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Abstract23

Although the life-cycle of tropical cyclones is relatively well under-24

stood, many of the underlying physical processes occur at scales below25

those resolved by global climate models (GCMs). Projecting future26

changes in tropical cyclone characteristics thus remains challenging. We27

propose a methodology, based on dynamical system metrics, to recon-28

struct the statistics of cyclone intensities in coarse-resolution datasets,29

where maximum wind speed and minimum sea-level pressure may30
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not be accurately represented. We base our analysis on 411 tropical31

cyclones occurring between 2010 and 2020, using both ERA5 reanal-32

ysis data and observations from the HURDAT2 database, as well as33

a control simulation of the IPSL-CM6A-ATM-ICO-HR model. With34

ERA5 data, we compute two dynamical system metrics related to35

the number of degrees of freedom of the atmospheric flow and to36

the coupling between different atmospheric variables, namely the local37

dimension and the co-recurrence ratio. We then use HURDAT2 data38

to develop a univariate quantile–quantile bias correction conditioned on39

these two metrics, as well as a multivariate correction method. The40

conditional approach outperforms a conventional univariate correction41

of the sea-level pressure data only, pointing to the usefulness of the42

dynamical systems metrics in this context. We then show that the43

multivariate approach can be used to recover a realistic distribution44

of cyclone intensities from comparatively coarse-resolution model data.45

Keywords: Tropical cyclones, Extreme Event, Bias Correction46

1 Introduction47

Tropical cyclones are among the most devastating natural disasters, often caus-48

ing fatalities and extensive economic damage (Smith and Katz, 2013; Grinsted49

et al, 2019). They include several collateral hazards that can have significant50

impacts on people and property, such as rogue waves, flooding, extreme winds,51

and tornadoes. The few, most severe episodes account for the bulk of the costs52

associated with tropical cyclone (Emanuel, 2021). It is thus crucial to model53

such cyclones correctly. Unfortunately, even state-of-the-art global and regional54

climate models struggle to reproduce the dynamics of the most severe tropical55

cyclones (Camargo and Wing, 2016; Roberts et al, 2020b). This is mainly due56

to their insufficient resolution. Indeed, a grid spacing of the order of 10 kilo-57

meters or below is needed (Rotunno et al, 2009; Moon et al, 2020; Murakami58

et al, 2012; Manganello et al, 2012). Downscaling techniques can be employed59

to alleviate this issue, but their use is limited by computational costs; further-60

more, different downscaling approaches can lead to diverging conclusions (e.g.,61

Caron et al, 2011; Lee et al, 2020; Knutson et al, 2020; Emanuel, 2021). The62

situation is complicated by the reduced length of records in available tropi-63

cal cyclone data sets, which mostly rely on satellite data not available before64

the ’80s (Chang and Guo, 2007). This limitation hinders separating significant65

changes in tropical cyclone properties from decadal variability (Knutson et al,66

2019).67

Mid-latitude synoptic dynamics mostly originate from the chaotic structure68

of the motions associated with baroclinic instability (Lorenz, 1990; Schubert69

and Lucarini, 2015). Tropical cyclones are instead characterized by a rapid70

organization of unstable flows at the convective scale whose dynamics is tur-71

bulent and highly sensitive to boundary conditions (Muller and Romps, 2018;72



Springer Nature 2021 LATEX template

Correcting biases in tropical cyclone intensities in low-resolution datasets using dynamical systems metrics 3

Carstens and Wing, 2020). Here, we investigate whether it may be possi-73

ble to exploit this high level of flow organization to obtain reliable statistics74

of intense tropical cyclones from relatively coarse-gridded atmospheric data.75

To achieve this, we compute two metrics that describe cyclones as states76

of a chaotic high-dimensional dynamical system. The first, the local dimen-77

sion d, reflects the number of active degrees of freedom of an instantaneous78

state of the cyclone. The second, the co-recurrence ratio α, is a proxy for the79

instantaneous coupling between different atmospheric variables which may be80

interpreted in the sense of covariability. These metrics have recently provided81

insights on a number of geophysical phenomena, including transitions between82

transient metastable states (e.g. weather regimes) of the mid-latitude atmo-83

sphere (Faranda et al, 2017; Hochman et al, 2021a; Messori et al, 2021), drivers84

and predictability of extreme events (Messori et al, 2017; Hochman et al, 2019;85

De Luca et al, 2020; Faranda et al, 2020; Hochman et al, 2021b), palaeoclimate86

attractors (Brunetti et al, 2019; Messori and Faranda, 2021), slow earthquake87

dynamics (Gualandi et al, 2020) and changes in mid-latitude atmospheric pre-88

dictability under global warming (Faranda et al, 2019). A benefit over previous89

dynamical systems approaches (e.g Wolf et al, 1985; Cao, 1997) is that these90

metrics can be easily applied to computationally demanding datasets, such as91

climate reanalyses or climate models.92

Applications of d and α in the literature have used an Eulerian approach93

over a fixed spatio-temporal domain, rather than tracking the evolution of94

specific physical phenomena. Here, we follow the recent work of Faranda et al95

(2023) and apply the two metrics in a semi-Lagrangian perspective to char-96

acterize the structure of tropical cyclones in the d − α phase-space. That is,97

we compute the metrics on a spatial domain which follows the track of each98

cyclone in time. This enables the study of the complex behavior of convectively99

