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Stochastic Differential Equations for modeling first order

optimization methods

M. Dambrine∗. Ch. Dossal†B. Puig‡A. Rondepierre§

Abstract

In this article, a family of SDEs are derived as a tool to understand the behavior of
numerical optimization methods under random evaluations of the gradient. Our objective
is to transpose the introduction of continuous version through ODEs to understand the
asymptotic behavior of discrete optimization scheme to the stochastic setting. We consider
a continuous version of the stochastic gradient scheme and of a stochastic inertial system.

This article first studies the quality of the approximation of the discrete scheme by
a SDE when the step size tends to 0. Then, it presents new asymptotic bounds on the
values F (Xt)−F ∗ where Xt is a solution of the SDE and F ∗ = minF , when F is convex
and under integrability conditions on the noise. Results are provided under two sets of
hypotheses : first considering C2 and convex functions and then adding some geometrical
properties of F . All these results give an insight on the behavior of these inertial and
perturbed algorithms in the setting of stochastic algorithms.

Keywords: Lyapunov functions, rate of convergence, SDEs, optimization, geometrical prop-
erties of the objective.

1 Introduction

In the recent literature, continuous time approach to first order minimization of a function F
is a fruitful field of research. Indeed under some suitable regularity assumptions the sequence
generated by a given optimization scheme may converge when the step size h goes to zero
to the solution of an ordinary differential equation (ODE). The most striking result in that
direction has been obtained by Su, Boyd and Candes in [25]: let F : Rd → R. The Nesterov
scheme

yn = xn +
n− 1

n+ 2
(xn − xn−1) (1)

xn+1 = yn − h∇F (yn), (2)
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can be seen as a special and nonstandard discretization of the second order differential equa-
tion

ẍ(t) +
3

t
ẋ(t) +∇F (x(t)) = 0 with x(0) = x0 and ẋ(0) = 0. (3)

The study of such ODE, the behavior of the solution enlighten the properties of the sequence
generated by the Nesterov scheme.

In the present work, the same question is addressed in the stochastic case, more precisely
when the objective F is defined as an expectation: F (x) = E[f(x, .)]. In general, there is no
closed form for this expectation and an approximation is used. A common approximation is
then an empirical estimator of the type

F̂N (x) =
1

N

N∑
i=1

f(x, ωi),

where N is the number of samples. The gradient of F is then approximated by the gradient
of the previous estimator so that

∇F (x) = ∇F̂N (x) +GN ,

where GN is a random error. In that context, iterative methods based on gradient evaluation
are affected by this error. The gradient scheme of step size h

xn+1 = xn − h∇F (xn),

becomes
yn+1 = yn − h

(
∇F̂ (yn) +GN(n)

)
.

Of course, the size of the sampling may vary with the number n of iterations. Therefore, we
will consider algorithms of the type

yn+1 = yn + h (Φ(tn, yn) + σ(tn)Gn) , (4)

where tn = nh and where Φ and σ are given functions, and the Gn are assumed to be
independent Gaussian vectors of dimension d with the same variance Id. It is known that the
sequence of iterates generated by these algorithms converge when h tends to 0 to the solution
of the deterministic ODE:

du(t) = Φ(t, u(t))dt (5)

but it appears that the sequence is more precisely approximated for a given h > 0 by the
solution of the following high resolution SDE

du(t) = Φ(t, u(t))dt+
√
h σ(t)dBt. (6)

That is why we will study this family of high resolution stochastic differential equation (SDE).
Note that the idea was introduced in the deterministic setting in a recent work [24] by

Shi, Su and Jordan. Their idea is to consider an ODE whose coefficients depend on the step
size h which is not set to 0 to get a better approximation of the inertial discrete scheme.
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Thanks to limiting arguments, the authors proposed the following asymptotic approximation
for Nesterov scheme for a µ-strongly convex cost function F :

d

dt

(
x
v

)
=

 v

−
3

t
v − h D2F (x)v −

(
1 +

√
h

3

)
∇F (x)

 , (7)

where D2F stands for the Hessian of F , with the initial conditions

x(0) = x0 and v(0) = −
2h∇F (x0)

1 +
√
µh

.

The SDE (6) is not classical is the sense that it depends on a parameter h that can go to
zero. Actually classical results on the convergence of discretization schemes of SDE do not
directly apply to the convergence of the sequence yn defined in (4) to the solution of (6) since
the SDE (6) depends itself on the parameter step h.

The contribution of the following paper is twofold. First we prove that the trajectory of the
sequence (yn) defined in (4) is better approximated by the family of SDE (6), parameterized
by h than by the solution of the classical ODE (5), see Proposition 1. The main new feature
is the fact that we consider a time dependant diffusion coefficient σ and not a trajectory
dependant diffusion as in [14]. We give strong convergence (in the sense that the mean of
the error goes to 0) results with an additive noise while to our best knowledge only weak
convergence can be found in the literature (see [14]). The purpose of this first analysis is to
motivate the study of these high resolution SDE to understand the behavior of the sequence
generated by some stochastic algorithms.

Secondly, we propose new convergence rates of the solution of two SDEs, especially a
high resolution SDE associated to the Nesterov scheme using some Lyapunov analysis. More
precisely we provide convergence rate on the expectation of F (Xt)−F (X∗) when F is convex,
see Theorem 3 and when F satisfies various geometrical properties, see for example Theorem
4.

The paper is organized as follows: in the second part we show that high resolution SDE
provide better approximations of the scheme (4) than the classical ODE approach giving
strong convergence results. In the third part we provide first a general analysis allowing to
extend some classical Lyapunov analysis for ODEs to SDEs. We illustrate this approach
recovering known bounds on the stochastic gradient flow equation. Then in Part 3.2 three
new convergence rates are given for the trajectory of an high resolution SDE associated to
the Nesterov scheme depending on the geometry of the function to minimize.

2 On the error of approximation by ODE and SDE

Let (Ω,F , (Ft)t>0,P) be a complete filtered probability space. We denote by (Bt)t>0 a stan-
dard d-dimensional Brownian motion defined on this space, considering that the filtration
(Ft)t>0 is in fact the natural filtration of (Bt)t>0.

Let L2(Ω) be the usual space of random variables whose square is integrable with respect
to the measure P and L∞(0, T,L2(Ω)) the usual Bochner space.

For a given h > 0, define the following discrete dynamical system

Yn+1 = Yn + h Φ(tn, Yn) + h σ(tn)Gn, (8)
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where Gn are independent Gaussian vectors with the same variance Id. Consider a Brownian
motion Bt in Rd and set tn = nh. Noticing that

√
hGn has the same distribution that

Btn+1 −Btn , we can rewrite the system (8) as

Xn+1 = Xn + h Φ(tn, Xn) +
√
h σ(tn)(Btn+1 −Btn). (9)

Observe that such a scheme is similar to an Euler-Maruyama scheme with an additional
√
h

factor that comes from the h factor in (8).
Proposition 1 states that on a fixed interval [0, T ], the limit problem when the time

step h goes to 0 is the deterministic ODE w′ = Φ(t, w) and that the error measured in
L∞(0, T,L2(Ω)) is proportional to

√
h. But the main contribution of Proposition 1 is actually

to state that the trajectory Xn is better approximated by the SDE:

du(t) = Φ(t, u(t))dt+
√
h σ(t)dBt,

since the error measured in L∞(0, T,L2(Ω)), is proportional to h instead of
√
h.

Proposition 1. Let Φ : R×Rd → Rd be a C2 function. Let σ : R→ R be a bounded integrable
function. Let u0 be a given vector in Rd, h ∈ [0, 1] and T be non negative real number. Fix
N an integer and set T = Nh. Define tn = nh, 0 6 n 6 N and consider the sequence Xn

defined by recursion

Xn+1 = Xn + h Φ(tn, Xn) +
√
h σ(tn)(Btn+1 −Btn),

starting with X0 = u0. Let w denotes the solution of the deterministic Cauchy problem

w′ = Φ(t, w) with w(0) = u0,

and let u be the solution of the stochastic differential equation

du(t) = Φ(t, u(t))dt+
√
hσ(t)dBt with u(0) = u0.

