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Synthetic presentation of iterative asynchronous
parallel algorithms

P. SPITERI

IRIT- INPT, University of Toulouse, Toulouse, France

Abstract

This paper deals with a synthetic presentation of parallel iterative asynchronous algorithms
and also to the questions related to this kind of method such as : study of the behavior of
parallel iterative asynchronous methods, stopping tests, implementation of these previous al-
gorithms, applications and efficiency.

Keywords: asynchronous parallel algoritm, high performance computing, iterative method,
subdomain method, multisplitting methods, discretized pseudo-linear problem, large scale sys-
tems, nonlinear boundary value problems, optimization

1 Introduction

Numerical simulation is an approach that has become essential in many scientific and industrial
fields, thanks in particular to the current computing power and storage capacity of current
computers. Thus, we are currently observing the development of studies of physical, chemical,
biological, economic and medical phenomena, all of which have in common that they are
mathematically modeled on the basis of the laws governing these various phenomena. Among
the fields where numerical simulation is used, we can mention avionics, chemical engineering,
fluid mechanics, nuclear applications, plasma physics, meteorology, oceanography, molecular
biology and many other applications, this list being not exhaustive.

The mathematical models obtained can be extremely complex to solve. Solving the equa-
tions resulting from modeling can be a major source of difficulty due to the use of large data
structures and calculation results to store and also due to prohibitive calculation times. For ex-
ample, when phenomena are modeled by partial differential equations, discretization methods
using classical finite differences methods, finite elements methods or finite volume methods
lead to the resolution of very large algebraic systems; indeed, the complexity and number of
unknowns are all the higher the more stringent the requirements on the accuracy of the re-
sults. To satisfy the growing need for computing resources, the joint development of parallel
architectures and algorithms is a highly explored way of investigation at the present time.
In contrast to parallel applications such as data mining, the parallel resolution of large 
algebraic systems, mainly of an iterative nature, especially when they are sparse, involves al-



gorithms that require extensive data exchange between the different computing units. Efficient
parallelization is then difficult to implement for the type of target problems to be solved, due
to the latency time induced by remote data access. These accesses are an even greater hand-
icap when the computing units have to be synchronized during the communication phases.
Indeed, the fact of having to wait until a distant data becomes available before continuing a
calculation necessarily causes a degradation of the performance of a parallel algorithm. The
problem raised becomes all the more inextricable when the number of processors increases
and the frequency of exchanges is high. Moreover, any mismatch between the computational
loads assigned to the different processors contributes to reducing the efficiency of algorithm
parallelization.

Powerful means of computation are necessary for large scale numerical simulation. For
example, such simulations are particularly relevant for the solution of large scale algebraic
systems derived from the discretization of coupled nonlinear boundary values problems aris-
ing in multi-physics. Nowaday, only massively parallel efficient computer architectures are
able to offer this power of computation. In this context, grid computing, peer to peer comput-
ing and cloud computing appear to be a challenging paradigms in order to match the need in
high speed computing. Concerning the efficient numerical algorithms to be implemented on
such parallel architectures, it can be noted that parallel asynchronous iterative numerical meth-
ods deserve particular attention since it is difficult to synchronize large number of processors
on heterogeneous and massively parallel architectures. Moreover this kind of particular meth-
ods are well adapted when the clusters are distant and heterogeneous. Nevertheless, among the
many challenging issues related to the efficient use of asynchronous algorithms on new parallel
or distributed architectures, such as convergence study, and performance analysis, the influ-
ence of roundoff errors and the derivation of stopping criteria is particularly hard to analyze
and important to estimate.

In this presentation we will avoid as much as possible the use of too mathematical formal-
ism to prefer the presentation of underlying ideas and, given the large number of scientific
works published in the field, we refer to the main bibliographical references for additional
information. Moreover, since the subject is large, and includes both numerical and computer
aspects, the presentation of numerical methods will be preferred, without neglecting the com-
puter aspects which will also be discussed.

The paper is organized as follows. In section 2 we describe the parallel iterative asyn-
chronous algorithms accomplished first in pioneering works and then extended subsequently.
Section 3 presents the difficult problem of termination of parallel iterative asynchronous al-
gorithms viewed both from computer science approach and also from numerical analysis
approach. Section 4 presents some principles of implementation of parallel iterative asyn-
chronous algorithms; implementation on multi - CPU and on multi - GPU are described and
this section is ended by some considerations for load balancing of parallel asynchronous meth-
ods. Section 5 allows to present various applications of parallel iterative asynchronous meth-
ods while section 6 gives some details to obtain a good efficiency for using such parallel
iterative method. Finally the presented paper is ending by a short conclusion.



2 Parallel asynchronous algorithms

2.1 Pioneering works

It is in order to overcome these performance loss problems previously presented that asyn-
chronous parallel algorithms have been developed. This kind of method is currently one of 
the more explored for the use of massive parallelism because it naturally makes it possible 
to consider a great number of processors and avoids a rigorous load balancing. These asyn-
chronous parallel methods, applicable to solve fixed point problems, do not require necessarily 
synchronizations during the calculation process and aim to take full advantage of computing 
power by eliminating idle times due to blocking time waits. As a result, the calculation of 
the components of the unknown vector is performed in parallel iteratively and without any a 
priori order. In this kind of method, the values of the components of the iterate vector used 
in the calculations come at most from the values calculated just before; so the too old val-
ues of the components of the iterate vector must be definitively rejected as the calculations 
progress. Thus, the latest available values of the recently obtained components are used. In 
addition, each sub-vector of the iterate vector is always updated. Finally, it should be noted 
that synchronous parallel iterations correspond to a particular case of asynchronous parallel it-
erations; in addition, for particular choices of strategies for updating the components, we find 
in the synchronous case, the classical methods of relaxation such as Jacobi’s method, Gauss –
Seidel’s method and the Alternating Direction Implicit method (A.D.I.). So when we analyze 
the behavior of asynchronous parallel methods, we also analyze the behavior of synchronous 
parallel methods as well as that of classical sequential iterative methods, which are then only 
particular cases.

These asynchronous iterative algorithms were therefore developed out of the desire to make 
maximum use of all the computing resources of new computer architectures and more par-
ticularly of Multiple Instructions Multiple Data (M.I.M.D.) architectures, or Single Program 
Multiple Data (S.P.M.D.), by eliminating the synchronization management time and the pro-
cessor inactivity time resulting from synchronizations. This type of algorithm was tested in 
1967 by J.L. Rosenfeld [1] and the convergence of these methods was studied first in 1969 
by D. Chazan and W. Miranker [2] using contraction techniques to solve large linear systems. 
Subsequently, pioneering works was carried out mainly by J.C. Miellou [3] which in 1975 
extended the work of D. Chazan and W. Miranker to certain classes of highly non-linear prob-
lems, also using contraction techniques, non-linearities being able to be either analytical in the 
mathematical model to be solved or due to constraints on the solution to be computed, which 
then leads to the solution of multi-valued problems. In the case of the solution of large linear 
systems J.C. Miellou and P. Spiteri [4] (see also [5]) were able to establish convergence criteria 
that are very easy to use [6]; indeed, for example for the solution of a linear system

AU = F,

if, on the one hand, the diagonal blocks of the A matrix involved in the linear system to be 
solved are either strongly defined positive or with a strong diagonal dominance and that, on 
the other hand, the matrix norms of the off-blocks subordinated by the classical norms are 
relatively weak modules, one could highlight a Lipschitz vector condition of the kind

q(V − U⋆) ≤ Jq(W − U⋆)



where q(.) is a vectorial norm that takes into account the decomposition of the problem into 
large blocks, J is a non-negative matrix, U⋆ is the solution to the fixed point problem as-
sociated to the problem to solve, V is the current iteration and W represents the interaction 
values calculated by the other processors. If in addition this last matrix J has a spectral ra-
dius smaller than one, it is a contraction matrix and the asynchronous parallel methods are 
convergent. Note that the value of the spectral radius of the matrix J allows to evaluate the 
asymptotic convergence rate of the iterative method. This result can be extended to the case of 
pseudo - linear problems such as

