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Abstract: Kinematic analysis of the upper limbs is a good way to assess and monitor recovery in
individuals with stroke, but it remains little used in clinical routine due to its low feasibility. The
aim of this study is to assess the validity and reliability of the Kinect v2 for the analysis of upper
limb reaching kinematics. Twenty-six healthy participants performed seated hand-reaching tasks
while holding a dumbbell to induce behaviour similar to that of stroke survivors. With the Kinect
v2 and with the VICON, 3D upper limb and trunk motions were simultaneously recorded. The
Kinect assesses trunk compensations, hand range of motion, movement time and mean velocity
with a moderate to excellent reliability. In contrast, elbow and shoulder range of motion, time to
peak velocity and path length ratio have a poor to moderate reliability. Finally, instantaneous hand
and elbow tracking are not precise enough to reliably assess the number of velocity peaks and the
peak hand velocity. Thanks to its ease of use and markerless properties, the Kinect can be used in
clinical routine for semi-automated quantitative diagnostics guiding individualised rehabilitation
of the upper limb. However, engineers and therapists must bear in mind the tracking limitations of
the Kinect.

Keywords: Kinect; reaching; stroke; rehabilitation; upper limb; PANU; kinematics; markerless;
mocap; motion capture

1. Introduction

Stroke results in major movement deficits, especially in the upper limbs. Stroke sur-
vivors have reduced range of motion in the upper limbs and impaired elbow-shoulder
coordination, partially compensated by increased trunk involvement in upper limb move-
ments [1]. Their paretic upper extremity suffers from a reduced spatial and temporal
efficiency, including decreased speed, increased number of velocity peaks and a longer
path to reach a target [2]. To provide the best possible rehabilitation, therapists regularly
assess the motor performance of individuals with stroke. However, the clinical scales used
by therapists suffer from several limitations. First, clinical scales have a subjective scoring
system which limits the reliability of ratings between therapists over time [3]. Second,
clinical scales are too often insensitive to changes. For example, in most of its items, the
Fugl–Meyer Assessment only supports 3 rating levels (0, 1 or 2), although it is considered
one of the strongest clinical scales [4]. Third, most clinical scales do not sufficiently ac-
count for compensations that may occur in stroke movement [5,6], which cancels out the
differences between a true recovery and a compensation pattern [7].

To go beyond these limitations, scientists use motion capture to quantify the motor
deficits. Indeed, upper limb and trunk kinematics are more sensitive to changes than clinical
scales [8,9], and can even predict motor outcomes over several months [10,11]. Moreover,
motion capture makes compensation assessment easy and more objective [5,12,13]. Despite
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these advantages, kinematic assessment of the upper limbs remains little used in clinical
practice because of its poor feasibility. Indeed, motion capture systems are expensive
and require a large volume to perform the movements. In addition, patients have to be
suited up with markers placed with accuracy, which is precarious and takes time in the
clinical context. Finally, these technologies require a high technical level to extract valuable
variables from raw data.

Since its release in 2013, the Kinect v2 (also known as Kinect One or Kinect for Xbox
One, Microsoft, Redmond, WA, USA) has been widely used for rehabilitation purposes
and has largely contributed to the rise of virtual reality in rehabilitation trials. Virtual
reality with Kinect may be beneficial in improving upper limb function and activities of
daily living when used as an adjunct to usual care (to increase overall therapy time) [14,15].
However, although the markerless and ease of use properties of the Kinect v2 facilitate its
use in clinical routine, and its value for gait analysis has been documented [16], the validity
of the Kinect for assessing upper limb kinematics after stroke remains to be tested.