unstable flows, by focussing on the evolution of the storm’s structure instead100

of the storm’s motion across a fixed domain (Crisanti et al, 1991; Vulpiani,101

2010). The signature of intense cyclones is associated with the presence of102

inverse energy cascades as suggested by Levich and Tzvetkov (1985) and, more103

recently, by Faranda et al (2018); Dunkerton et al (2009); Tang et al (2015).104

Such inverse cascades are associated with potential–kinetic energy conversions105

and are particularly notable for intense storms (Bhalachandran et al, 2020).106

These energy conversions are related to the deep convection in the eyewall,107

that redistributes to the upper troposphere the enthalpy gained thanks to sur-108

face heat fluxes in the boundary layer. Such local processes contribute to the109

generation of the storms’ warm core and, ultimately, to wind intensification110

at the larger, sub-synoptic scale of the storm (Emanuel, 1986). We hypothe-111

sise that these exchanges have a signature in both the large-scale horizontal112

velocity and potential vorticity fields, which are reasonably well-represented in113

coarse simulations or reanalyses. If this indeed holds, then the dynamical sys-114

tem metrics should be able to distinguish between different storm intensities115

due to their different degree of organization and coupling. This would enable116

a correction conditioned on d and α of cyclone intensity statistics in datasets117
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where we cannot explicitly access the spatial scales underlying the dynamics118

of intense tropical cyclones.119

Bias correction of climate models is a crucial step in improving the accu-120

racy of climate predictions, and there is a considerable number of different121

bias correction techniques proposed in the literature. For a review of bias cor-122

rection methodologies, which is beyond the purpose of this paper, we refer123

the reader to Maraun (2016). One widely used method is empirical Quantile124

mapping bias correction (QMBC), which has been shown to be effective in125

reducing biases in precipitation and temperature data (e.g., Li et al (2010);126

Michelangeli et al (2009); Cannon et al (2015); Cannon (2018)). QMBC has127

also been applied to assessing the impact of climate change on tropical cyclone128

(TC) intensity in medium-resolution global climate models (GCMs)(Zhao and129

Held, 2010; Sugi et al, 2017; Yoshida et al, 2017). These studies have shown130

that QMBC is very useful in improving the accuracy of GCM simulations by131

matching the distribution of observed data with the model’s output. However,132

the conventional QMBC has limitations, including not accounting for non-133

stationary characteristics of the data. In this study, we propose a new method134

for bias correction that implicitly accounts for weak non-stationarity in the135

data through the dynamical systems metrics, and that may be easily extended136

to explicitly account for non-stationarity by leveraging well-tested approaches.137

We demonstrate its effectiveness in improving the accuracy of TC intensity138

projections.139

We base our analysis on best track cyclone data from the HURDAT2140

database, which we take as ground truth, ERA5 reanalysis data and a high-141

resolution global climate model simulation. We compute the two dynamical142

systems metrics using the square root of the kinetic energy uv [m/s] and the143

potential vorticity field PV [PVU] at the 850 hPa level. The rationale for using144

PV follows the works of Peng et al (2012) and Fu et al (2012) who used PV for145

distinguishing developing versus non-developing disturbances. The square root146

of the horizontal kinetic energy uv is relevant to the study of tropical cyclones147

because of its direct connection with the wind speed and with the phases of148

rapid intensification/decay of the cyclones (Krishnamurti et al, 2005). The 850149

hPa level is chosen because it lies in-between the planetary boundary layer and150

the middle troposphere, where most of the potential–kinetic energy conver-151

sions occur in tropical cyclones (Camargo et al, 2007). Although some of the152

information provided by PV and uv is redundant, they are analytically con-153

nected, and thus we find that their coupling provides nontrivial information154

which justifies their use.155

Our study is organized as follows: first, we describe the data, variables for156

cyclone dynamics and the theoretical bases supporting the computation of the157

dynamical system metrics. Then, we show the general characteristics of the158

phase space of tropical cyclones in reanalysis data for the different variables,159

and use these to define a quantile–quantile correction approach for cyclone160

intensities conditioned on the two dynamical systems metrics. The correction161
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is performed on ERA5 reanalysis, using sea-level pressure (SLP) from HUR-162

DAT2 as ground truth. We then conduct an out-of-sample test comparing this163

approach to an unconditional quantile–quantile correction. Finally, we test this164

correction on data from a GCM.165

2 Data166

2.1 HURDAT2 tropical cyclone data167

We follow 197 North Atlantic and 214 eastern North Pacific tropical cyclones168

that occurred between 2010 and 2020, using the HURDAT2 Best Track169

Data (Landsea and Franklin, 2013). We use six-hourly information on the loca-170

tion and central pressure of the cyclones, as well as their time of landfall or171

