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Abstract. Unmanned Aerial Vehicles (UAVs) based systems are a suit-
able solution for monitoring, more particularly for traffic monitoring. The
mobility, the low cost, and the broad view range of UAVs make them
an attractive solution for traffic monitoring of city roads. UAVs are used
to collect and send information about vehicles and unusual events to
a traffic processing center, for traffic regulation. Existing UAVs based
systems use only one UAV with a fixed trajectory. In this paper, we
are using multiple cooperative UAVs to monitor the road traffic. This
approach is based on adaptive UAVs trajectories, adjusted by moving
points in UAVs fields of view. We introduced a learning phase to search
for events locations with a frequent occurrence and to place UAVs above
those locations. Our approach allows the detection of a lot of events and
permits the reduction of UAVs energy consumption.

Keywords: Unmanned Aerial Vehicles (UAVs) · Traffic monitoring ·
UAVs trajectories · Events detection process · Learning strategy

1 Introduction

         Unmanned aerial vehicles (UAVs) are gaining popularity in civil and 
commercial applications. They are considered as a new traffic monitoring 
technology used to collect information about road traffic conditions. This paper 
addresses the design of a UAV-based system for the management of road traffic 
within a city. 
         Several road traffic monitoring systems already exist. They have many 
objectives, among them the detection of infractions like speeding violations and 
the discovery of congestion. To fulfill these goals, monitoring systems should first 
collect traffic data from deployed devices. Traffic data consist of the number of 
vehicles, their position, and their speed. The data should then be transmitted to a 
processing center. The processed data can be used offline or online. For example, 
notification can be sent online to vehicles owners to avoid congested
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roads, or emergency measures can be triggered automatically like calling rescue
in the case of cars accidents [1–3]. For the regulation of traffic offline, statistics
are generated using the collected data, then, for example, red lights and traffic
displays are reorganized [2,4].

A lot of researches treated the congestion detection [5–7] and the early con-
gestion detection [8–11] to overcome the low efficiency of transportation, which
is a significant problem on roads in urban cities. The numbers of vehicles in
an area and their velocities are the two main parameters that indicate whether
there is congestion or not.

Several road traffic monitoring systems exist, they can be mobile or fixed.
Fixed systems are for example sensors, detectors, and fixed cameras [12]. They
enable the monitoring of a specific and limited area, their implementation and
maintenance costs are very high, and they are generally affected by bad weather
conditions. While for mobile systems, UAVs is the best solution for traffic mon-
itoring [13]. In fact UAVs are mobile and equipped with cameras, sensors, and
detectors. Using UAVs in the context of traffic monitoring have many advan-
tages. UAVs can cover large areas and access specific locations; they can be
deployed in any area, at any time, for any duration, and at no additional cost.
UAVs can also perform vehicle identification, positions, and velocities estimation
because they are equipped with cameras and have image processing capabilities.

For traffic monitoring systems based on UAVs, UAVs trajectories are prede-
fined in advance by fixed points of interest. Those fixed points of interest can be
intersections where there is a lot of traffic, critical areas, or positions of sensors
placed on the ground. UAVs move from a fixed point of interest to another to get
information about the traffic and vehicles. One or multiple UAVs can be used to
collect data from various ground sensors placed on city roads [3,14]. UAVs fly
over the sensors and collect the data after establishing a connection with them.
Also, the UAV can receive data only from clusters heads nodes [15]. In other
systems, a single UAV with image processing capabilities is responsible for the
measurement of relevant vehicles parameters [16,17].

In [18], we proposed a road traffic monitoring solution based on the use of
multiple cooperative UAVs with image processing capabilities. The goal is to
detect as many events as possible. UAVs trajectories are adapted according to
the position of vehicles in their field of view, which is not enough to detect all
events, and which is consuming a lot of energy due to unnecessary movements.
Vehicles trajectories are not from real traces; they were generated according to a
mobility model, this can cause the computation of events detection percentages
far from the reality.

