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We report on the experimental demonstration of a horizontal accelerometer based on atom inter-
ferometry using counterpropagative Raman transitions between the states |F = 1,mF = ∓1〉 and
|F = 2,mF = ±1〉 of 87Rb. Compared to the |F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉 transition usually
used in atom interferometry, our scheme presents the advantages to have only a single counterprop-
agating transition allowed in a retroreflected geometry, to use the same polarization configuration as
the magneto-optical trap and to allow the control of the atom trajectory with magnetic forces. We
demonstrate horizontal acceleration measurement in a close-to-zero velocity regime using a single-
diffraction Raman process with a short-term sensitivity of 25 × 10−5 m.s−2.Hz−1/2 and resolution
down to 3.8 × 10−6 m.s−2 at an integration time of 3300 s. We discuss specific features of the
technique such as spontaneous emission, light-shifts and effects of magnetic field inhomogeneities.
We finally give possible applications of this technique in metrology or for cold-atom inertial sensors
dedicated to onboard applications.

I. INTRODUCTION

During the last two decades, light-pulse atom inter-
ferometers (LPAIs) [1] which exploit the wave-like inter-
ference of atoms, have become unique instruments for
precision measurements of inertial forces, with applica-
tions in both applied and fundamental science. For exam-
ple, atom interferometric techniques have been employed
in measurements of gravitational [2, 3] and fine struc-
ture constants [4, 5], test of the equivalence principle [6],
searches for dark sector particles [7–9], and even proposed
for use in gravitational wave detection [10, 11]. They
have also enabled the realization of high performance ac-
celerometers [12–15], gyroscopes [16–23] and gravimeters
[24–28] demonstrating great promise for fielded inertial
sensors based on atom interferometry [29–31]. In addi-
tion, they can also be utilized for probing the field gradi-
ent of an external field such as gravity [32–34] or magnetic
fields [35, 36].

In a LPAI, sequences of laser pulses are used to split,
deflect and recombine matter-waves to create atom in-
terference. In inertial sensors, these sequences of light
pulses commonly use counterpropagating two-photon Ra-
man transitions with large one-photon detuning [1] be-
tween hyperfine ground states of alkali atoms (e.g |F = 1〉
and |F = 2〉 for 87Rb). They form the basic atom-optics
elements by finely controlling the external degree of free-
dom of the atoms through the generation of coherent su-
perposition of momentum states. In a counterpropagat-
ing configuration, the transfer between the two internal
ground states is always accompanied with a change of
±h̄keff of the momentum state, where keff is the effective
wave vector.
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In order to achieve high precision measurements, the
two counterpropagating Raman lasers are usually ob-
tained thanks to a retroreflected geometry where a single
laser beam with two laser frequencies is retroreflected off
a mirror. This geometry allows to mitigate parasitic ef-
fects induced by wave front distortions which are critical
to achieve good accuracy and long term stability [28, 37].
It also reduces interferometer phase noise as most vibra-
tion effects are common to the two laser fields. In addi-
tion, in order to avoid systematic errors induced by first
order Zeeman effect, the atoms are commonly manipu-
lated in the magnetically-insensitive mF = 0 sublevels in
the interferometer.

In this work, we report on the experimental realization
of a Raman transition-based LPAI between magnetically-
sensitive internal states in a Mach-Zehnder type geome-
try. Using the supplementary internal degree of freedom
of atoms manipulated in sensitive magnetic sublevels, we
realize a sensor which simultaneously measures inertial
and magnetic accelerations. Our work focuses on the
specific case of 87Rb. Using a σ+−σ− polarized light ar-
rangement, we manipulate the atoms in the interferome-
ter between the two magnetically-sensitive ground states
5S1/2 |F = 1,mF = ∓1〉 → |F = 2,mF = ±1〉, also used

as atomic clock transition for magnetically trapped 87Rb
[38], taking benefit of their similar first-order Zeeman
shift. Using this technique we perform the measure-
ment of the horizontal component of acceleration, in a
close-to-zero velocity regime, using a single-diffraction
Raman scheme [15], without need for alternative tech-
niques to lift the degeneracy of the double diffraction
process [39]. We demonstrate a short-term sensitivity of
25 × 10−5 m.s−2.Hz−1/2 for absolute acceleration mea-
surement. We then discuss some specifics of our tech-
nique in comparison with usual magnetically-insensitive
Raman-based atom interferometers, such as spontaneous
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emission rate, additional sensitivity to magnetic field in-
homogeneity and light-shifts. Finally, in light of the ad-
vantages of this technique, we propose atom interferom-
eter designs which could be of interest in metrology, as
well as for improving the performances of cold-atom in-
ertial sensors in operational field conditions [13, 29–31].

II. METHOD

A. Principle and advantages of the method

We implement our method using a horizontal Mach-
Zehnder type LPAI based on counterpropagative stim-
ulated two-photon Raman transitions between the
|F = 1,mF = ∓1〉 and |F = 2,mF = ±1〉 hyperfine lev-
els of the 5S1/2 ground state of 87Rb. These two states
are coupled via an intermediate state, using lasers of fre-
quencies ω1(2) detuned from the

∣∣5P3/2, F
′ = 1(2)

〉
state

by the one-photon detuning ∆1(2) (see Fig.1(a)). A static
bias magnetic field of magnitude B aligned with the Ra-
man lasers is applied to define a quantization axis for the
atoms. This field shifts the |F,mF 〉 ground state mag-
netic sublevels by ∆E = µBgFmFB as a first approxi-
mation, where F is the atomic total angular momentum,
mF = 0,±1, ...,±F are its projections on the quanti-
zation axis, µB is the Bohr magneton, and gF is the
Landé factor, equal to −(+)1/2 for the F = 1(2) states
respectively. The two counterpropagating Raman beams
are generated using a retroreflective setup. Contrary to
many LPAI experiments using a lin⊥lin polarization con-
figuration and a large one-photon detuning allowing to
exclusively drive counterpropagative Raman transitions
between the magnetic-insensitive mF = 0 sublevels, we
implement here a σ+ − σ− configuration (see Fig.1(b)):
the Raman beams have a σ+ polarization in one direc-
tion, and a σ− polarization in the retroreflected direction.
The quantum state at the input of the interferometer is
prepared to be in one single Zeeman sublevel |F = 1,mF 〉
(mF = +1 or mF = −1). Thus, according to the elec-
tric dipole transition selection rules, only one counter-
propagating transition is possible. Indeed the σ+ − σ−
Raman laser configuration only allows ∆mF = ±2 tran-
sitions. Consequently, the two-photon Raman transi-
tion couples the magnetically-sensitive hyperfine states
|F = 1,mF = ±1〉 ↔ |F = 2,mF = ∓1〉 with an effective
Rabi frequency [40]:

