, ERA5 reanalysis data and a high-resolution global climate model simulation. We99

compute the two dynamical systems metrics using the kinetic energy uv and the potential vorticity100

field PV at the 850 hPa level. The rationale for using these variables follows the works of Peng101

et al. (2012) and Fu et al. (2012). The 850 hPa level is chosen because it lies in-between the102

planetary boundary layer and the middle troposphere, where most of the potential–kinetic energy103

conversions occur in tropical cyclones (Camargo et al. 2007). The horizontal kinetic energy104

uv is relevant to the study of tropical cyclones because of its direct connection with the wind105

speed and with the phases of rapid intensification/decay of the cyclones (Krishnamurti et al. 2005).106

Lower-tropospheric vorticity is frequently used to detect tropical cyclone seeds and relates to their107

intensification (Davis et al. 2008; Ikehata and Satoh 2021), and PV integrates this knowledge by108

taking implicitly into account the strength of the warm core, which is related to the vertical stability109

of the cyclone eye.110

Our study is organized as follows: first, we describe the data, variables for cyclone dynamics111

and the theoretical bases supporting the computation of the dynamical system metrics. Then, we112

show the general characteristics of the phase space of tropical cyclones in reanalysis data for the113

different variables, and use these to define a quantile–quantile correction approach for cyclone in-114

6



tensities conditioned on the two dynamical systems metrics. The correction is performed on ERA5115

reanalysis, using sea-level pressure (SLP) from HURDAT2 as ground truth. We then conduct an116

out-of-sample test comparing this approach to an unconditional quantile–quantile correction. Fi-117

nally, we test this correction on data from a GCM.118

2. Data119

a. HURDAT2 tropical cyclone data120

We follow 197 North Atlantic and 214 Eastern North Pacific tropical cyclones that occurred121

between 2010 and 2020, using the HURDAT2 Best Track Data (Landsea and Franklin 2013). We122

use six-hourly information on the location and central pressure of the cyclones, as well as their123

time of landfall.124

b. Representation of tropical cyclones in ERA5 data125

We base our analysis on instantaneous1 uv = u2 + v2, SLP and PV at 850hPa from the ERA5126

reanalysis (Hersbach et al. 2020), sampled every 6h and additionally whenever the HURDAT2127

database displays a cyclone landfall entry – corresponding to a shift in the cyclone dynamics. The128

horizontal resolution of the data is 0.25◦. We also make use of ERA5 data coarse-gridded to a129

0.5◦ horizontal resolution using a nearest neighbour approach. In the vast majority of cases, the130

SLP difference in the four ERA5 gridpoints around the cyclone core is 1 hPa or less. Using a131

nearest neighbour approach thus provides similar results to other coarse-graining approaches. The132

coarse-grained dataset will be hereinafter referred to as ERA5 cg, and will be used to evaluate133

the sensitivity of our conclusions to the resolution of the dataset. When comparing ERA5 to134

1We follow here ECMWF’s terminology, see: https://confluence.ecmwf.int/pages/viewpage.action?pageId=82870405ERA5:datadocumentation-

Table9
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HURDAT2, we search for the SLP minimum in ERA5 within a region of 5◦ of the HURDAT2135

cyclone location.136

There is often a large discrepancy between the minimum SLP reported in HURDAT2 and that in137

ERA5 (Fig. 1a,c). Especially for the most intense cyclones, ERA5 systematically underestimates138

minimum SLP. The biases are larger in the Eastern North Pacific than in the North Atlantic basin139

(cf. Fig. 1a and 1c). This affects the capability of ERA5 to accurately assign each tropical cyclone140

to the appropriate Saffir-Simpson category (Simpson and Saffir 1974), which we here use relative141

to SLP rather than maximum sustained wind (see Table 1. Indeed, recent research argues that142

SLP is more closely related to cyclone damage than maximum sustained winds (Klotzbach et al.143

2020). In particular, ERA5 has a negative bias in the number of tropical cyclones stronger than144

category 2, namely min(SLP)<980 hPa. While this bias is present in both the North Atlantic and145