There exist non negative constants C1 and C2 independent of h such that

sup
06n6N

‖w(tn)−Xn‖L2(Ω) 6 C1

√
h. (10)

sup
06n6N

‖u(tn)−Xn‖L2(Ω) 6 C2h. (11)

The proof of this proposition is postponed to Appendix A.
Notice that these results can be adapted in the case of a variable time step: h is then the

supremum of the time steps. Unfortunately it turns out that the Nesterov scheme can not be
written using the formulation (8) because the gradient of F (or the function Φ) is evaluated at
a point that is not Yn but slightly shifted. Nevertheless Su, Boyd and Candès in [25] proved
that a Lyapunov analysis of the ODE associated to Nesterov scheme may provide an efficient
Lyapunov analysis of the discrete scheme. That is why we will consider the SDE associated to
this second order ODE, expecting that the analysis will provide tools to analyse the stochastic
discrete scheme. Such an analysis would be a natural development of the present work.
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3 Convergence rates for stochastic gradient flow and Nesterov
ODE

In this section we study the properties of trajectories solution of SDEs of the form:

dYt = Φ (t, Yt) dt+
√
hσ(t)MdBt, (12)

where σ : R→ R is a diffusion term, Φ : R×Rm 7→ Rm is a given smooth function, M a real
matrix of size m× d and h > 0. Throughout the paper, we assume that, for any given initial
conditions y0 ∈ Rm, the Cauchy problem associated with the SDE (12), admits a unique
global solution satisfying Y0 = y0, see [20, Theorem 5.2.1]. For example since σ does not
depend on Yt, the existence and the uniqueness is ensured if the function Φ is Lipschitz with
respect to the second variable.

Our main contribution in this section is to prove that the Lyapunov analysis can be
extended from ODEs to SDEs providing new decay rates on the expectation of the values
F − F ∗ along the trajectories solution of the SDE (12). It turns out that our results make
assumptions on integrability (in time) of the noise level in the spirit of the perturbation
analysis led in the deterministic case by Sebbouh, Dossal and Rondepierre in [22].

A key tool in our analysis is the following proposition ensuring that a Lyapunov function
associated to an ODE may provide, not necessarily a non increasing function but at least a
bounded function in expectation for the stochastic perturbation of an ODE:

Proposition 2. Let t0 > 0. Let Φ : R× Rm 7→ Rm be a C2 function and M a given matrix
in Rm×d. Consider the stochastic differential equation:

dYt = Φ (t, Yt) dt+ σ(t)MdBt (13)

where σ : R → R denotes the noise coefficient. Let J : R × Rm 7→ R be a (time dependant)
Lyapunov function for the associated deterministic ODE: Ẏ = Φ(t, Y ) in the sense that J
satisfies:

∂tJ (t, Yt) +∇J (t, Yt) · Φ (t, Yt) 6 0

for all t > t0. Then the process J (t) defined by: J (t) = J (t, Yt), satisfies:

∀t > t0, E [J (t)] 6 J (t0) +
1

2

∫ t

t0

σ2(τ)E
[
Tr
{
D2

22J (τ, Yτ )MM>
}]

dτ,

where the notation D2
22 denotes the second order derivative with respect to the space variable

Y .

Proof. Applying the Itô’s formula we get

dJ (t) = [∂tJ (t, Yt) +∇J (t, Yt) · Φ(t, Yt)] dt+ σ(t)∇J (t, Yt) ·MdBt

+
σ(t)2

2
Tr
{
D2

22J (t, Yt)MM>
}
dt.

Integrating on [t0, t], we get

J (t) 6 J (t0) +

∫ t

t0

σ(τ)∇J (τ, Yτ ) ·MdBτ +
σ(τ)2

2
Tr
{
D2

22J (τ, Yτ )MM>
}
dτ.

Taking the expectation, we get the announced inequality.
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Our methodology is first illustrated on the family of SDEs associated to stochastic gradient
descent methods which are widely studied in the literature. Let us mention in particular the
results of Mertikopoulos and Staudigl who prove almost sure convergence of trajectories to
a minimizer under the assumption that the noise level decreases at least like 1/

√
ln t [18,

Theorem 4.2]. We then apply the same methodology to the family of SDEs associated to the
perturbed Nesterov scheme for the minimization of a given convex function F .

3.1 Convergence rate of the stochastic gradient flow

In this paragraph, we consider the stochastic differential equation classically associated to the
stochastic gradient descent:

dXt = −∇F (Xt)dt+
√
hσ(t)dBt, (14)

where F : Rd → R denotes the objective function and is assumed to be convex of class C2.
Theorem 1 provides some results for convex functions and Theorem 2 provides more accurate
bounds when F is µ-strongly convex.

3.1.1 Convergence rate for C2 convex functions

Theorem 1. Let F : Rd → R be a C2 convex function with a bounded Laplacian and admitting
at least one minimizer. Let F ∗ = min F and t0 > 0. Assume that the diffusion σ satisfies
the integrability condition: there exist C > 0 and ς ∈ [0, 1) such that

(D1,ς) ∀t > t0,

∫ t

t0

sσ2(s)ds 6 Ctς .

Then there exists a constant Cς > 0 (affine in h) such that the process solution of (14) with
the initial condition Xt0 = x0, satisfies:

∀t > t0, E[F (Xt)− F ∗] 6 Cςt
ς−1 (15)

and for any β > 0:

∀t > t0, P

(
F (Xt)− F ∗ >

1

tβ

)
6 Cςt

ς+β−1. (16)

Before proving Theorem 1, let us make some comments. First, note that the coefficient ς
measures the intensity of the noise. The higher the noise is, the lower the convergence rate
becomes. Consider for example the case when σ(t) = t−p for some p > 0. In that case we
have: ∫ t

t0

sσ(s)2ds =
1

2(p− 1)

(
t
−2(p−1)
0 − t−2(p−1)

)
.

A straightforward computation shows that for p > 1, we can set ς = 0 which implies a
convergence rate in expectation in 1

t . For p ∈ [1/2, 1[ the parameter ς can be set to ς = −2p+2
and the convergence rate in expectation is in 1

t2p−1 where 0 < 2p− 1 < 1.
The coefficient β is chosen to control the convergence rate in probability. It can be

interpreted as a trade-off between the decrease on the values F (Xt)−F ∗ and the probability
that the bound (16) is satisfied. A natural choice for β is β∗ = 1 − ς which ensures that
the two terms in the convergence error in (16) are of the same order but in that case, the
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upper bound in (16) is constant and so does not converge to 0. In order to have a decreasing
upper bound, β should be chosen as 1 − ς − ε for ε > 0 so that the inequality (16) can be
reformulated in terms of ε as:

∀t > t0, P
(
F (Xt)− F ∗ > t(ς−1)+ε

)
6 C̃ςt

−ε

for any ε ∈ (0, 1− ς).

Proof of Theorem 1. Let us introduce the Lyapunov energy:

J(t, x) = t(F (x)− F (x∗)) +
1

2
‖x− x∗‖2

where x∗ ∈ arg minF . Let Xt be a trajectory solution of (14) with the initial condition
Xt0 = X0 and J (t) = J(t,Xt). Applying Proposition 2 with M =

√
hId, we have:

∀t > t0, E [J (t)] 6 J (t0) +
h

2

∫ t

t0

σ2(τ)E
[
Tr
{
D2

22J (τ,Xτ )
}]
dτ.

The Itô’s calculus gives: Tr
{
D2

22J (t, x)
}

= t∆F (x) + m. Assuming now that F has a
uniformly bounded Laplacian, we deduce that there exists a constant A > 0 such that:

∀t > t0, E [J (t)] 6 J (t0) +Ah

∫ t

t0

τσ2(τ)dτ.