special intensity report points.172

2.2 Representation of tropical cyclones in ERA5 data173

We base our analysis on instantaneous1 uv = u2 +v2, SLP and PV at 850hPa174

from the ERA5 reanalysis (Hersbach et al, 2020), sampled every 6h and addi-175

tionally whenever the HURDAT2 database displays a cyclone landfall entry176

or special intensity report points. The horizontal resolution of the data is177

0.25◦. We also make use of ERA5 data coarse-gridded to a 0.5◦ horizontal178

resolution using a nearest neighbour approach. In the vast majority of cases,179

the SLP difference in the four ERA5 gridpoints around the cyclone core is 1180

hPa or less. Using a nearest neighbour approach thus provides similar results181

to other coarse-graining approaches. The coarse-grained dataset will be here-182

inafter referred to as ERA5 cg, and will be used to evaluate the sensitivity183

of our conclusions to the resolution of the dataset. When comparing ERA5184

to HURDAT2, we verify that the SLP minimum in ERA5 is located within a185

region of 5◦ of the HURDAT2 cyclone position. For our analysis we do not use186

the wind data because this quantity is often used in different ways (e.g. sus-187

tained winds vs. wind-gusts and with different averaging times) to assess TC188

intensity in reanalyses, models and the HURDAT2 database, while the use of189

minimum SLP is coherent across all datasets.190

There is often a large discrepancy between the minimum SLP reported191

in HURDAT2 and that in ERA5 (Fig. 1a,c). Especially for the most intense192

cyclones, ERA5 systematically underestimates minimum SLP. The biases are193

larger in the eastern North Pacific than in the North Atlantic basin (cf. Fig. 1a194

and 1c). This affects the capability of ERA5 to accurately assign each tropical195

cyclone to the appropriate Saffir-Simpson category (Simpson and Saffir, 1974),196

which we here use relative to SLP (see Table 1). Indeed, recent research argues197

that SLP is more closely related to cyclone damage than maximum sustained198

winds (Klotzbach et al, 2020). In particular, ERA5 has a negative bias in the199

number of tropical cyclones stronger than category 2, namely min(SLP)<980200

hPa. While this bias is present in both the North Atlantic and eastern North201

1We follow here ECMWF’s terminology, see: https://confluence.ecmwf.int
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Fig. 1 Scatterplot of minimum SLP for (a) North Atlantic [NATL] and (c) eastern North
Pacific [ENP] tropical cyclones in HURDAT2 versus ERA5 and ERA5 cg. Probability density
functions of minimum SLP for (b) North Atlantic and (d) eastern North Pacific tropical
cyclones in HURDAT2, ERA5, ERA5 cg and the IPSL-CM6A-ATM-ICO-HR model.

Pacific basins, in the latter the biases for the most intense cyclones appear202

more severe. This might be due to the more intermittent aircraft reconnais-203

sance activity in that basin with respect to the North Atlantic (Knaff et al,204

2021). The coarse-graining operation does not notably affect the distribution of205

cyclone SLP minima (Fig. 1b, d), likely because of the above-mentioned weak206

SLP variations in the ERA5 dataset in the gridboxes immediately surrounding207

the cyclone core. We underline that the two ERA5 horizontal resolutions used208

here are of the same order of magnitude as those of the HighResMIP (High209

Resolution Model Intercomparison Project, Haarsma et al, 2016) and PRI-210

MAVERA models, which are amongst the current best tools to study climate211

change impacts on tropical cyclones (Roberts et al, 2020a).212
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2.3 Representation of tropical cyclones in213

IPSL-CM6A-ATM-ICO-HR model data214

For the purpose of this study, we used a simulation performed with the IPSL-215

CM6A model (Boucher et al, 2020). Model configuration is atmosphere-only216

(ATM) with forced sea-surface temperatures (SST). The physics component217

of the model is LMDZ6A, as described in Hourdin et al (2020). The dynam-218

ical core is Dynamico (Dubos et al, 2015, ICO,), which uses an icosahedral219

grid. A run at high-resolution (HR) is used, corresponding to 0.5◦ horizontal220

resolution. The CM6A version of the IPSL model has 79 vertical levels. The221

configuration is named IPSL-CM6A-ATM-ICO-HR. The run was perfomed for222

the HighResMIP, therefore following the protocol described in (Haarsma et al,223

2016). It is a historical run, over the 1950-2014 period (65 years). Greenhouse224

gases, aerosols and SSTs are forced to the observed values.225

We use the TC tracking algorithm from Ullrich et al (2021). We addi-226

tionally remove tracks starting at latitudes above 30◦ to minimise incorrect227

classification of extratropical lows as tropical systems.228

The model produces a total of 327 tropical cyclones in the North Atlantic229

and 989 in the eastern North Pacific (defined following Knutson et al, 2020).230

Among them, 150 are randomly sampled for each basin, which is deemed a suf-231

ficiently large statistical sample for our analysis. The total number of cyclones232

reproduced by the IPSL-CM6A-ATM-ICO-HR model is in line with that of233

other HighResMIP models with similar resolution (cf. Roberts et al, 2020b).234

A comparison of the distribution of HURDAT2 SLPs with those in the235

model and in the ERA5 and ERA5 cg data (Fig. 1b, d), suggests that current236

state-of-the-art GCMs and ERA5 both encounter difficulties when it comes to237

representing the intensity of tropical cyclones (Kim et al, 2018). Specifically,238

all three datasets have a sparsely populated left tail of the minimum SLP239

distribution and, especially for the North Atlantic basin, a different mode when240