AU + Φ(U) = F

where the matrix A involved in the affine application has the same properties as in the lin-
ear case, the latter affine application being perturbed by an increasing diagonal application 
U → Φ(U); under these assumptions alone, the asynchronous parallel methods are conver-
gent. This result can then be further extended in the case where A matrix is an M-matrix, i.e. 
having negative or null off-diagonal entries and admitting a non-negative inverse [7] to [9]; 
under these assumptions, using a fairly technical proof, J.C. Miellou and P. Spiteri in [4] have 
shown that asynchronous parallel methods are convergent whatever be the considered block 
decomposition (see [4]-[5]). It should be noted that when we discretize the boundary value 
problems by classical finite differences method, variational finite differences method, finite 
volume method and under certain assumptions, especially if the angle conditions are verified, 
by finite element method, the discretization matrices obtained are M-matrices; if, in addition, 
parabolic or second order hyperbolic evolution problems are considered, these problems be-
ing discretized by implicit or semi - implicit time marching schemes, the global discretization 
matrices are still M-matrices. Note that in [3] and [10], when the fixed point mapping is con-
tracting with respect to a uniform weighted norm, a sufficient condition of convergence was 
stated; such condition is verified when the fixed point mapping is contracting with respect to a 
vectorial norm [3].

In addition, J.C. Miellou in 1975 [11] and also in 1986 [12], and also other authors [13] -
[14] analyzed this kind of method using the discrete maximum principle which, if the iterative 
process is properly started, i.e. if an initial guess is properly chosen, has the effect of obtain-
ing ordered iterations that converge monotonously towards to U⋆ solution of the problem to 
be solved, either by decreasing from the initial data which is called an over-solution, or by 
increasing from a sub-solution; the assumptions necessary for the reliability of such methods 
analyzed by partial order techniques are simple: the application of fixed point must be contin-
uous, off-diagonal monotone decreasing and diagonal strictly increasing. Such properties are 
verified if in the initial problem to be solved, the function allowing to formulate the problem 
is an M-function introduced by J. Rheinbold [15] , i.e. a surjective function, off diagonal de-
creasing and of inverse monotone; in the linear case an M-function is an M-matrix. Note that 
a pseudo-linear operator built from a affine application where the matrix is an M-matrix and 
perturbed by a growing operator is an M-function.

Whether it’s D. Chazan and W. Miranker or J.C. Miellou it should be noted that the meth-
ods studied were called chaotic methods insofar as the information communicated between 
the processors was delayed in relation to each other by finite delays. An extension of chaotic 
parallel iterations was proposed in 1978 by G. Baudet [16], who thus introduced asynchronous 
parallel iterations where the information communicated between the processors was no longer 
finite but could have infinite communication delays, which made it possible to take into ac-
count possible failures of the multiprocessors; chaotic parallel methods then became a special



case of asynchronous parallel methods. Convergence analysis could be carried out either by 
contraction techniques or by partial ordering techniques when the function defining the prob-
lem to solve is an M-function. Another distinct approach to analyze the behavior of asyn-
chronous parallel algorithms was also considered by D. Bertsekas and J. Tsitsiklis in 1989 
[17]; in the study proposed by D. Bertsekas and J. Tsitsiklis, the successive iterations of the 
method were located in nested sets centered on the solution. Thus, at the limit these nested 
sets belong to smaller and smaller sets and the parallel iterative method converges.

Note that B. Lubachewski and D. Mitra [18] have also established a sufficient condition 
for convergence of asynchronous parallel iterations when delays are bounded; this study was 
applicable to the solution of singular Markovian systems. In this case, the matrix used in the 
model is irreducible, nonnegative and of spectral radius equal to one; it is a stochastic matrix, 
i. e. the sum of the coefficients of each line is equal to one, and B. Lubachewski and D. Mitra 
further assume that one of its diagonal coefficients is positive.

The analysis of the behavior of these asynchronous parallel methods by contraction, partial 
ordering and nested techniques are the main techniques for studying the iterative behavior of 
these methods. Asynchronous parallel methods have been studied by many authors in many 
laboratories on all continents. The aim was on the one hand to highlight more general com-
putation methods by using various methods to analyze the behavior of asynchronous parallel 
methods and on the other hand to obtain more flexibility in inter-processor exchanges.

2.2 Extensions of parallel asynchronous methods

2.2.1 Sub-domain methods

In terms of the efficiency of the implemented parallel algorithms, it is necessary that they 
have a sufficiently high granularity. Indeed, too small calculation process sizes will have 
a negative effect on the efficiency of methods, an increase in communication cost and syn-
chronizations between computation processes, which will degrade the performance of parallel 
methods. Therefore developers gather computational tasks together in order to avoid this type 
of algorithmic behavior.

For example in the case of the numerical solution of partial differential equations, this type 
of grouping of computational tasks leads to the development of sub-domain methods. There 
are various kinds of sub-domain methods; on the one hand, sub-domain methods without 
overlapping and on the other hand, sub-domain methods with overlapping. To be complete, it 
would also be necessary to mention the sub-structuring methods that will be described in the 
following sub-paragraph.

Sub-domain methods without overlap consist in grouping several adjacent blocks of the 
vector to be calculated to obtain a block of larger size. The analysis of the behavior of the iter-
ative process with high granularity thus obtained follows from the results obtained previously 
and mentioned in paragraph 2.1 in the context of convergence analysis both by contraction 
techniques and by partial ordering techniques. Indeed, if the discretization matrix is an M-

matrix, a situation to which we can often reduce ourselves by choosing discretization patterns 
properly, we have seen that in this case the asynchronous parallel methods analyzed by con-
traction techniques were convergent whatever be the coarser decomposition (see [4]-[5]). This 
result can also be extended to situations where the discretization matrix is not an M-matrix, 
but has appropriate properties; this is particularly the case for a convection - diffusion 
problem



discretized by a centered scheme where this property of M-matrix is not necessarily verified, 
especially when convection is dominant [19]. On the other hand, for the convection - diffusion 
problem, if a forward or backward decentered scheme is used, depending on the sign of the 
convection coefficient, the M-matrix character of the discretization matrix of the problem is 
verified [20]. With regard to the analysis of the convergence of asynchronous parallel methods 
in the linear case, thanks to the properties of the M-matrices, similar convergence results can 
be obtained by using partial ordering techniques (see [11]-[12]); indeed, the sub-problems ob-
tained by grouping the diagonal blocks of the discretization matrix are also M-matrices since 
any principal minor of an M-matrix is also an M-matrix (see [8]); so the results established in 
the contraction framework also extend to this case.

In addition, sub-domain methods with overlapping can also be used, such as Schwarz’s 
alternating method. In this case, to analyze the behavior of these asynchronous methods, a 
result of D.J. Evans and J. Van Deeren [21] is used. These last authors established that, if 
A is an M-matrix, the matrix Ā obtained by the Schwarz augmentation process is also an
M-matrix. Therefore, the behavior of the asynchronous Schwarz method can be immediately 
analyzed both by contraction techniques and by partial ordering techniques.

Due to the monotony properties of increasing diagonal operators, both when using non-
overlapping sub-domain methods and sub-domain methods with overlapping, the convergence 
of these methods applied to solving single-valued and multi-valued pseudo-linear problems 
is trivially obtained, the latter case corresponding to the case of classical partial differential 
equations (P.D.E.) whose solution is subjected to constraints.

Finally, this analysis of sub-domain methods with or without overlapping is still valid for 
the block numberings usually used, whether it is the lexicographic numbering of the blocks or 
the red-black numbering of these latter [22].