Hence using the integrability condition (D1,ς):

∀t > t0, tE [F (Xt)− F ∗] 6 E [J (t)] 6 J (t0) +Ah

∫ t

t0

τσ2(τ)dτ 6 J (t0) +AhCtς

6
(
J (t0)t−ς0 +AhC

)
tς

Applying Markov inequality, we finally deduce that:

P

(
F (Xt)− F ∗ >

1

tβ

)
6 tβE[F (Xt)− F ∗] 6

(
J (t0)t−ς0 +AhC

)
tς+β−1.

3.1.2 Convergence rates for µ-strongly convex functions

Let us now consider the class of µ-strongly differentiable convex functions i.e. the class of
convex differentiable functions satisfying for any x, y in Rd:

〈∇F (x)−∇F (y), x− y〉 > µ‖x− y‖2.

In the deterministic framework the convergence for this class of function is exponential, see
e.g. [12]. This result can be extended to the stochastic case using a Lyapunov approach:

Theorem 2. Let F : Rd → R be a C2 µ-strongly convex function having a minimizer x∗ ∈
arg min F and t0 > 0. Then the process solution of (14) with Xt0 = x0 satisfies

∀t > t0, E[‖Xt − x∗‖2] 6

[
e2µt0‖x0 − x∗‖2 + hd

∫ t

t0

e2µsσ2(s) ds

]
e−2µt.
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Proof. The key quantities in this study are E(x) = ‖x − x∗‖2 and E(t) = E(Xt). Applying
Itô’s formula to the product e2µtE(t), we get:

d
(
e2µtE(t)

)
= [2µE(t)− 2〈∇F (Xt), Xt − x∗〉] e2µt dt+ hdσ2(t)e2µtdt

+2
√
hσ(t)e2µt〈Xt −X∗, dBt〉

that is in integral form:

∀t > t0, e
2µtE(t)− e2µt0E(t0) =

∫ t

t0

[
−2〈∇F (Xs), Xs − x∗〉) + 2µE(s) + dhσ2(s)

]
e2µsds

+2
√
h

∫ t

t0

σ(s)e2µs〈Xs −X∗, dBs〉.

Using now the strong convexity of the objective function F , we get:

∀t > t0, e
2µtE(t) 6 e2µt0E(t0) + 2

√
h

∫ t

t0

e2µsσ(s)〈Xs −X∗, dBs〉+ dh

∫ t

t0

e2µsσ2(s)ds,

and thus the expected inequality:

e2µtE[E(t)] 6 e2µt0E(x0) + dh

∫ t

t0

e2µsσ2(s) ds.

A natural question is then under what condition on the noise the convergence is still
exponential with the same rate as in the deterministic case. Theorem 2 imposes that:∫ +∞

t0

σ2(s)e2µs ds

is finite to obtain a non degraded rate of convergence. Indeed, keeping the exponential rate
of convergence of the deterministic case seems out of reach in practical application.

Consider now the particular case when σ is assumed to be constant. We then have:∫ t

t0

e−2µ(t−s)σ2 ds = σ2e−2µt

∫ t

t0

e2µsds =
σ2(1− e−2µ(t−t0))

2µ
,

so that Theorem 2 gives:

E[E(t)] 6 e2µt0‖x0 − x∗‖2 e−2µt +
dσ2h

2µ
.

In other words, the process reaches with an exponential rate (the one of the deterministic
dynamic) a ball whose radius depends on the time step h and on the diffusion coefficient σ.
This is a well-known property of the stochastic gradient (see [10] for a review and [13] for an
accelerated version).
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3.2 Convergence rate of a SDE associated to the Nesterov scheme

In 1983, Nesterov [19] proposes a new inertial optimisation scheme (1), with α = 3, to
minimize a convex differentiable function F . The sequence (xn)n generated by this scheme
satisfies F (xn)−F (x∗) = O

(
1
n2

)
. Moreover, Nesterov proved that this rate is optimal on the

class of convex functions among first order method.
Since the work of Boyd, Candes and Su [25], it is known that the Nesterov scheme corre-

sponds in the limit h→ 0 to the second order differential equation

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0, (17)

with initial conditions x(0) = x0 and ẋ(0) = 0 and where the friction coefficient α is set to 3.
In [25], the authors prove that the solution of this ODE satisfies F (x(t)) − F (x∗) = O

(
1
t2

)
when α > 3. Note that this rate can be improved under geometrical conditions such as strong
convexity or growth conditions, see for example [25, 3, 6].

The purpose of the following analysis is to extend these former results to the continuous
stochastic setting. The second order ODE (17) in Rd is equivalent to the following first order
system in the phase space

d

dt

(
x(t)
v(t)

)
=

(
v(t)

−α
t v(t)−∇F (x(t))

)
. (18)

The corresponding stochastic differential equation is then

d

(
Xt

Vt

)
=

(
Vt

−α
t Vt −∇F (Xt))

)
dt+

√
h σ(t)MdBt, (19)

where M is the matrix with m = 2d rows and d columns

M =

(
0d
Id

)
and (Bt)t>0 a standard d-dimensional Brownian motion. Observe that the initial speed v(0) =
0 is mandatory in Nesterov scheme to absorb the singular term. In order to avoid this difficulty
that is rather artificial for deriving an asymptotic behavior at t→ +∞, we choose to translate
the origin of time in order to start at t0 > 0 so that we consider Equation (19) for times t > t0
with the deterministic initial condition x(t0) = x0 and v(t0) = 0.

3.2.1 Convergence rate for the class of convex functions

Let us first consider the general class of convex functions. Our main result given by Theorem
3, establishes new rates of convergence in expectation and probability under some integrability
conditions on the noise:

Theorem 3. Let F : Rd → R be a C2 convex function and σ : R→ R the noise level. Assume
that σ satisfies the integrability condition: there exist ς ∈ [0, 2) and C > 0 such that

(D2,ς) ∀t > t0,

∫ t

t0

s2σ2(s)ds 6 Ctς .
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Then there exists a real constant Cς > 0 such that the process solution of (19) with α > 3
satisfies

∀t > t0, E[F (Xt)− F ∗] 6 Cςt
ς−2.

Moreover there exists another real constant C̃ς > 0 such that for any β > 0:

∀t > t0, P

(
F (Xt)− F ∗ >

1

tβ

)
6 C̃ςt

2(ς+β−2). (20)

Before proving this result, let us make some comments. As for the gradient flow the
parameter ς measures the intensity of the noise. Consider again the case where σ(t) = t−p

for some p > 0. In that case, we have:∫ t

t0

s2σ(s)2ds =
1

2p− 3

(
t−2p+3
0 − t−2p+3

)
.

Thus for any p > 3
2 , we can set: ς = 0 which implies a convergence rate in expectation in 1

t2
.

For p 6 3
2 , then we can choose: ς = −2p+ 3. Consequently if p ∈]1

2 ,
3
2 ] then the convergence

rate in expectation is in 1
t2p−1 . We can thus observe that the convergence rates obtained for

the stochasticgradient flow (see Theorem 1) and the one obtained for the Nesterov stochastic
differential equation (19) coincide when p ∈]1

2 , 1]. In other words, using the Nesterov SDE
presents no interest when the diffusion coefficient σ decreases slowly since the stochastic gra-
dient flow provides the same rate of convergence under less demanding integrability conditions
on the noise.

Besides, when p ∈ [1, 3
2 ], the rate of convergence for the gradient flow saturates to its

deterministic value 1 while the rate for the Nesterov SDE continues to increase with p until
reaching the deterministic value 2 when p = 3

2 . Thus in that case the Nesterov SDE provides
a better convergence rate on the values F (Xt)− F ∗ than the stochastic gradient.

