Dual-gated single-molecule field-effect transistors beyond Moore's law - Archive ouverte HAL
Article Dans Une Revue Nature Communications Année : 2022

Dual-gated single-molecule field-effect transistors beyond Moore's law

Miao Zhang
  • Fonction : Auteur
Chuancheng Jia
  • Fonction : Auteur
Lucie Norel

Résumé

As conventional silicon-based transistors are fast approaching the physical limit, it is essential to seek alternative candidates, which should be compatible with or even replace microelectronics in the future. Here, we report a robust solid-state single-molecule field-effect transistor architecture using graphene source/drain electrodes and a metal back-gate electrode. The transistor is constructed by a single dinuclear ruthenium-diarylethene (Ru-DAE) complex, acting as the conducting channel, connecting covalently with nanogapped graphene electrodes, providing field-effect behaviors with a maximum on/off ratio exceeding three orders of magnitude. Use of ultrathin high-k metal oxides as the dielectric layers is key in successfully achieving such a high performance. Additionally, Ru-DAE preserves its intrinsic photoisomerisation property, which enables a reversible photoswitching function. Both experimental and theoretical results demonstrate these distinct dual-gated behaviors consistently at the single-molecule level, which helps to develop the different technology for creation of practical ultraminiaturised functional electrical circuits beyond Moore's law.

Domaines

Chimie
Fichier principal
Vignette du fichier
Meng-2022-Dual-gated single-molecule field-effect transistors beyond Moore’s law.pdf (3.08 Mo) Télécharger le fichier
Meng_41467_2022_28999_MOESM1_ESM.pdf (2.65 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03631009 , version 1 (10-05-2022)

Licence

Identifiants

Citer

Linan Meng, Na Xin, Chen Hu, Hassan Al Sabea, Miao Zhang, et al.. Dual-gated single-molecule field-effect transistors beyond Moore's law. Nature Communications, 2022, 13 (1), pp.1410. ⟨10.1038/s41467-022-28999-x⟩. ⟨hal-03631009⟩
298 Consultations
56 Téléchargements

Altmetric

Partager

More