Eastern North Pacific basins, in the latter the biases for the most intense cyclones appear more146

severe: this might be due to the more intermittent aircraft reconnaissance activity in that basin147

with respect to the North Atlantic (Knaff et al. 2021). The coarse-graining operation does not148

notably affect the distribution of cyclone SLP minima (Fig. 1b, d), likely because of the above-149

mentioned weak SLP variations in the ERA5 dataset in the gridboxes immediately surrounding the150

cyclone core. We underline that the two ERA5 horizontal resolutions used here are of the same151

order of magnitude as those of the HighResMIP (High Resolution Model Intercomparison Project,152

Haarsma et al. 2016) and PRIMAVERA models, which are amongst the current best tools to study153

climate change impacts on tropical cyclones (Roberts et al. 2020a).154

c. Representation of tropical cyclones in IPSL-CM6A-ATM-ICO-HR model data155

We use 6-hourly data from the IPSL-CM6A-ATM-ICO model at a horizontal resolution of 0.5◦.156

The simulation we use is a HighResMIP (Haarsma et al. 2016) run lasting for 64 years (1950-157
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2014). We use the TC tracking algorithm from Ullrich et al. (2021). We additionally remove158

tracks starting at latitudes above 30◦, to minimise incorrect classification of extratropical lows as159

tropical systems.160

The model produces a total of 327 tropical cyclones in the North Atlantic and 989 in the Eastern161

North Pacific (defined following Knutson et al. 2020). Among them, 150 are randomly sampled162

for each basin, which is deemed a sufficiently large statistical sample for our analysis. The total163

number of cyclones reproduced by the IPSL-CM6A-ATM-ICO-HR model is in line with that of164

other HighResMIP models (cf. Roberts et al. 2020b).165

Much like ERA5, the model has a systematic bias in the minimum SLP of the cyclones. A166

comparison of the distribution of HURDAT2 SLPs with those in the model and in the ERA5 and167

ERA5 cg data (Fig. 1b, d), suggests that current state-of-the-art GCMs and ERA5 both encounter168

difficulties when it comes to representing the intensity of tropical cyclones (Kim et al. 2018).169

Specifically, all three datasets have a sparsely populated left tail of the minimum SLP distribution170

and, especially for the North Atlantic basin, a different mode when compared to HURDAT2.171

3. A dynamical systems view of tropical cyclones172

Each instantaneous state of the cyclone, as represented by a given atmospheric variable, cor-173

responds to a point along a phase-space trajectory representing the evolution of the system. We174

sample this trajectory at discrete intervals determined by the temporal resolution of our data. In175

our analysis, for every cyclone we adopt 6-hourly domains of size∼ 1200 km× 1200 km (41× 41176

grid points in ERA5 or ∼5◦ latitude × 5◦ longitude), centred at every timestep on the HURDAT2177

cyclone location for ERA5 and centered at minimum of sea-level pressure for the simulations. We178

then consider PV and uv at 850 hPa in this domain. Our aim is to diagnose the dynamical proper-179

ties of the instantaneous (in time) and local (in phase-space) states of the cyclone, as represented180
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by the chosen atmospheric variable and chosen geographical domain (physical space in Fig. 2).181

To do so, we leverage two metrics issuing from the combination of extreme value theory with182

Poincaré recurrences (Freitas et al. 2010; Lucarini et al. 2012, 2016).183

We consider the sequences of PV maps, uv maps and pairs maps of the two variables at all184

timesteps i for all tropical cyclones in our dataset, always centred on their location. The maps are185

normalised by the respective norms, and we refer to them as PVi, uvi and Xi respectively. We thus186

construct a semi-Lagrangian framework tracking each cyclone. We take each pair of maps Xi in187

turn as the reference state ζ in our calculation. We then define logarithmic returns as:188

g(Xi,ζ ) =− log[dist(Xi,ζ )] (1)

Here, dist is the Euclidean distance between the pairs of maps Xi, but it can be any distance189

function between two vectors. Since dist tends to zero as pairs of Xis increasingly resemble each190

other, the series of logarithmic returns gi takes large values for Xi closely resembling ζ .191