Previous works on healthy subjects show that the Kinect v2 has an average accuracy
of 10–15 mm but can generate distance errors up to 80 mm [17,18]. In addition, the Kinect
would detect range of motion (ROM) with 1 to 10◦ error [19–22] but this result should
be taken carefully given the variability between the studies. Indeed, some authors argue
that the Kinect v2 has excellent reliability, especially for flexion of the elbow and shoul-
der [23], but others conclude that the kinematics obtained by the Kinect are unreliable [24]
and that the use of IMUs should be preferred for motor assessment [25]. Most of these
works were conducted either in static [17,19] or in low-functional situations [18,20]. For
studies assessing upper limb movement, only the ranges of motion of the arm and trunk
were assessed [21,23,25]. Finally, when measured, the other kinematic variables were not
compared to ground-truth values [22]. Therefore, there is still a need for a validation of the
Kinect tool for the study of upper limb kinematics.

Previous works on people with stroke show that, with the Kinect v2, hand and
trunk range of motion are valid and reliable [26] and a combination of hand efficiency,
hand smoothness and shoulder adduction can distinguish the reaching performance be-
tween healthy control, the less-affected side and the more-affected side of patients with
stroke [27–29]. Yet, measures of temporal and spatial efficiency, though widely used in
virtual reality rehabilitation [30], have not yet been validated.

The goal of our study is to investigate to what extent the Kinect v2 is valid and
reliable for the kinematic assessment of reaching movements for application in post-stroke
rehabilitation. To do so, we simultaneously recorded reaching movements with the Kinect
v2 and with the Vicon motion capture system, which is considered the gold standard. We
then assessed the validity and reliability of the Kinect v2 for key variables in upper limb
kinematic assessment after stroke. We hypothesized that the Kinect v2 will provide the
same information as the Vicon system.

Because it was not possible to ask patients to come to the laboratory, we tested the
reliability of the Kinect v2 with a model of stroke behaviour, that is, with healthy subjects
for whom post-stroke-like reaching behaviour was induced [31]. Specifically, we asked
healthy participants to perform a series of reaching movements with their hand loaded to
75% of their maximum voluntary antigravity torque. In this condition, healthy participants
spontaneously develop compensations similar to those observed in most stroke patients,
including trunk flexion and rotation, reduced shoulder abduction, reduced movement
velocity and increased path length ratio [31].

2. Materials and Methods
2.1. Participants

Twenty-six healthy participants (12 males, age 21 ± 3 years, 3 left-handed, height
1.73 ± 0.09 m, weight 66.92 ± 9.29 kg) took part in this study.

The inclusion criteria was to be aged between 18 and 40 years. Participants were
excluded if they had shoulder pain or other problems that could affect their movement.
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This study was performed in accordance with the 1964 Declaration of Helsinki. The local
ethics committee approved the study (IRB-EM 1901C).

2.2. Experimental Protocol

Participants had to reach a target with the side of their thumb nail. The target was
a table tennis ball fixed in front of the participant at a height of 0.80 m, just within the
anatomical reaching distance for the hand. The starting position was seated, feet on the
ground, back in contact with the chair and forearms on the armrests.

In order to compute the Proximal Arm Non-Use (PANU) score [5], participants com-
pleted 5 reaches both in the spontaneous trunk use condition and in the restrained trunk
use condition. In the spontaneous trunk use condition, participants had to reach the target
at a natural pace, wait 1 s and return to the starting position. In the restrained trunk use
condition, participants had to reach the target while minimizing trunk movement. Dur-
ing the restrained trunk use condition, the experimenter lightly touched the participants’
shoulders to remind them to minimize trunk movement. We did not use a belt to restrain
the trunk in order to leave the participant free to use the trunk if necessary, and thus avoid
task failure. The PANU score was then computed as the difference of shoulder-elbow use
between the spontaneous condition and the restrained trunk condition [5].

The assessed hand was chosen pseudo-randomly (12 left, 14 right) so that half of
the participants performed the task with their dominant hand, and the other half with
their non-dominant hand. The weight of the arm including the dumbbell was set to 75.0%
(±5.5%) of the maximum antigravity force (MAF) in the posture with the hand at the target.

2.3. Experimental Setup

The movements of the participants were recorded by both a Vicon motion capture
system and a Kinect v2. The data obtained by the Kinect were then compared to the data
obtained by the Vicon, the latter being considered the ground truth.