Ωeff = Γ2
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where Γ = 2π × 6.07 MHz is the natural line width,
Isat = cπhΓ/3λ3 = 1.67 mW.cm−2 is the saturation in-
tensity (with c the speed of light, h the Planck’s constant
and λ = 780 nm), I1(2) are the Raman laser intensi-
ties and ∆1(2) are the one-photon detunings with respect

to the hyperfine levels
∣∣5P3/2, F

′ = 1(2)
〉

(see Fig.1(a)).
The Rabi frequency of the two-photon Raman transition

constrains us to tune the one-photon transition in be-
tween |F ′ = 1〉 and |F ′ = 2〉 in order to avoid destruc-
tive interferences between the transition probability am-
plitudes for each excited states |F ′ = 1〉 and |F ′ = 2〉.
Consequences of such a close-to-resonance detuning are
discussed in Section IV A.
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FIG. 1. (a) Scheme of the σ+ − σ− Raman transitions be-
tween Zeeman sublevels of the two hyperfine ground states
of 87Rb in the presence of a magnetic field. Solid lines
represent the σ+ − σ− polarized beams performing the
|F = 1,mF = −1〉 ↔ |F = 2,mF = 1〉 transition. Dashed
lines represent the σ− − σ+ polarized beams performing
the |F = 1,mF = 1〉 ↔ |F = 2,mF = −1〉 transition. (b)
Schematic setup of two-photon Raman transitions in the com-
monly used retroreflected geometry. A two-level atom is inter-
acting with two pairs of counterpropagating light fields with
σ+ − σ− polarizations. This polarization arrangement allows
for only one pair of couterpropagating light fields to drive the
Raman coupling leading to a single diffraction Raman process
despite zero Doppler shift.

LPAIs usually manipulate atoms in the magnetically-
insensitive mF = 0 sublevels. For zero-velocity atoms the
use of retroreflected Raman beams leads naturally to a
double-diffraction scheme: two stimulated Raman transi-
tions with opposite momentum transfer ±h̄~keff are simul-
taneously resonant [39]. Our scheme has the advantage
of having only one counterpropagating Raman transition
allowed despite the retroreflection. In addition, we can
very easily implement the keff-reversal technique [24] to
eliminate some systematics by alternatively preparing the
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atoms in the |F = 1,mF = ∓1〉 states. Moreover the Ra-
man beams have the same polarization as the magneto-
optical trap beams, enabling a more compact and simple
sensor.

B. Experimental apparatus and lasers

The experiment was carried out in the LPAI setup de-
scribed in [15, 41]. The usual steps of atom interferom-
etry (preparation, interferometry and population detec-
tion) were performed with the laser system described in
[42]. On the one hand an Erbium distributed feedback
fiber laser (DFB-FL) at 1.5 µm, locked to a rubidium
transition through a saturated absorption setup [43], is
used to cool and detect the atoms. On the other hand
a DFB laser diode at 1.5 µm, frequency controlled by a
beat-note with the fiber laser, provides the LPAI laser
source. The two Raman frequencies are generated using
a fibered phase modulator [44]. Both lasers are finally
combined at 1.5 µm through an electro-optical modula-
tor acting like a continuous optical switch between each
laser, before seeding a 5 W Erbium-doped fiber amplifier
(EDFA). The output of the EDFA is sent to a second har-
monic generation bench. The complete laser setup and
optical bench description can be found in [15].

C. State preparation and Raman spectroscopy

We investigate our method by selecting the atomic in-
put state and implementing Raman spectroscopy. A cold
87Rb atom sample is produced in a three-dimensional
magneto-optical trap (MOT) loaded from a background
vapor in 840 ms. An optical molasses cools the atoms
down to 2 µK in 8 ms. After turning off the cool-
ing beams, the atoms are in free fall. Then a hor-
izontal bias magnetic field B ∼ 400 mG is switched
on and a microwave π-pulse is applied, followed by a
blow-away beam, allowing to select the atoms in the
|F = 1,mF = −(+)1〉 state. Raman spectroscopy is per-
formed using a Raman pulse of duration τ = 10 µs. Fi-
nally an internal state-selective vertical light-induced flu-
orescence detection is used to measure the proportion of
atoms in each hyperfine state |F = 1〉 and |F = 2〉. The
cycling time of the experiment is Tcycle = 1 s.

Figure 2(a) displays the measured transition prob-
ability as a function of the Raman frequency differ-
ence (ω1 − ω2)/2π. The atoms being prepared in
the |F = 1,mF = −1〉 state, the electric dipole transi-
tion selection rules state that only two transitions are
possible with our Raman beam polarization configura-
tion: a copropagating transition |F = 1,mF = −1〉 →
|F = 2,mF = −1〉 (almost insensitive to Doppler ef-
fect and therefore narrower) and a counterpropagating
transition |F = 1,mF = −1〉 → |F = 2,mF = 1〉 (see
Fig.1(a)). A third transition can be observed in Fig.2(a)
due to spontaneous emission: a fraction of the atoms

are transferred by spontaneous emission to the mF =
0, 1 magnetic sublevels of F = 1 and undergoes one
of the two degenerate transitions |F = 1,mF = 1〉 →
|F = 2,mF = 1〉, |F = 1,mF = 0〉 → |F = 2,mF = 2〉.
Spontaneous emission will be further discussed in Sec-
tion IV A.

One can notice not only that the σ+−σ− transition fre-
quency is independent of the magnetic field magnitude B
at first order (see Fig.2(c)), but also that the ±keff transi-
tion frequencies (corresponding to |F = 1,mF = ∓1〉 ↔
|F = 2,mF = ±1〉) are the same (see Fig.2(b)), which is
very useful when implementing the keff-reversal technique
(see Section III A).

In conclusion, once the Raman frequency is properly
tuned, it is only the state preparation in the magnetic
sublevel mF = ∓1 that defines which transition ±keff will
be addressed during the interferometer. This means that
reversing the effective wave vector is different from LPAIs
using the |F = 1,mF = 0〉 − |F = 2,mF = 0〉 transition,
where the Raman frequency needs to be changed in order
to reverse keff.