compared to HURDAT2.241

3 A dynamical systems view of tropical cyclones242

In our analysis, for every cyclone we adopt 6-hourly domains of approximately243

1200 km × 1200 km at latitudes 10 ◦N–25 ◦N (41 × 41 grid points in ERA5244

corresponding to 10◦ latitude ×10◦ longitude), centred at every timestep on245

the HURDAT2 cyclone location for ERA5 and centered on the minimum of246

sea-level pressure for the model simulation. We then consider PV and uv at247

850 hPa in this domain. Each instantaneous state of the cyclone, as represented248

by these variables and domains, corresponds to a point along a phase-space249

trajectory representing the cyclone’s evolution. We sample this trajectory at250

discrete intervals determined by the temporal resolution of our data. Our aim251

is to diagnose the dynamical properties of the instantaneous (in time) and252

local (in phase-space) states of the cyclone (physical space in Fig. 2). To do253

so, we leverage two metrics issuing from the combination of extreme value254

theory with Poincaré recurrences (Freitas et al, 2010; Lucarini et al, 2012,255
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Fig. 2 Schematic of the computation of the dynamical systems metrics for an instantaneous
state of a tropical cyclone. We take a snapshot of the cyclone in physical space (black
quadrant), PV in this example, which corresponds to state ζ in our phase space. The shaded
circle is a 2D representation of the surface determined by the high threshold s(q, ζ), which
defines recurrences of ζ. The distances between measurements defined by dist(Xi, ζ) are
marked by double-headed arrows. For all points within the hyper-sphere, dist(Xi, ζ) < s(q, ζ)
and g(Xi, ζ) > s(q, ζ) hold. Here, i represents the timestep in the dataset. In the schematic,
only two measurements qualify as recurrences: timesteps 2 and 987 (adapted from Messori
and Faranda (2021)).

2016). Recurrences are temporally separated PV or uv states that resemble256

each other. As we discuss below, identifying these recurrences is instrumental257

to compute the two dynamical systems metrics.258

We first calculate TC-centered maps of PV and uv to define the TC state259

i, where i = 0, 1, ..., T − 1, T represents a given timestep in our dataset, T260

being the total number of timesteps. We then normalize each distance by their261

respective norms, which yields PVi and uvi, respectively. Finally, we define262

the TC state at a given timestep, Xi, as the pair of PVi and uvi maps at263

that timestep. We thus construct a semi-Lagrangian framework tracking each264

cyclone. We take each pair of maps Xi in turn as the reference state ζ in our265

calculation (phase space in Fig. 2). We then define logarithmic returns as:266

g(Xi, ζ) = − log[dist(Xi, ζ)] (1)

Here, we define dist as the Euclidean distance between pairs of maps, but267

it can be chosen as any distance metric between two vectors. In principle, ζ268

can be any state (and does not have to belong in the available Xi). In prac-269

tice, ζ is one of the Xi, and the log dist is computed for all other time steps,270

as log(dist(X,X)) is not defined. Note that the distances between maps are271

computed by respecting the order of the grid points but without specifying272

their actual position on the maps (longitude and/or latitude). The logarith-273

mic weight comes directly from the Poincaré recurrence theorem, which states274

that the probability of hitting a ball centered on a state in phase space gets275

exponentially small when linearly reducing the radius of the ball. Since dist276
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tends to zero as pairs of Xis increasingly resemble each other, the series of log-277

arithmic returns gi takes large values for Xi closely resembling ζ. The minus278

sign in Eq. 1 has the function to convert the minima of the distances into279

the maxima of g, as it is common practice in extreme value theory to define280

extreme value distributions for maxima rather than for minima. In Fig. 2,281

an example of the phase space and the geometrical object defined above is282

provided: the shaded circle is a 2D representation of the surface (in general283

this is a hyper-sphere for higher dimension) determined by the high thresh-284

old s(q, ζ) = g(X(q), ζ), which defines recurrences of ζ. The distances between285

measurements are marked by double-headed arrows. For all points within the286

hyper-sphere, dist(Xi, ζ) < dist(X(q), ζ) and g(Xi, ζ) > s(q, ζ) hold.287

We next define exceedances as u(g, ζ) = Pr(g | g(Xi, ζ) > s(q, ζ)), where288

s(q, ζ) is a high threshold corresponding to the quantile q of g(Xi, ζ). These are289

effectively the previously-mentioned Poincaré recurrences, for the chosen state290

ζ (phase space in Fig. 2). The Freitas-Freitas-Todd theorem (Freitas et al, 2010;291

Lucarini et al, 2012) states that the cumulative probability distribution u(ζ) =292

F (g, ζ) can be approximated by the exponential member of the Generalised293

Pareto Distribution (i.e. with shape and location parameters equal to zero).294

We thus have that:295

u(g, ζ) = F (g, ζ) ' exp

[
− g(ζ)

σ(ζ)

]
(2)