2.3.1. Vicon Sensor

The Vicon system (Oxford Metrics, Oxford, UK) is a marker-based optoelectronic
motion capture tool that is widely used for kinematic measurements [32]. Indeed, with a
similar setting to ours, the error of the Vicon is 0.15 mm ± 0.025 mm in static and remains
less than 2 mm in dynamic [33]. In this study, we used a 6-camera rectangle Vicon system
with a sampling frequency of 100 Hz. Vicon time series were recorded using “Vicon Nexus
2” software (Oxford Metrics, Oxford, UK).

2.3.2. Kinect Sensor

The Kinect v2 (Microsoft, Redmond, WA, USA) is a markerless motion capture tool
combining 3 sensors (a RGB colour camera, a depth sensor and an infrared sensor) to
provide the 3D position of 25 landmarks on a skeleton with a sampling rate of 30 Hz [26].
The Kinect was connected to a PC running the “MaCoKi” software (NaturalPad, Montpel-
lier, France) developed from the Kinect SDK (v2.0_1409, Microsoft, Redmond, WA, USA)
to record the position time-series of the hands and trunk. As recommended in previous
studies, we placed the Kinect in front of the participant, at a distance of 1.50 m, a height of
1.40 m and with no direct sunlight to minimise errors [20,34–36] (Figure 1).

2.3.3. Position of Landmarks for the Vicon and for the Kinect

In order to compare the Kinect data to the Vicon data, we placed the Vicon markers
as close as possible to the joint centers located by the Kinect. Thus, we placed markers at
the manubrium (spine-shoulder for Kinect), and for each body side on the first metacarpal
(wrist for Kinect), the lateral epicondyle of the humerus (elbow for Kinect), the acromion
process (shoulder for Kinect), and the anteriosuperior iliac spine. For each side, we corrected
the anteriosuperior iliac spine marker position before data analysis to best match the
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anatomical center of the hip joints (hips for Kinect). In order to facilitate the reading, the
spine shoulder marker is renamed “trunk marker” in the text.

2.4. Data Processing

Data processing was performed with SciLab 6.0.2. The Kinect being positioned
obliquely to the ground to minimise visual occlusions of the elbow, we realigned the
Kinect axes to match the Vicon axes. This realignment was performed using a solid transfor-
mation of the Kinect data based on the “Least-Squares Fitting” method [37] implemented
in a Matlab function by Nghia Ho [38].

Because the Kinect errors produce high frequency noise (Figure 2), all position time
series were low pass filtered at 2.5 Hz with a dual pass second order Butterworth filter. We
chose a cut-off frequency of 2.5 Hz because the raw data showed that the frequency band
0–2.5 Hz contains at least 95% of the spectral density of the time series data.

We first calculated the start and end of each reaching movement in the one-dimensional
task space [31]. Because the goal of a reaching task is to bring the hand to the target, that
is, to reduce the hand-to-target distance, what is important for task success is the hand-
to-target Euclidean distance. The hand-to-target Euclidean distance summarises the 3D
effector space into a 1D task space (where movement matters) leaving aside a 2D null
space (where movement does not impact task success). We fixed the beginning of the
movement (t0) when the Euclidean velocity of the hand in the task space became positive
and remained positive until the maximum velocity. The end of the movement (tfinal) was
when the Euclidean distance to the target reached its minimum.

