Drones et basses couches de l'atmosphère

Session : Projets d'envergure

Greg Roberts (with contributions from many collaborators) Centre National de Recherches Météorologiques, Toulouse, France Scripps Institution of Oceanography, La Jolla, CA, USA

1^{ère} Édition des Journées Drones & Capteurs Embarqués La Vieille Perrotine, île d'Oléron 28-30 septembre 2021

Deploying drones for atmospheric research

• Maldives AUAV Campaign (Maldives)

Impact of pollution on energy balance and aerosol-cloud interactions
Coordinated fleet for simultaneous observations of a vertical column

UAV fleet in stacked formation (Maldives, 2006)

Manta UAV fleet from Advanced Ceramics Research

23-Mar 2006 03:40:53Z MAC Flight 11 Below Above 3500 3000 2500 ີ E ²⁰⁰⁰ ຊ 1500 1000 73.22 500 Hanimaadhoo 6.78 Maldives 6.76 6.74 latitude (DD.dd) 672 6.7 73.14 8000 G. Rober
 G. Rober

Three vertically-stacked UAVs to observe aerosol-cloud interactions on a cloud-by-cloud basis with 20+ hrs synchronized flights

UAV fleet to study clouds and energy budget

- Synchronized, stacked fleet for measuring aerosols, clouds and albedo
- Heating of aerosol layers (regional warming ~ scale as CO₂)
- Linking aerosol-cloud interactions on individual cloud scales

Ramanathan et al., Nature, 2007; Roberts et al., PNAS, 2008; Ramana et al., QJRMS, 2007; Corrigan et al., ACP, 2008

Boundary layer and fog studies

<u>Vecteurs d'Observation de La Troposphère</u> pour l'<u>I</u>nvestigation et la <u>G</u>estion de l'<u>E</u>nvironnement (VOLTIGE)

- UAV fleet for simultaneously observing the boundary layer, fog event and radiation budget.
- Temperature, humidity, wind profiles compared to AROME 2.5km operational model
- In-situ measurements show strong inversion not captured in model → in-situ observations would improve forecasts

BACCHUS (Cyprus, Ireland)
Aerosol-cloud-radiative closure studies
Mission-specific fleet of lightweight UAVs

Ô

Using UAVs to link observations and models

'top-down' closure

 \rightarrow compare in-situ measurements with those derived from satellite

'bottom-up' closure

→ use measured updraft and aerosol measurements to initial cloud model and compare cloud properties

 $\mathsf{N}_{\mathsf{CCN}}$

Related publications: doi:10.1002/2015JD024595; doi.org/10.5194/amt-2017-233; doi: 10.1175/BAMS-D-15-00317; doi: 10.1038/nature22806

Payloads for aerosol-cloud interactions

Standard instruments (all)	Standard Parameters							
Pressure, temperature, humidity	$PTU \rightarrow T_{dew} \rightarrow Lifting\ condens.\ level$							
Autopilot & Pitot	u, v \rightarrow horizontal winds							
Video camera	Θ _E , Z _{inversion}							
Data acquisition	data downlink							

Aerosol / irradiance	Aerosol properties & solar flux
Optical Particle Counter	number concentration (D_p > 0.3 µm)
Aerosol Inlet	unbiased size distribution $(0.3 < D_p < 3 \ \mu m)$
Pyranometer (up & down)	$\begin{array}{l} \Delta F_{\mathrm{aerosol}} \xrightarrow{} W \ m^{-2}; \ F_{\uparrow} \ / \ F_{\downarrow} \\ \xrightarrow{} Albedo \end{array}$

Coupling UAV observations with models and satellite

- UAVs link ground-based and satellite observations to cloud models (bottom-up and top-down closures)
- Quantified impact of entrainment on shortwave radiative cloud forcing

Publications related to this work:
Sanchez et al., ACP, 2017
Calmer et al., AMT, 2018
Calmer et al., ACP, 2019
Sanchez et al., GRL, 2020

First airborne operations at Mace Head

MIRIAD / ReNovRisk (France, La Réunion)
Vertical mixing of ocean surface layer, sea surface state and marine aerosol fluxes

MIRIAD (2017)

MIRIAD/ReNovRisk (2019)

Ocean

 Low altitude flights using lightweight and long endurance UAVs

Near-surface UAV observations to study air-sea exchange

- Sea salt aerosol at Cap d' Homy (Atlantic coast, France)
- Vertical profiles from 6 to 150 m.asl with UAV equipped to measure aerosol concentration and size distributions.
- Steep gradient in aerosol between boundary layer and surface layer