III. ATOM INTERFEROMETRY WITH σ+ − σ−
TRANSITIONS

Our Mach-Zehnder type LPAI in a horizontal configu-
ration consists of a π/2−π−π/2 Raman pulse sequence,
with each pulse separated by a time T . Due to free fall
of atoms across the laser beams of waist 5.5 mm (1/e2

radius), the interrogation time is limited to 2T = 33 ms.
At the output of the interferometer the phase shift is
the sum of two terms: ∆φ = ∆φpropagation + ∆φlaser

where ∆φpropagation is the difference in the action com-
puted along the classical trajectory of each interferome-
ter arm, and ∆φlaser is the phase difference imprinted
on the atoms by the Raman lasers at different loca-
tions [45]. The complete calculation of ∆φpropagation is
done in Section IV B and shows that ∆φpropagation =
~keff · ~aBT 2 + smaller terms (see Eq.(12)) with ~aB an
acceleration due to a magnetic force. This magnetic
acceleration depends on the transition ±keff and is ex-

pressed as ~aB = −µB

m gFmF
~∇B = − h̄

mαm
~∇B, where m

is the 87Rb atomic mass, h̄ is the reduced Planck con-
stant, αm = ±2π × 0.70 MHz/G is the Zeeman shift of

|F = 1,mF = ∓1〉 respectively [40], and ~∇B is the gradi-
ent of the magnetic field magnitude B. In the infinitely
short, resonant-pulse limit, the second phase term of ∆φ

is given by ∆φlaser = ~keff ·~ainertial T
2 where ~ainertial is the

acceleration of the atoms due to gravito-inertial effects.
This interferometer geometry thus exhibits at its output
an atomic phase shift sensitive to the combined acceler-
ation of the atoms due to gravito-inertial effects and a
force due to a magnetic field gradient:
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FIG. 2. Raman resonance spectra obtained by scan-
ning the Raman frequency (ω1 − ω2)/2π across the res-
onances. (a) Raman spectrum with the atoms pre-
pared in the |F = 1,mF = −1〉 sublevel. The mag-
netic field amplitude is B = 411 mG. Three res-
onance peaks are observed and correspond to four
transitions: |F = 1,mF = −1〉 → |F = 2,mF = −1〉,
|F = 1,mF = −1〉 → |F = 2,mF = 1〉 and two degener-
ate transitions |F = 1,mF = 1〉 → |F = 2,mF = 1〉 and
|F = 1,mF = 0〉 → |F = 2,mF = 2〉. (b) Raman spectrum
with the atoms prepared in the |F = 1,mF = +1〉 sublevel.
The magnetic field amplitude is B = 411 mG. (c) The atoms
being prepared in the |F = 1,mF = −1〉 sublevel, the mag-
netic field amplitude is tuned from 200 mG to 400 mG. The
transition |F = 1,mF = −1〉 → |F = 2,mF = 1〉 is insensi-
tive at first order to a magnetic field amplitude variation.

∆φ = ~keff · ~a T 2

= ~keff ·
(
~ainertial −

h̄

m
αm~∇B

)
T 2

(2)

At the end of the interferometric sequence we measure
the proportion of atoms in each output port of the in-
terferometer |F = 1〉 and |F = 2〉 by fluorescence. The
normalized population in the state |F = 2〉 at the LPAI
exit is a sinusoidal function of the interferometer phase
shift:

P = Pm −
C

2
cos ∆φ = Pm −

C

2
cos
(
~keff · ~a T 2

)
(3)

where Pm is the fringe offset and C is the fringe con-
trast. In the following we neglect the smaller terms from
∆φpropagation (see Eq.(12)) which will be studied in Sec-
tion IV B.

The force responsible of the magnetic acceleration de-
pends on the magnetic field inhomogeneities. To evalu-
ate this force in our setup, we proceed as follows: just as
in a LPAI gravimeter we apply a radio frequency chirp
β (Hz/s) to the effective Raman frequency to scan the
interference fringes. The sinusoidal dependence of the
probability (see Eq.(3)) leads to an ambiguity in the ac-
celeration measurement. We solve this issue by measur-
ing interference fringes for different interrogation times
T . Reversing the sign of the effective wave vector (i.e.
preparing the atoms in |F = 1,mF = ∓1〉 alternatively),
the magnetic acceleration changes sign and the phase
shifts are respectively:

∆φ± =
[
±~keff · (~ainertial + ~aB±)− 2πβ

]
T 2

=
[
±~keff · ~ainertial + ~keff · ~aB+ − 2πβ

]
T 2

(4)

where

{
~aB± = ~aB (F = 1,mF = ∓1) = ~aB (F = 2,mF = ±1)

~aB+ = −~aB−

This means that whatever the pulse separation T , the
phase shift is zero when the chirp reaches β0± = keff

2π ·
(±ainertial + aB+). From this we easily extract the mag-
netic acceleration aB+ = 2π

2keff
· (β0+ + β0−). Its numeri-

cal value is −7.79× 10−3 m.s−2, i.e. several interfringes
i = λ/2T 2 = 1.43 × 10−3 m.s−2 (T = 16.5 ms). The
corresponding magnetic field gradient is ∂xB = −24.2
mG.cm−1 and is therefore responsible for a non neg-
ligible bias on the inertial acceleration measurement.
The keff-reversal technique (i.e. preparing the atoms in
the |F = 1,mF = ∓1〉 states alternatively) is essential to
eliminate such a bias.



5

A. Correlation fringes

When scanning the interference fringes by varying the
frequency chirp β, the fringes are washed out because
of vibration noise (typically as soon as T ≥ 6 ms). To
recover the interference fringes, we perform a correlation-
based technique [46] which combines both measurements
of the LPAI output signal P and of the classical ac-
celerometer fixed to the Raman mirror. Figure 3 shows
the typical fringe pattern obtained by plotting the tran-
sition probability P at the LPAI output versus the ac-
celeration measured by the classical accelerometer. The
fringe contrast obtained from a sinusoidal least-squares
fit of the data is C = 13 %, which is the best contrast
that we obtained when adjusting the Raman laser inten-
sity at a fixed Raman pulse duration of τ = 10 µs. We
demonstrated in [15] a horizontal hybrid accelerometer
with a contrast of 40 % on the same experimental setup.
In Section IV we investigate the loss of contrast associ-
ated to the σ+ − σ− technique.

FIG. 3. Horizontal atom interferometer fringe pattern. The
total interferometer time is 2T = 33 ms and the Raman pulse
duration is τ = 10 µs. The solid line is a sinusoidal least-
squares fit using Eq.(3) and considering error-free indepen-
dent variables. The estimated fringe contrast is C ∼ 13 %.
The fringes are shifted from zero because of the magnetic ac-
celeration and the bias of the classical accelerometer.