Angles presented in this study were calculated as the difference between the anatomi-
cal angle at tfinal and the anatomical angle at t0, as described in the Equation (1).

retained angle = anatomical anglet f inal − anatomical anglet0 (1)Sensors 2022, 22, x FOR PEER REVIEW 4 of 20 
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Figure 1. Experimental setup. 3D upper limb kinematics were simultaneously recorded by the Kinect
and the Vicon motion capture systems. Vicon markers were placed on the target, hands, elbows,
shoulders, manubrium and hips of the participant as close as possible to the joint centres located by
the Kinect. The Kinect was located in front of the participant, at a distance of 1.50 m and a height
of 1.40 m. The target (orange table tennis ball) was located at a height of 0.80 m, just within the
anatomical reaching distance for the hand.
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Figure 2. A selected example of the Euclidean velocity of a typical subject’s hand, shoulder, elbow,
and trunk before and after filtering for the Kinect. The dashed line represents a constant Euclidean
velocity of 0 mm·s−1. The figure shows how low-pass filtering reduces the instantaneous velocity
errors of the Kinect compared to the Vicon measurements.

2.5. Statistical Analysis

We assessed the degree of reliability between the Kinect and the Vicon variables using
intraclass coefficient correlation (ICC), coefficient of determination (r2), Root Mean Square
Error (RMSE) and normalised Root Mean Square Error (NRMSE). We computed RMSE
using Vicon values as ground truth, such as:

RMSE =

√
∑N

n=1(Xvicon − Xkinect)
2

N
(2)

where Xvicon is the value measured by the Vicon, Xkinect is the value measured by the Kinect
and N is the number of observations. To facilitate the comparison between variables, we
divided RMSE by the range of the variable, such as:

NRMSE = 100 × RMSE
max(Xvicon)− min(Xvicon)

(3)

We complemented these measures with Bland and Altman plots to evaluate the
validity of the Kinect through the difference in means and to estimate an agreement interval
through the 95% limits of agreement [39]. To compare validity across variables, a relative
systematic error was calculated as:

errorrelative =
meanvicon − meankinect

meanvicon
(4)

ICC estimates were calculated using R (version 3.6.1) based on a single-rating, con-
sistency, one-way random-effect model. As stated by Koo & Li, “values less than 0.5 are
indicative of poor reliability, values between 0.5 and 0.75 indicate moderate reliability,
values between 0.75 and 0.9 indicate good reliability, and values greater than 0.90 indicate
excellent reliability” [40]. We used the same limits for the errorrelative. The level of signifi-
cance for all tests was set at p < 0.05. All coefficients of determination r2 were found to be
statistically significant.

3. Results

The results are reported in Table 1.
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Table 1. Reliability and validity of the Kinect main kinematic variables used in the analysis of reaching in stroke. Reliability measures the consistency of the results
compared to the ground truth (i.e., for each individual, how close the Kinect measure is to the ground truth). A perfect reliability between Kinect and Vicon data
would result in an intraclass correlation coefficient (ICC) of 1, a coefficient of determination (r2) of 1, a Root-Mean Square Error (RMSE) of 0 and a Normalised
Root-Mean Square Error (NRMSE) of 0 as well. Validity measures the extent to which the results are close to the ground truth on average (i.e., the higher the
percentage of error on average, the lower the validity). A perfect validity would result in a difference in means of 0 in the Bland and Altman plot, and thus in a
relative systematic error of 0.

Type Variable Reliability ICC r2 RMSE NRMSE Validity Direction of
Systematic Error

Absolute Systematic
Error (Bias)

Relative
Systematic Error Figure

Angle

Elbow extension Moderate 0.55 0.56 20.96◦ 24.59% Poor Overestimation +13.95◦ (±15.67) +62.5% (±70.2) Figure 3—Top panel
Shoulder abduction Poor 0.29 0.13 11.72◦ 24.53% Good Overestimation +2.67◦ (±11.44) +22.0% (±94.7) Figure 3—Middle panel

Shoulder flexion Moderate 0.50 0.37 13.13◦ 26.52% Good Overestimation +6.61◦ (±11.37) +19.4% (±33.4) Figure 3—Bottom panel
Trunk anterior flexion Good 0.82 0.73 3.28◦ 11.40% Moderate Underestimation −1.22◦ (±3.05) −35.3% (±88.9) Figure 4—Top panel

Trunk rotation Poor 0.38 0.25 9.17◦ 23.94% Moderate Underestimation −4.10◦ (±8.22) −25.7% (±51.6) Figure 4—Bottom panel

