
HAL Id: hal-03630991
https://hal.science/hal-03630991

Preprint submitted on 5 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonexistence of DEC spin fill-ins
Simon Raulot

To cite this version:

Simon Raulot. Nonexistence of DEC spin fill-ins. 2022. �hal-03630991�

https://hal.science/hal-03630991
https://hal.archives-ouvertes.fr


NONEXISTENCE OF DEC SPIN FILL-INS

SIMON RAULOT

Abstract. In this note, we show that a closed spin Riemannian manifold does not
admit a spin fill-in satisfying the dominant energy condition (DEC) if a certain gener-
alized mean curvature function is point-wise large.

Given a closed n-dimensional Riemannian manifold (Σ, γ), it is a very interesting
question to know whether there exists an (n + 1)-dimensional compact Riemannian
manifold (Ω, g) with nonnegative scalar curvature (NNSC) whose boundary is isometric
to (Σ, γ). If so, the Riemannian manifold is called a fill-in of (Σ, γ) and the set of all
such fill-ins, referred to as NNSC fill-ins of (Σ, γ), is denoted by F(Σ, γ). The problem
of the existence of such fill-ins has recently been solved by Shi, Wang and Wei [SWW22]
where it is shown that if Σ is the boundary of an (n+1)-dimensional compact manifold
Ω then, any metric γ on Σ can be extended to a Riemannian metric g on Ω with positive
scalar curvature.

One can also try to find a fill-in whose mean curvature is prescribed by a smooth
function H on Σ. This problem is tightly related to the Bartnik quasi-local mass [Bar89]
and a triplet (Σ, γ,H) is then usually called a Bartnik data.

In [Mia21], Miao proved that if Σ is the boundary of some compact (n+1)-dimensional
manifold Ω, then given any Riemannian metric γ on Σ, there exists a constant H0,
depending on γ and Ω, such that, if minΣH ≥ H0, there does not exist NNSC fill-ins
of (Σ, γ,H). The proof makes use of the work of Shi, Wang and Wei [SWW22] and
of Schoen and Yau’s results on closed manifolds [SY79, SY19]. Such a result is also
obtained for fill-ins with a negative scalar curvature lower bound.

This fact was previously demonstrated by Gromov [Gro18] for spin manifolds. More
precisely, he showed that if (Ω, g) is a NNSC spin fill-in of (Σ, γ,H), then

min
Σ
H ≤

n

Rad(Σ, γ)

where Rad(Σ, γ) is a constant only depending on (Σ, γ) and known as the hyperspherical
radius of (Σ, γ). The main remark here, which is the key point of our argument, is that
the nonexistence of NNSC spin fill-ins can be obtained by taking another route. Indeed,
it can be deduced from from an eigenvalue estimate on the first eigenvalue λ1(Σ, γ) of
the Dirac operator of (Σ, γ) proved by Hijazi, Montiel and Zhang [HMZ01] and which
states that

min
Σ
H ≤ 2|λ1(Σ, γ)|. (1)

Since λ1(Σ, γ) depends only on Σ, γ and the involved spin structure, the nonexistence
of NNSC spin fill-ins is a direct consequence of (1). This inequality is sharp since round
balls in the Euclidean space satisfy the equality case of (1). Note that a similar result can
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be deduced for spin fill-ins with a negative scalar curvature lower bound from [HMR03]
as in [Gro18].

In this note, we use the aforementioned observation to generalize this result in the con-
text of spin fill-ins satisfying the dominant energy condition (DEC). Following [Bar97],
a 5-uple (Σ, γ,H, α, h) is called a spacetime Bartnik data set if (Σ, γ) is an oriented,
closed Riemannian manifold, H and h are smooth functions on Σ and α is a smooth
1-form on Σ. In this situation, a triplet (Ω, g, k) is a fill-in of such a spacetime Bartnik
data if

(1) (Ω, g, k) is a compact initial data set, that is (Ω, g) is an (n + 1)-dimensional
compact Riemannian manifold with boundary and k is a smooth symmetric
(0, 2)-tensor field on Ω,

(2) there exists an isometry f : (Σ, γ) → (∂Ω, g|∂Ω) such that
(a) f ∗Hg = H , where Hg is the mean curvature of ∂Ω in (Ω, g) with respect to

the outward unit normal ν̃,
(b) f ∗

(
k(ν̃, ·)T

)
= α,

(c) f ∗
(
Trg|∂Ω k

)
= h.