So in this paper, we propose to adjust the position of UAVs not only accord-
ing to the position of vehicles in their fields of view but also according to the
position of events. We propose to place some UAVs at positions where events
frequently occur. The choice of UAVs to place can be according to the distance
that separates them from those positions, or according to the number of tar-
gets in their fields of view. This solution is applied to all types of events like
speeding violations and congestion. For that, we introduced a learning phase to



predict event positions with frequent occurrences, that we call Strategic Points
(SPs). Because we want to group events positions that happened close to each
other, we choose the unsupervised learning as the learning method to work with.
The unsupervised learning is used to learn more about the data by exploring it
and finding some structure or distribution within. After the learning phase, we
propose to place UAVs above some SPs, to increase percentages of events detec-
tion, and to reduce the total traveled distance by UAVs. We also propose to use
real vehicles traces to work on real conditions and to get realistic results while
applying our approach. Finally, we improve the events detection process by bet-
ter defining the conditions for events detection. We are interested mainly in the
congestion detection and the speeding violation detection. For congestion detec-
tion, we use a vehicles clustering approach. For speeding violation detection, we
use a velocity threshold approach.

The purpose is to show the positive impact of applying our approach on
events detection percentages, on the number of covered vehicles, and on the
UAVs total traveled distance, while using real vehicles traces. In fact, due to
the limited number of UAVs, and due to their limited autonomy, having some
moving UAVs and others placed above SPs is a good solution.

The rest of the paper is organized as follows. In Sect. 2, we present the system
model. In Sect. 3, we present our contributions. In Sect. 4, we analyze simulation
results for real traces and mobility model traces. We conclude in Sect. 5.

2 System Model

The system consist of multiple UAVs (U1, U2, ..., Ui), characterized by their posi-
tions (P1, P2, ..., Pi), velocities (V1, V2, ..., Vi), and labels i with 1 ≤ i ≤ Umax,
where Umax is the maximal number of UAVs. We assume that all UAV are flying
at the same altitude (A) and have the same radius (R) of fields of view. They
are monitoring the road traffic during an observation time (St).

The system consist also of multiple targets (T1, T2, ..., Tj), characterized by
their positions (Pt1, P t2, ..., P tj), velocities (V t1, V t2, ..., V tj), and label j with
1 ≤ j ≤ Tmax, where Tmax is the maximal number of targets. Targets are vehicles
moving on city road, their positions and velocities are updated according to a
mobility model or updated from real traces for the period St. St is divided into
times slots. Updates, instructions, and decisions are made at each time slot.

We assume that all UAVs have image processing capabilities. They are capa-
ble of detecting targets in their field of view and estimating relevant targets
parameters (label, position, and velocity). A processing delay Du can occur at
UAVs. Targets information are used to detect events and to adjust UAVs trajec-
tories. Those information are processed at a processing center. We assume that
there is a processing delay Dp at the processing center.

All UAVs send the collected information to the processing center, it deduces
if events occur and send new positions to UAVs for the adjustment of their
trajectories. The control is centralized because decisions are made at a single
point. LTE connections are used for the exchange of information. Some delays
can occur while transmitting (Dt) and receiving (Dr) information.



Delays differ from a time slot to another because the distance between the
processing center and UAVs vary. UAVs transmit new information to the pro-
cessing center at each time slot. While the processing center sends back new
instructions to UAVs only when they arrive at destination, because it can take
several times slots for UAVs to reach the final destination.

We assume that no obstacle is obstructing UAVs line of sight and that they
temporarily change their altitude to avoid collisions between each other. While
changing the altitude, the minimal and the maximal altitude (Amin, Amax) must
be respected.