Efficiency Movement time Good 0.76 0.58 0.41 s 10.26% Excellent Overestimation +0.01 s (±0.41) +0.4% (±17.6) Figure 5—Top panel
Path length ratio Moderate 0.51 0.48 0.18 17.20% Excellent Overestimation +0.11 (±0.14) +9.2% (±11.7) Figure 5—Middle top panel

Planning Time to
Peak velocity Moderate 0.55 0.32 0.34 s 17.50% Excellent Underestimation −0.05 s (±0.34) −5.0% (±33.7) Figure 5—Middle bottom panel

Smoothness Number of
Velocity peaks Poor 0.38 0.20 2.04 20.36% Good Overestimation +0.84 (±1.86) +24.0% (±53.8) Figure 5—Bottom panel

Speed Peak velocity Poor 0.21 0.11 204.42 mm·s−1 40.93% Good Overestimation +63.04 mm·s−1 (±194.87) +15.5% (±47.9) Figure 6—Top panel
Mean velocity Moderate 0.70 0.53 40.32 mm·s−1 16.42% Excellent Overestimation +4.91 mm·s−1 (±40.10) +2.7% (±21.7) Figure 6—Bottom panel

Displacements

PANU Excellent 0.94 0.92 4.80 8.79% Good Overestimation +1.88% (±4.43) +12.3% (±28.7) Figure S1—1st panel
PAU Excellent 0.95 0.96 4.64 5.62% Excellent Underestimation −2.88% (±3.65) −3.1% (±4.0) Figure S1—2nd panel

∆ Trunk Excellent 0.93 0.95 19.68 mm 8.23% Good Underestimation −15.04 mm (±12.72) −21.5% (±18.2) Figure S1—3rd panel
∆ Shoulder Good 0.88 0.86 34.76 mm 11.30% Good Underestimation −22.26 mm (±26.75) −20.0% (±24.0) Figure S1—4th panel

∆ Elbow Poor 0.47 0.37 61.04 mm 17.14% Good Underestimation −34.29 mm (±50.61) −11.9% (±17.5) Figure S1—5th panel
∆ Hand Moderate 0.71 0.73 40.33 mm 14.54% Excellent Overestimation +28.40 mm (±28.70) +8.4% (±8.5) Figure S1—6th panel
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Figure 3. Bland–Altman plots (left panels) and regression plots (right panels) of elbow extension
(1st row), shoulder abduction (2nd row) and shoulder flexion (3rd row). The Bland–Altman plots
show that the Kinect strongly overestimates elbow extension, and slightly overestimates shoulder
abduction and shoulder flexion. The regression plots show that, when assessed with the Kinect, elbow
extension and shoulder flexion are moderately reliable and shoulder abduction is poorly reliable.
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overestimates peak hand velocity and mean hand velocity. The regression plots show that, when
assessed with the Kinect, mean velocity is moderately reliable but peak velocity is only poorly reliable.

• Displacements

The figure of displacements is in the Supplementary Data.

4. Discussion

Our study shows that in a horizontal reaching task, the Kinect measures trunk forward
compensations with a good to excellent reliability and validity, but it is not sensitive to low
amplitude trunk rotation. The Kinect also measures hand and trunk range of motion as
well as movement time and mean hand velocity with a moderate to good reliability and
with a good to excellent validity, respectively.

In contrast, the Kinect assesses variables involving elbow extension, shoulder flexion
and shoulder abduction with a poor to moderate reliability and overall overestimates
the variables. Finally, instantaneous Cartesian and angular measures with the Kinect are
not precise enough, which artificially creates jerky movements and overestimates NVP,
Path Length Ratio and Peak Velocity. Time to Peak Velocity is also affected resulting in a
moderate reliability. The main results are summarised in Figure 7.

These data indicate that, although the Kinect is not reliable enough to analyse fine
kinematics over time, the Kinect does allow for global motion analysis (such as range of
motion, movement time and mean velocity).