Finally, as for the gradient flow, the coefficient β is chosen to control the convergence rate
in probability. It expresses a trade-off between the the decrease on the values F (Xt)−F ∗ and
the probability that the bound (4) is satisfied. A natural choice for β is β∗ = 2− ς so that the
two terms in the convergence error are of the same order. However, it that case, the upper
bound does not converge to 0. In order to have a decreasing upper bound, the parameter β
should be chosen as 2− ς − ε for some ε > 0 so that the inequality (20) can be reformulated
in terms of ε as:

P
(
F (Xt)− F ∗ > t(ς−2)+ε

)
6 C̃ςt

−2ε.

for any ε ∈ (0, 2− ς).

Proof of Theorem 3. Let us introduce the following energy function:

E(t, (x, v)) = t2(F (x)− F ∗) +
1

2
‖(α− 1)(x− x∗) + tv‖2 (21)

which is a Lyapunov function as proved in [5, Proposition 1], and: E(t) = E(t, (Xt, Vt)). An
elementary computation provides

Tr
{
D2

22E (t, (x, v))MM>
}

= ∆vE(t, x, v) = t2d.

10



Applying Proposition 2 with a diffusion term in
√
hσ(t), provides an upper bound on the

expectation of the Lyapunov function evaluated on the random trajectory starting from (x0, 0)
at time t = t0:

∀t > t0, E[E(t)] 6 E(t0) +
hd

2

∫ t

t0

s2σ2(s)ds, (22)

and thus an upper bound for the expectation of the residual:

∀t > t0, E[F (Xt)− F ∗] 6
1

t2

(
E(t0) +

hd

2

∫ t

t0

s2σ2(s)ds

)
.

Using the integrability condition (D2,ς), we then deduce that there exists a constant Cς > 0
such that:

∀t > t0, E[F (Xt)− F ∗] 6 Cςt
ς−2.

Observe now that the square of a Lyapunov function is still a Lyapunov function so that we
can apply Proposition 2 to E2 to dominate E[E2]. We first compute

Tr
{
D2

22E(t, (x, v))2MM>
}

= ∆v(E(t, x, v)2) = 2
[
E(t, x, v)∆vE(t, x, v) + ‖∇vE(t, x, v)‖2

]
where: ∇vE(t, x, v) = t ((α− 1)(x− x∗) + tv), hence:

‖∇vE(t, x, v)‖2 = t2 ‖(α− 1)(x− x∗) + tv‖2 6 2t2E(t, x, v)

so that
0 6 ∆v(E(t, x, v)2) 6 2t2 (d+ 2)E(t, x, v).

Remembering that (22) still holds, we deduce that there is a constant A > 0 such that

E[∆v(E2(t))] 6 At2+ς .

Applying Proposition 2 it follows that:

∀t > t0, E[E2(t)] 6 E(t0)2 +
A

2

∫ t

t0

s2+ςσ2(s)ds 6 E(t0)2 +
A

2
tς
∫ t

t0

s2σ2(s)ds.

Using now the integrability condition (D2,ς), we deduce that there exists a constant C̃ς > 0

such that for all t > t0, we have: E[E2(t)] 6 C̃ςt
2ς . After expanding E2, we obtain the crude

upper bound on the expectation of the square of the residual:

∀t > t0, t
4E[(F (Xt)− F ∗)2] 6 E[E2(t)] 6 C̃ςt

2ς .

Applying Markov inequality, we finally get:

P

(
F (Xt)− F ∗ >

1

tβ

)
6 t2βE[(F (Xt)− F ∗)2] 6 C̃ςt

2(ς+β−2).

11



3.2.2 Convergence rates for convex functions under flatness and sharpness as-
sumptions

Nesterov proved in [19] that the O
(

1
t2

)
rate achieved by its acceleration scheme is optimal

in some sense on the set of convex functions. Nevertheless better rates can be achieved if
more assumptions are made on the function F to minimize. In [1] authors show that this rate
actually depends on geometric assumptions on F and on the parameter α of the numerical
scheme. This parameter α, in the associated ODE and SDE is a friction parameter. Indeed
the solution of (17) can be seen as the trajectory of a mobile (a ball in the seminal work of
Polyak) directed by a potential slow down by a vanishing friction whose intensity is defined
by α.

In his seminal work, Polyak [21] considered a constant friction term and quadratic geome-
tries for F and observed that the optimal friction is 2

√
µ where µ is the minimum eigenvalue

of the Hessian of F . If α is smaller than this optimal value, some oscillations may slow down
the decay rate, if α is higher, the too large friction slow down the mobile. Hence the optimal
friction parameter highly depends on the geometry of F .

In [5] Aujol et al. explain how the friction parameter can be chosen for the Nesterov
acceleration scheme to optimize the decay of F (Xt)−F ∗ depending on geometrical hypotheses
on F , more precisely: growth and flatness conditions of F . In this section, these former results
are extended to the SDE associated to Nesterov.

Let us consider the subclass of convex functions satisfying both a flatness and a growth
condition in the neighborhood of their minimizers:

Definition 1 (Growth condition Gr). Let F : Rd → R ∪ {+∞} be a differentiable convex
function such that argminF 6= ∅. The function F is said to satisfy a global growth condition
Gr for some exponent r > 1 and some real constant Kr > 0 if:

∀x ∈ Rd,
Kr

2
d(x, argminF )r 6 F (x)− F ∗.

Historically, the growth condition Gr is also called r-conditioning [12] or Hölderian error
bounds [9], and is closely related to the  Lojasiewicz inequality [15, 16], a key tool in the
mathematical analysis of continuous and discrete dynamical systems [7, 8]. Note that in the
convex setting, the growth condition Gr is equivalent to a global version of the  Lojasiewicz
inequality, with exponent θ = 1− 1

r ∈ (0, 1] [2, 12]. The growth condition Gr can be seen as
a sharpness assumption on the function F characterizing functions behaving at least as ‖ · ‖r
in the neighborhood of their minimizers. Observe that Gr implies the growth condition Gr′

for all r′ > r > 1.

Definition 2 (Flatness condition Fγ). Let γ > 1. The function F is said to satisfy the
hypothesis Fγ if for any minimizer x∗ ∈ argminF , we have:

∀x ∈ Rd, F (x)− F ∗ 6 1

γ
〈∇F (x), x− x∗〉.

The hypothesis Fγ is a mild assumption, requesting slightly more than the convexity of
F in the neighborhood of its minimizers. Any convex function automatically satisfies F1 and

any differentiable function F for which (F − F ∗)
1
γ is convex for some γ > 1, satisfies Fγ .

12



In [6], the authors prove that if F satisfies the condition Fγ for some γ > 1 then for any
minimizer x∗ there exist M > 0 and η > 0 such that:

∀x ∈ B(x∗, η), F (x)− F (x∗) 6M‖x− x∗‖γ . (23)

In other words, the hypothesis Fγ with γ > 1, can be interpreted as a flatness condition: it
ensures that the function F is sufficiently flat (at least as flat as x 7→ ‖x‖γ) in the neighborhood
of its minimizers. We refer the interested reader to [11], [25], [5] or [6] for more details.

Let us first consider the subclass of convex functions with a ”sharp” geometry near its
set of minimizers, i.e. satisfying a quadratic growth condition G2 combined with a flatness
assumption. Theorem 4 gives conditions on the friction parameter and on the noise to take
advantage of the geometry assumptions made on F to improve the O

(
1
t2

)
decay rate of

Theorem 3:

Theorem 4. Let F : Rd → R be a C2 convex differentiable function admitting a unique
minimizer x∗, and F ∗ = inf F . Additionally assume that F satisfies both a global quadratic
growth condition G2 and some flatness assumption Fγ for some γ ∈ [1, 2].

Let t0 > 0. Let (Xt, Vt) be any solution of the SDE (19) with (Xt0 , Vt0) = (x0, v0). Assume
that the noise level σ satisfies the integrability condition: there exist C > 0 and ς ∈ [0, 2) such
that

(Dq,ς) ∀t > 0,

∫ t

t0

sqσ2(s)ds 6 Ctς with q =
2αγ

γ + 2
.