Here Trg|∂Ω denotes the trace operator on ∂Ω and ωT is the tangent part to Σ of a 1-form
ω defined along Σ. In the following, we will omit the isometry f in the identification
between Σ and ∂Ω. Then, a fill-in (Ω, g, k) of (Σ, γ,H, α, h) satisfies the dominant energy
condition, or is a DEC fill-in, if

µ ≥ |J |g

where µ and J are respectively the mass density and the current density defined by

µ =
1

2

(
Rg + (Trg k)

2 − |k|2g
)

and

J = divg
(
k − (Trg k)g

)
.

Here Rg and Trg denote respectively the scalar curvature and the trace operator of
(Ω, g). In this situation, a natural generalization of the mean curvature is given by the
function

Hg := Hg −
√
|k(ν̃, ·)T |2g + (Trg|∂Ω k)

2

which corresponds, for a spacetime Bartnik data, to

H := f ∗Hg = H −
√
|α|2γ + h2. (2)

When Σ is endowed with a spin structure, we will say that (Ω, g, k) is a DEC spin fill-in
of the spacetime Bartnik data (Σ, γ,H, α, h) if (Ω, g, k) is a DEC fill-in and if Ω is a
spin manifold which induces the given spin structure on Σ. We then have the following
result.

Theorem 1. Given any Riemannian metric γ on an n-dimensional spin manifold Σ,
there exists a constant H0, depending only on Σ, γ and the spin structure of Σ, such
that, if minΣH ≥ H0, there do not exist DEC spin fill-ins of (Σ, γ,H, α, h).
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This question was tackled by Tsang in [Tsa22] where several partial results are proved.
We remark that if k = 0 then α = 0 and h = 0, and the DEC gives the nonnegativity
of the scalar curvature so that a DEC fill-in of (Σ, γ,H) corresponds to a NNSC fill-in.
In a same way, if k = cg, c 6= 0, then α = 0 and h = nc, and the DEC condition implies
that the scalar curvature of (Ω, g) is bounded from below by a negative constant, namely
Rg ≥ −n(n + 1)c2. These remarks imply that our result covers both of these cases. As
mentioned above, the proof is a direct consequence of an eigenvalue estimate for the
first eigenvalue of the Dirac operator of a spacetime Bartnik spin data which admits a
DEC spin fill-in. This lower bound is stated as follow.

Theorem 2. If a spacetime Bartnik spin data (Σ, γ,H, α, h) admits a DEC spin fill-in

(Ω, g, k) with H > 0, then the first eigenvalue λ1(Σ, γ) of the Dirac operator of (Σ, γ)
satisfies

min
Σ

H ≤ 2|λ1(Σ, γ)|.

One can consider Fspin(Σ, γ), the set of the DEC spin fill-ins of the Riemannian spin
manifold (Σ, γ) without specifying the data H , α and h. Then Theorem 2 implies that
if Fspin(Σ, γ) 6= ∅, it holds that

sup
(Ω,g,k)∈Fspin(Σ,γ)

min
Σ

H ≤ 2|λ1(Σ, γ)| <∞.

The proof of Theorem 2 relies on spin geometry and we refer especially to [BHM+15,
Fri98, Gin09] for more details on this subject. Let us briefly recall what we need here.
Since (Ω, g) is a Riemannian spin manifold, there exists a smooth Hermitian vector
bundle over Ω, the spinor bundle, denoted by SΩ, whose sections are called spinor fields.
The Hermitian scalar product is denoted by 〈 , 〉. Moreover, the tangent bundle TΩ acts
on SΩ by Clifford multiplication X ⊗ ψ 7→ c(X)ψ for any tangent vector fields X and
any spinor fields ψ. On the other hand, the Riemannian Levi-Civita connection ∇ lifts
to the so-called spin Levi-Civita connection, also denoted by ∇, and defines a metric
covariant derivative on SΩ that preserves the Clifford multiplication. A quadruplet
(SΩ, c, 〈 , 〉,∇) which satisfies the previous assumptions is usually referred to as a Dirac
bundle. The Dirac operator is then the first order elliptic differential operator acting
on SΩ defined by D := c ◦ ∇. The spin structure on Ω induces, via a choice of an
unit normal field to ∂Ω ≃ Σ, a spin structure on Σ. This allows to define the extrinsic