3 Contributions

3.1 Events Detection

UAVs are deployed over an area to monitor the traffic and to detect abnor-
mal events. Several parameters are observed and measured: vehicles positions,
vehicles speeds, and vehicles number. Specific events are detected through value
changes of the above mentioned parameters [5–7]. We propose algorithms to per-
form the congestion detection and the speeding violation detection. We assign a
speed threshold Vmax1 and a density threshold Nmin to detect congestion, and
another speed threshold Vmax2 to detect speeding violations.

The Congestion Detection is performed according to a clustering approach.
First, vehicles in the field of view (FoV) of UAVs with a velocity lower than
the velocity threshold Vmax1 are selected. Then, for each selected vehicle, we
search for neighbors within a radius equal to the radius of the FoV of UAVs. For
each constituted group, if the number of vehicles is equal to or higher than the
density threshold (Nmin) we consider that the group is in congestion. Centers
of congested areas are centers of gravity of groups in congestion. We form a
list of congested vehicles, updated with members of the congested group. It is
necessary to have that list for each time slot. In fact, the duration of congestion
increases if from, one time slot to another, a vehicle still in the list of congested
vehicles.

For the Speeding Violation Detection, first we select vehicles in the FoV
of UAVs, then we compare their velocity to Vmax2. If the velocity of a vehicle
exceeds the threshold, we consider that there is a speeding violation and we tag
the vehicle. For the next time slots, the velocity of a tagged vehicle can still
be higher than the threshold or can go under it. If the vehicle keeps traveling
with a high velocity, we do not consider that there is another speeding violation,
only the duration of speeding violation increases. If the velocity goes under the
threshold we remove the tag. That way, the number of infraction increases only
if the velocity of a non-tagged car exceeds the threshold. Also, when a tagged
car goes out from the FoV of UAVs, we remove the tag.



3.2 UAVs Trajectories

Now we address the design of UAVs trajectories and placement. UAVs position
and trajectories have an impact on the number of covered vehicles, on the number
of detected events, and on detected events duration.

The proposed methods are based on the use of multiple cooperative UAVs.
UAVs are capable of detecting and identifying vehicles in their field of view,
perfectly estimating their positions and velocities values, and exchanging relevant
information with each other and with a processing center.

Opportunistic Method. We proposed this approach in [18]. UAVs trajectories
are adapted by mobile points. Those mobile points are centers of gravity of
vehicles groups in the field of view of UAVs. The motion of UAVs depends on
the motion of their groups of vehicles, so they adjust their position and fly over
the centers of gravity of their groups. In this method, the goal is that every UAV
keeps in its field of view the maximum number of targets, keeps tracking them,
and detect as many events as possible for as long as possible. UAVs keep tracking
and monitoring the same group of targets while considering the new targets
entries. If from one observation to another groups disappear, UAVs randomly
choose other groups to track and supervise.

Opportunistic Method with Learning. The Opportunistic Method with
learning is based on the Opportunistic Method because UAVs are moving accord-
ing to this method. However, some UAVs will be placed above Strategic Points
(SPs) after a learning phase. SPs are locations where events frequently occur.
So, this method is characterized by a learning phase performed at the beginning.
During this phase, all UAVs are mobile. They are collecting information about
vehicles, detecting abnormal events, and estimating the positions of those events.

At the end of this phase, all events positions are processed by a processing
center. The goal is to find the SPs. In our case, SPs are locations where congestion
or speeding violation frequently occur. To find the SPs, the processing center
uses a machine learning approach to process the data, and make decisions and
predictions regarding it. Two of the most adopted machine learning methods
are the supervised learning and the unsupervised learning [19,20]. We choose
the unsupervised learning because we want to explore the data and split it into
groups.