4.1. Validation of the Kinematic Assessment Obtained by Kinect

The aim of this study was to assess the reliability and validity of the Kinect in mea-
suring key kinematic variables used in the analysis of reaching after a stroke [41]. We did
not record individuals with stroke in the present experiment, but we induced stroke-like
movements exhibiting many key characteristics of reaching kinematics after a stroke, such
as reduced movement speed, increased path length ratio, reduced shoulder abduction and
increased trunk involvement [31].

4.1.1. Trunk Motion

The Kinect has excellent reliability on trunk displacement (ICC = 0.93) and good relia-
bility on shoulder displacement (ICC = 0.88) and anterior flexion of the trunk (ICC = 0.82).
Because of a low mean trunk flexion (3.43◦), the difference between means of −1.22 ± 3.05◦

overrepresent the errorrelative (−35%) in Figure 7.
In contrast, trunk rotation was poorly assessed with the Kinect (ICC = 0.38), in par-

ticular with an underestimation of up to 20◦ of low trunk rotation (Figure 4, top panel,
left column) and other authors found the same result [20]. Note that the Vicon might also
overestimate the low values of trunk rotation due to soft tissue artefacts [42]. Indeed, the
trunk rotation being assessed mainly with the displacement of the shoulder marker on a
transversal plane, a slight forward shift of the shoulder marker due to a shoulder flexion
might artificially count for a trunk rotation. In any case, we propose that trunk rotation
assessed with the Kinect should not be interpreted unless it exceeds 20◦.
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Figure 7. Summary of the validity and reliability of 17 kinematic variables assessed by the Kinect.
The X axis represents the validity through the relative error. The Y axis represents the reliability
through the one-way ICC. The closer the variable is to the centre on the X axis, the more valid it is.
The higher the variable is on the Y axis, the more reliable it is. A perfect match between the Kinect
and the Vicon values would place the variable at the centre on the X axis (error = 0) and at the top on
the Y axis (ICC = 1). The figure shows that averaged postural and angular measurements are much
more reliable than instantaneous Cartesian measures.

4.1.2. Hand Motion

At the beginning of the reach, the Kinect sometimes confuses the forearm with the
armrest. The Kinect correctly relocates the hand during the movement, creating a jerky
correction. To a lesser extent, this temporo-spatial uncertainty occurs several times during
the reach which artificially creates a jerkier movement and overestimates the NVP and the
path length ratio (Figure 5, 2nd and 4th panel). By suddenly modifying the hand position,
the Kinect creates a local velocity peak, possibly resulting in an overestimation of the peak
hand velocity (Figure 6, top panel). Due to its relation to peak velocity, the time to peak
velocity is also affected in some cases (Figure 5, 3rd panel). By averaging the velocity



Sensors 2022, 22, 2735 12 of 18

over the entire movement, the mean velocity resists these local uncertainties (Figure 6,
bottom panel).

Because the reliability of ∆ hand and ∆ trunk assessment are good to excellent, vari-
ables derived from the ∆ hand and ∆ trunk measures such as PAU and PANU also have an
excellent reliability, which confirms our previous findings [26].

4.1.3. The Problem of Elbow in a Seated Reaching Task

First, the elbow is often confused with the back part of the armrest, resulting in a
backward shift of the actual elbow position at the beginning of the reach. Second, due to
the position of the hand located between the Kinect and the elbow, elbow occlusion can
occur, leading to an error in the elbow position. Third, the elbow is poorly located on a fully
extended arm (such as at the end of the reach) because of the alignment forearm—upper
arm. For these reasons, ∆ elbow and side variables such as elbow extension, shoulder
flexion and shoulder abduction are only poorly to moderately reliable and should be
interpreted with caution.