We next define exceedances as u(ζ ) = {t,g(Xi,ζ ) > s(q,ζ )}, where s(q,ζ ) is a high thresh-192

old corresponding to the qth quantile of g(Xi,ζ ). These are effectively the previously-mentioned193

Poincaré recurrences, for the chosen state ζ (phase space in Fig. 2). The Freitas-Freitas-Todd the-194

orem (Freitas et al. 2010; Lucarini et al. 2012) states that the cumulative probability distribution195

F(u,ζ ) can be approximated by the exponential member of the Generalised Pareto Distribution.196

We thus have that:197

F(u,ζ )' exp
[
− u(ζ )

σ(ζ )

]
(2)
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The parameters u and σ , the scale parameter of the Generalized Pareto Distribution, depend on198

the chosen state ζ . From the above, we can define the local dimension d as: d(ζ ) = 1/σ(ζ ), with199

0 < d <+∞.200

Next, we introduce logarithmic returns and high thresholds separately for PV and uv as g(PVi),201

sPV (q) and g(uvi), suv(q) respectively. These allow us to define the co-recurrence ratio (α) as:202

α(ζ ) =
ν [g(PVi)> sPV (q) | g(uvi)> suv(q)]

ν [g(Xi)> sPV (q)]
(3)

with 0 ≤ α ≤ 1. Here, ν [−] is the number of events satisfying condition [−], and all other203

variables are defined as before. By definition, α is symmetric with respect to the choice of variable204

(PV or uv), since ν [g(PVi)> sPV (q)]≡ ν [g(uvi)> suv(q)].205

While the derivation of d and α may seem very abstract, the two metrics can be related206

intuitively to the physical properties of the tropical cyclones. d is a proxy for the active number of207

degrees of freedom of the cyclones’ instantaneous states, while α measures the coupling between208

different variables. The relationship between dynamical systems metrics and the structure of209

tropical cyclones is elucidated in Figure 3. d and α are anti-correlated: low dimensionality is210

generally associated to a high coupling between the PV and uv maps, while the opposite holds211

for high dimensionality (Fig. 3a). Most of the considered time steps fall in a regime of relatively212

low dimensionality relative to the number of gridpoints in the lagrangian domain (412), and of213

low coupling. We first investigate the uv and PV atmospheric patterns corresponding to these214

timesteps. To do so, we consider all points below the 0.95 quantiles of the d and α distributions,215

corresponding to thresholds of dH=30 and αH=0.35. These data show a clear, albeit relatively216

weak, cyclonic structure in PV, with values peaking at ∼2 PVU (Fig. 3b). The uv pattern also217

reflects a cyclonic structure, with values peaking at ∼ 12 m s−1 (Fig. 3e). The picture is radically218

different for cyclone timesteps with d > dH or α > αH (Fig. 3c,d,f,g). High values of d feature219
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a smaller, weaker PV core than the bulk of the data, which is reflected in low values of kinetic220

energy (Fig. 3c,f). High values of α instead correspond to an intense cyclonic PV core and a221

correspondingly intense KE structure around it (Figs. 3d,g). The same qualitative features emerge222

also for the ERA5 cg and HighResMIP data (not shown).223

224

These results reflect the strong coupling between dynamic and thermodynamic fields in intense225

cyclones (e.g., Emanuel 1986, 1997; Montgomery and Smith 2017) – the thermodynamics partly226

encapsulated by the PV structure of the cyclones’ core. Intense tropical cyclones display a227

quasi-axisymmetric shape, a state where very few degrees of freedom (i.e., low d values, which228

typically correspond to high α values) are needed to describe their dynamics because of the229

air parcels all aligning with the cyclones’ global rotation. On the contrary, the cyclones with230

higher dimensionality likely display asymmetric or multiple PV patches, with a less organised KE231

landscape.232

233

The connection between d, α and cyclone intensity holds in general when diagnosing the234

intensity of the cyclones using the minimum SLP, computed from gridded data (Fig. 4). In235

general, large values of α (colorscale) correspond to low values of the minimum SLP in both the236