Flux estimate: F = D (dC / dz):: $\rho \sim 2 g/cm^3$; $D \sim 10^{-2} m^2 / s$

 \rightarrow F ~ 1 ng / m².s (PMA surf zone)

UAV payload for studying marine aerosol fluxes

	Atmospheric state					
	Pressure, temperature, humidity	boundary layer stability; lifting condensation level				
	Wind Speed & Flux					
Boreal UAV	multi-hole probe	U, V \rightarrow horizontal wind speed				
		w \rightarrow vertical wind; eddy flux correlation				
Marine aerosol flux parameterization	Wave Height; Sea State					
	Radar altimeter	Wave height				
$dF = \prod_{i=1}^{n} F_i(Re_H) = \left(-1 \left(\ln\left(\frac{D}{CMD_i}\right)\right)^2\right)$	Video camera	White cap fraction				
$\frac{d}{d\log D} = \sum_{i=1}^{\infty} \frac{1}{\sqrt{2\pi} \ln \sigma_i} \exp\left(-\frac{1}{2} \left(\frac{-(\cos t)^2}{\ln \sigma_i}\right)\right)$	Sea surface temperature (SST)					
Ovadnevaite et al., 2014	IR temperature	SST \rightarrow kinematic viscocity				
Sea salt flux Wave breaking param.	Aerosol					
	Optical Particle Counter	Number & mass concentration (D _p > 0.3 um)				
Wind speedWave heightKinematic viscosity; f(SST, salinity)	Condensation Particle Counter	Number concentration (D _p > 0.01 um)				

Payload for MIRIAD / ReNovRisk

- Designed to measure air-sea interactions (4.5 kg): Aerosol concentration and size distribution, 3D winds and turbulence; sea surface temperature, wave height, solar flux, temp / RH, video
- Payload data sent to ground-station in real-time for mission planning.

MIRIAD / ReNovRisk (Réunion Island, 2019)

- 4 19 February; 21 March 2 April 2019 during cyclone season (Indian Ocean)
- 12 research flights; 53.7 hours; 5012 km
- Airspace within 500 km diameter circle
- Surface to 1000 m.asl (w/ corridor to access international airspace)

MIRIAD / ReNovRisk Operations

- MIRIAD, develop the scientific payload on Boreal UAV to study air-sea interactions
- ReNovRisk, study the impacts of aerosol fluxes on the development of tropical cyclones (w/ Univ. La Réunion and LACy)

civilian airspace. Screenshot from <u>flightradar24.com</u>

¢

METEO

UNIVERSITÉ DE LA RÉUNION

Marine aerosol emissions and wind measurements

u)

Velocity (

• NEPHELAE – EUREC4A (Barbados)

• Evolution of cloud life cycle using measurements of cloud optical properties Simultaneous observations with UAV fleet, adaptive sampling, cloud mapping

NEPHELAE: Network for studying Entrainment and microPHysics of cLouds using Adaptive Exploration

- Traditionally a cloud is sampled via a straight passage through a cloud
- The relative amount of cloud edge (yellow) and cloud core (green) depends on the trajectory which leads to biases in inferring the structure of the cloud
- As cloud lifetime ~ 20 minutes, need to optimize trajectories and/or deploy multiple observations simultaneously

Adaptive sampling and mapping of virtual cloud

Gaussian Progress Regression reproduces reference cloud within five transects (< 50% of area sampled).

Cloud mapping with Gaussian Process Regression

- Statistical analysis (random entries) based on 10 explorations of the same reference cloud
- Comparison of total liquid water in horizontal crosssection at 150 m above cloud base

GPR with single UAV reproduces reference cloud **1**) much faster (~350 sec) and **2**) with less uncertainty compared to observations (even with two UAVs).

Time to catch some real clouds

Flight Overview – NEPHELAE - EUREC⁴A

- Flight operations over the ocean on the east coast of Barbados
- 50+ flights; 17 flights with adaptive sampling (following 26 clouds for more than a minute)

Following a cloud

Detection in/out of cloud and reference frame

Tracking a cloud in time and space

- High values of qv and $\theta \Rightarrow$ High values of extinction (in-cloud; positive buoyancy)
- Low values of qv and $\theta \Rightarrow$ Cloud edge (negative buoyancy)
- Cloud becomes negatively buoyant with time (dissipation; transition blue to yellow)

 $q_v [g.kg^-]$

Extinction (cyan) 0.0150 Maury Ε 0.0100 0.0075 0.0050 0.0025 0.0000 0.020 Extinction (IR) in prep 0.015 3 σ_{ext, IR} | 0.010 0.005 0.000 -59.56 -59.53 -59.52 -59.51 -59.55 -59.54 LONGITUDE 301.8 400 350 301.0 300 [≯] ^{301.4} ⊙ 250 S time 301. 150 100