2.2.2 Sub-structuring methods

F. Magoules [23] and F. Magoules and C. Vernet [24] extend asynchronous iterations models 
to the case of sub-structuring framework for the solution of linear algebraic systems derived 
from the classical discretization of linear boundary values problems. By considering an ap-
propriate partitioning with non-overlapping sub-domains of the domain Ω where the partial 
differential equations (P.D.E.) is defined, F. Magoules et al. consider the matrix S obtained 
at the interface of the sub-domains, S corresponding to the classical Schur complement; by 
showing convergent splitting of S, the goal is then to yield an iterative mapping which does 
not require to compute explicitly the entries of S, contrarily to classical splitting such as Ja-
cobi or Gauss-Seidel ones. Thanks to theoretical results based mainly on the properties of 
M-matrices and H-matrices, and also by stating new estimation between spectral radii and 
weighted uniform norms, F. Magoules et al. provide first practical splitting of the Schur com-
plement and proposes a result allowing the possibility of a general unified framework for both 
asynchronous convergence analysis of Schwarz method and sub-structuring methods. More-

over F. Magoules et al. propose an original result corresponding to new convergent efficient 
asynchronous iterative sub-structuring methods requiring barely stronger assumptions than the 
ones required for the convergence of classical asynchronous algebraically non-overlapping ad-
ditive Schwarz methods.



2.2.3 Multi-splitting methods

To highlight more general calculation methods, we can mention the joint work carried out by

European, American and Asian laboratories, which has sometimes been carried out within the

framework of collaborations to solve large scale problems, either linear or presenting non-

linearities. The techniques used to study the behavior of these new parallel methods are es-

sentially algebraic, based on the use of the Perron - Frobenius theorem. These studies per-

formed by J. Arnal, R. Bru, A. Frommer, V. Migalon, D. P. O’Leary, D. P. O’Leary and R.E.

White, J. Penades D. Szyld, and many other authors (see [25]-[45]) have lead to introduce

the multi-spling methods where several contracting fixed point applications are considered si-

multaneously and a weighted average is made between all these iterates. A particular case of

multi-splitting method is constituted by the two-level methods where an asynchronous parallel

external iteration corresponding to a coordination of the sub-systems to be solved is consid-

ered, these latter sub-systems being themselves solved by an iterative method. A particular

case of a two-level method is constituted by the coupling of a block relaxation method, each

block being solved by a point relaxation method leading then to the two-stage method (see for

example [38]); another example of a two-level method is constituted by an external iteration

of Newton and an internal iteration of relaxation (see for example [25], [27], [30], [38], [42]).

This type of method has also been studied by Z.Z. Bai and also Chinese scientists (see

[28]-[29]) who, to accelerate the speed of convergence, have introduced several relaxation

parameters.

In addition, J. Bahi J.C. Miellou and K. Rhofir [27] have extended by contraction tech-

niques the previous results for the resolution of pseudo - linear problems without or with

constraints corresponding in the latter case to the solution of multi-valued problems.

Multi-splitting methods actually allow a unified presentation of sub-domain methods with

or without overlap. Thus, after analysis, we can conclude on the behavior of both these two

types of sub-domain methods. As for these latter sub-domain methods, the properties of M-

matrices play an important roll; however, the study framework can be weakened in the case of

the H-matrices, the latter context being studied, for example, by the works of [46].

2.2.4 Asynchronous parallel algorithms with flexible communications

In terms of flexibility of asynchronous parallel methods various studies was performed (see

[47]-[50]); we can cite a paper presented in 1998 by J.C. Miellou, P. Spiteri and D. El Baz [47]

where processors exchange data in a flexible way with the particularity of closely integrating

the communication aspects into the calculation aspects; in this kind of method, communica-

tions occur during the re-updating of the components of the iterate vector and no longer at

the end of each relaxation as was previously the case in the classical asynchronous parallel

methods; in addition, component updates are performed using partial values of the component

blocks of the iterate vector. The only constraint that is imposed is that:

• on one hand, no component of the iterate vector continues to be permanently updated

when the problem is iteratively solved,

• on the other hand, the most recent values of the iterate vector must be used as the calcu-

lations progress.



This study was carried out using partial ordering techniques linked to the use of the discrete

maximum principle. An application to financial mathematics or mechanics modeled by the

obstacle problem has been performed (see [48]).

A similar study on flexible asynchronous parallel algorithms was conducted on one hand

by A. Frommer and D.B. Szyld in 1998 for linear problems [49] and in 2004 by A. Frommer,

P. Spiteri and D. El Baz for nonlinear problems [50]; in this new study the authors proposed a

slightly different formulation of asynchronous parallel methods with flexible communication

for which the analysis of their behavior is performed by contraction techniques using uniform

norms with weights in accordance with the Perron - Frobenius theorem.

In addition, parallel asynchronous multi-splitting algorithms with flexible communications

were also studied by P. Spiteri, J.C. Miellou and D. El Baz [42] by partial ordering techniques,

for the numerical solution of pseudo - linear single-valued problems.

3 The difficult problem of stopping tests for asynchronous parallel

iterations

If convergence detection for parallel synchronous iterations does not present any major diffi-
culties, whereas the asynchronous case is a real challenge due to the nondeterministic behavior 
of such methods. Indeed the problem of termination of asynchronous parallel iterations is an 
extremely difficult problem to code since is concerned both in applied mathematics, when the 
iterate vector is sufficiently close to the solution of the problem and also in computer science. 
Nevertheless, in the computer science field, the specificity of multiprocessor architectures must 
currently be taken into account, particularly on distributed systems where communications are 
carried out by message passing and in this context the processors only have local information.

This kind of study is all the more an interesting contribution as parallel asynchronous meth-
ods are very interesting to use when there are very much synchronizations between the pro-
cessors, expectations producing phases of inactivity of the processors. Moreover such use of 
parallel asynchronous methods present an additional interest when the interconnection net-
work has a slow flow, situation that can be found for example in the use of large computing 
grids or cloud computing when distant and heterogeneous clusters are used.

3.1 Empirical methods

The most commonly termination methods used in preliminary works are often empirical. They 
are constituted by the observation by a particular processor of the local termination conditions 
on each processor. The iterative algorithm is then stopped when all local termination condi-
tions are satisfied. This kind of termination will only give satisfactory results only if the degree 
of asynchronism is low. On the contrary, when delays between processors, due in particular to 
the imbalance of calculation tasks, are significant, this method can lead to early termination.

Another possible method of termination is obtained by sending termination and reboot 
messages by each processor and by using a special processor that collects and centralizes the 
termination messages (see [17]).

In a different approach [51], the termination scheme periodically samples the state of the 
processors and associates to each one a Boolean value depending on whether or not the local 
termination criterion is satisfi ed. This local value is then transmitted to the other processors.



The overall state is deduced by calculating the fixed point of a Boolean operator using an asyn-

chronous iterative algorithm. However, this termination method requires that each processor

has an estimate of the start and end times of the fixed point asynchronous algorithm using the

Boolean operator.

Another termination method uses termination messages and acknowledgements of termina-

tion messages [52]. In this case, a processor completes its calculations provided that the local

termination criterion is satisfied and that it has received termination and acknowledgement

messages from all other processors for all its own termination messages.

Note that there is no formal proof of validity for the previous termination methods. Indeed,

for a message passing machine architecture, all processors have local information; in particu-

lar, there is no global clock and moreover, messages can be arbitrarily delayed for long periods

of time.

In what follows we will distinguish the computer science approach and the numerical anal-

ysis approach.

3.2 Computer sciences approach

Subsequently, the work carried out in this context has provided formal proof of validity. In the

present sub-section we will distinguish a centralized approach and a decentralized approach.

3.2.1 Centralized approach

We present first the centralized approach. In the centralized approach of termination detection,

a processor receives the state of the other processors and detects the global convergence when

all processes have converged locally. Several studies have been undertaken by many authors.

D. Bertsekas and J. Tsitsiklis approach : D. Bertsekas and J. Tsitsiklis [53] consider that

”each data communicated on a link is correctly received with a finite but unspecified delay”.

The method of terminating iterative asynchronous algorithms is then based on the decomposi-

tion of the problem into two distinct parts:

1. the iterative algorithm is modified so that it ends in a finite time and converges to a fixed

point sufficiently close to the solution of the problem,

2. a computer procedure for detecting the termination is applied.

It should be noted that the asynchronous algorithm is modified and that it is different from 
the classical asynchronous algorithm since the value of one or more components of the iterate 
vector becomes fixed in a finite time, in contrast to what the calculation algorithm produces 
due to the fact that the components can change with each relaxation. D. Bertsekas and J. 
Tsitsiklis therefore introduce a new fixed point application defined either by the updated value 
deduced from the algorithm if the value of the component has changed, or by the old value if 
the update is not significant.