North Atlantic and Eastern North Pacific basins. Moreover, the most intense tropical cyclones237

phases are marked by a low dimension d. Similar conclusions hold for the HighResMIP data,238

as further discussed in Sect. 4b. Remarkably, the coarse-graining operation on ERA5 data does239

not alter sensibly the dynamical properties d and α and they maintain roughly the same range240

of values of the original 0.25◦ reanalysis (Fig. 4b, d). The explanation for this stability follows241

that given in Faranda et al. (2017) for the SLP data over the North-Atlantic: the dynamical242

systems metrics are practically insensible to resolution, provided that the resolution is sufficient to243
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represent the underlying dynamics of the data. This is the case here since, as previously discussed,244

ERA5 cg and ERA5 share near-identical distributions of cyclone SLP minima.245

246

4. Bias Corrections of tropical cyclone sea-level pressure minima247

a. Bias Corrections of ERA5 tropical cyclone sea-level pressure minima248

We perform two bias corrections for ERA5 minimum sea-level pressure. In both cases we249

prepare our data as follows. Firstly, we rearrange our set of tropical cyclones by alphabetic250

order. This mixes tropical cyclones from different years and different parts of the cyclone251

season in the training and in the verification datasets. We thus avoid intraseasonal effects and252

possible non-stationarities linked to anthropogenic climate change or interannual variability of the253

atmospheric circulation. Then we consider the first 4000 datapoints of our rearranged HURDAT2254

SLP minima for each basin as training data and the remaining 2029 datapoints for the North255

Atlantic basin and 2313 datapoints for the Eastern North Pacific basin as verification data. This256

same split is also applied to ERA5 cg.257

258

We next define objective metrics to determine whether our bias corrections improve the cyclone259

intensities. We use the original Simpson and Saffir (1974) scale of tropical cyclones category260

based on the SLP minima and compute them for the verification datasets (Table 1). We define two261

error metrics: the total count of tropical cyclones time-steps with wrong category ErrT , and the262

count of major tropical cyclones (intensity≥3) with wrong category ErrC.263

264
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The first bias correction we implement is an unconditional quantile-quantile correction. We265

begin by subtracting the median of the distributions of SLP minima from the data, which we then266

add back at the end of the procedure. We then compute the difference ∆(q) between the empirical267

cumulative density functions (ECDFs) of SLP minima in HURDAT2 with respect to ERA5 and268

ERA5 cg evaluated at 100 quantile values q. For each data to correct, the closest quantile q∗ in the269

ECDF(ERA5) or ECDF(ERA5 cg) dataset is found and the value ∆(q∗) is added to the original270

value.271

272

The second bias correction approach is conditioned on the dynamical systems metrics. The273

results presented in Figures 3 and 4 show that we can discriminate intense tropical cyclones as274

those having a large value of α and a small value of d. We test several dH–αH value pair (using275

the same convention of Fig.3) to separate the training dataset into intense (d < dH , α > αH) and276

non-intense cyclones. We then apply the previously described quantile-quantile correction to the277

two subsets of cyclones separately. We then use a grid-search approach to select the dc–αc value278

pair minimizing the total error. We scan all combinations of 10≤ d ≤ 38 and 0.1≤ α ≤ 0.34, with279

resolution ∆d = 1 and ∆α = 0.1. Results are displayed in Figures 5-6 for the ERA5 and ERA5 cg280

datasets respectively. The upper (resp. lower) horizontal planes show the error metrics for the non281

corrected (resp. corrected without dynamical systems metrics) data. The curved surfaces show the282

the errors when bias correction is performed using the dynamical systems metrics. Panels (a,b)283

show ErrT for the North Atlantic and Eastern North Pacific basins respectively, while panels (c,d)284

show the metric ErrC. In all cases and for both the ERA5 and ERA5 cg datasets the conditional285

bias correction greatly improves the identification of the tropical cyclones category relative to286

the uncorrected data. Furthermore, there are large areas of the d–α plane where the conditional287

bias correction improves the results of the unconditional correction. We select the values dc and288
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αc that minimise the total error Err = ErrT (AT L) + ErrT (ENP) + ErrC(AT L) + ErrC(ENP).289