11.0

10.5

 $q_v [g.kg^{-1}]$

10.0

11.5

301.0

9.5

08_02 UAV7 850.0m

Take Aways

- UAS are particularly well-suited for lower atmospheric and cloud process studies providing synergy with groundbased and satellite observations
- Coordinated flights changes the observation paradigm
- Science-driven payloads and sensor-driven trajectories dramatically improves sampling strategy

acknowledgements

NEPHELAE flight operations for adaptive sampling

Perspectives of using UAVs for atmospheric research

- Select aircraft around payload needs (smallest size for science mission)
- Watch out for "requirement creep" \rightarrow stay focused on the science goals
- Human factors cause of most incidents experience matters
- Divergence between engineering, research and operational uses (i.e., a new UAV & payload is only the starting point for the science)
- Changing regulatory environment, payload development and accumulated experience requires continuity in UAV team

NEPHELAE operations in airspace

Adaptive sampling with two UAVs simultaneously

View from Skywalker: X6-10

View from Skywalker: X6-7

- Tracking the cloud system with two UAVs using 'trinity' pattern
- UAVs vertically separated by ca. 50 m to avoid potential collisions
- Cloud appears to be in dissipating stage; two clouds close together

Finding an adequate platform to chase clouds

- Manta UAV: sub-contracted experienced operator; limited opportunities to test/deploy payload testing
- UAV Cost-Action 2009-2013 (J.Reuder); SUMO; PPRZ with to integrated IMU (clouds had not been possible)
- Smaller UAVs are easier operate logistically (but not too small)
- Backwards flight with EasyStar in convective cloud → need platform adapted for wind, adequate duration and payload capacity

EUREC4A field experiment

20 January – 15 February 2020

- Science objectives :
 - Role of ocean surface on mesoscale cloud field (sugar, flower, gravel, fish)
 - Cloud development / dissipation
 - Impact of clouds on radiative budget and precipitation
- UAV operations
 - Skywalker X6 (CNRM, France): NEPHELAE; adaptive sampling
 - Raaven (Colorado, USA): turbulence in MBL and updrafts at cloud base
 - Boréal (CNRM, France): air-sea interactions, aerosol emission, turbulence in MBL

Website: http://eurec4a.eu/

Sandrine Bony (LMD, CNRS); Bjorn Stevens (MPI Meteorology); David Farrell (CIMH)

Flights with Boreal during EUREC4A

- Aerosol, turbulence, sea surface temperature, wave height, meteorological
- ~20 km circle and multiple altitudes within trade wind corridor
- 10 Flights (33.7 hours)
- Data analysis underway

		Time UTC			Flight Table						Instrument Table								
Flight ID	Date	Take-off	Landing	Duration	Calibratio	Circle A	Circle B	Circle C	Circle D	Profile	Turbulence	CPC	OPC	T/RH1	T/RH2	SST	Radar	Pyrano	Camera
F01	25-Jan-20	20:11	21:45	1:34	Test Fligh	nt													
F02	26-Jan-20	16:41	19:40	2:59	400	400				1000									
F03	28-Jan-20	17:07	21:31	4:24	400	400	100	700		1000		dry out							
F04	31-Jan-20	16:34	16:53	0:19	Onboard	generator	r problem												
F05	2-Feb-20	12:33	18:23	5:50	400	400	100	50	700	1000									
F06	5-Feb-20	10:30	14:14	3:44	400	400				1000	rain								
F07	5-Feb-20	16:26	20:16	3:50	400	400	50			1000	rain				_				
F08	7-Feb-20	12:55	16:05	3:10	400	400	100			1000	rain + detour	•							
F09	7-Feb-20	18:12	20:15	2:03	400	400				500	detour								
F10	9-Feb-20	11:04	16:54	5:50	400	400	100	50	700	700	rain + detour	•							
			1				1	1	1	1								·	

Complete data set Partial data set No data

Platform: BOREAL

Specifications:

- Wingspan: 4.2 m; 25 kg max take-off
- Flight capacity up to 700 km with a 5 kg payload (ca. 7 hrs)
- Two-stroke gas engine
- 95 km/h cruise air speed (26.4 m/s); Range: 60-130 km/h
- Catapult take-off; belly landing

Onboard instrumentation during ReNovRisk):

- Transponder (mode S/ADS-B)
- Strobe
- C2Link RF communication & Iridium satellite with realtime video (up to 50 km from GCS)
- Radar altimeter to measure sea state and for security
- Science payload to measure 3D winds, aerosol, turbulent fluxes

Fire plume flux measurements using UAS

Flux (N.cm