B. Accelerometer sensitivity

We analyze the sensitivity and stability of the horizon-
tal atom accelerometer by hybridizing the classical and
the atomic sensors [29, 46]. The sign of the effective

Raman wave vector ~keff is reversed every measurement
cycle, i.e. the atoms are alternatively prepared in the
|F = 1,mF = ∓1〉 states. We calculate the inertial ac-
celeration by computing the half sum of the phase shifts
measured on each correlation fringe pattern ±keff. The
fringe ambiguity is removed by assuming that the mag-

netic acceleration has the same value as calculated for
smaller interrogation times, i.e. aB = −7.79 × 10−3

m.s−2. Figure 4 displays the Allan standard devia-
tion (ADEV) of the hybridized atom interferometer sig-
nal. We achieve a short-term sensitivity of 25 × 10−5

m.s2/
√

Hz, which is not as good as the state of the art
for horizontal configurations [14, 15]. In Section IV we
discuss several arguments to explain this sensitivity. The
ADEV of the atomic sensor scales as τ−1/2 and reaches
3.8 × 10−6 m.s2 after 3300 s integration time. No con-
clusion can be drawn regarding the long-term stability of
the atom accelerometer because of angular drifts of the
Raman mirror. An auxiliary tilt sensor could be used
to monitor the angle between the Raman beam and the
horizontal direction during the measurements.

FIG. 4. Allan standard deviation (ADEV) of the hybridized
horizontal atom accelerometer (blue line). The dashed line

illustrates the τ−1/2 scaling.

IV. SPECIFICS OF THE METHOD

A. Spontaneous emission

As shown in Eq.(1) the transition probability ampli-
tudes for each excited state |F ′ = 1〉 and |F ′ = 2〉 in-
terfere destructively. In order to address the counter-
propagating transition, the laser detuning is set between
the |F ′ = 1〉 and |F ′ = 2〉 levels and therefore induces
spontaneous emission and coherence loss. Assuming that
atoms which undergo spontaneous emission do not inter-
fere anymore, the contrast at the atom interferometer
output is reduced, and so is the sensor sensitivity. We
experimentally tuned the Raman laser frequency to min-
imize the spontaneous emission rate. The detuning ∆2

from the excited state |F ′ = 2〉 is adjusted via a beat-
note between the fiber laser and the Raman laser diode.
The probability of transfer by spontaneous emission in
|F = 2〉 is estimated by measuring the transfer probabil-
ity during a 10 µs out-of-resonance Raman pulse. Figure
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5 shows the experimental result (red dots) as a function
of the detuning ∆2, along with the theoretical prediction
of the probability of transfer by spontaneous emission in
the |F = 2〉 level during a 10 µs pulse. In order to match
the experimental result with the theoretical prediction,
we introduce an empirical multiplicative factor κ = 2.5
for the laser intensity (see Appendix A for detailed calcu-
lations). Considering the dipole matrix elements we can
derive an estimation of the total spontaneous emission
probability during the whole interferometer both from
data and theory (blue dots and black line in Fig.5). Here
again we assume κ = 2.5 in the theoretical calculations.
The need of this empirical factor κ is not understood. It
could come from experimental imperfections (non perfect
π/2 Raman pulses) and from our theoretical treatment
of spontaneous emission that is too simple (the resolu-
tion of Bloch optics equations could be used in a more
elaborated model [47]).

The optimal detuning is given by the curve minimum:
∆2 = −100 MHz both theoretically and experimentally.
We can conclude from Figure 5 that for ∆2 = −100 MHz,
75 % of the atoms undergo spontaneous emission during
the interferometer duration. Such a loss of atoms re-
duces the contrast by a factor 4 and could explain our
relatively low contrast value of 13% (see Figure 3). As a
matter of fact, we demonstrated in [15] a horizontal hy-
brid accelerometer on the same experimental setup with
a contrast of 40%. Since 40%× 1/4 = 10%, the visiblity
loss is probably due to spontaneous emission. Neverthe-
less, we investigate in the next subsection the phase shift
sensitivity to magnetic field and show how it also affects
the LPAI contrast and bias.

Setting the detuning close to resonance still has an
advantage: the transition requires low Raman intensity
(∼ Isat) compared to the magnetically insensitive Ra-
man transition (∼ 10 Isat) for which the detuning is set
far from resonance. However spontaneous emission can
be drastically reduced if the Raman transition is per-
formed on the D1 line instead of the D2 line of 87Rb,
since the hyperfine levels are further apart. Theoreti-
cal calculations of spontaneous emission on the D1 line
(without taking into account the factor κ)show that only
10 % of the atoms undergo spontaneous emission dur-
ing the interferometer sequence, which is comparable to
LPAIs using the |F = 1,mF = 0〉−|F = 2,mF = 0〉 tran-
sition with a commonly used one-photon detuning from
|F ′ = 3〉 of ∼ −1 GHz.

B. Sensitivity to magnetic field

As shown in Eq.(2) the LPAI is sensitive to both
inertial acceleration and magnetic forces from field
inhomogeneities. Using the keff-reversal technique one
can extract each contribution by computing either the
half sum or the half difference of the phase shifts (see
Section III). This is only valid under the assumption of
a constant magnetic field gradient from shot-to-shot. We

FIG. 5. Probability of spontaneous emission (SE) as a func-
tion of the detuning ∆2 from the excited state |F ′ = 2〉. Red
dots represent the experimental data of probability of transfer
by spontaneous emission in the |F = 2〉 level during the first
Raman pulse of duration 10 µs. The data was obtained from
the detected background on Raman spectra plotted for differ-
ent detunings ∆2 at constant effective Rabi frequency. The
dashed line represents the theoretical probability of transfer
by spontaneous emission (adjusted with a parameter κ = 2.5)
in the |F = 2〉 level during a Raman pulse of 10 µs. Blue
squares represent the total probability of spontaneous emis-
sion in the |F = 1〉 and |F = 2〉 levels during the whole in-
terferometer. It was derived from the experimental data in
red dots. The black line is the theoretical total probability of
spontaneous emission during the whole interferometer (cor-
rected by a factor κ = 2.5).

perform in this Section the detailed calculation of the
phase shift due to magnetic field by taking into account
spatial inhomogeneities of the magnetic field up to order
two. From this study we estimate the bias and the loss
of contrast induced by the magnetic field.

We have considered so far a weak magnetic field and
a linear relationship between magnetic energy levels and
magnetic field, with the same shift for |F = 1,mF = ∓1〉
and |F = 2,mF = ±1〉. For the ground state manifold
of the D transition, the exact calculation of the energy
levels is given by the Breit-Rabi formula [48]. In the
case of 87Rb in the |F = 1,mF = −1〉 ≡ |1,−1〉 and
|F = 2,mF = 1〉 ≡ |2, 1〉 levels, the energies are given
by:

{
E|1,−1〉 = h̄ (αm −∆α)×B ≡ h̄ωa
E|2,+1〉 = h̄ (αm + ∆α)×B ≡ h̄ωb

(5)

with αm =
gJ − gI

4h̄
µB and ∆α =

gI
h̄
µB . Here we do

not take into account the hyperfine splitting, as it is a
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constant which cancels out in the phase shift calculation.

a, b stand for the two hyperfine states |1,−1〉, |2,+1〉 of
the LPAI. gI is the nuclear g-factor, gJ is the Landé fac-
tor and µB is the Bohr magneton. Under the assumption
of spins following the magnetic field adiabatically during
free fall, B represents the magnitude of the magnetic
field. We define the average energy shift αm = 2π× 0.70
MHz/G (see Eq.(2)) and the differential energy shift
∆α = 2π × −1.4 kHz/G coming from the Breit-Rabi
formula. Similarly, for the −keff transition between
|1,+1〉 and |2,−1〉, the energy levels are described by
Eq.(5), only (αm,∆α) are replaced with (−αm,−∆α).