The parameters u and σ, the scale parameter of the Generalized Pareto296

Distribution, depend on the chosen state ζ. From the above, we can define297

the local dimension d as: d(ζ) = 1/σ(ζ), with 0 < d < +∞. The Freitas-298

Freitas-Todd theorem thus enables us to estimate numerically d from a series299

of uv or PV data over the semi-Lagrangian domain based on their Poincaré300

recurrences. The numerical procedure is rather simple: i) we fix ζ = Xi for a301

given time step i, ii) we fix s to be the threshold corresponding to the quantile302

q = 0.98. iii) we obtain all the u(ζ), namely the 2% (because q = 0.98) of maps303

having the smallest euclidean distances from ζ, iv) we use the fact that Eq.2304

is an exponential to estimate σ, its standard deviation, as the average value of305

u once we subtract s. Here we are just using the fact that in the exponential306

function, average and standard deviation are equal.307

Next, we introduce logarithmic returns and high thresholds separately for308

PV and uv as g(PVi), sPV (q) and g(uvi), suv(q) respectively. These allow us to309

investigate the way in which PV and uv co-vary by defining the co-recurrence310

ratio α:311

α(ζ) =
ν[g(PVi) > sPV (q) | g(uvi) > suv(q)]

ν[g(PVi) > sPV (q)]
(3)

with 0 ≤ α ≤ 1. Here, ν[−] is the number of events satisfying condition [−],312

and all other variables are defined as before. In practice, if all PV recurrences313

match a uv recurrence, then the number of conditional PV events (numerator)314

is the same as the number of unconditional PV events (denominator) and315

hence α = 1. In contrast, if PV recurrences never match uv recurrences, then316
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the numerator is zero and hence α = 0. By definition, α is symmetric with317

respect to the choice of variable (PV or uv), since ν[g(PVi) > sPV (q)] ≡318

ν[g(uvi) > suv(q)]. In other words, the number of events above a given quantile319

is the same for either variable, given that they are both taken from the same320

set of TC snapshots. The section ”Code availability” provides information on321

how to download the package used to compute d and α.322

While the derivation of d and α may seem very abstract, the two metrics323

can be related intuitively to the physical properties of the tropical cyclones. d324

is a proxy for the active number of degrees of freedom of the cyclones’ instan-325

taneous states, while α measures the coupling between different variables. The326

relationship between dynamical systems metrics and the structure of tropical327

cyclones is elucidated in Figure 3. d and α are anti-correlated: low dimension-328

ality is generally associated to a high coupling between the PV and uv maps,329

while the opposite holds for high dimensionality (Fig. 3a). Most of the consid-330

ered time steps fall in a regime of relatively low dimensionality relative to the331

number of gridpoints in the lagrangian domain (412), and of low coupling. We332

first investigate the uv and PV atmospheric patterns corresponding to these333

timesteps. To do so, we consider all points below the 0.95 quantiles of the334

d and α distributions, corresponding to thresholds of dH=30 and αH=0.35.335

These data show a clear, albeit relatively weak, cyclonic structure in PV, with336

values peaking at ∼2 PVU (Fig. 3b). The uv pattern also reflects a cyclonic337

structure, with values peaking at ∼ 12 m s−1 (Fig. 3e). The picture is radically338

different for cyclone timesteps with d > dH or α > αH (Fig. 3c,d,f,g). High339

values of d feature a smaller, weaker PV core than the bulk of the data, which340

is reflected in low values of the square root of the kinetic energy (Fig. 3c,f).341

High values of α instead correspond to an intense cyclonic PV core and a342

correspondingly high uv around it (Figs. 3d,g). The same qualitative features343

emerge also for the ERA5 cg and HighResMIP data (not shown). To illus-344

trate this for single cyclones, Fig. 4 shows an example of two snapshots: one345

with very high α and low d and one with very low α and high d. These two346

examples confirm the conclusion drawn from the composite means, altough347

we cannot directly compare the results presented in Figs. 3-,4 because the348

first is about composite averages while the second about single cases.349

350

These results reflect the high degree of symmetry and organization found in351

intense tropical cyclones with respect to weaker disturbances (e.g., Emanuel,352

1986, 1997; Montgomery and Smith, 2017). Intense tropical cyclones display a353

quasi-axisymmetric shape: a state where very few degrees of freedom (i.e., low354

d values, which typically correspond to high α values) are needed to describe355

their dynamics because of the air parcels all aligning with the cyclones’ circu-356

lation. On the contrary, the cyclones with higher dimensionality likely display357

asymmetric or multiple PV patches (as for the example shown in Fig. 4b),358

with a less organised kinetic energy landscape. This variable geometry of the359

PV pattern may explain the different degrees of coupling between uv and PV.360

361
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Fig. 3 The scatter plot displays the values of the local dimension d and the co-recurrence
α computed on ERA5 uv and PV maps during tropical cyclone timesteps in the NATL
basin. The vertical and horizontal black solid lines mark the 0.95 quantiles of the d and α
distributions, namely dH and αH , respectively. The maps show composites of PV (b–d) and
uv (e–g) for d < dH , α < αH (b,e), d > dH (c,f) and α > αH(d,g).