We additionally impose that the chosen values improve upon the unconditional correction for290

both basins and both ErrT and ErrC. This analysis yield dc = 15 and αc = 0.11 for ERA5 and291

dc = 18,αc = 0.13 for ERA5 cg. As already noted in Fig. 1a,c, the biases for the most intense292

cyclones are more severe in the Eastern North Pacific. While the bias correction improves the293

situation, both ErrC and ErrT for the Eastern North Pacific remain larger than for the North294

Atlantic.295

296

We illustrate in detail the improvement obtained with the two bias correction approaches in297

Figures 7-8. Panels (a,e) show that the ECDFs of bias- corrected SLPs are closer to the ver-298

ification dataset HURDAT2 than the non-corrected ones. Similarly, panels (b,f) show that the299

correspondence of observed versus modelled SLPs for individual cyclones is improved by the bias300

correction. However, for many of the tropical cyclone timesteps, the bias correction attributes a301

higher category than the original data. This is shown in panels (c,g) in terms of ∆ between the302

categories as estimated for ERA5 (cg) data relative to HURDAT2. Finally panels (d,h) show the303

evident improvements in terms of intensity histograms: the original non corrected data do not304

have any category 4 or 5 tropical cyclones, whereas with the corrections we are able to retrieve the305

full intensity spectrum. The difference between ERA5 and ERA5 cg is limited, although panels306

(d,h) evidence that the coarse-graining does have some effect on the most intense cyclones. As307

previously noted, a clear difference emerges between the North Atlantic and Eastern North Pacific308

basins, with the latter showing larger biases for both the uncorrected and corrected data.309
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b. Bias Corrections of HighResMip tropical cyclone sea-level pressure minima310

When looking at the cyclone SLP minima for the HighResMIP data, we remark immediately the311

virtual lack of minima below 960 hPa and the reduced range of d and α values compared to ERA5312

or ERA5 cg data (cf. Fig. 9a,c, and 4). These results point to a different dynamical representation313

of tropical cyclones in HighResMIP. The consequence is that the statistical dependencies between314

SLP, d and α in HighResMIP are not the same as in the reference data (ERA5 and HURDAT).315

Up to now, the unconditional and conditional bias correction methods applied to adjust cyclone316

properties were univariate. Hence, dependencies between the three variables (i.e. SLP minima, d317

and α) were not corrected by the unconditional approach, and only partly with the conditional one.318

Thus, the resulting tri-variate dependence structures were likely not appropriately represented by319

the corrected data. To account for this, we now also make use of a multivariate bias correction320

(MBC) method to adjust not only the univariate distributions but also the dependence between the321

three variables of interest. To do so, the “Rank Resampling for Distributions and Dependencies”322

(R2D2) method is applied to adjust jointly (SLP minima, d, alpha). R2D2 relies on an analogue-323

based method applied to the ranks of the time series to be corrected rather than to their “raw” values324

(Vrac 2018). This MBC method can be easily designed to adjust both inter-variable, inter-site and325

temporal properties (Vrac and Thao 2020) but is used only in its inter-variable configuration in326

the present study. Figure 9 shows the scatterplots of minimum SLP vs local dimension d and co-327

recurrence ratio α without (a,c) and with (b,d) R2D2 correction. The R2D2 correction enables to328

retrieve SLP minima of order 920 hPa as well as extend the range of values of d and α , reproducing329

a pattern closer to the one observed in ERA5.330

We next apply the unconditional and conditional bias-correction methodologies, as well as the331

R2D2 method to the HighResMIP simulations. The main difference here is that the correction has332
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to be fitted and applied directly to free-running HighResMIP simulations. In such a context, cross-333

validation techniques for corrections evaluation have been recently heavily criticized (Maraun and334

Widmann 2018) due to the influence of the model internal variability on the correction results.335

Hence, in the following, no separation into training and test data is performed: we correct the bulk336

cyclone statistics for all selected cyclones in the IPSL-CM6A-ATM-ICO-HR year-long simulation.337