We use the Feynman path integral approach to com-
pute the magnetic phase shift between the two arms (u, d)
of the interferometer. Using a perturbative calculation
for the effect of the magnetic field [45], the phase ϕ(i) ac-
cumulated along each arm i = u, d of the LPAI is given by
the classical action Scl along the unperturbated classical
path divided by h̄:

ϕ(i) = S
(i)
cl /h̄ =

∫ 2T

0

L[~r(t)]/h̄ dt (6)

The phase difference at the output of the LPAI is then:

∆φpath = ϕ(u) − ϕ(d)

= (S
(u)
cl − S

(d)
cl )/h̄

= 1/h̄

(∫ 2T

0

L[~r (u)(t)] dt−
∫ 2T

0

L[~r (d)(t)] dt

)

=

∫ T

0

[
ωb

(
~r (u)(t)

)
− ωa

(
~r (d)(t)

)]
dt

+

∫ 2T

T

[
ωa

(
~r (u)(t)

)
− ωb

(
~r (d)(t)

)]
dt

(7)
Taking into account the Breit-Rabi correction (see

Eq.5), the phase difference at the output of the inter-
ferometer can be split into two terms:

∆φpath = αm

∫ 2T

0

[
B
(
~r (u)(t)

)
−B

(
~r (d)(t)

)]
dt

+ ∆α

(∫ T

0

[
B
(
~r (u)(t)

)
+B

(
~r (d)(t)

)]
−
∫ 2T

T

[
B
(
~r (u)(t)

)
+B

(
~r (d)(t)

)]
dt

) (8)

The first term (proportional to αm) arises from
the magnetic field variation between the upper and
the lower arms of the interferometer, whereas the
second term (proportionnal to ∆α) is accounting for the
variation of the mean field B between [0−T ] and [T−2T ].

The phase shift calculation is performed on the unper-
turbed trajectories

(
~r (u)(t), ~r (d)(t)

)
whose expressions

are:


~r (u)(t) = ~r0 + (~v0 + ~veff)t− ~veff(t− T )H(t− T ) +

1

2
~gt2

~r (d)(t) = ~r0 + ~v0t+ ~veff(t− T )H(t− T ) +
1

2
~gt2

(9)

where ~veff = h̄~keff/m, (~r0, ~v0) are the position and
velocity vectors at the first Raman pulse and H(t) is the
Heaviside function.

The magnetic field magnitude B is supposed to be
time-independent and can therefore be expressed through
its Taylor expansion in space:

B(~r) = B0 + ~B1 · ~r +
1

2
~r · ¯̄B2 · ~r

= B0 + ∂xBx+ ∂yBy + ∂zBz +
1

2
(∂2
xBx

2 + ∂2
yBy

2

+ ∂2
zBz

2 + 2∂x∂yBxy + 2∂x∂zBxz + 2∂y∂zByz)
(10)

Using Eq.(9,10) the phase shift calculation of Eq.(8)
leads to two terms proportional to αm and ∆α respec-
tively:

∆φpath = ∆φ1 + ∆φ2 (11)

where



∆φ1 = αmT
2
(
∂xBveff

+ ∂2
xBveff [x0 + (v0x + veff/2)T ]

+ ∂x∂yBveff [y0 + v0yT ]

+ ∂x∂zBveff

[
z0 + v0zT + 7/12gT 2

] )
∆φ2 = −∆αT 2

(
2∂xB(v0x + veff/2)

+ 2∂yBv0y

+ 2∂zB(v0z + gT )
)

(12)
The first term of ∆φ1 is the magnetic acceleration

of Eq.(2) since αm∂xBveffT
2 = αm∂xB

h̄
mkeffT

2 =

keffaBT
2. The other terms of ∆φ1 are due to magnetic

field curvatures whereas the terms of ∆φ2 come from
the differential shift ∆α and the magnetic field gradient.
From Eq.(12) one can deduce the bias and loss of
contrast induced by the σ+ − σ− method.

The keff-reversal technique enables to eliminate any
systematic effect whose sign does not change when re-

versing ~keff. The bias is then due to the remaining phase
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terms. In our case, since (αm,∆α) change sign when re-

versing ~keff, we deduce from Eq.(12) that the bias induced
by magnetic effects is:

1

2
αm∂

2
xBv

2
effT

3 − 2∆α∂zBgT
3 (13)

The first term is an inertial phase due to the atom
recoil and the magnetic field curvature: it arises as
soon as the magnetic field gradient is different for the
upper and lower arm of the interferometer. It was
estimated theoretically by computing the magnetic
field produced by the horizontal field coils (∂2

xB ∼ 5
G.m−2) and leads to a bias of 2 × 10−6 m.s−2 (we
recall T = 16.5 ms). The second term is an energy
dependent phase term which comes from time variation
of the differential Zeeman energy shift induced by the
magnetic field gradient ∂zB seen by the atoms during
free fall. In order to estimate it we measured the
magnetic field vertical gradient by Zeeman spectroscopy
and found ∂zB = 1.2 G.m−1. The resulting bias is
2 × 10−4 m.s−2. In comparison, ref.[49] demonstrates a
high-performance magnetic shield for long baseline atom
interferometry with inhomogeneities below 3 × 10−7

G/cm: the associated bias would be 3 × 10−9 m.s−2,
at the cost of a more complex magnetic field shield.
From Eq.(12) one can easily notice that this bias can
be eliminated through an atomic fountain design with
a properly set vertical velocity at the first Raman pulse
v0z = −gT . One can also set the quantization field to its
magic value [38] corresponding to the magnetic field at
which the derivative of the energy difference h̄(ωb − ωa)
is null. But this configuration does not cancel out the
bias perfectly because it requires to change the magnetic

field sign when changing the sign of ~keff, since the magic

field for the ±~keff transitions are respectively ±3.2 G [38].