The connection between d, α and cyclone intensity broadly holds when362

diagnosing the intensity of the cyclones using the minimum SLP, computed363

from gridded data (Fig. 5). In general, large values of α (colorscale) correspond364

to low values of the minimum SLP in both the North Atlantic and eastern365

North Pacific basins. Moreover, the most intense tropical cyclones phases are366

marked by a low dimension d. Similar conclusions hold for the HighResMIP367

data, as further discussed in Sect. 4b. Remarkably, the coarse-graining oper-368

ation on ERA5 data does not alter sensibly the dynamical properties d and369

α, and the two metrics maintain roughly the same range of values as in the370

original 0.25◦ reanalysis (Fig. 5b, d). The explanation for this stability follows371

that given in Faranda et al (2017) for the SLP data over the North Atlantic:372
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Fig. 4 As Fig. 3b–g, but for an example of a single cyclone snapshot with α = 0.61 and
d = 6.02 (a,c) and α = 0.08 and d = 12.36 (b,d).

the dynamical systems metrics are practically insensitive to resolution, pro-373

vided that the resolution is sufficient to represent the underlying dynamics of374

the data. This is the case here since, as previously discussed, ERA5 cg and375

ERA5 share near-identical distributions of cyclone SLP minima.376

377

4 Bias Corrections of tropical cyclone sea-level378

pressure minima379

4.1 Bias Corrections of ERA5 tropical cyclone sea-level380

pressure minima381

We perform two bias corrections for ERA5 minimum sea-level pressure. In382

both cases we prepare our data as follows. Firstly, we rearrange our set of383
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Fig. 5 Scatterplots of minimum SLP vs local dimension d and co-recurrence ratio α (col-
orscale) calculated on uv and PV at 850 hPa for (a,c) ERA5 and (b,d) ERA5 cg, in the
(a,b) North Atlantic [NATL] and (c,d) eastern North Pacific [ENP] basins.

tropical cyclones randomly. This mixes tropical cyclones from different years384

and different parts of the cyclone season in the training and in the verification385

datasets. We thus avoid intraseasonal effects and possible non-stationarities386

linked to anthropogenic climate change or interannual variability of the387

atmospheric circulation. We then consider the first 4000 datapoints of our388

rearranged HURDAT2 SLP minima for each basin as training data and the389

remaining 2029 datapoints for the North Atlantic basin and 2313 datapoints390

for the eastern North Pacific basin as verification data. This same split is also391

applied to ERA5 cg.392

393

We next define objective metrics to determine whether our bias correc-394

tions improve the cyclone intensities. We use the original Simpson and Saffir395

(1974) scale of tropical cyclones classification based on the SLP minima and396

define cyclone categories for the verification datasets (Table 1). We define two397

error metrics: the total count of tropical cyclones time-steps with the wrong398

category ErrT , and the count of major tropical cyclones (intensity≥3) with399

wrong category ErrC .400

401

The first bias correction we implement is an unconditional quantile-402

quantile correction. We begin by subtracting the median of the distributions403

of SLP minima from the data, which we then add back at the end of the404
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procedure. We then compute the difference ∆q between the empirical cumu-405

lative density functions (ECDFs) of SLP minima in HURDAT2 with respect406

to ERA5 and ERA5 cg evaluated at 100 quantile values q. For each data407

to correct, the closest quantile q∗ in the ECDF(ERA5) or ECDF(ERA5 cg)408

dataset is found and the value ∆q∗ is added to the original value.409

410

The second bias correction approach is conditioned on the dynamical sys-
tems metrics. The results presented in Figures 3 and 5 show that we can
discriminate intense tropical cyclones as those having a large value of α and a
small value of d. We test several dH and αH pairs (using the same convention
of Fig.3) to separate the training dataset into intense (d < dH , α > αH) and
non-intense cyclones. We next apply the previously described quantile-quantile
correction to the two subsets of cyclones separately. We then use a grid-search
approach and scan all combinations of 10 ≤ d ≤ 38 and 0.1 ≤ α ≤ 0.34, with
resolution ∆d = 1 and ∆α = 0.1, to find the values dc and αc that minimise
the total error

Err = ErrT (ATL) + ErrT (ENP ) + ErrC(ATL) + ErrC(ENP ). (4)

We additionally impose that the chosen values improve upon the unconditional411

correction for both basins and both ErrT and ErrC . By randomizing cyclone412

timesteps, we obtain two different sets of 100 realizations for ERA5 and ERA5413

cg training datasets, respectively, which allow to compute two distributions414

each containing 100 values of dc and αc. The boxplots of such distributions are415

presented in Fig.6. We then select the median over each sample. This analysis416

yields dc = 21 and αc = 0.16 for ERA5 and dc = 19, αc = 0.165 for ERA5417

cg. The standard deviations of dc and αc are respectively 4 and 0.04. We can418

deduce that the minimisation has some sensitivity to the choice of samples. We419

will refer to these parameters as the best set that realizes the bias correction420

for the data presented in this study.421

We illustrate in detail the improvement obtained with the two bias correc-422

tion approaches in Figures 7-8. Panels (a,b) show that the ECDFs of bias-423

corrected SLPs are closer to the verification dataset HURDAT2 than the non-424

corrected ones. However, panels (c,d) show that the correspondence of observed425

versus modelled SLPs for individual cyclones is not necessarily improved by426

the bias correction. Specifically, for some of the tropical cyclone timesteps,427

the bias correction attributes a higher category than the original data. This428

is shown in panels (e,f) in terms of ∆ between the categories as estimated for429