If α > 1 + 2
γ then the process solution of (19) satisfies:

∀t > tc, E[F (Xt)− F ∗] 6 2

[
tq−ςc

(
1 +

2α

t0(γ + 2)
√
K2

)2

EM (t0) +
d

2
Cς

]
e

2−γ
γ+2

α

tp+2−ς

where: tc = max(t0,
2α
√
γ

(γ+2)
√
K2

) and EM (t) = F (Xt) − F ∗ + 1
2‖Vt‖

2 denotes the mechanical

energy at time t. Moreover, for any β > 0,

P

(
F (Xt)− F ∗ >

1

tβ

)
6 2

[
tq−ςc

(
1 +

2α

t0(γ + 2)
√
K2

)2

EM (t0) +
d

2
Cς

]
e

2−γ
γ+2

α

tq−ς−β
.

First, observe that the convergence rate q = 2αγ
γ+2 reached for ς = 0, is actually larger than

2 when α > 3 and γ > 1. The fact that the decay rate q = 2αγ
γ+2 is a growing function of α

may be surprising and raises to questions: is it possible to get an arbitrary large decay rate
? Would it be better to choose a very large α ?

The answer to the first question is : yes we can achieve arbitrary large decay rate but the
price to pay is twofold:

1. The integrability on the noise is more restrictive for large α.

2. The term [(
q√
K2γ

)q−ς
(1 +

1
√
γ

)2EM (t0)t−ς0 + C
d

2

]
e

2−γ
γ+2

α

is an increasing function of α. It follows that for a given t, the optimal choice for α is
not to take α as large as possible.
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Proof of Theorem 4. Our analysis relies on the same energy H introduced by Su, Boyd and
Candes [25], Attouch, Chbani, Peypouquet and Redont [4] and Aujol, Dossal [5]:

H(t, (x, v)) = tpE(t, (x, v)) (24)

where

E(t, (x, v)) = t2(F (x)− F ∗) +
1

2
‖λ(x− x∗) + tv‖2 +

ξ

2
‖x− x∗‖2,

and x∗ is a minimizer of F . Note that the energy H is not a Lyapunov energy anymore since it
is not decreasing along the trajectories of the considered system, but we still have a differential
inequation enabling the control on the values. Following the computations detailed in [22,
Proof of Theorem 3.1] and applying the Itô’s calculus, we have:

dE(t, Yt) 6 (2− λγ)t (F (Xt)− F ∗) dt+ [ξ − λ(λ+ 1− α)] 〈Xt − x∗, Vt〉dt

+(λ+ 1− α)
1

t
‖λ(Xt − x∗) + tVt‖2dt−

λ2

t
(λ+ 1− α)‖Xt − x∗‖2dt

+
d

2
t2σ(t)2dt+ tσ(t)〈λ(Xt − x∗) + tVt, dBt〉.

Choosing now: ξ = λ(λ+ 1− α), we then get:

dE(t, Yt) 6 (2− λγ)t (F (Xt)− F ∗) dt+ (λ+ 1− α)1
t ‖λ(Xt − x∗) + tVt‖2dt

−λ
2

t
(λ+ 1− α)‖Xt − x∗‖2dt+

d

2
t2σ(t)2dt+ tσ(t)〈λ(Xt − x∗) + tVt, dBt〉

Introducing the energy H(t, Yt) = tpE(t, Yt) we then obtain:

dH(t, Yt) = tpdE(t, Yt) + ptp−1E(t, Yt)

6 tp
[
(2− λγ + p)t (F (Xt)− F ∗) dt+

2λ+ 2− 2α+ p

2t
‖λ(Xt − x∗) + tVt‖2dt

+
λ

2t
(λ+ 1− α)(p− 2λ)‖Xt − x∗‖2 + tσ(t)〈λ(Xt − x∗) + tVt, dBt〉+

d

2
t2σ(t)2dt

]
As in [22, Proof of Theorem 3.1], we choose:

λ =
2α

γ + 2
, p =

2αγ

γ + 2
− 2 (25)

so that: ξ = 2α
(γ+2)2

(2 + γ(1− α)) and:

dH(t, Yt) 6 tp
[
ξ

2t
(p− 2λ)‖Xt − x∗‖2 + tσ(t)〈λ(Xt − x∗) + tVt, dBt〉+

d

2
t2σ(t)2dt

]
(26)

Let A = ξ(p − 2λ). With our choice of parameters, we have: A = 2ξ
γ+2 ((γ − 2)α− (γ + 2)).

Assuming α > 1 + 2
γ and γ 6 2, we necessarily have: ξ < 0, and thus A > 0. Consequently

the energy E is not a sum of non-negative terms and we need an additional growth condition
G2 to bound the term ‖Xt − x∗‖2 as done in [22].

Assuming that F satisfies some quadratic growth condition G2 and has a unique minimizer,
there exists K2 > 0 such that:

∀t > t0, ‖Xt − x∗‖2 6
2

K2
(F (Xt)− F ∗). (27)
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Hence:

∀t > t0, E(t, Yt) > t2(1 +
ξ

K2t2
) (F (Xt)− F ∗) . (28)

Observe now that since ξ = λ(λ+ 1− α) < 0, we get:

|ξ| = 2α

γ + 2

(
αγ

γ + 2
− 1

)
6

2α2γ

(γ + 2)2
.

Let tc = max
(
t0,

2α
√
γ

(γ+2)
√
K2

)
. We thus have: 1 + ξ

K2t2
> 1

2 for all t > tc. Hence:

∀t > tc, E(t, Yt) >
t2

2
(F (Xt)− F ∗) . (29)

Combining (26), (27) and (29), we get in expectation:

∀t > tc, dH(t, Yt) 6
2A

K2t3
H(t, Yt) + tp+1σ(t)〈λ(Xt − x∗) + tVt, dBt〉+

d

2
tp+2σ(t)2dt

Integrating now between tc and t, we get:

∀t > tc, E[H(t, Yt)] 6 E[H(tc, Ytc)] +
2A

K2

∫ t

tc

E[H(s, Ys)]

s3
ds+

d

2

∫ t

tc

sp+2σ(s)2ds

6 E[H(tc, Ytc)] +
2A

K2

∫ t

tc

E[H(s, Ys)]

s3
ds+ Cς

d

2
tς

According to the Grönwall lemma, we then have:

∀t > tc, E[H(t, Yt)] 6

(
E[H(tc, Ytc)] +

d

2

∫ t

tc

sp+2σ(s)2ds

)
exp(

∫ t

tc

2A

K2s3
ds)

6

(
E[H(tc, Ytc)] +

d

2
Cςt

ς

)
exp(

A

K2t2c
).

Let us now prove that the energy H(tc, Ytc) is uniformly bounded by the mechanical energy
EM (t) = F (Xt)− F ∗ + 1

2‖Vt‖
2 at time tc:

E(tc, Ytc) = t2c(F (Xtc)− F ∗) +
1

2
‖λ(Xtc − x∗) + tcVtc‖2 +

ξ

2
‖Xtc − x∗‖2

= t2cEM (tc) +
λ2

2
‖Xtc − x∗‖2 + λtc〈Xtc − x∗, Vtc〉+

ξ

2
‖Xtc − x∗‖2

6 t2cEM (tc) +
λ2

2
‖Xtc − x∗‖2 + λtc〈Xtc − x∗, Vtc〉.