spinor bundle S/ := SΩ|Σ over Σ on which there exists a Clifford multiplication c/ and
a metric covariant derivative ∇/ . The quadruplet (S/ , c/, 〈 , 〉,∇/ ) is thus endowed with a
Dirac bundle structure. Similarly, the extrinsic Dirac operator is defined by taking the
Clifford trace of the covariant derivative ∇/ that is D/ := c/ ◦ ∇/ . It is by now well-known
that this operator can be expressed using the Dirac operator DΣ of (Σ, γ) endowed with
the induced spin structure. What is important to us here is that the first nonnegative
eigenvalue of the extrinsic Dirac operatorD/ corresponds to |λ1(Σ, γ)|, the absolute value
of the first eigenvalue of DΣ and so it only depends on (Σ, γ) and the spin structure on
Σ.

Proof of Theorem 2: Let (Ω, g, k) be a DEC spin fill-in of the spacetime Bartnik spin
data (Σ, γ,H, α, h) and consider the modified spin covariant derivatives defined by

∇±
Xψ := ∇Xψ ±

i

2
c
(
k(X)

)
ψ (3)
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for X ∈ Γ(TΩ) and ψ ∈ Γ(SΩ). The associated Dirac-type operators given by D± :=
c ◦ ∇± are easily seen to satisfy

D±ψ = Dψ ∓
i

2
(Trg k)ψ. (4)

These are first order elliptic differential operators whose formal adjoints, with respect
to the L2 scalar product on SΩ, are D∓ as deduced from the following integration by
parts formulae

∫

Ω

〈D±ψ, ϕ〉dµ =

∫

Ω

〈ψ,D∓ϕ〉dµ−

∫

Σ

〈c(ν)ψ, ϕ〉dσ (5)

for all smooth spinor fields ψ, ϕ on Ω. Here dµ (resp. dσ) denotes the Riemannian
volume (resp. area) element of (Ω, g) (resp. (Σ, γ)) and ν is the inner unit normal to Σ
in (Ω, g). In a same way, a straightforward computation implies that

(
∇±)∗∇±ψ = −

n+1∑

j=1

∇∓
ej
∇±

ej
ψ (6)

where
(
∇±)∗ denote the formal adjoints of the modified connection∇± and {e1, · · · , en+1}

is a local g-orthonormal frame of TΩ. In particular, the Stokes formula leads to
∫

Ω

〈
(
∇±)∗∇±ψ, ψ〉dµ =

∫

Ω

|∇±ψ|2dµ+

∫

Σ

〈∇±
ν ψ, ψ〉dσ. (7)

Then, it follows from the fact that
(
D±)∗ = D∓, from (6) and the classical Schrödinger-

Lichnerowicz formula

D2ψ = ∇∗∇ψ +
Rg

4
ψ

that
(
D±

)∗
D±ψ =

(
∇±)∗∇±ψ +

1

2

(
µψ ± ic(J)ψ

)
(8)

for all ψ ∈ Γ(SΩ). This is the (n+1)-dimensional Riemannian counterpart of the formula
obtained by Witten [Wit81] in his proof of the positive energy theorem. Now observe

that since the point-wise symmetric endomorphism J± := ±ic(J) satisfies
(
J±

)2
ψ =

|J |2gψ it holds that

〈J±ψ, ψ〉 ≥ −|J |g|ψ|
2

so that the DEC and (8) imply the point-wise inequalities

〈
(
D±

)∗
D±ψ, ψ〉 ≥ 〈

(
∇±)∗∇±ψ, ψ〉

for all ψ ∈ Γ(SΩ). Now integrating by part these estimates on Ω using (5) and (7) leads
to the following important integral inequalities

∫

Ω

(
|∇±ψ|2 − |D±ψ|2

)
dµ ≤ −

∫

Σ

〈∇±
ν ψ + c(ν)D±ψ, ψ〉dσ. (9)

From the very definitions (3) and (4) of the modified covariant derivatives and the
associated Dirac operators, we compute that

−∇±
ν ψ − c(ν)D±ψ = D/ψ −

1

2

(
Hψ ∓ ic(V)ψ

)
(10)
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where

V := α♯ + hν ∈ Γ(TΩ|Σ)

since (Ω, g, k) is a fill-in of the data (Σ, γ,H, α, h). Here ♯ : T ∗Ω → TΩ denotes the
classical musical isomorphism between the cotangent bundle and the tangent bundle.
Observe that the endomorphisms V± := ±ic(V) of S/ is point-wise symmetric with
respect to the Hermitian structure and satisfies (V±)2ψ = |V|2ψ in such a way that