This context leads D. Bertsekas and J. Tsitsiklis to modify the iterative algorithm as fol-
lows: if the update of a component of the iterate vector does not significantly change its value 
then the new updated value is not modified and is not communicated to other processors; the 
termination of the modified iterative algorithm occurs when an update modifies the value of



the components of the iterate vector regardless of the processor and no message is in transit

in the communication network. Thus, as far as the non-modification of the components of the

iterate vector is concerned, all local termination conditions are satisfied.

Several procedures for detecting the termination of the modified asynchronous iterative

algorithm can be used. These include the following

• the Dijkstra and Scholten procedure [54],

• the Chandy and Lamport snapshot algorithm [55].

The Dijkstra and Scholten procedure is based on the acknowledgement of all messages

and the generation of a hierarchical activity graph. Processors communicate two kinds of

information:

• the new value of the components of the iterate vector,

• the acknowledgment of messages containing a new value.

In an inactive state, a processor does not calculate and transmit any messages or acknowl-

edgments. This inactive processor P changes state when a message is received containing a

new value of a subset of components of the iterate vector from another processor that then

becomes the father in the hierarchical activity graph. The message that has activated P has a

particularly important role until the next inactivity phase; it is called a critical message.

In an active state, a processor updates the components of the iterate vector assigned to

it, transmits the updated values to other processors, or at least, to save communications, those

who need these values, and systematically sends an acknowledgment for any message received

excluding the critical message that receives special processing. An active processor P changes

state when its local termination condition is satisfied, acknowledgments have been sent for all

received messages except the critical message, and an acknowledgment has been received for

all sent messages. When the transition is complete, the processor P sends to its father the

acknowledgment of the critical message.

In the initial phase, only one processor, called the root processor, and noted R, is active. In

the following, all processors are gradually activated by the reception of messages. The activity

graph evolves according to the critical messages received, the satisfaction of local termination

conditions and the receipt of acknowledgements.

D. Bertsekas and J. Tsitsiklis have identified two main classes of methods for which the

modified asynchronous iterative algorithm converges in a finite time:

1. the case where the asynchronous iterative algorithm is associated with a fixed point

application contracting F for a uniform weighted norm,

2. the case where the asynchronous iterative algorithm is associated with an increasing

monotonous fixed point application F .

The validity of the method of D. Bertsekas and J. Tsitsiklis can be formally proved. How-

ever, this method has drawbacks insofar as

• it requires the use of a complex protocol and twice as many communications as a tradi-

tional asynchronous iterative algorithm,



• in addition, more restrictive conditions must be satisfied in order to ensure the conver-

gence of the modified asynchronous algorithm.

The other termination procedure, the Chandy and Lamport snapshot algorithm, is based on

the production of snapshot obtained by tagging messages and the recording of the status of

links and processors when tagging messages are delivered. The states recorded in a snapshot

do not necessarily correspond to the real global state of the system at a given time. However,

the information contained in a snapshot is sufficient to detect certain properties of the overall

state of the system, in particular the termination. D. Bertsekas and J. Tsitsiklis have established

a formal proof of validity of this termination method.

S.A. Savari and D. Bertsekas approach : Another particularly interesting termination method

has been proposed by S.A. Savari and D. Bertsekas [56]. In this procedure, the model describ-

ing asynchronous iterations is slightly modified; the result of each new update of a component

of the iterate vector is taken into account and communicated to the other processors if it is

different from the last calculated value. In addition, requests are sent to all processors in the

system whenever a non-local termination condition is not satisfied. A processor performs the

calculations and forwards messages and requests to other processors as long as its local ter-

mination condition is not satisfied or it receives requests from other processors. Termination

occurs when all processors have satisfied their local termination condition and no message

relating to a request or a result of a refresh is in transit in the system. S.A. Savari and D.

Bertsekas have given formal proof of the validity of this termination algorithm. The main

advantage of this method is that it can be successfully applied to a larger class of iterative al-

gorithms than the method of D. Bertsekas and J. Tsitsiklis. Its main drawback is that it requires

a very large number of communication requests and require restrictive assumptions such as,

for example, ordered communications.

J. Bahi et al. approach : Let us also quote the works of J. Bahi et al. in [57]; they have

also studied a centralized termination of asynchronous parallel methods. In asynchronous

context the convergence detection is even hardened by the difficulty to get a correct image

of the global state at any time during the iterative process. The most common techniques

used in distributed computing to recover such information are centralized and synchronous.

These detection methods are not suited to large scale and / or distant distributed systems and

also to asynchronous iterative algorithms. The convergence detection algorithm must also

be asynchronous. Moreover the centralization of such detection method may generate the

classical problem of bottlenecks. Indeed in a classical centralized algorithm, all processors

directly communicate their information to the central one. However, such communication

scheme, implying that one machine can directly be contacted by all the others, is not possible

in all parallel systems, particularly in the distributed clusters in which each site may have

restricted access policies for security reasons. In most cases, only one machine of a given

cluster is reachable from the outside. In order to bypass that problem, an explicit forwarding

of the message can be performed from any node in the system toward the central one. Such

method presents the advantage of only involving communications between neighboring nodes

and is well adapted to the hierarchical communication systems that can be found in distributed

clusters. Unfortunately, that last scheme implies more communications, slowing down the

network and indirectly the iterative process itself. Moreover, it also implies larger delays

toward the central node.



3.2.2 Decentralized approach

The decentralized approach presented below is better suited to the termination of asynchronous

parallel iterative algorithms

M. Chau et al. approach : For the parallel asynchronous methods, in [5]-[20] for stopping

criterion M. Chau et al. used a decentralized algorithm where asynchronous convergence de-

tection is achieved with a token circulation technique. Each processor updates the components

of the iterate vector associated with each one’s own block and computes the residual norm

attached to this block in order to participate to the convergence detection. Convergence detec-

tion was performed via a snapshot algorithm (see [17], section 8.2 and [55]), corresponding

to a variant of Lamport’s method. Convergence occurs when a given predicate on a global

state is true. A usual predicate corresponds to the fact that the iterate vector generated by the

asynchronous iterative algorithm is sufficiently close to a solution of the problem (see [17],

page 580); then, on every process, the norm of the local residue remains under a given thresh-

old after two successive updates of the component (see [17], [58]). Due to the termination

and the detection of the global state of the processes, the implementation of each variant of

parallel asynchronous method is then more complex than the synchronous one. In the case of

asynchronous iterations, point to point communications between two processes have been im-

plemented using nonblocking MPI SEND and receive subroutines. MPI TEST is used in order

to allow any processor to continue the computations without having to wait for the completion

of any pending send or receive operations. Idle times due to synchronizations in message pass-

ing are suppressed in this way. On the other hand, the parallel synchronous iterative schemes

are implemented by using MPI WAIT. One has to take care about the deadlock issue when

implementing synchronous communications using blocking MPI 1 subroutines. For more de-

tails concerning the implementation and the convergence detection of the considered parallel

asynchronous methods, the reader is referred to [20].

J. Bahi et al. approach : Another approach more flexible is proposed by J. Bahi et al. in

[57]; this approach do not use a token circulation. So, the most suitable detection algorithm

must not only be asynchronous but also completely decentralized. Such decentralized algo-

rithm for the global convergence detection works on all parallel iterative algorithms, either

asynchronous or synchronous, with, in this last case, some minor modifications. The major

difficulty with termination detection lies in the proof that the proposed algorithm does not de-

tect convergence prematurely. Indeed, in asynchronous methods, the delays between iterations

could lead to a false realization of the convergence criterion. This situation typically occurs

in heterogeneous contexts, for example when a processor computes a new iteration whereas a

slower processor computes a former iteration. Such difficulty is increased with distant proces-

sors where the communication / computation ratio may be important. As a consequence the

principle of the decentralized detection algorithm is based on two distinct classical steps. The

first one consists in detecting the local convergence on each processor while the second one

properly consists in the global convergence detection.