Using the quadratic growth condition G2 and the following inequality:

2|〈Xtc − x∗, vtc〉| 6
√
K2‖Xtc − x∗‖2 +

1√
K2
‖Vtc‖2, (30)

we finally get:

E(tc, Ytc) 6

(
t2c + 2

λtc√
K2

+
λ2

K2

)
EM (tc) =

(
tc +

λ√
K2

)2

EM (tc).
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Hence:

∀t > tc, E[H(t, Yt)] 6

[
tpc

(
tc +

λ√
K2

)2

E[EM (tc)] +
d

2
Cςt

ς

]
exp(

A

K2t2c
)

6

[
tp+2
c

(
1 +

λ

tc
√
K2

)2

E[EM (tc)] +
d

2
Cςt

ς

]
exp(

2− γ
γ + 2

α)

since by construction: A
K2t2c

6 A
2|ξ| = 2−γ

γ+2α. Observe now that the mean of the mechanical

energy is non-increasing. Indeed:

∀t > t0, EM (t) = EM (t0) +

∫ t

t0

dEM (s)ds = EM (t0) +

∫ t

t0

(
−α
s
‖Vs‖2ds+ σ(s)〈Vs, dBs〉

)
Hence: ∀t > t0, E[EM (t)] 6 EM (t0) and:

∀t > tc, E[H(t, Yt)] 6

[
tp+2
c

(
1 +

λ

tc
√
K2

)2

EM (t0) +
d

2
Cςt

ς

]
exp(

2− γ
γ + 2

α)

6

[
tp+2
c

(
1 +

λ

t0
√
K2

)2

EM (t0) +
d

2
Cςt

ς

]
exp(

2− γ
γ + 2

α)

Remember now that the values of F along the trajectories of the SDE (19) are controlled by
the energy E as stated in (29). Thus:

∀t > tc, E[F (Xt)− F ∗] 6 2

[
tp+2
c

(
1 +

λ

t0
√
K2

)2

EM (t0) +
d

2
Cςt

ς

]
e

2−γ
(γ+2)α

tp+2

6 2

[
tp+2−ς
c

(
1 +

λ

t0
√
K2

)2

EM (t0) +
d

2
Cς

]
e

2−γ
(γ+2)α

tp+2−ς

Finally observe that if tc =
2α
√
γ

(γ+2)
√
K2

> t0, we then get:

∀t > tc, E[F (Xt)− F ∗] 6 2

[(
2α
√
γ

(γ + 2)
√
K2

)p+2−ς (
1 +

λ

t0
√
K2

)2

EM (t0) +
d

2
Cς

]
e

2−γ
γ+2

α

tp+2−ς .

as expected.

The second Theorem considers the case of convex functions with a ”flat” geometry near its
set of minimizers, i.e. roughly speaking functions behaving like ‖ · ‖γ with γ > 2.

Theorem 5. Let F : Rd → R be a C2 convex differentiable function admitting a unique
minimizer x∗, and F ∗ = inf F . Additionally assume that F satisfies both a global growth
condition Gγ and some flatness assumption Fγ for some γ > 2.

Let t0 > 0. Let (Xt, Vt) be any solution of the SDE (19) with (Xt0 , Vt0) = (x0, v0). Assume
that the noise level σ satisfies the integrability condition: there exist C > 0 and ς ∈ [0, 2) such
that

(Dp,ς)

∫ t

t0

sp+2σ(s)2ds 6 Ctς where p =
4

γ − 2
. (31)
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If α > γ+2
γ−2 then for all t > t0 we have:

E[F (Xt)− F ∗] 6

(t−ς0 H(t0, Yt0) +
d

2
C

) γ−2
γ

+ λα
K
− 2
γ

γ

2
t
−ς γ−2

γ

0


γ
γ−2

t
− 2γ
γ−2

+ς
. (32)

Moreover, for any β > 0,

P

(
F (Xt)− F ∗ >

1

tβ

)
6

(t−ς0 H(t0, Yt0) +
d

2
C

) γ−2
γ

+ λα
K
− 2
γ

γ

2
t
−ς γ−2

γ

0


γ
γ−2

t
− 2γ
γ−2

+ς+β
.

We can notice here that for any γ > 2 the decay rate 2γ
γ−2 (corresponding to ς = 0) is

greater than 2 when γ is large enough. Indeed this Theorem give conditions on the friction
parameter α and on the noise to take advantage of the geometry of F . If α is chosen too
small, the trajectories will oscillate and the decay rate will be smaller. The critical value for
α is γ+2

γ−2 . For all values beyond this one, the asymptotic rate is the same : 2γ
γ−2 − ς, but the

bound is a growing function of α and thus, the optimal value of α seems to be γ+2
γ−2 .

Proof of Theorem 5. In this proof we still consider the energy (24) defined by:

H(t, (x, v)) = tpE(t, (x, v))

where E(t, (x, v)) = t (a(t, (x, v)) + b(t, (x, v)) + ξc(t, (x, v))) using the following notations:

a(t, (x, v)) = t(F (x)− F ∗), b(t, (x, v)) =
1

2t
‖λ(x− x∗) + tv)‖2, c(t, (x, v)) =

1

2t
‖x− x∗‖2.

But the choice of parameters is slightly different. Here we choose:

λ =
2

γ − 2
, p = 2λ, ξ = λ(λ+ 1− α) (33)

Note that with this choice, we have: ξ < 0 since α > γ+2
γ−2 .

Let Yt = (Xt, Vt). Applying the Itô calculus to H(t, Yt) and following the same steps as
in [22, Proof of Theorem 3.1], we can prove that:

dH(t, Yt) 6 tp
[
2(
γ + 2

γ − 2
− α)b(t, Yt)dt+ tσ(t)〈λ(Xt − x∗) + tVt, dBt〉+

d

2
t2σ(t)2dt

]
which implies that for all t > t0

E[H(t, Yt)] 6 E[H(t0, Yt0)] + 2

∫ t

t0

(
γ + 2

γ − 2
− α)spE[b(s, Ys)]ds+

d

2

∫ t

t0

sp+2σ(s)2ds (34)

Hence for any α > γ+2
γ−2 ,

∀t > t0, E[H(t, Yt)] 6 H(t0, Yt0) +
d

2

∫ t

t0

sp+2σ(s)2ds. (35)
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We now need the control on the values F (Xt)−F ∗ from the energy. Using |ξ| = λ(α−λ−1) 6
λα, we have:

H(t, Yt) = tp+1(a(t, Yt) + b(t, Yt) + ξc(t, Yt) > tp+1a(t, Yt)− λαtp+1c(t, Yt).

Hence:

∀t > t0, t
p+1E[a(t, Yt)]− λαtp+1E[c(t, Yt)] 6 E[H(t0, Yt0)] +

d

2

∫ t

t0

sp+2σ(s)2ds.

Assume now that F has a unique minimizer and satisfies the growth condition Gγ with γ > 2.
We then have:

c(t, Yt) 6
K
− 2
γ

γ

2
1− 2

γ

t
− 2
γ
−1
a(t, Yt)

2
γ .

Noticing that: 2
γ (p+ 2) + 1 = p+ 1, we have:

tp+1c(t, Yt) 6
K
− 2
γ

γ

2
1− 2

γ

(
tp+1a(t, Yt)

) 2
γ .

Hence:

E[tp+1a(t, Yt)− λα
K
− 2
γ

γ

2
1− 2

γ

(
tp+1a(t, Yt)

) 2
γ ] 6 tp+1E[a(t, Yt)]− λαtp+1E[c(t, Yt)]

6 E[H(t0, Yt0)] +
d

2

∫ t

t0

sp+2σ(s)2ds.

Applying the Jensen inequality to the convex function x 7→ x
γ
2 we get

E[tp+1a(t, Yt)]− λα
K
− 2
γ

γ

2
E[
(
tp+1a(t, Yt)

)
]
2
γ 6 E[H(t0, Yt0)] +

d

2

∫ t

t0

sp+2σ(s)2ds

Let us apply then the following lemma with δ = 2
γ , m = λα

K
− 2
γ

γ

2 and M = E[H(t0, Yt0)] +

d

2

∫ t

t0

sp+2σ(s)2ds for any t > t0:

Lemma 1. Let δ ∈ (0, 1), m > 0 and M > 0

x−mxδ 6M ⇒ x 6 (M1−δ +m)
1

1−δ . (36)

We then deduce that:

E[tp+1a(t)] 6

(E[H(t0, Yt0)] +
d

2

∫ t

t0

sp+2σ(s)2ds

) γ−2
γ

+ λα
K
− 2
γ

γ

2


γ
γ−2

(37)
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Remembering that: a(t) = t(F (x(t))− F ∗), we finally deduce that for all t > t0,

tp+2E[F (x(t))− F ∗] 6

(E[H(t0, Yt0)] +
d

2

∫ t

t0

sp+2σ(s)2ds

) γ−2
γ

+ λα
K
− 2
γ

γ

2


γ
γ−2

6

(E[H(t0, Yt0)] +
d

2
Ctς
) γ−2

γ

+ λα
K
− 2
γ

γ

2


γ
γ−2

6

(t−ς0 H(t0, Yt0) +
d

2
C

) γ−2
γ

+ λα
K
− 2
γ

γ

2
t
−ς γ−2

γ

0


γ
γ−2

t
− 2γ
γ−2

+ς
.