Regarding the contrast reduction induced by magnetic
effects, it is due to the position and velocity dependent
terms in Eq.(12). Indeed any phase shift sensitivity to
position (or velocity) results in each atom (or velocity
class) providing its own fringe pattern. Since the atom
detection protocol averages over these patterns, the
fringe contrast is reduced. In our case the interrogation
time T = 16.5 ms is short enough to neglect the loss
of contrast arising from velocity dependent phase shifts
in Eq.(12) (see Fig.6(a)). The contrast reduction due
to averaging over position on the other hand is much
more significant. As an example we analyse the phase
shift αm∂

2
xBveffx0T

2: it reduces contrast by a factor

e−
1
2 (αm∂

2
xBveffT

2σx)2 [50], where σx = 1 mm is the
typical size of the atomic cloud. Fig.6(b) illustrates
this loss of contrast as a function of the magnetic field
curvature ∂2

xB: the contrast is typically reduced by 50
% in the presence of ∂2

xB ∼ 50 G.m−2. As comparison
Fig.6(a) shows how the velocity dependent phase shift
αm∂

2
xBveffv0xT

3 does not affect contrast. Since the
magnetic field along the Raman beams cannot be

measured precisely enough on our experimental setup,
we estimated theoretically the curvature due to our
magnetic field coils and found ∂2

xBth ∼ 5 G.m−2. From
this we can state that inhomogeneities of the magnetic
field created by the coils do not affect the fringe contrast.
However the presence of another magnetic field source
creating a non negligible field curvature responsible of a
contrast reduction is to be considered.

FIG. 6. Theoretical contrast calculated as a function of the
magnetic field curvature. Parameters: interrogation time
T = 16.5 ms, gas temperature θ = 2 µK, typical atomic
cloud size σx = 1 mm, velocity σv =

√
kBθ/m = 1.4 cm.s−1.

(a) Contrast loss due to the velocity dependent phase shift
αm∂

2
xBveffv0xT

3. (b) Contrast loss due to the position de-
pendent phase shift αm∂

2
xBveffx0T

2.

Loss of contrast can also be interpreted as in [50]: po-
sition and velocity dependent phase terms in Eq.(12) are
responsible for the opening of the interferometer in mo-
mentum and position respectively. We introduce the no-
tation Γ = 2 h̄

mαm∂
2
xB since the magnetic field curvature

is the exact analog of a gravity gradient in a vertical
LPAI. The forces associated with Γ tend to open up the
trajectories of the atoms and lead to an open interfer-
ometer with nonvanishing relative position and momen-
tum displacements at the output of the LPAI. As demon-
strated in [50] a position dependent phase shift results in
a momentum displacement δP at the output of the LPAI,
and a velocity dependent phase shift results in a position
displacement δX. Both displacements are given by the
following expressions to first order in ΓT 2 [50]:
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δX =
(
ΓT 2

) h̄keff

m
T (14)

δP =
(
ΓT 2

)
h̄keff (15)

In our case the change of position associated with
Eq.(14) is very small compared to the coherence length
which is estimated by the thermal De Broglie wavelength:
δX ∼ 10−8 m � lc = λDB = h/

√
2πmkBθ ∼ 10−7 m for

87Rb atoms at θ = 2 µK. On the other hand the momen-
tum displacement given by Eq.(15) is not as negligible as
the position displacement. Even though [51] suggests a
protocol to mitigate the loss of contrast due to gravity
gradients Γ through a suitable adjustment of the laser
wavelength at the second Raman pulse, this technique
cannot be applied here. Indeed the σ+ − σ− method
requires the detuning ∆ to stay between the |F ′ = 1〉
and |F ′ = 2〉 sublevels to avoid spontaneous emission (see
Section IV A), which means that the mitigation technique
proposed by [50] would inevitably reduce the fringe con-
trast.

C. Light shifts

In most cases one can eliminate the differential one-
photon light shift by adjusting the intensity ratio between
the two Raman lasers. In our σ+−σ− Raman transition
scheme, there is no intensity ratio that cancels out the
differential one-photon light shift (see Appendix B for
complete calculation of light shifts), which means that an
intensity variation between the first and the last pulses
of the LPAI leads to a residual parasitic phase shift. For
an intensity variation of 10 % between the first and the
last pulses (due to the position of the atoms in the hori-
zontal Raman beam with gaussian intensity profile), the
corresponding bias due to the one-photon light shift is
−1.5 × 10−5 m.s−2. However, assuming the same inten-
sity variation for the +keff and the −keff interferometers,
this light shift is nearly rejected through the keff-reversal
technique, since δdiff

LS1(+keff) ' δdiff
LS1(−keff). More gener-

ally it is essential to note that the one-photon light shift
doesn’t represent a limit to our σ+−σ− technique, since
one can find an intensity ratio canceling it out on the D1

line of 87Rb.

In our setup, the two-photon light shift arises from the
off-resonant copropagating Raman transitions detuned

by ±2µBgF
h

B from the considered ±keff counterpropa-

gating transition. Its effect decreases with the magnetic
field. When B = 400 mG, it is calculated to be negligible
compared to the one-photon light shift and it cancels
out as well when the keff-reversal technique is applied.

V. APPLICATIONS

In this section we propose some possible applications
of our technique in both metrology and for development
of new designs of atom interferometers dedicated to field
applications.

A. h/mX measurement

Atom interferometers allow to determine the fine-
structure constant α based on measuring the recoil ve-
locity vr = h̄k/mX of an atom X of mass mX absorbing
a photon of momentum h̄k, where h̄ = h/2π, and k is the
photon wave number. With an accurate measurement of
k, h/mX can be measured and α can be determined al-
lowing to test the standard model and beyond [4, 5].

Here, using our interferometric design we propose to
measure h/mX by combining the interferometric mea-
surement of the magnetic acceleration aB and an inde-
pendent measurement of the magnetic field gradient ∂xB
thanks to a micro-wave spectroscopy. In Eq.(2), using
the keff-reversal technique, one can isolate the magnetic
acceleration, leading to:

h

mX
= 2π

aB
αm∂xB

(16)

Considering state-of-the-art atom accelerometers at their
best level of accuracy (∼ 10−8 m.s−2) [28], combined
with a micro-wave Ramsey interferometer with a free-
evolution time T=10 ms and a signal-to-noise ratio SNR
= 103, one could measure magnetic fields at the level of
∼ 100 nG. Thus, under an acceleration aB = 1 m.s−2 one
could obtain a relative uncertainty at the level of 10−8

on h/mX measurement. Although this performance is
less than the already achieved accuracy [4, 5], this inde-
pendent technique which is not based on the atom-recoil
measurement could be interesting for metrology.