The local convergence detection step is quite similar to the one used in the synchronous

mode. Since there is no information between the current state of the iterative process and the

fixed point to be found, so, in place, the norm of the residual is used to get an idea of the ter-
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mination of the iterative process. So, the local iteration is ended when the norm of the residual 
is less than a given threshold. Nevertheless, it can be noted that, in all iterative algorithms and 
not especially in asynchronous algorithms, false detection of the global convergence can occur 
if no care is taken.

The common heuristic for the detection of a definitive local convergence is then to assume 
that such local convergence has performed a given number of successive iterations with a 
norm of residual less than the given threshold. Such required value of number of successive 
iterations exists and is finite since the iterative process converges; the result of [58] allows to 
give an estimate of such value.

Global convergence will occur when all local processes have converged. Unfortunately if 
the asynchronism is not responsible for the difficulty in evaluating the local convergence, it 
hardens the global convergence detection by making the building of a representative image of 
the global state of the system more difficult.

The decentralization of the detection of the termination algorithm is based upon a scheme 
quite similar to the leader election protocol. Such protocol consists in dynamically designating 
one processor to perform a given task, namely in our case, the global convergence detection. 
However, in the specific context of global convergence detection, the leader election process 
requires some specific adaptations which imply the use of a tree graph. Then a message in-
forms the receiver that all the processors located in the subtree depending on the sender have 
reached local convergence. Hence, on each processor, the algorithm considers the number of 
neighbors in the tree from which no convergence message has already been received. So a 
node will detect the global convergence when it has received the convergence message from 
all its neighbors and is itself in local convergence. The correctness of this procedure of global 
convergence detection is proved in the context where contraction techniques are used (see 
[57]); in other cases, the process is still correct but an additional verification step is neces-
sary after the global detection to ensure that the system was in the global context state at the 
detection.

F. Magoules et al. approach : In a recent study F. Magoules and Guillaume Gbikpi-
Benissan [59]-[60] present original results concerning the problem of convergence detection 
for classical parallel asynchronous iterations. In this study convergence detection problem is 
classically presented in terms of a consistent estimation of the residue thanks to the use of 
sequences of single vectors generated by each processor. The snapshot algorithm introduced 
by K.M. Chandy and L. Lamport constitutes a way of building the global state of any dis-
tributed system by recording states of processes and communication channels; it allows in the 
sequel to propose two possible extensions for asynchronous iterations termination in First-
In-First-Out (FIFO) communication environments. According to the point of view developed 
by S.A. Savari and D.P. Bertsekas where computation data are included into snapshot mes-
sages, the authors propose to extend the two protocols previously considered and to consider 
non-FIFO environments; then no coordination phase is introduced by the new two proposed 
protocols. Then, considering a communication model where at least computation messages are 
FIFO-ordered, the authors propose another method without snapshot messages, based only on 
computation data. The main idea is to record a channel state when two successively received 
messages are very close. Processes therefore need twice more memory for received messages. 
At last, the authors introduce a communication environment where the non-FIFO message 
delivering can be characterized, due to performance level requirements on the computation



platform. They therefore derive two new other protocols which build an approximate global 
iterations vector. With appropriate assumptions, a formal analysis is conducted when the space 
is normed by any norm, to bound the error between the exact and the computed approximate 
residual; particularly an analogous result is stated when the weighted uniform norm is used. 
Presentation of parallel experiments show the effectiveness and the efficiency of the study ap-
plied to a target problem solved on supercomputers with 48 to 504 processors cores on one 
hand and to 1024 to 5600 processors cores on the other hand. These experiments show clearly 
that the residue is accurately estimated. With respect to previous contributions developed by 
other authors, the present study show that only one reduction operation at each iteration (in-
stead of two in other contributions) is sufficient to the computation of the residual error; thus, 
compared to existing supervised termination algorithms, the present study minimizes both 
delays of termination detection and communication overhead costs.

3.3 Numerical analysis approach

In fact, all the stopping criteria presented in sub-sections 3.1 and 3.2 do not really take into 
account the numerical aspects related to the mathematical analysis of the behavior of these par-
allel iterative methods. Several works related to the study of the convergence of asynchronous 
parallel methods has also highlighted numerical termination criteria. Thus a realistic imple-
mentation of termination of parallel asynchronous methods must combine both the aspects of 
computer science with the aspects derived from numerical analysis.

Use of a secondary error control algorithm : For parallel asynchronous methods J.C. Miel-

lou proposed in [3] a termination detection method based on the use of a secondary error con-
trol algorithm derived from the secondary algorithm of F. Robert [61] and G. Schroeder [62]. 
In the framework of study of convergence by contraction techniques, this secondary algorithm 
allows to solve a system of small dimension z = Jz, where J is the contraction matrix with 
a spectral radius smaller than the unit. Obviously, for the solution of the problem z = Jz, 
whatever be the initial guess z0, the secondary algorithm will converge to zero. So, by choos-
ing at each step p for the principal algorithm and also for the secondary algorithm the same 
strategy for choosing the components to relax and the same delayed values, J.C. Miellou has 
established that if the secondary algorithm is initialized by a vector z0 verifying

z0 
≥ q(U0 

− U⋆),

then at each step p of the principal algorithm the following inequality

zp 
≥ q(Up 

− U⋆)

is verified; so we can terminate the principal asynchronous parallel algorithm, when all the 
components of zp are of modulus less than a given tolerance ǫ. The secondary algorithm re-
quires significantly fewer calculations than the principal algorithm and can very well be imple-
mented with the latter at a lower cost; it therefore provides a reliable and economical method 
for terminating asynchronous parallel methods. We refer to [3] for a practical determination 
of z0.

Use of the discrete maximum principle : Related to the works performed in [11]-[12] (and 
also [42], [47]-[48]) We have seen that convergence analysis can be carried out using 
partial



ordering techniques; we can then take advantage of the properties of a decrease of the iterate

vector W p calculated from an over-solution W 0 and of the growth of the iterate vector V q

calculated from a sub-solution V 0, to obtain at each step a control of the solution U⋆ such as

V q
≤ U⋆

≤ W p.

Thus, if the components of the vector W p − V q are all less than a given tolerance ǫ, we

can conclude that the asynchronous parallel methods are converging. However, it should be

noted that this process, although very reliable, is not economical in terms of the amount of

calculation and calculation time.

Use of nested sets : based on the consideration of perturbation by floating point errors [63],

another approach to dynamically terminating parallel iterative asynchronous algorithms in a

general situation of topological context was developed by J.C. Miellou, P. Spiteri et al. in

[64] to [66]; this approach is based on considerations involved in the analysis of the numerical

behavior of these iterative methods. This approach essentially uses the notion of nested sets

studied by D. Bertsekas et al. (see [17]) to analyze the convergence of these methods. The

principle of this approach is the same whether the problem is linear or non-linear. However,

for linear problems the effect of rounding errors is taken into account by using an approxi-

mate contraction notion introduced by J. Wilkinson (see [67]-[68]) and extended in [69] in

the context of parallel asynchronous iterations. In order to give some estimate of the distance

between the exact solution and the current iterate and then to propose several on line original

stopping criteria for parallel asynchronous iterations usable for general fixed point methods

defined in a product space the previous authors consider asynchronous iterations with multiple

initializations and develop a complete study allowing to obtain, when the considered stopping

tests are satisfied, upper bounds of the absolute error and also sharp estimates of bounds of the

residue very useful for efficient various stopping criteria. Note that these bounds depend on

the chosen topology, and specifically on the equivalence norm constants between the chosen

norm and a specific Perron-Frobenius norm. These methods of termination are relative to an

estimation of the diameter of appropriate nested sets, centered on the solution required, and

that contain the selected iterate vectors necessary to achieve the stopping criterion; in other

words the considered stopping criteria are described with respect to the distance of the ex-

tremities of a segment order containing the selected iterates necessary to achieve the stopping

criterion. Thus, if the size of this segment order is lower or equal to an appropriate threshold

associated to the considered stopping test, then the iterations stop. This property of stopping

the iterations is proved rigorously thanks to the convergence property of asynchronous itera-

tions when contraction or approximate contraction properties of the fixed point mapping are

considered. Moreover to obtain a correct estimation of the segment order considered to stop

the iterative algorithm it is necessary to enclose several successive iterates which then allow to

construct by a dynamical way the nested sets. This is made possible thanks to the use of the

notion of sliding macro-iteration. More precisely:

1. a sliding macro-iteration corresponds to the consideration of successive iterate vectors

including those with just refreshed components and the previous iterate vectors directly

used for getting them; a sliding macro-iteration is distinct to a macro-iteration used for

the study of convergence of asynchronous parallel iteration; indeed a macro-iteration

corresponds to the fact that all components of the iterate vector are updated at least



one time using available values of the components associated to the considered macro-

iteration,

2. the construction of such sets is possible when the convergence of the asynchronous

parallel iterative methods results of contraction or approximate contraction techniques,

corresponding to the fact that the fixed point mapping is contracting with respect to a

vectorial norm and admits a contraction matrix J, i.e. a Lipschitz matrix with nonnega-

tive entries and spectral radius strictly less than one.