To reduce elbow occlusion, some authors suggest installing the Kinect higher [20],
in front of the participant [35,36] and to perform functional movements in sitting [20,43],
but the present study shows that this is not enough to achieve sufficient precision for
clinical interpretation of some variables. Other authors suggest installing the Kinect on the
ipsilateral side of the movement with an angle of 30 to 45◦ [44], and moving the Kinect when
assessing the other side, but this makes the experiment more complicated and therefore
reduces the speed and ease of use characteristic of the Kinect.

4.2. Smoothing out KINECT Errors

The present study shows that the occlusion of the elbow and the confusion between
the forearm and the armrest produce large errors, resulting in a jerky movement due to
high frequency noise (Figure 2). A first solution might be to use a chair with small armrests
to decrease confusion errors. Furthermore, a correct filtering should be applied to the raw
data. In fact, the analysis of raw data showed that the frequency band 0–2.5 Hz contains
95% of the spectral density. Applying a dual-pass 2nd order Butterworth type filtering
with a cutoff frequency of 2.5 Hz greatly improved Cartesian kinematics (Table 2), while
it had no effect on other variables (ICC changes ≤ 0.03). The ideal cut-off frequency for
individuals with stroke might be higher than 2.5 Hz since people with stroke have more
segmented movements than healthy individuals [2,45]. Thus, a too low cut-off frequency
might remove important information about the movement. However, our study shows that
range of motion and averaged variables do not suffer from a lack of filtering and can still
be interpreted without filtering.

Table 2. Reliability improvements through filtering. The filtering consisted of applying a 2nd order
Butterworth filter with a cut-off frequency of 2.5 Hz on raw time series data. All variables shown
in the table improved from filtering (ICC changes ≥ 0.12). Variables not shown in this table did not
benefit from filtering (ICC changes ≤ 0.03).

Movement Time Path Length Ratio Time to Peak Velocity NVP Peak Velocity

ICC before filtering 0.64 −0.12 0.19 −0.30 −0.05

ICC after filtering 0.76 0.51 0.55 0.38 0.21

Other authors explored solutions to reduce Kinect errors. A deep learning algorithm
applied to time series data reduced Kinect errors on shoulder and elbow range of motion by
88.8 ± 12.4% [46]. Another approach is to fusion the data of several Kinects to minimise oc-
clusions and optimise limb tracking [47–49]. Ryselis reported an overall increase in accuracy
of 15.7%. A combination of a Kinect and several Inertial Measurement Units (IMUs) could
also be used to reduce the upper limb position error by up to 20%, according to Jatesiktat
et al. [50–52]. Finally, a device-independent approach is to incorporate body constraints
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(such as human skeleton length conservation and temporal constraints) to enhance the
continuity of the estimated skeleton [53]. These solutions have the potential to consequently
improve the accuracy of the Kinect while remaining affordable, even if the solutions require
a high technical level and might lengthen the duration of patient preparation.

4.3. Kinematic Assessment of the Upper Limb in Clinical Routine for Personalised Rehabilitation
Post-Stroke
4.3.1. Markerless Motion Capture Advantages for Kinematic Assessment

Due to its ease of use and markerless characteristic, the Kinect allows therapists to
perform a simple kinematic assessment of the upper limb in about 5 min [5]. The software
development kit (SDK) of the Kinect being openly available, the development of a software
that automatically cleans the data and computes the valuable kinematic variables is also
possible. In addition, if the rehabilitation department does not already use markerless
motion capture for virtual reality rehabilitation, the low cost of such devices ensures their
accessibility.

4.3.2. Kinematic Assessment to Better Understand the Level of Motor Recovery of
the Patient

A seated reaching task with and without trunk restraint gives the therapist valuable
information to better understand arm-trunk use [5], but the very same task, when recorded
with the Kinect, opens the door to a more comprehensive kinematic assessment.