In our learning method, the data that we want to split into group is all events
positions that were collected during the learning phase. The clustering criterion
is the distance. Indeed, the position of each event is compared to the positions
of all other events of the same nature. If the distance between them is less than
a given value, this means that they are part of the same group. The occurrence
frequencies of events are equal to the number of positions in the groups. For
example, for a given event position p1, if other events were observed in the same
position or in a circular area with a radius ra and with a center p1, the occurrence
frequency of events at this position will increase. If the frequency of occurrence



is higher than a given threshold, the center of this group will be considered as
a SP. The frequency threshold is not fixed in advance, but it must be at least
equal to 2 to consider that the center of a group is a candidate SP. Indeed, an
event must have occurred at least twice in a circular area with a radius ra. The
frequency of occurrence depends on the total number of vehicles, the observation
period and the number of deployed UAVs.

At the end of the learning phase, a certain number of UAVs are placed above
the previously calculated SPs. UAVs are placed in priority above SPs with the
highest frequency of occurrence, so that they can observe more events.

The choice of UAVs to place can be:

– Random: UAVs are randomly assigned to SPs.
– According to a distance criterion: the distance here refers to the distance

between UAVs and SPs. For each SP, the closest UAV to it will be placed
above it.

– According to a coverage criterion: the coverage here refers to the number of
vehicles in the field of views of UAVs. UAVs with the smallest number of
vehicles under their coverage will be placed above SPs.

The non-placed UAVs continue moving according to the Opportunistic Method,
and all UAVs, fixed and mobile, continue monitoring the traffic.

The idea behind this proposal is to reduce the energy consumption of UAVs
and to ensure better performances in terms of events detection than in the case
where all UAVs are mobile. In fact, when UAVs are fixed the energy consumption
due to movement decreases and the battery lives longer, and when they are fixed
above points where events frequently occur the chance to observe more events
is better.

4 Simulation

For the computation of events rates and events duration, we do simulation for
real vehicles traces and for vehicles traces generated by a mobility model. We
opted for the Opportunistic Network Environment (ONE) simulator to generate
car mobility traces based on roads of the city of Helsinki, Finland [21]. For the
real mobility traces, we opted for mobility traces of cars moving on the city of
Cologne, Germany [22]. Using real traces of vehicles is very important to see
how our approaches react in real conditions.

UAVs are flying over the areas, trying to collect as much data as possible.
We evaluate the coverage percentage of vehicles, the percentage of occurrence of
the abnormal events (congestion and infractions), and the duration of detected
events. Also, we study the impact of two types of traces on the performances
criteria.

4.1 Parameters

For the mobility model, we work on the Helsinki downtown to generate car
mobility traces using the ONE simulator. The total surface of the area is



(4500m × 3400m) and we consider scenarios with 1000 cars spread over that
area. We use the Shortest Path Map-Based Movement model (SPMBM), which
is integrated into the simulator, to compute the path between a starting point
and a point of arrival. Paths are computed according to the Dijkstra’s shortest
path algorithm. Vehicle velocities are uniformly distributed between 0m/s and
15 m/s. The wait time when vehicles arrive at their destination is null. For our
observations, we only consider the central area (1600m × 1500m).

For real traces, we work on Cologne city area to investigate real traces of cars.
The total surface of the city is 400 km2, with more than 700000 cars passing by.
Real cars data is available for 24 h in a typical working day. For our investigations,
we only consider the central area (225 km2). We did observations in a rush period
(at 4 pm). A rush period is a period where we observe a lot of cars transiting.
The total number of cars transiting in the selected area is 25800 cars in the rush
period.

The observation time is only 1000 s because it approximately the autonomy
duration of a commercial UAV. The radius of UAVs field of view is related to
the maximal authorized altitude of UAVs flying on a city. Velocities, density
thresholds, and velocities intervals are related to the nature of the city roads
and the traffic. Other parameters are presented in Table 1.

The processing center is placed in the center of areas to monitor. In the case
of Helsinki city, the maximal distance between the processing center and an UAV
is approximately 1 km. In the case of Cologne city, the maximal distance between
the processing center and an UAV is about 15 km.

UAVs send information about vehicles (positions, velocities, and number)
and information about events (positions and duration) to the processing center
using LTE links. When the processing center receives the data, it processes it
and sends back positions to UAVs for their positions adjustments using also LTE
link.