The proposed stopping criteria correspond to the three following cases

1. a stopping criterion with respect to the absolute error,

2. a stopping criterion with respect to the relative error,

3. a mixed stopping criterion with respect to a vectorial norm error, i.e. combining the

absolute error and the relative error and using a mixed weight uniform norm absolute

value-relative value vectorial norm stopping test.

The previous three stopping criteria are described with respect to the general distances defined 
on the classical n-dimensional space. It can be also noted that the stopping criterion with 
respect to the absolute error and the stopping criterion with respect to the relative error can 
be formulated by using general norms defined in the classical n-dimensional space while the 
mixed stopping criterion with respect to a vectorial norm error is defined in a more particular 
context using weighted uniform norms. In all cases and in the considered theoretical and 
general framework, it has been shown that each termination test is coherent and bounds of 
the residue and of the error, for the absolute value stopping test and for the mixed stopping 
criterion with respect to a vectorial norm are established. Finally some criteria related to 
dynamic termination such as absolute errors and errors in vectorial norm are particularly well 
suited to specific contexts such as the use of distributed memory machines, grid computing, 
peer to peer and cloud computing.

Beside, note also, that in a previous study [58], we have considered an analogous study 
using the same theoretical framework in the case of linear fixed point parallel asynchronous 
iterations, taking into account the influence of round off errors; in this work the stopping test 
is not achieved by a dynamic way, but is predictive, i.e. allows to predict, taking into account 
the value of the parameters used to estimate the convergence rate, how many macro-iterations 
will be required to obtain a given accuracy. Lastly let us also mention a study concerning the 
termination of parallel asynchronous iteration for nonlinear problems [70].

4 Implementation of asynchronous parallel algorithms

Scientists who have carried out theoretical studies on asynchronous parallel methods have 
obviously been very interested in testing these methods in real scale. However, at the time 
these studies were started, there were practically no multi-processor machines.

The first experiments were therefore carried out by simulating parallel executions. The first 
simulations were carried out in the late 1960s by J.L. Rosenfeld [1]. Further asynchronous par-
allel execution simulations were performed in the late 1970s by P. Spiteri et al. (see [71]-[72]) 
where these authors simulated the actual running of parallel asynchronous executions on a



single-processor machine. At the same time G. Baudet was able to test these methods on

CMMP at the Carnegie Mellon Institute [16]. Subsequently, other more appropriate and real-

istic methods of implementation were used, such as the use of Transputeurs [6], which made

it possible to evaluate the performance of asynchronous parallel algorithms. The beginning of

the 1980s also saw the emergence of multiprocessor machines, first with common memory,

such as Aliant or Cray machines [73], and also with distributed memory machines [74]. It

should be noted that currently parallel runtime simulations are still used to estimate at a low

cost the computation cost of an application to be carried out later on a multiprocessor machine

(see [75]). These studies then lead also the researchers to implement these parallel methods as

efficiently as possible on peer-to-peer architectures, on a computing grid and on the cloud.

It would be cumbersome to make an exhaustive presentation of all the experiments carried

out and the efforts made by programmers to use as efficiently as possible these new architec-

tures.

We briefly present below several recent contributions on the implementation of asynchronous

parallel algorithms and we refer the reader to the bibliography for other implementation works.

4.1 Principle of implementation

This section is devoted to the presentation of the principle of implementation of parallel algo-

rithms. The implementation of parallel algorithms have been carried out on clusters in [20] and

in heterogeneous and distant clusters constituting a Grid platform in [5]. The principle of im-

plementation of parallel asynchronous and synchronous iterative methods can be summarized

as follows:

Do until global convergence

For each block do

- Perform communications of block boundary values

- Perform block relaxation

End For

End Do

The method without overlapping corresponds to a straightforward block relaxation method, 
with communications of the values of the components associated to the boundaries of a block; 
so such method does not present any difficulty. Thus, sequences of smaller subproblems are 
solved on each processor of the parallel computer in order to compute a solution of the global 
problem; practically more accuracy is obtained. Several blocks are assigned to each processor 
in order to implement a strategy which is close to the multiplicative one. To obtain a faster con-
vergence of the parallel computations, each processor handles contiguous blocks, numbered 
according to red-black or lexicographic ordering ; note that such red-black ordering is more 
appropriate for parallel computations and, in this case the convergence results of convergence 
still hold by a straightforward way [22].

In the case of asynchronous iterations, point to point communications between two pro-
cesses have been implemented using nonblocking MPI SEND and MPI RECV subroutines. 
MPI TEST is used in order to allow any processor to continue the computations without hav-
ing to wait for the completion of any pending send or receive operations. Idle times due to 
synchronizations in message passing are suppressed in this way. On the other hand, the paral-
lel synchronous iterative schemes are implemented by using MPI WAIT. One has to take care



about the deadlock issue when implementing synchronous communications using blocking

MPI subroutines.

For simplicity, with respect to the block decomposition considered the block partitioning

retained for the assignation of the large blocks to the processors is very simple; in fact, in

order to define a large block, we have gathered several adjacent blocks of the natural block

decomposition. So, on each large block associated to each process, a classical and sequential

block relaxation method is used in order to solve each subproblem ; this kind of method is

implemented by solving each tri-diagonal block, associated to classical discretized boundary

value problems, by the TDMA method, corresponding to the Gauss’s elimination method ap-

plied for tri-diagonal block; in order to reduce the elapsed time of computation, note that the

implementation of the block relaxation method is optimized by elimination of sequences of re-

dundant code. Indeed in this implementation the LU decomposition of each diagonal block is

performed only once in the initialization phase. Then, this optimization allows to decrease the

elapsed time. For more details concerning the implementation and the convergence detection

of the considered parallel asynchronous methods, the reader is referred to [5] and [20]. Note

also that, instead of using block relaxation methods on each large block, it is also possible to

implement various efficient numerical method for the solution of each large block; so, we refer

to [38] for the use of the point relaxation method or also to [19] for the use of preconditioned

conjugate gradient method.

The simulation algorithm is based on master/slave paradigm which is a commonly used

approach for parallel and distributed applications. In our case, a master process controls the

distribution of work to a set of slave processes.

Algorithm

if (master)

compute discretization matrix and right hand side

send input data to slaves

compute SPMD parallel algorithm to solve the algebraic system

receive output data from slaves

else

receive input data from master

compute SPMD parallel algorithm to solve the algebraic system

send output data to master

endif

Algorithm 1: General algorithm.
This process is used for the solution of the system that arises in the numerical simulation of 

the target problem. Matrix and right hand side creation can be implemented sequentially since 
this part of computation is not very intensive and except particular cases, are computed once. 
In this way, the master process can be seen as a matrix and vector filler that feeds a parallel 
solver. In other words, only intensive computations have been parallelized with MPI facilities.