ERA5 (cg) data relative to HURDAT2. Finally panels (g,h) show the evident430

improvements in terms of intensity histograms: the original non corrected data431

virtually have no category 4 or 5 tropical cyclones, whereas with the correc-432

tions we are able to retrieve the full cyclone intensity spectrum. The difference433

between ERA5 and ERA5 cg is limited, although a comparison of panels (d,h)434

between Figs. 7 and 8 evidences that the coarse-graining does have some effect435

on the most intense cyclones. As previously noted, a clear difference emerges436

between the NATL and ENP basins, with the latter generally showing larger437
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Fig. 6 Boxplots for 100 realizations of the grid search procedure used to estimate the
values of αc and dc which minimize the total error in Eq. 4 . On each box, the central mark
indicates the median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively.

biases for both the uncorrected and corrected data. The difference between438

the conditional and unconditional bias corrections also emerges chiefly in the439

ENP. Indeed, the two perform comparably in the NATL, while in ERA5 and440

especially in ERA5 cg, the conditional correction shows a vastly improved441

performance.442

Category wind [m/s] minimum sea-level pressure [hPa]
1 33–42 ≥980
2 43–49 965–979
3 50–58 945–964
4 59–69 920–944
5 >69 ≤920

Table 1 Saffir-Simpson tropical cyclone intensity classification.

4.2 Bias Corrections of HighResMip tropical cyclone443

sea-level pressure minima444

When looking at the cyclone SLP minima for the HighResMIP data, we remark445

immediately the virtual lack of minima below 960 hPa and the reduced range446
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Fig. 7 Unconditional bias correction and bias correction conditioned on the dynamical
systems metrics for the best d and α parameters combination (see Fig. 6, αc = 0.16, dc = 21)
for a realization of the ERA5 data sample. (a,b) Empirical cumulative density functions
(ECDFs), (c,d) scatter plots, (e,f) error Errc in category intensities (negative values imply
underestimation, positive values overestimation), (g,h) histogram of category intensities and
ERRT in the inset. (a,c,e,g) North Atlantic [NATL], (b,d,f,h) eastern North Pacific [ENP]
basins. See legends for details.
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Fig. 8 As in Fig. 7 but for a realization of the ERA5 cg data sample, using αc = 0.165,
dc = 19.
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of d and α values compared to ERA5 or ERA5 cg data (cf. Fig. 9a,c, and 5).447

These results point to a different dynamical representation of tropical cyclones448

in HighResMIP. The consequence is that the statistical dependencies between449

SLP, d and α in HighResMIP are not the same as in the reference data (ERA5450

and HURDAT). Up to now, the unconditional and conditional bias correc-451

tion methods applied to adjust cyclone properties were univariate. Hence,452

dependencies between the three variables (i.e. SLP minima, d and α) were453

not corrected by the unconditional approach, and only partly with the con-454

ditional one. Thus, the resulting tri-variate dependence structures were likely455

not appropriately represented by the corrected data. To account for this, we456

now also make use of a multivariate bias correction (MBC) method to adjust457

not only the univariate distributions but also the dependence between the458

three variables of interest. To do so, the “Rank Resampling for Distributions459

and Dependencies” (R2D2) method is applied to adjust jointly (SLP minima,460

d, α). R2D2 relies on an analogue-based method applied to the ranks of the461

time series to be corrected rather than to their “raw” values (Vrac, 2018). This462

MBC method can be easily designed to adjust both inter-variable, inter-site463

and temporal properties (Vrac and Thao, 2020) but is used only in its inter-464

variable configuration in the present study. Figure 9 shows the scatterplots of465

minimum SLP vs local dimension d and co-recurrence ratio α without (a,c)466

and with (b,d) R2D2 correction. The R2D2 correction retrieves SLP minima467

of order 920 hPa as well as extends the range of values of d and α, reproducing468

a pattern closer to the one observed in ERA5.469

We next apply the unconditional and conditional bias-correction method-470

ologies, as well as the R2D2 method to the HighResMIP simulations. We do471

not apply the R2D2 method to ERA5 because this is our reference dataset472

for the computation of the dynamical systems metrics. The main difference in473

applying the bias correction to model data rather than to reanalysis is that the474

correction has to be fitted and applied directly to free-running HighResMIP475

simulations. In such a context, cross-validation techniques for corrections eval-476

uation have been recently heavily criticized (Maraun and Widmann, 2018)477

due to the influence of the model internal variability on the correction results.478

Hence, in the following, no separation into training and test data is performed:479

we correct the bulk cyclone statistics for all selected cyclones in the IPSL-480

CM6A-ATM-ICO-HR simulation. We first estimate the ECDFs and compute481

the ∆ function between HighResMIP and HURDAT2 data. We then cor-482

rect the full dataset using the unconditional, conditional on α, d – using the483