B. Force-balanced atom accelerometer

The supplementary internal degree of freedom pro-
vided by the magnetically-sensitive states used in the in-
terferometer allows to exploit the sensitivity of the atoms
to magnetic field gradients and transfer a magnetic ac-
celeration onto them. The magnetic acceleration of a
Rb atom in a mF = ±1 sublevel due to a magnetic
field gradient ∂zB is aB ∼ 32.1 × ∂zB m.s−2. For ex-
ample, applying a magnetic field gradient of magnitude
∂zB ∼ 30 G.cm−1 could compensate for gravity accel-
eration on Earth. Thus, we propose to use our inter-
ferometric scheme to create a force-balanced atom ac-
celerometer where the inertial acceleration undergone by
the atoms, and measured by an auxiliary classical ac-
celerometer, could be compensated by applying a mag-
netic acceleration. The basic principle of the technique
is depicted in Fig.(7).
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FIG. 7. Scheme of the force-balanced accelerometer. AHC:
Anti-Helmholtz Coil ; HC: Helmholtz Coil.

The atom accelerometer is hybridized with a conven-
tional classical accelerometer in order to track the bias
of the classical accelerometer such as in [30]. Our coil
configuration consists of two vertical coils above and
below the atoms. A pair of Helmholtz coils generates

a bias field ~Bq along the z-axis and defines the quan-
tization axis. This quantization axis is aligned with
the direction of the Raman lasers in order to enhance
the Raman transition between the magnetically-sensitive
states |F = 1,mF = ∓1〉 and |F = 2,mF = ± 1〉. A sec-
ond pair of coils with counterpropagating currents (anti-
Helmholtz configuration) in the same housing, is set to
create the magnetic field gradient along the same direc-
tion. The current output of the classical accelerometer,
proportional to the inertial acceleration, is then used as
an input signal to counter-balance the inertial force un-
dergone by the atoms. In pratice, depending on the elec-
tric current fed into the anti-Helmholtz coils, one can ad-
just the magnetic acceleration to aB = γi where i is the
electric current and γ a scale factor which can be precisely
determined through calibration of the magnetic acceler-
ation in a lab-based environment. Thus, it is for exam-
ple possible to levitate the atoms against gravitational
acceleration and therefore extend the evolution time in
earthbound laboratories. Additionally, using three pairs
of Helmholtz coils in 3-orthogonal directions, this scheme
could be further extended to compensate for any inertial
acceleration in the 3 dimensions, where 3 classical ac-
celerometers are fixed to 3 atom accelerometers to form a
3-axis hybrid accelerometer. With this scheme, one could
simultaneously apply a magnetic force on the atoms in
the 3 dimensions. This could benefit onboard atom ac-
celerometers submitted to spurious accelerations which
limit the dynamic range because the atoms drop out from

the laser beams and the detection zone.

VI. CONCLUSION

We reported on the experimental demonstration of a
horizontal cold-atom interferometer using counterprop-
agating Raman transitions between |F = 1,mF = ∓1〉
and |F = 2,mF = ±1〉 of 87Rb. Using the same σ+−σ−
polarized light arrangement as the MOT, we gener-
ated Raman coupling between the two states of the in-
terferometer and showed that this technique allows to
perform single-diffraction Raman process in a close-to-
zero velocity regime without the need for alternative
techniques [15]. We demonstrated that this technique
presents both advantages and disadvantages compared to
the |F = 1,mF = 0〉−|F = 2,mF = 0〉 transition usually
used in atom interferometry (see TABLE I).

Absolute horizontal acceleration measurement with a
short-term sensitivity of 25 × 10−5 m.s−2.Hz−1/2 was
achieved. In our setup, limitations of the sensitivity arise
from spontaneous emission, leading to a reduction of the
interferometer contrast. The accuracy of the atom ac-
celerometer is mainly limited by the bias caused by the
magnetic field gradient at the level of ∼ 2× 10−4 m.s−2.

Although the short-term sensitivity is bigger by almost
one order of magnitude in comparison with state-of-the-
art horizontal atom accelerometers [14, 15], it could be
improved by changing the Raman excitation scheme to
the D1 line, thus reducing spontaneous emission. Addi-
tionally, one could reduce this acceleration bias at the
level of ∼ 3 × 10−9 m.s−2 (with T = 16.5 ms) consid-
ering a high-performance magnetic shielding leading to
a magnetic-field inhomogeneity of 3× 10−7 G.cm−1 [49].
Moreover, we showed that acceleration bias could be sup-
pressed by performing the atom interferometer using a
fountain geometry. Finally, we believe that using the
supplementary internal degree of freedom provided by
atoms manipulated in magnetically sensitive levels pro-
vides interesting features such as levitation schemes for
inertial applications requiring compact setups.
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Advantages Disadvantages

Same polarization arrange-
ment MOT/Raman

Spontaneous emission
(reduced on the D1 line of
87Rb)

Single counterpropagating
transition in retroreflec-
tive geometry despite zero
Doppler shift

Remaining copropagating
Raman transition

Supplementary internal de-
gree of freedom provided by
adressing mF 6= 0 Zeeman
sublevels
(force-balanced
accelerometer)

Require precise control and
mapping of the magnetic
field

TABLE I. Summarized advantages and disadvantages of
a Mach-Zehnder cold-atom interferometer using coun-
terpropagative Raman transitions between the state
|F = 1,mF = ∓1〉 and |F = 2,mF = ±1〉 of 87Rb.

Appendix A: Probability of transfer by spontaneous
emission

We start by calculating the effective two-photon
Rabi frequency Ωeff describing the Raman coupling
between the hyperfine states |F = 1,mF = −1〉 and
|F = 2,mF = 1〉 of the interferometer. We compute the
single-photon scattering rate RFsc from atoms starting in
|F = 1〉 or |F = 2〉. From these the probability of trans-
fer by spontaneous emission for an entire interferometer
can be calculated.

We describe the intensity In of each EOM sideband n
at the output of the phase modulator as In = I · Jn(β)2

where I is the total laser intensity, Jn is the Bessel func-
tion of the first kind of order n, and β is the modulation
index of the EOM. Here we only take into account two
sidebands (n = 0 and n = 1), the others being detuned
enough to be neglected. Isat stands for the saturation
intensity and Γ is the natural line width. We calculate
the effective two-photon Rabi frequency:

Ωeff =
Γ2

2

I

Isat
J0(β)J1(β)

∑
F ′

MF ′,+
1,−1 ·M

F ′,−
2,1

∆F ′
(A1)

where MF ′,±
F,mF

=
〈F,mF | er |F ′,mF ± 1〉
〈J = 1/2||er||J ′ = 3/2〉

are the ru-

bidium D2 dipole matrix elements for σ± transitions,
expressed as multiples of 〈J = 1/2||er||J ′ = 3/2〉, as

given in [40]. ∆F ′ = ωL − ωF
′

2 is the detuning of
the carrier (of frequency ωL) relative to the transition

F = 2→ F ′ (of energy h̄ωF
′

2 ).