The transmission delay and the propagation delay depend on the distance
between the processing center and UAVs and the speed of the light. For Helsinki
city, the maximal transmission delay is about 3.33 × 10−6 s. For Cologne city,
the maximal transmission delay is about 5 × 10−5 s. UAVs observe the traffic,
they detect vehicles and estimate their velocity and position. So, part of the
processing delay in UAVs is due to the detection process and the other part is
due to the state estimation process. When using the Extended Kalman filter, the
execution time is around 3.69×10−2 s [23]. When using new detection techniques
like Wave3D, the execution time is around 6.306 × 10−3 s [24].

The processing center processes the position, the speed, and the number of
vehicle to deduce new positions (centers of gravity of vehicles in UAVs Field of
View that they are tracking) of UAVs and positions of strategic points (centers
of gravity of vehicles in UAVs Field of View that verify conditions of events
detection).



Table 1. Parameters.

Parameters Helsinki Cologne

Observation time 1000 s 1000 s

Cars velocity interval [0–15 m/s] [0–50 m/s]

Maximal velocity for congestion (Vmax1) 8m/s 5m/s

Maximal velocity on roads (Vmax2) 12m/s 20m/s

Minimal congested group members (Nmin) 10 20

Radius of the field of view of UAVs (R) 100m 100m

UAVs altitude (A) 200m 200m

Supervised area 2.4 km2 225 km2

4.2 Performances of UAVs Monitoring Methods

In this section, we study the performance of the Opportunistic Method with
learning in terms of events detection, coverage percentage and UAVs total trav-
eled distance. We study the influence of parameters like the learning duration,
UAVs placement criteria, and the number of UAVs to place.

Then, we compare the performance of the Opportunistic Method, the Oppor-
tunistic Method with learning, and the Fixed Method in terms of congestion
detection. The Fixed Method is an existing method [16,17]. In this method,
only one UAV is used to monitor the traffic. The UAV trajectory is predefined
in advance, the UAV moves from one fixed Point of Interest (PoI) to another to
do the monitoring task. PoIs are intersections where there is a lot of traffic.

For the Opportunistic Method with learning, the placement of UAVs above
SPs can be done according to the Distance Criterion (DC) or to the Coverage
Criterion (CC). In the Fixed Method, in the case of our simulations, to be fair,
the number of UAVs will be equal to the number of PoIs. UAVs move from their
initial locations to their respective closest PoI, and hover over those points with
a null speed. For all methods, initially, all UAVs are randomly placed.

We use the following metrics:

– Coverage percentage: the percentage of vehicles in the UAV’s field of view.
– Percentage of detection of the number of speeding violations: speeding viola-

tions are detected when vehicles velocities exceed Vmax2.
– Percentage of detection of congestion duration: congestion events occur in

a group of vehicles, so when members velocities are lower than Vmax1 and
members number is at least equal to Nmin, we conclude that a group of
vehicles is in congestion.

We did simulations offline to compute the number of UAVs to deploy. When
using the Opportunistic Method, we observed a stabilisation of the performance
criteria for 25 UAVs in the case of the mobility model, and for 150 UAVs in the
case of the real traces. UAVs velocity will be 5 m/s which is a typical velocity of
a commercial UAV.



Performances of the Opportunistic Method with Learning. For the
next simulations, SPs will be positions where congestion frequently occur, and
the radius ra of the area that allows as to split events positions into groups will
be equal to the radius of the UAVs field of views.

In the case of the mobility model traces, with observations made by 25
UAVs, the processing center computed a maximum number of SPs equal to
6. In the case of the real traces, the processing center calculated up to 20 SPs
with data collected from 150 UAVs. The processing center collects during the
learning phase all congestion positions and computes positions where congestion
frequently occur.