ERA5 cg values dc and αc – and R2D2 corrections. The results are shown in484

Figure 10. For the ECDFs (panels a,c), corrections obtained with or without485

the dynamical systems metrics improve, once again, the distribution of SLP486

minima. The conditional and unconditional corrections appear comparable in487

the NATL, but show a clear difference in the ENP. The R2D2 correction is488

virtually indistinguishable from HURDAT in both basins. When looking at489

the tropical cyclone intensities (panels b,d) we observe that the R2D2 correc-490

tion of SLP minima provides a distribution of intensities which is very close to491
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Fig. 9 Scatterplots of minimum SLP vs local dimension d and corecurrence ratio α (col-
orscale) calculated on uv and PV at 850 hPa for (a,c) HighResMIP; (b,d) HighResMIP
corrected with R2D2, in the (a,b) North Atlantic [NATL] and (c,d) eastern North Pacific
[ENP] basins.

that of the HURDAT2 data in both basins. Over the NATL, the R2D2 shows492

a clear improvement over the other corrections. In the ENP, it is close to the493

unconditional correction, which outperforms the conditional correction. Over-494

all, these results suggest that, when applying R2D2, we are able to take into495

full account the information provided by the two dynamical systems metrics.496

5 Summary and implications of the results497

Starting from the observation that gridded datasets of tropical cyclones have498

a large bias in the representation of the intensity of extreme cyclones, we have499

introduced a bias-correction procedure. We have used: i) an unconditional500

quantile–quantile correction of the sea-level pressure minima of cyclones501

timesteps towards the HURDAT2 reference dataset; ii) a correction condi-502

tioned on two dynamical systems metrics (local dimension and co-recurrence503

ratio); and iii) the R2D2 correction. We have applied the first two approaches504

to ERA5 data, both at the highest available resolution and in a coarse-505

grained version. We have further applied all three approaches to data from506

the IPSL-CM6A-ATM-ICO-HR HighResMIP model. When using the dynam-507

ical systems metrics, we use the dynamical information from an underlying508

reduced phase space incorporating the square root of the horizontal kinetic509
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Fig. 10 Unconditional, R2D2, and conditional dynamical systems metrics bias corrections
for the IPSL-CM6A-ATM-ICO-HR model. The conditional dynamical systems metrics bias
corrections uses the best dc = 19 and αc = 0.165 parameters combination from ERA5 cg.
Panels (a,c) show Empirical Cumulative Density Functions (ECDFs). and (b,d) histograms
of category intensities for the North Atlantic [NATL] (a,b) and eastern North Pacific [ENP]
(c,d) basins.

energy uv and potential vorticity PV at 850 hPa. We have observed that the510

dynamical systems metrics are able to track intense cyclones as organized511

states of the dynamics, yielding low dimensionality and high coupling. While512

all bias corrections improve the bulk statistics of tropical cyclone intensity513

representation in our datasets, the categorisation for individual cyclones is514

not always improved. The conditional bias correction tends to perform better515

when the underlying relationship between the predictors and the response516

variable is strong and well-defined, whereas the unconditional bias correction517

can be more effective when the relationship is weaker or more variable. For518

the HighResMIP model, the best bias correction is the multivariate R2D2 cor-519

rection which takes into account the relationships among SLP, d and α. This520

suggests that accounting for the multivariate dependence structures associated521



Springer Nature 2021 LATEX template

Correcting biases in tropical cyclone intensities in low-resolution datasets using dynamical systems metrics 21

with the dynamical systems metrics is crucial to correcting the distribution522

of tropical cyclone intensities. We also observe non-neglegible differences in523

the bias correction performances in the two Atlantic and Pacific basins that524

could be further investigated in the future. For example, the conditional bias525

correction in the HighResMIP model underperforms in the ENP relative to526

its unconditional counterpart, yet this is not observed in the reanalysis. We527

also point out that while the optimal combination of d and α shows some528

variability when reshuffling the data, the changes are small. While it is true529

that the sample used in this study is large, with over 10000 storm timesteps,530

we would need to repeat the grid-search if significant changes in the storm531

sample occur, such as a major shift in the frequency or intensity of storms.532

533

These considerations have a number of concrete implications for current534

research on tropical cyclones. Current GCMs — and even reanalysis products535

— struggle in reproducing minimum sea-level pressures comparable to those536

observed. Our study offers a way of mapping intense cyclones in d, α space537

and a procedure to correct biases in both century-long reanalysis products538

and high-resolution GCMs. This, in turn, may provide a strategy for studying539

changes in tropical cyclone intensity driven by anthropogenic forcing. Indeed,540

while d and α may not be used to provide a deterministic indication of cyclone541

intensity, they do provide a robust constraint for statistical correction. The542

large range of local dimensions associated with the dynamics of different phases543

of tropical cyclones may explain why it is so difficult to adequately represent544

them in numerical models. Follow-up studies will include the use of a larger set545

of HighResMIP data under different forcing scenarios, to test systematically546

the R2D2 correction on model data. The bias correction procedures will then547

be adapted to take into account the non-stationarities introduced by anthro-548

pogenic forcing, e.g. by replacing the quantile-quantile mapping with a CDF-t549

correction (Vrac et al, 2012) allowing to account for climate change in the cor-550

rection procedure. A further avenue for future work will be to move from the551

pointwise correction of minimum SLP performed here, to correcting the spa-552

tial structure of the field, using multivariate bias correction techniques (e.g.553

Cannon, 2018; Vrac, 2018; Robin et al, 2019; Vrac and Thao, 2020) or tools554

from machine learning (e.g. François et al, 2021).555
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