Assuming a π/2 Raman pulse of duration τ with Rabi
frequency Ωeff · τ = π/2, we can deduce from Eq.(A1)

the laser intensity I(∆F ′) as a function of the detuning
∆F ′ .

The rate of spontaneous emission for atoms starting in
|F = 1,mF = −1〉 or |F = 2,mF = 1〉 is:

RFsc = Γ
I

Isat

∑
n={0,1},F ′,σ=±

(
MF ′,σ
F,mF

)2

1 + 4

(
∆n
F,F ′

)2
Γ2

+
I

Isat

Jn(β)2

(A2)

where ∆n
F,F ′ = ωL + nωhfs − ωF

′

F is the detuning of

the sideband n (of frequency ωL + nωhfs) relative to

the transition F → F ′ (of energy h̄ωF
′

F ). The ground
state hyperfine splitting ωhfs is also the EOM driving
frequency.

From these, the probability of spontaneous emission
for an entire interferometer can be calculated:

PSE = 1− exp
(
−R1

sc · 2τ −R2
sc · 2τ

)
(A3)

where we consider that the atoms spend as much time
(2τ) in state |F = 1〉 and in state |F = 2〉, the total
Raman interaction duration being 4τ .

We measure experimentally the number of atoms that
are transferred from |F = 1〉 to |F = 2〉 when the Ra-
man detuning is off the two-photon resonance. In or-
der to compare these measurements with our theoretical
model, we calculate the scattering rate R1→2

sc for atoms
initially in the state |F = 1,mF = −1〉, undergoing a
single-photon transition to an excited state |F ′,mF ′〉,
and transferred to |F = 2〉 by spontaneous emission.
This corresponds to the scattering rate R1

sc presented in
Eq.(A2) with the difference that one needs to take into
account the spontaneous emission rates ΓF ′→2 of each de-
excitation |F ′,mF ′〉 → |F = 2,mF 〉. Therefore we have:

R1→2
sc =

I

Isat

∑
n={0,1},F ′,σ=±

ΓF ′→2

×
(MF ′,σ

1,−1)2

1 + 4
(∆n

1,F ′)2

Γ2
+

I

Isat

Jn(β)2

(A4)
where the spontaneous emission rates ΓF ′→2 are the fol-
lowing:



Γ0→2 = 0

Γ1→2 =
Γ

6

Γ2→2 =
Γ

2
Γ3→2 = 0

(A5)
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As presented in the associated article (see Figure 5),
we introduce an empirical parameter κ in the theoret-
ical formulas to account for the difference between the
effective Raman intensity and the theoretical prediction.
Thus we write the total loss of atoms (i.e. in the |F = 1〉
and |F = 2〉 levels) by spontaneous emission during the
whole interferometer as :

PSE = 1− exp
(
−κ
[
R1

sc · 2τ +R2
sc · 2τ

])
(A6)

Likewise, we calculate the probability of transfer by
spontaneous emission in |F = 2〉 during a pulse of dura-
tion τ as follows :

PSE F=2 = 1− exp
(
−κR1→2

sc · τ
)

(A7)

Appendix B: One-photon and two-photon light shifts

In a Mach-Zehnder type atom interferometer, uncom-
pensated differential light shifts δdiff

LS from the Raman
lasers result in an additional phase contribution given
by [52]:

∆φLS =− arctan

[
tan

(
Ωeff,1

τ

2

) δdiff
LS,1

Ωeff,1

]

+ arctan

[
tan

(
Ωeff,3

τ

2

) δdiff
LS,3

Ωeff,3

] (B1)

where the effective Rabi frequencies and the differential
light shifts for each pulse i are given by Ωeff,i and δdiff

LS,i
respectively. τ is the duration of the first and last pulses.

The one-photon Raman light shift is imprinted
onto both hyperfine states |F = 1,mF = −1〉 and
|F = 2,mF = 1〉 by out-of-resonance Raman lasers. Each

light shift δF,mF

LS1 has the following expression:

δF,mF

LS1 =
Γ2

4

I

Isat

∑
n={0,1},F ′,σ=±

(
MF ′,σ
F,mF

)2

∆n
F,F ′

Jn(β)2 (B2)

The differential one-photon light shift is then:

δdiff
LS1 = δ2,1

LS1 − δ
1,−1
LS1 (B3)

There is no intensity ratio that cancels out the
differential light shift, contrary to LPAIs using the
|F = 1,mF = 0〉 − |F = 2,mF = 0〉 transition. This
means that a difference of intensity between the first
and the third pulses leads to an additional phase shift
[52]. However this light shift is nearly rejected through
the k-reversal technique, since δdiff

LS1(+keff) ' δdiff
LS1(−keff).

We recall that reversing the sign of keff means preparing
the atoms alternatively in the |F = 1,mF = ∓1〉 states.

In our setup, the two-photon light shift arises from
the off-resonant copropagating Raman transitions de-
tuned by ±∆B = ±2 × µBgF

h B from the consid-
ered ±keff counterpropagating transition. The level
|F = 1,mF = −1〉 is perturbed by the coupling Ω−1

eff,co

of the copropagating transition |F = 1,mF = −1〉 ↔
|F = 2,mF = −1〉. Likewise, the level |F = 2,mF = 1〉
is perturbed by the coupling Ω+1

eff,co of the copropagat-

ing transition |F = 1,mF = 1〉 ↔ |F = 2,mF = 1〉. The
corresponding light shifts are:


δ1,−1
LS2 =

(
Ω−1

eff,co

)2

4∆B

δ2,1
LS2 =

(
Ω+1

eff,co

)2

−4∆B

(B4)

where ∆B = 2× µBgF
h B is the first order Zeeman splitting

between the magnetic sublevels mF = 0 and mF = 2.
The effective Rabi frequency of the copropagating tran-
sitions are:


Ω−1

eff,co =
Γ2

2

I

Isat
J0(β)J1(β)

∑
F ′,σ=±

MF ′,σ
1,−1 ·M

F ′,σ
2,−1

∆F ′

Ω+1
eff,co =

Γ2

2

I

Isat
J0(β)J1(β)

∑
F ′,σ=±

MF ′,σ
1,1 ·MF ′,σ

2,1

∆F ′

(B5)
Finally, the differential two-photon light shift is:

δdiff
LS2 = δ2,1

LS2 − δ
1,−1
LS2 (B6)

Just as for the one-photon light shift, the differen-
tial two-photon light shift is almost completely rejected
through the k-reversal technique, because δdiff

LS2(+keff) '
δdiff
LS2(−keff).
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