We first estimate the ECDFs and compute the ∆ function between HighResMIP and HURDAT2338

data. We then correct the full dataset using the unconditional, conditional on α,d – using the ERA5339

cg values dc and αc – and R2D2 corrections. The results are shown in Figure 10. For the ECDFs340

(panels a,c), corrections obtained using or not the dynamical systems metrics seem comparable341

and improve, once again, the distribution of SLP minima. When looking at the tropical cyclone342

intensities (panels b,d) we observe that the R2D2 correction of SLP minima allows to recover a343

distribution of intensities which is very close to that of the HURDAT2 data. This suggests that,344

when applying R2D2, we are able to take into full account the information provided by the two345

dynamical systems metrics.346

5. Implications of the results for the numerical simulation of tropical cyclones347

Starting from the observation that gridded datasets of tropical cyclones have a large bias in348

the representation of the intensity of extreme cyclones, we have introduced a procedure to bias349

correct them. We have used: i) an unconditional quantile–quantile correction of the sea-level350

pressure minima of cyclones timesteps towards the HURDAT2 reference dataset; ii) a correction351

conditioned on two dynamical systems metrics (dimension and co-recurrence ratio); and iii) the352

R2D2 correction. When using the dynamical systems metrics, we use the dynamical information353

from an underlying reduced phase space incorporating horizontal kinetic energy uv and potential354

vorticity PV at 850 hPa. We have observed that the dynamical systems metrics are able to track355
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intense cyclones as organized states of the dynamics, yielding low dimensions and high dynam-356

ical/thermodynamic coupling. While all bias corrections improve the bulk statistics of tropical357

cyclone intensity representation in the ERA5 reanalysis and in the IPSL-CM6A-ATM-ICO-HR358

HighResMIP model, the categorisation for individual cyclones is not always improved. For the359

ERA5 reanalyses, we find that the conditional bias-correction improves over its unconditional360

counterpart. For the HighResMIP model, the best bias correction is the multivariate R2D2361

correction which takes into account the relationships among SLP, d and α . This suggests that362

accounting for the multivariate dependence structures associated to the dynamical systems metrics363

is crucial to correcting the distribution of tropical cyclone intensities.364

365

These considerations have a number of concrete implications for current research on tropical366

cyclones. Current GCMs — and even reanalysis products — struggle in reproducing minimum367

sea-level pressures comparable to those observed. Our study offers a way of mapping intense368

cyclones in d,α space and a procedure to correct biases in century-long reanalysis products to369

perform climate change studies of their intensity. This, in turn, may provide a strategy for study-370

ing changes in tropical cyclone intensity driven by anthropogenic forcing. Indeed, while d and371

α may not be used to provide a deterministic indication of cyclone intensity, they do provide a372

robust constraint for statistical correction, especially in reanalysis data. The large range of local373

dimensions associated with the dynamics of different phases of tropical cyclones may explain why374

it is so difficult to adequately represent them in numerical models. Follow-up studies will include375

the use of a larger set of HighResMIP data under different forcing scenarios, to test systematically376

whether the dynamical systems bias correction may be successfully applied to model data. The377

bias correction procedures will then be adapted to take into account the non-stationarities intro-378

duced by anthropogenic forcing, e.g. by replacing the quantile-quantile mapping with a CDF-t379
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correction (Vrac et al. 2012) allowing to account for climate change in the correction procedure.380

A further avenue for future work will be to move from the pointwise correction of minimum SLP381

performed here, to correcting the spatial structure of the field, using multivariate bias correction382

techniques (e.g. Cannon 2018; Vrac 2018; Robin et al. 2019; Vrac and Thao 2020) or tools from383

machine learning (e.g. François et al. 2021).384
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cc

Category wind threshold [m/s] minimum sea-level threshold [hPa]

1 33–42 >980

2 43–49 965–979

3 50–58 945–964

4 59–69 920–944

5 <69 <920

TABLE 1. Saffir-Simpson tropical cyclone intensity classification.
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FIG. 1. Scatterplot of minimum SLP for (a) North Atlantic [NATL] and (c) Eastern North Pacific [ENP]

tropical cyclones in HURDAT2 versus ERA5 and ERA5 cg. Probability density functions of minimum SLP

for (b) North Atlantic and (d) Eastern North Pacific tropical cyclones in HURDAT2, ERA5, ERA5 cg and the