Because hovering consumes less energy than flying, fixing UAVs lead to less
energy consumption and longer battery lifetime. To evaluate the gain when using
the Opportunistic Method with learning rather than the Opportunistic Method,
we introduce another criterion: the UAVs total traveled distance. The less trav-
eled distance, the less energy consumed.
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Fig. 1. Influence of UAVs placement on events detection and coverage.

For real and mobility model traces (Fig. 2(a) and (b)), we observe that when
the learning phase is shorter the traveled distance is lower, thus, the energy con-
sumption decreases. We compute the total traveled distance for the two criteria
of UAVs placement above SPs: the Distance Criterion (DC) and the Coverage
Criterion (CC).

From Figs. 1(a) and 3(a), Figs. 1(b) and 3(b), we observe that the percentages
of coverage, congestion detection, and speeding violation detection are better
when using the DC rather than the CC. For SPMBM, we can select 3 SPs,
because we got better performance with this number. While, for the real traces,
we can select 20 SPs.

We observe that when we choose the DC, less distance is traveled because the
closest UAVs to the selected SPs are placed above them. We observe fluctuations
especially when we use the CC because sometimes the selected UAV can be close
to the SP and sometimes not.

We choose 200 s as a possible duration of the learning phase, because for
that duration the traveled distance is the lowest comparing to other learning
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Fig. 3. Influence of UAVs placement on events detection and coverage.

duration. For UAVs placement, it is better to do it according to the DC because
less distance is traveled and the performances criteria are better than for the
CC.

For 200 s of learning, for the SPMBM, with 3 fixed UAVs, we got 12 km less
traveled distance when the CC is applied. While, when the DC is applied, we got
30 km less traveled distance. For real traces, the total UAVs traveled distance
is 70 km lower in the Opportunistic Method with learning because we placed 20
UAVs above SPs at the end of the learning phase.

Comparison of Performances of Monitoring Methods Based on UAVs.

SPs are positions where congestion frequently occurs. So, we will compute per-
centages of congestion detection. We compare the performance of Opportunistic
Method with learning to the performance of the Opportunistic Method, and to
the performance of the Fixed Method regarding congestion detection.

For mobility model traces (Fig. 4(a)), we observe that the performance of the
Opportunistic Method with learning and the performance of the Opportunistic
Method are almost the same regarding congestion detection. The performance
of the Fixed Method become the worst at the end of the simulation, because
UAVs will be monitoring fixed PoI and miss a lot of vehicles and events, while



UAVs are all mobile in the Opportunistic Method, and placed above SPs in the
Opportunistic Method with learning.
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Fig. 4. Influence of the simulation time and the monitoring method on congestion
detection.

For real traces (Fig. 4(b)), the performance of the Opportunistic Method with
learning is the best regarding congestion detection. In fact, 20 UAVs are placed
above positions where congestion frequently occur, so the discovery of this event
is better. Also, mobile UAVs are tracking groups of vehicles, and probably they
follow them much longer when they are moving with low velocities.

We observe that, in the Fixed Method after a certain period of observa-
tion, the percentage of congestion detection becomes almost stable. This method
becomes inefficient because in the fixed PoI no more congestion can be observed
after 400 s for SPMBM and 1000 s for real traces.

5 Conclusion

In this paper, we used multiple UAVs to monitor the road traffic. We proposed
a method characterized by a learning phase and by adaptive UAVs trajectories.
During the learning phase, UAVs collect events positions, after this phase, posi-
tions where events frequently occur are computed, and UAVs are placed above
some of them. We defined also a process for the detection of speeding violations
and a process for the detection of congestion. Our method has two goals, the first
one is to detect the highest number of events and the second one is to save the
energy of UAVs by limiting their traveled distance. To evaluate the performance
of our proposal, we used real vehicles traces and traces generated by a mobility
model. We observed, especially for real vehicles traces, better events detection
comparing to the Opportunistic and the Fixed Methods, and less traveled dis-
tance comparing to the Opportunistic Method.
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