4 Conclusion

In many practical applications, the number of samples cannot be arbitrary large and σ has
a nonnegative limit when t goes to +∞. In that case, the stochastic gradient method is
well-known to reach a ball around the minimizer with a radius depending on this limit. In
particular it does not converges to the minimizer even in the very favorable case of a µ-strictly
convex objective. Therefore, a variable time step is usually used: for example hn = h n−a

with a ∈ (0, 1). We are considering the variable time stepping case in a on going work.
In [23] the authors proposed new optimization algorithms based on the symplectic Eu-

ler method classically used for the numerical approximation of Hamiltonian ODE. Under
the strong convexity assumption of the cost function F , the authors manage to recover the
acceleration phenomenon with rather large step size. Their conclusion is high-resolution
ODEs and symplectic schemes are critical to achieve acceleration using numerical discretiza-
tion. . . Lyapunov functions play a key role in such analyses, and also allow aspects of the
continuous-time analysis to be transferred to discrete time. A natural extension of this work
is to study the stochastic version of the high resolution ODE (7).

Thanks. The first author is indebted to Pr. G. Vallet for instructive discussions on the
numerical discretizations of SDEs and for pointing to us the reference [17] and the basis of
the analysis of Section 2.

The authors acknowledge the support of the French Agence Nationale de la Recherche
(ANR) under reference ANR-PRC-CE23 Masdol.
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A Proofs of Proposition 1

Let us now detail the proofs of Proposition 1. The two statements (10) and (11) will be proven
independently. For those proofs, we will need the following inequality: for any collection of
K vectors x1, . . . , xK , it holds ∣∣∣∣∣

K∑
i=1

xi

∣∣∣∣∣
2

6 K

K∑
i=1

|xi|2 (38)

which is a consequence of the Jensen inequality, and the discrete Grönwall lemma:

Lemma 2 (Discrete Grönwall Lemma). Let (zn)n∈N be a sequence of positive real numbers
with z0 = 0. If there are nonnegative constants C, τ and L such that, for any n > 0 it holds

zn+1 6 C + Lτ

n∑
k=0

zk,

then for all n > 0
zn 6 CeLnτ .
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The error analysis for the deterministic limit stated in (10) is a direct consequence of the
following result.

Proposition 3. Let Φ : R × Rd → Rd be a Lipschitz function.Let σ : R → R be a bounded
integrable function. Let u0 be a given vector in Rd, h ∈ [0, 1] and T be non negative real
number. Fix N an integer and set T = Nh. Define tn = nh, 0 6 n 6 N and consider the
sequences Xn and Yn defined by recursion

Xn+1 = Xn + h Φ(tn, Xn) +
√
h σ(tn)(Btn+1 −Btn),

Yn+1 = Yn + h Φ(tn, Yn),

starting with X0 = Y0 = u0. Then, there exists a non negative constant C1 such that the
following error estimate holds

sup
06n6N

‖Yn −Xn‖L2(Ω) 6 C1

√
h. (39)

Proof of Proposition 3 Consider the misfit ek = Xk − Yk, k ∈ N. By construction, it
satisfies

ek+1 = ek + h (Φ(tk, Xk)− Φ(tk, Yk))−
√
hσ(tk)(Btk+1

−Btk).

Let n ∈ N. Summing these relations from k = 0 to k = n and remembering that X0 = Y0, we
get:

en+1 = h

n∑
k=1

(Φ(tk, Xk)− Φ(tk, Yk))−
√
h

n∑
k=0

σ(tk)(Btk+1
−Btk)

which implies:

E[|en+1|2] 6 2h2E

( n∑
k=1

(Φ(tk, Xk)− Φ(tk, Yk))

)2
+ 2hE

( n∑
k=0

σ(tk)(Btk+1
−Btk)

)2
 .

Observe now that using the inequality (38), we have:

E

( n∑
k=1

(Φ(tk, Xk)− Φ(tk, Yk))

)2
 6 n

∑n
k=1 E

[
(Φ(tk, Xk)− Φ(tk, Yk))

2
]

6 nLip(Φ)2
∑n

k=1 E[|ek|2],

where Lip(Φ) denotes the Lipschitz constant of the function Φ. For the second term, we use
that the Brownian increments are both independent and centered to get

E

( n∑
k=0

σ(tk)(Btk+1
−Btk)

)2
 =

n∑
k=0

σ(tk)
2E
[(
Btk+1

−Btk
)2]

6 (n+ 1)‖σ‖2∞h.

Combining the last two inequalities we then get:

E[|en+1|2] ≤ 2nh2

(
Lip(Φ)2

n∑
k=0

E[|ek|2] +
n+ 1

n
‖σ‖2∞

)

6 2hT

(
Lip(Φ)2

n∑
k=0

E[|ek|2] + 2‖σ‖2∞

)
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Finally, applying the discrete Grönwall Lemma we obtain the inequality (39) as expected:

∀n 6 N, E[|en|2] 6 4T‖σ‖2∞e2TLip(Φ)2 h.

The second inequality (10) is a direct consequence of the previous one and of the classical
error estimate for the explicit Euler scheme.

The key of the proof of second result is mainly a precise error estimate for the Euler-
Maruyama method in the case of an additive noise with a precise computation of the constant.
This requires more regularity on the function Φ. We use the notation Lip(σ) to denote the
(best) Lipschitz constant of σ and where ∆2Φ to denote the Laplacian of Φ with respect to
the second variable.

Proposition 4. Let Φ : R × Rd → Rd be a C2 Lipschitz function with a bounded second
derivative. Let σ : R → R be a bounded Lipschitz function. Let u0 be a given vector in Rd
and let h, λ ∈ [0, 1] and T be non negative real number. Fix N an integer and set T = hN .
Let u be the solution of the stochastic differential equation:

du = Φ(t, u(t))dt+ λσ(t)dBt,

with the initial condition u(0) = u0. Set tn = nh and consider the sequence Xn defined by
recursion

Xn+1 = Xn + h Φ(tn, Xn) + λσ(tn)(Btn+1 −Btn).

Then
sup

06n6N
‖u(tn)−Xn‖L2(Ω) 6 Ch,

where the non negative constant C can be chosen as

C = eT
2Lip(Φ)2

(2

3
TLip(σ)2 +6T 2Lip(Φ)2‖Φ‖2∞

+9TLip(Φ)2‖σ‖2∞ +
3

2
T 2‖∆2Φ‖2∞‖σ‖4∞ + 2T 2Lip(Φ)2

)
independent of λ and h.

In this work, we are deeply interested in the particular case λ =
√
h corresponding to

(Xn) defined in (8), we obtain the error analysis for the approximation by the SDE stated in
(11).

Proof of Proposition 4 Consider the error en = u(tn) −Xn at step n. By definition, it
satisfies the recursion formula :

en+1 = en +

∫ tn+1

tn

(Φ(s, u(s))− Φ(tn, Xn)) ds+ λ

∫ tn+1

tn

(σ(s)− σ(tn)) dBs.