IPSL-CM6A-ATM-ICO-HR model.
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FIG. 2. Schematic of the computation of the dynamical systems metrics for an instantaneous state of a tropical

cyclone. We take a snapshot of the cyclone in physical space (black quadrant), in this example latitude–longitude

maps of PV and uv at 850 hPa, which correspond to state ζ in our phase space. The shaded circle is a 2D

representation of the hyper-sphere determined by the high threshold s(q,ζ ), which defines recurrences of ζ .

The logarithmic distances between measurements defined by g(Xi,ζ ) are marked by double-headed arrows. For

all points within the hyper-sphere, g(Xi,ζ )> s(q,ζ ) holds. In the schematic, only two measurements satisfy this

condition (adapted from (Messori and Faranda 2021)).
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FIG. 3. The scatter plot displays the values of the instantaneous dimension d and the co-recurrence α com-

puted on ERA5 uv and PV maps during tropical cyclone timesteps in the NATL basin. The black solid lines mark

the 0.95 quantiles of the d and α distributions, namely dH and αH respectively. The maps show composites of

PV (b–d) and uv (e–g) for d < dH ,α < αH (b,e), d > dH (c,f) and α > αH(d,g).
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FIG. 4. Scatterplots of minimum SLP vs local dimension d and co-recurrence ratio α (colorscale) calculated

on uv and PV at 850 hPa for (a,c) ERA5 and (b,d) ERA5 cg, in the (a,b) North Atlantic [NATL] and (c,d) Eastern

North Pacific [ENP] basins.
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FIG. 5. Cyclone categorisation error for uncorrected ERA5 data, unconditional quantile–quantile correction

and quantile–quantile correction conditioned on the dynamical systems metrics. The upper horizontal planes

indicate the uncorrected errors, the lower horizontal planes the unconditional correction and the curved surface

the dynamical systems corrections. (a,b) show errors for all intensity categories ErrT ; (c,d) show errors for

major tropical cyclones only ErrC. Panels refer to the (a,c) North Atlantic [NATL], and (b,d) Eastern North

Pacific basin [ENP] basins. The red dots in the four panels show the chosen dc–αc values based on minimising

the total error Err (see text). The vertical red lines show the points’ projection on the d–α plane.
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FIG. 6. As in Figure 5 but for the ERA5 cg data.
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FIG. 7. Unconditional bias correction and bias correction conditioned on the dynamical systems metrics for

the best d–α parameter combination (see Fig. 5, αc = 0.11, dc = 15) for ERA5. (a,e) Empirical cumulative

density functions (ECDFs), (b,f) scatter plots, (c,g) error in category intensities (negative values imply under-

estimation, positive values overestimation), (d,h) histogram of category intensities and ERRT in the inset. (a-d)

North Atlantic [NATL], (e-h) Eastern North Pacific [ENP] basins. See legends for details.
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FIG. 8. As in Fig. 7 but for ERA5 cg data, using αc = 0.13, dc = 18.
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FIG. 9. Scatterplots of minimum SLP vs local dimension d and corecurrence ratio α (colorscale) calculated

on uv and PV at 850 hPa for (a,c) HighResMIP; (b,d) HighResMIP corrected with R2D2, in the (a,b) North

Atlantic [NATL] and (c,d) Eastern North Pacific [ENP] basins.
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FIG. 10. Unconditional, R2D2, and conditional dynamical systems metrics bias corrections for the IPSL-

CM6A-ATM-ICO-HR model. The conditional dynamical systems metrics bias corrections uses the best d–α

parameter combination from ERA5 cg (see Fig. 6: αc = 0.13, dc = 18.) Panels (a,c) show Empirical Cumulative

Density Functions (ECDFs) and (b,d) histograms of category intensities for the North Atlantic [NATL] (a,b) and

Eastern North Pacific [ENP] (c,d) basins.

634

635

636

637

638

40