In the case of parallel Schwarz alternating method, sub-domains may overlap each other. 
For the implementation of the Schwarz alternating method, the domain Ω, where the boundary 
value problem is defined, is split into overlapping parallelepiped or sub-domains of any form. 
Minimal values are chosen for overlapping between them (about one or two mesh points). 
The parallel synchronous and classical asynchronous Schwarz alternating methods have been 
implemented as follows



do until global convergence

for each subdomain assigned to the processor do

if local convergence is not reached then

receive the latest boundary values

solve the subsystems

send the boundary values to the neighbours

end if

end for

end do

Algorithm 2: Schwarz alternating method.

Sub-domains are assigned to each processor following for example a red-black ordering.

For the solution of the target problem, note that in each sub-domain is considered the imple-

mentation of the block Gauss-Seidel method which has the advantage of having a multiplica-

tive behavior.

4.2 The library Jack 2

F. Magoules and Guillaume Gbikpi-Benissan present in [60] and [76] a new object-oriented

communication library Jack2, developed to ease the implementation of both classical, syn-

chronous and asynchronous iterative methods in this two last cases for distributed architec-

tures. In the case of asynchronous iterative methods and in order to reduce the calculation

times, the weight of idle times due to synchronizations between the processes is decreased.

Then the goal is to allow a full overlapping of communication and computation phases during

the parallel processing, in contrary of the parallel synchronous algorithms where, for exam-

ple, a processor must wait for updates from another processor that has not completed its own

calculations. In the case where many synchronizations are necessary, and if in addition the

communication network is slow, such situation of synchronous methods could therefore con-

siderably decrease the parallel computational efficiency. The implementation of asynchronous

methods is not easy to achieve regarding particularly to the management of communication

requests and the evaluation of stopping criterion; such implementation needs to be carried out

carefully and optimally. For the realization of Jack2 a precise specification has been carefully

drawn up; with respect to previous works, additional contributions concerning

1. the protocol termination,

2. flexibility and usability improvements in the architectures in the design of the library,

3. complete details of implementations including parts of code,

4. additional parallel experimental results obtained in an homogeneous computational en-

vironment, allowing to measure efficiency impacts of various configurations and accu-

racy.

For asynchronous iterations convergence detection, the termination of the iterative process 
is accomplished with the same principle than the one presented by the same authors at the end 
of subsection 3.2.2.

Following these principles of implementation, and using the MPI programming framework, 
the Jack2 programming framework is carefully and progressively presented. Various choice



of implementation, such as several levels of encapsulation of the different operations to be 
performed, are presented. In a distributed environment, in order to avoid memory overhead 
costs, for the design of Jack2, the authors opts for MPI persistent requests in a similar way 
than the one considered for example in [5] or [20], rather than using collective procedures; 
in such persistent communications message buffers and neighbor process are specified once 
for all before beginning the iterations. Then a complete initialization part for communication 
parameters is defined where variables of communication graph, communication buffers and 
residual evaluation are specified; this initialization phase allows non-blocking reception re-
quests between neighbors. Such Application Programming Interface (A.P.I.) allows to handle 
communications requests during asynchronous computations. Correct termination is ensured 
by adding partial snapshot operation in accordance with the same principle than the one pre-
sented at the end of subsection 3.2.2. Finally, to produce a unique code for both overlapping 
and asynchronous schemes the top front-end of Jack2 provides two classes, which manage 
communication requests and convergence detection. The management of communications and 
detection of convergence, in both cases synchronous or asynchronous, is achieved following 
the same pattern. Then function pointers are used according to the communication mode with-
out using “ if ”conditions. For point-to-point communications Jack2 is configured to activate 
several MPI reception requests on each same reception buffer defined by the user application; 
then processes can use more recent data for last updated local components, instead of only 
benefiting from data received at the beginning of the computation phase, allowing more flexi-
bility during the computation. Then such a mechanism of reception of the messages, compared 
to a conventional put / get semantics, allows a finer management of the delayed relaxations. 
Moreover, the author shows that the inhibition of message transmissions on an already busy 
communication link does not degrade the performance than those obtained by a put mecha-
nism, because such a mechanism is reproducible by means of synchronous non-blocking MPI. 
The FIFO delivering on communication links considered in subsection 3.2.2 is then assured 
by the MPI specification. For the communications Point-to-point messages sending and re-
ception request are carefully handled in order to minimize delays of communication data and 
then obtain the more possible multiplicative behavior of the iterative distributed algorithm; 
such situation is realized when the updates are sent at the beginning of the iterations according 
to a solution proposed in [5] or [20], even if the destination process is still computing; then 
the Gauss principle is respected to obtain the fastest convergence. Finally, last updates are 
transmitted when only explicitly requested into computation reception buffer. This feature is 
realized in Jack2 by adding supplementary buffers.

4.3 Implementation in multi-GPU architecture

Some works has been also focused on the implementation of synchronous and asynchronous 
iterative parallel methods on multi-GPU architecture (see [77]-[80]). For example this imple-
mentation make possible to solve a problem of a highly non-linear partial differential equation 
intervening in finance or mechanics [78]; this last reference concerns the obstacle problem that 
corresponds to a boundary value problem where the solution is subjected to constraints. It is 
then necessary at each step to project the intermediate iterations onto the convex set defining 
the constraints. Therefore, the Richardson projected point method and the projected block re-
laxation method were used. It appears that asynchronous parallel implementation reduces the 
downtime of parallel processes due to blocking messages and synchronization barriers. It was 
necessary to consider two levels of parallelization: a synchronous multi-threaded paralleliza-



tion in a computing node and parallelization between the different nodes of the cluster that 
communicate with each other by passing messages in synchronous or asynchronous mode. 
A comparison of the performances of algorithms implemented on multi-CPU and multi-GPU 
architectures is achieved, and then one can measure the influence of the architecture on the 
performance of the computation methods. In particular, the Richardson projected method, al-
though having a slow convergence rate compared to the projected block relaxation method, is 
more efficient in terms of restitution time on multi-GPU architecture; this is due to the vec-
torial nature of the Richardson method which allows good multi-threaded parallelization. On 
the other hand, on a multi-CPU architecture, the performances are reversed, since considering 
the good speed of convergence of this method, the projected block relaxation methods allow 
to obtain better elapsed times. It has also been found that, thanks to the computing power of 
GPUs, their use reduces the ratio of computing time to communication time.

Always using multi-GPU architectures, synchronous and asynchronous methods have been 
implemented for the solution of large scale linear systems. The approach adopted consists in 
considering coarse-grained algorithms based on the two-level multi-decomposition method us-
ing the iterative parallelized Krylov GMRES method well adapted to GPU clusters [77]. This 
combines the performance of synchronous parallel iterations to solve linear sub-systems by the 
GMRES method and, for data exchanges, the flexibility of asynchronous iterations between 
GPU clusters for the overall resolution of the large linear system. This type of method is well 
suited to the use of distributed architectures composed of geographically remote computing 
nodes interconnected by a high latency communication network.

Let us also refer to [79]-[80] for the determination of the roots of high degree polynomial 
using GPU.

4.4 Load balancing for parallel asynchronous algorithms

To take into account the heterogeneity of the machines, it is necessary to balance the processor 
load, especially in synchronous mode but also in asynchronous mode. In the asynchronous 
mode, a properly distributed load allows an efficient recovery of communications by calcu-
lations. Load balancing can be applied in two different ways: either static or dynamic. In 
the case of dynamic load balancing, the evolution of the computing power available on each 
machine during the execution of the algorithm is taken into account. We therefore iteratively 
balance the load of each processor with its neighbors until the overall balance of the entire sys-
tem is achieved. Thus asynchronism appears both at the application level and at the balancing 
method level.

In addition, it becomes less and less interesting to design balancing algorithms specific to 
a given context. Therefore there is a strong demand for fully adaptive algorithms that can be 
used on any type of parallel architecture without significant modification. This is due to the 
fact that we are currently witnessing the emergence of increasingly dynamic systems. This 
dynamic aspect is typically found in communications where the links between the calculation 
units are only intermittent.

D. Bertsekas and J. Tsitsiklis [17] proposed an asynchronous model for decentralized bal-
ancing based on the fact that each processor has its own load estimate and that of its neighbors. 
Thus each processor searches if it has neighbors less loaded and in this case it distributes part 
of its load to them. The work of D. Bertsekas and J. Tsitsiklis then evolved; thus, one variant 
was to transfer the calculation load only to the least loaded neighbor; this point of view has



the advantage of generating only load transfers per pair of neighbors, which makes balancing 
easier to implement and above all much lighter because the network is much less congested 
by message transfers.