Summing from 0 to n, we get

en+1 =

∫ tn+1

0

(
Φ(s, u(s))− Φ(tn(s), Xn(s))

)
ds+ λ

∫ tn+1

0

(
σ(s)− σ(tn(s))

)
dBs
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where n(s) denotes the entire part: n(s) = bs/hc for any 0 6 s 6 T so that: n(s) = k when
tk 6 s < tk+1. It follows that

E[|en+1|2] 6 2 E
[(∫ tn+1

0

(
Φ(s, u(s))− Φ(tn(s), Xn(s))

)
ds
)2
]

+2λ2E
[(∫ tn+1

0

(
σ(s)− σ(tn(s))

)
dBs

)2
]
.

The second term is estimated using the Itô isometry:

E

[(∫ tn+1

0

(
σ(s)− σ(tn(s))

)
dBs

)2
]

=

∫ tn+1

0

(
σ(s)− σ(tn(s))

)2
dt 6

1

3
TLip(σ)2h2.

The first term is split to get a suitable bound

Φ(s, u(s))− Φ(tn(s), Xn(s)) = Φ(s, u(s))− Φ(s, u(tn(s)))

+ Φ(s, u(tn(s)))− Φ(tn(s), u(tn(s))) + Φ(tn(s), u(tn(s)))− Φ(tn(s), Xn(s)),

so that:

E

[(∫ tn+1

0

(
Φ(s, u(s))− Φ(tn(s), Xn(s))

)
ds

)2
]
6 3(E1 + E2 + E3)

where

E1 = E
[(∫ tn+1

0

(
Φ(s, u(s))− Φ(s, u(tn(s)))

)
ds
)2
]
,

E2 = E
[(∫ tn+1

0

(
Φ(s, u(tn(s)))− Φ(tn(s), u(tn(s)))

)
ds
)2
]
,

E3 = E
[(∫ tn+1

0

(
Φ(tn(s), u(tn(s)))− Φ(tn(s), Xn(s))

)
ds
)2
]
.

The E2 term is bounded using Lipschitz properties of Φ

E2 6
1

3
T 2Lip(Φ)2h2,

and that by Cauchy-Schwarz inequality(∫ tn+1

0

(
Φ(tn(s), u(tn(s)))− Φ(tn(s), Xn(s))

)
ds

)2

6 Lip(Φ)2

(∫ tn+1

0
|u(tn(s))−Xn(s)|ds

)2

6 Lip(Φ)2tn+1

∫ tn+1

0
|u(tn(s))−Xn(s)|2ds = Lip(Φ)2tn+1

n∑
k=1

|ek|2h

so that

E3 6 hLip(Φ)2tn+1

n∑
k=1

E[|ek|2].

To bound E1, we first use Itô formula to the process τ 7→ Φ(s, u(τ)) to get

Φ(s, u(s))− Φ(s, u(tn(s))) =
∫ s
tn(s)

∂2Φ(s, u(τ))Φ(τ, u(τ))dτ

+
∫ s
tn(s)

∂2Φ(s, u(τ))λσ(τ)dBτ +
1

2

∫ s
tn(s)

∆2Φ(s, u(τ))λ2σ2(τ)dτ.
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Remembering that n(s) = k when s ∈ [tk, tk+1], we have:

E1 = E
[(∫ tn+1

0

(
Φ(s, u(s))− Φ(s, u(tn(s)))

)
ds
)2
]

= E
[(∑n

k=0

∫ tk+1

tk

(∫ s
tk
∂2Φ(s, u(τ))Φ(τ, u(τ))dτ +

∫ s
tk
∂2Φ(s, u(τ))λσ(τ)dBτ

+
1

2

∫ s
tk

∆2Φ(s, u(τ))λ2σ2(τ)dτ

)
ds

)2


6 3E
[(∑n

k=0

∫ tk+1

tk

∫ s
tk
∂2Φ(s, u(τ))Φ(τ, u(τ))dτds

)2
]

+3E
[(∑n

k=0

∫ tk+1

tk

∫ s
tk
∂2Φ(s, u(τ))λσ(τ)dBτds

)2
]

+
3

4
E
[(∑n

k=0

∫ tk+1

tk

∫ s
tk

∆2Φ(s, u(τ))λ2σ2(τ)dτds
)2
]

using the convexity inequality (38). We now study each term in the last sum. Using (38)
again, the Cauchy-Schwarz inequality and the properties of Φ, we get

E
[(∑n

k=0

∫ tk+1

tk

∫ s
tk
∂2Φ(s, u(τ))Φ(τ, u(τ))dτds

)2
]

6 (n+ 1)
∑n

k=0 E
[(∫ tk+1

tk

∫ s
tk
∂2Φ(s, u(τ))Φ(τ, u(τ))dτds

)2
]

6 (n+ 1)
∑n

k=0 h E
[∫ tk+1

tk

(∫ s
tk
∂2Φ(s, u(τ))Φ(τ, u(τ))dτ

)2
ds

]
6 tn+1E

[∫ tn+1

0

(∫ s
tn(s)

∂2Φ(s, u(τ))Φ(τ, u(τ))dτ
)2
ds

]
6

1

3
t2n+1Lip(Φ)2‖Φ‖2∞h2.

The same method holds for the third term

E
[(∑n

k=0

∫ tk+1

tk

∫ s
tk

∆2Φ(s, u(τ))λ2σ2(τ)dτds
)2
]

6 tn+1E
[∫ tn+1

0

(∫ s
tn(s)

∆2Φ(s, u(τ))λ2σ2(τ)dτ
)2
ds

]
6

1

3
t2n+1λ

4‖∆2Φ‖2∞‖σ‖4∞h2.

For the second term, we first expand the square, then use the fact that the increments of the
noise are independent and centered, finally the Cauchy-Schwarz inequality and Itô isometry

E
[(∑n

k=0

∫ tk+1

tk

∫ s
tk
∂2Φ(s, u(τ))λσ(τ)dBτds

)2
]

=
∑n

k=0

∑n
l=0 E

[∫ tk+1

tk

∫ s
tk
∂2Φ(s, u(τ))λσ(τ)dBτds

∫ tl+1

tl

∫ s
tl
∂2Φ(s, u(τ))λσ(τ)dBτds

]
=
∑n

k=0

∑n
l=0
l 6=k

E
[∫ tk+1

tk

∫ s
tk
∂2Φ(s, u(τ))λσ(τ)dBτds

]
E
[∫ tl+1

tl

∫ s
tl
∂2Φ(s, u(τ))λσ(τ)dBτds

]
+
∑n

k=0 E
[(∫ tk+1

tk

∫ s
tk
∂2Φ(s, u(τ))λσ(τ)dBτds

)2
]

≤
∑n

k=0 E
[(∫ tk+1

tk
ds
)] ∫ tk+1

tk
E
[(∫ s

tk
∂2Φ(s, u(τ))λσ(τ)dBτ

)2
ds

]
6 h

∑n
k=0

∫ tk+1

tk
E
[∫ s
tk

(∂2Φ(s, u(τ))λσ(τ))2 dτ
]
ds 6

1

2
tn+1λ

2Lip(Φ)2‖σ‖2∞h2.
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Gathering all the previous estimations, we obtain that

E
[
|en+1|2

]
6 Ch2 + 6hTLip(Φ)2

n∑
k=1

E
[
|ek|2

]
.

where the constant C is explicitly given by

C =
2

3
λ2TLip(σ)2 + 6T 2Lip(Φ)2‖Φ‖2∞ +9Tλ2Lip(Φ)2‖σ‖2∞

+
3

2
T 2λ4‖∆2Φ‖2∞‖σ‖4∞ + 2T 2Lip(Φ)2.

As λ ∈ [0, 1],

C 6 C̃ =
2

3
TLip(σ)2 + 6T 2Lip(Φ)2‖Φ‖2∞ +9TLip(Φ)2‖σ‖2∞

+
3

2
T 2‖∆2Φ‖2∞‖σ‖4∞ + 2T 2Lip(Φ)2.

We apply Grönwall lemma to get that for any n 6 N

E
[
|en|2

]
6 C̃h2enhTLip(Φ)2 6 C̃h2eT

2Lip(Φ)2 .
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