〈V±ψ, ψ〉 ≥ −|V|g|ψ|
2 = −

√
h2 + |α|2γ |ψ|

2 (11)

for all ψ ∈ Γ(S/ ). Combining (9), (10) and (11) yields the following integral inequalities
∫

Ω

(
|∇±ψ|2 − |D±ψ|2

)
dµ ≤

∫

Σ

〈D/ψ −
1

2
Hψ, ψ〉dσ. (12)

which hold for all ψ ∈ Γ(SΩ) and where H is the generalized mean curvature function
defined in (2).

Now we are going to show that one can extend any spinor fields on Σ in a suitable
way. For this, we recall that the map χ := ic(ν) is a boundary chirality operator (in the
sense of [BB12, Example 7.26]) and so it is an orthogonal involution of S/ which induces
an orthogonal splitting S/ = S/ + ⊕ S/ − into the eigenbundles of χ for the eigenvalues ±1.
The associated projection maps P± : S/ → S/ ± define elliptic local boundary conditions
for the Dirac-type operators D± (see [BB12, Corollary 7.23] for example). This implies
that the operators

D+
± :

{
ψ ∈ H1(SΩ) / P±ψ|Σ = 0

}
−→ L2(SΩ)

are of Fredholm type and that if Φ ∈ Γ(SΩ) and Ψ ∈ Γ(S/ ) are smooth spinor fields, any
solutions ψ ∈ Γ(SΩ) of the boundary problem

{
D+ψ = Φ on Ω
P±ψ|Σ = P±Ψ on Σ

(13)

are smooth. The same holds for the operators D−
±. It turns out that these operators

are isomorphisms. To prove this fact, we notice that it is enough to show that D+
± and

D−
± are one-to-one since it follows from the integration by parts formulae (5) that the

adjoint of D+
± is D−

∓. So take ψ±, non trivial, in the kernel of D+
±, that is ψ± ∈ Γ(SΩ)

satisfies (13) with Φ = 0 and Ψ = 0. In particular, ψ± is smooth on Ω. On the other
hand, from the self-adjointness of the Dirac operator D/ and the fact that D/χ = −χD/ ,
we get that

∫

Σ

〈D/ψ, ψ〉dσ = 2

∫

Σ

Re〈D/ (P±ψ), P∓ψ〉dσ (14)

for all ψ ∈ Γ(SΩ). Using this formula for ψ = ψ±, we deduce from (12) that

0 ≤

∫

Ω

|∇±ψ±|
2dµ ≤ −

1

2
min
Σ

H

∫

Σ

|ψ±|
2dσ.

Since we assumed that H is positive on Σ, we conclude that ψ± is zero on Σ and
∇±ψ± = 0. This leads to a contradiction since this last property implies that ψ± is
nowhere vanishing on Ω. The same holds for D−

±.
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Now take Ψ1 ∈ Γ(S/ ) be an eigenspinor for the operator D/ associated with the eigen-
value |λ1(Σ, γ)| and so, from the previous discussion, there exists an unique smooth
solution ϕ ∈ Γ(SΩ) satisfying

{
D+ϕ = 0 on Ω
P+ϕ|Σ = P+Ψ1 on Σ.

Taking ψ = ϕ in (12) and using the fact that

2Re〈P−Ψ1, P
−ϕ〉 ≤ |P−Ψ1|

2 + |P−ϕ|2,

finally lead to

0 ≤
(
|λ1(Σ, γ)| −

1

2
min
Σ

H
)∫

Σ

|ϕ|2dσ

which implies the estimate of Theorem 2. To get this last inequality, we implicitly used
the fact that

|λ1(Σ, γ)|

∫

Σ

|P−Ψ1|
2dσ =

∫

Σ

〈D/ (P+ϕ), P−Ψ1〉dσ

=

∫

Σ

〈P+ϕ,D/ (P−Ψ1)〉dσ

=

∫

Σ

〈P+ϕ, P+(D/Ψ1)〉dσ

= |λ1(Σ, γ)|

∫

Σ

|P+ϕ|2dσ

which follows from the identity (14) and the self-adjointness of D/ . �

We conclude this note by noticing that this method is probably easily generalized
to other situations (like the Einstein-Maxwell equations with nonnegative cosmological
constant).
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