This point of view was also adopted by J. Bahi and S. Contassot - Vivier (see [57]). Thus the 
most suitable strategies for such asynchronous use contexts are neighborhood strategies based 
on diffusion algorithms. In this context, the method proposed by J. Bahi and S. Contassot 
- Vivier is based on an algorithm based taking into account an asynchronous dynamic diffu-
sion of information over time on a network where the link between processors is intermittent. 
The original point of view of this approach, based on the use of dynamic and/or decentralized 
distributions, is therefore different from the traditional methods used in load balancing algo-
rithms where static and centralized distributions are taken into account. This point of view 
therefore takes into account the emerging evolution of multiprocessor architectures, which are 
increasingly complex and often include heterogeneous computing units and various intercon-
nection networks. This approach therefore makes it possible to design load balancing schemes 
that take full advantage of the ever-increasing computing power and takes also into account 
the modularity of systems due to the increase in the number of possible parallel processes. 
The load estimator chosen by these authors is the residue between two successive iterations 
because this latter estimator makes possible to take into account the progress of the iterative 
solution of the problem; indeed, when two neighboring processes have very different residues, 
it means that one progresses faster than the other and therefore has a lower contribution to the 
overall progress of the calculation. To balance the contributions, a transfer of elements from 
the processor with the largest residue to the one with the smallest residue is then performed. In 
this context of use J. Bahi and S. Contassot - Vivier have established a convergence theorem. 
Experimental results on SimGrid confirm the effectiveness of the algorithm.

5 Applications of asynchronous parallel algorithms

5.1 Application in high performance computing

Asynchronous parallel iterative algorithms have been successfully applied to a large number 
of problems; more generally numerical solution of algebraic systems in several references, nu-
merical solution of ordinary differential equations as well as numerical resolution of differen-
tial equations at both ends, algebraic differential equations and waveform relaxation methods 
for the simulation of electronic circuits (see for example [36] and [81]), Markovian systems 
[18], and also linear asynchronous iterations when the spectral radius of the modulus matrix 
is one [82], optimization problems, in particular convex flow problems in networks that have 
many applications in distribution and information routing (see [83]-[84]), finance...etc ... , 
and also determination of the root of polynomials [85]. Other very varied problems studied at 
MIT [17]: dynamic programming, searching for minimum paths, assignment type optimiza-
tion problems, flow problems in networks, optimal routing in communication networks. The 
list of applications is therefore large and it is difficult to be exhaustive.

Many studies have also been achieved concerning numerical solution of linear and non 
linear partial differential equations; let us cite for example non-linear diffusion problems in-
volved in plasma physics or in the modelling of solar ovens [6] and [42], the Hamilton - Jacobi 
- Bellman problem involved in image processing [47] , the obstacle problem modelling finan-
cial mathematics problems or mechanical problems (see [78] and [86] to [90]), the Navier -



Stokes equation modeling hydrodynamic problems and also, on various architectures, various 
applications in biology such as protein separation by electrophoresis modelled by problems 
coupled from this equation with one or more convection - diffusion equations to calculate the 
various protein concentrations as well as a potential equation describing the electrical behav-
ior of the process (see [91] to [94] or fluid interaction - structure problems where the Navier -
Stokes equation is coupled to the Navier equation describing the behavior of the structure [19]. 
Other applications related to P.D.E. resolution have been solved in medical image processing 
to perform filtering of noisy images as well as segmentation to detect contours and thus high-
light homogeneous areas in ultrasound or PET images [95]-[96]. Other application to porous 
medium equation and various classical applications have been also studied (see [97]-[98]); 
note also a recent study concerning asynchronous optimized Schwarz method in [99].

5.2 Application of chaotic iteration in security

Another application distinct from high-performance computing objectives has been developed 
by C. Guyeux et al. [100] - [106] to solve computer security problems. While most of the 
studies so far conducted are related to the analysis of their convergences, in this works, C. 
Guyeux et al. does not seek to study the convergence properties of chaotic iterations but di-
vergence properties in relation to chaos theory for iterative discrete dynamic systems. The 
combination of these two concepts is well suited to various target applications such as com-
puter security, where chaos is linked to information concealment techniques, mainly tattooing 
and steganography. This activity leads them to develop various theoretical and practical stud-
ies. Moreover, still based on chaotic iterations, C. Guyeux et al. define a new class of hash 
function. Subsequently, this work was continued in a similar direction, while refining the 
theoretical points of view already developed and broadening the application points of view, 
particularly towards applications such as neural networks, the generation of pseudo-random 
numbers that play an important role in encryption systems where messages are hidden and 
encryption keys are generated, the implementation having been carried out either physically 
with a laser or implemented on FPGA or GPU. Still in the same formal framework, the study 
of security by wireless sensor networks, in particular video surveillance, but also indistingabil-
ity, non-malleability, routing, etc., has been developed. Finally, a final aspect of C. Guyeux’s 
works concerns the study, by asynchronous parallel methods, of complex dynamics appearing 
in bioinformatics, with in particular the analysis of the spatial dynamics of protein folding and 
the study of the temporal dynamics of genome evolution.

6 The efficiency of asynchronous parallel algorithms

From the benchmarks achieved, it appears that asynchronous parallel methods are of real inter-
est when parallel processing involves a large number of synchronizations. This occurs in par-
ticular when convergence is slow, and especially when the interconnection network between 
processors and/or clusters is slow; this aspect increases in the case of massive parallelism. On 
the other hand, when convergence is fast, this situation corresponding to a low number of syn-
chronizations between processors, and the interconnection network between processors and/or 
clusters is fast, synchronous parallel methods are still of interest.
On the theoretical level, we have seen that the general formulation of asynchronous methods 
makes it possible to present in a unified way both asynchronous and synchronous methods



as well as classical sequential relaxation methods, which makes possible to analyze once for

all these methods whatever be the synchronization mode in the case of sequential or parallel

codes.

To illustrate these conclusions, we refer to [95]-[96] corresponding to applications for the

treatment of medical images or [38] corresponding to the simulation of a continuous casting

problem in steelworks where the authors theoretically show that convergence is rapid and ex-

perimentally observe better performance of synchronous parallel methods in the case where

the simulation is achieved on a cluster with fast interconnection network between the proces-

sors. On the other hand, in the last case of application, because of the slowness of the inter-

connection network between the clusters, when simulations are carried out on a computing

grid, asynchronous methods are interesting. On the other hand, in [5] corresponding to fi-

nancial mathematical applications or unilateral constraint problems, convergence is very slow

and correlatively the performance in term of elapsed time of asynchronous parallel methods is

much higher than that of synchronous ones.

This phenomenon of superiority of asynchronous parallel methods is therefore accentuated

when the processors are heterogeneous and distant, which is the case for example with comput-

ing grids or cloud computing; we can therefore see here the influence of machine architecture

on algorithm performance.

In addition, for better performance of iterative parallel asynchronous algorithms, it is nec-

essary to achieve a decomposition of the problem in large tasks, so that the numerical behavior

of the iterative method is rather multiplicative like the Gauss - Seidel method and no additive

like the Jacobi method.

7 Conclusion

In this paper we have briefly, synthetically and as fully as possible presented the asynchronous

parallel iterative methods, trying to identify the essential points. References to numerous

works will allow readers to explore this large subject in full evolution. However, it was diffi-

cult to cite all the works carried out in at least 50 laboratories around the world. Nevertheless,

a bibliographical search on the Internet makes it possible to enrich the list of references men-

tioned in this study.
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[70] P. Spitéri, D. El Baz, J.C. Miellou, M. Jarraya, ”Mathematical study of perturbed asyn-

chronous iterations designed for distributed termination”, International Mathematical

Journal, 1 (5), 491-503, 2002.

[71] P. Spiteri, ”Simulation d’exécutions parallèles pour la résolution d’inéquations variation-
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