The movement time, the mean hand velocity, the path length ratio and the time to
peak velocity reflect the spatial and temporal efficiency of the movement. A low mean hand
velocity or a low time to peak velocity, when combined with a high path length ratio or a
high NVP, reflect the increased importance of feedback and corrections during the reach
and therefore signal a decreased efficiency of open-loop control [54,55]. Except for the NVP,
the Kinect measures these kinematic outcomes with acceptable accuracy-reliability (Table 1),
making the Kinect a valuable tool for monitoring changes in upper limb kinematics.

The elbow, shoulder and trunk range of motion describe the motor strategy and
quantify the level of compensation used by the patient. Reduced elbow extension and
shoulder flexion signal a deficit in upper limb movement that is often compensated by an
increase of trunk flexion and trunk rotation, and a freeze of shoulder adduction [1,12]. The
Kinect measures these kinematic outcomes with varied accuracy-reliability, making the
Kinect a valuable tool for monitoring trunk flexion, but not for monitoring shoulder and
elbow movements.

Quantifying the non-use of the shoulder-elbow joints with the PANU score [5] indicates
what the patient can do but does not do spontaneously. If the patient compensates with the
trunk but can also perform the movement without using the trunk (PANU score > 6.5%),
then at least some of the compensation is not mandatory to succeed in the task. In contrast,
if the patient has compensation and is unable to perform the movement without this
compensation (PANU score < 6.5%), then compensation is mandatory to succeed in the
task [5]. This distinction is important because a compensation that improves reach efficiency
should not be considered the same as a compensation which does not improve reach
efficiency. The Kinect measures the PANU score with excellent accuracy-reliability (Table 1),
which confirms previous results on patients [26].

4.3.3. Early and Regular Kinematic Assessment to Individualise Rehabilitation, Enhance
Motivation and Improve Recovery

Due to limited resources in stroke units, identifying individuals who are the most
likely to benefit from rehabilitation has long been an issue [56]. We now know that the
remaining upper limb function is the most promising factor to predict the upper limb
recovery [57]. Thus, because kinematic monitoring is more sensitive to changes over
the course of rehabilitation than clinical scales [8,9], this could allow specific therapy to
be planned based on specific kinematic values or specific changes in kinematics. For
example, therapy focused on arm use makes sense for patients with high PANU scores
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but is certainly less suitable for patients with mandatory compensations. In the same
way that kinematic data measured during robot-assisted therapy can help predict patient
recovery [58], using valid kinematic variables measured with the Kinect has the potential
to predict which patients are the most likely to benefit from a specific therapy, and thus
optimise patient care.

Therapists can also provide kinematic feedback to patients and set goals to involve
them in rehabilitation. Fine-tuned feedback enhances motivation and increases the level of
acceptance of treatment by patients [59]. Thus, providing kinematic feedback to patients
leads to better recovery [60,61].

4.4. Limitations of the Study

This study faces several limitations. The experiment was conducted on healthy volun-
teers whose movement characteristics were experimentally manipulated to approximate
those of people who have suffered a stroke. Though it is reassuring that we here replicate
the main results obtained with a Kinect and with patients [26], the Kinect–Vicon compari-
son with patients with stroke is a necessary additional step to go beyond the basic results
presented here.

Moreover, to induce a stroke-like movement, we asked healthy participants to hold a
dumbbell during the reach. The presence of the dumbbell in the hand could have affected
the ability of the Kinect to correctly locate the hand, even though this effect is likely small
(i.e., the endpoint accuracy is similar for the loaded and unloaded hand and no significant
difference was detected in the hand velocity root-mean-square error (RMSEhand) between
conditions). The dumbbell could also have induced a greater occlusion of the elbow, which
might have affected the performance of the elbow tracking, as evidenced by an increased
error in the RMSEelbow of 40 ± 72% between the unload and load conditions. However,
this increased error in the elbow tracking is compensated by a wider dispersion in the load
condition, and thus no improvement in the validity and reliability of the variables shown
in this study was found in the unload condition.

Finally, the results presented here are only relevant for the same type of task, which is
a unilateral horizontal seated reaching task. Results might differ in another type of task,
such as non-horizontal reaching, or finger to nose test [62]. Indeed, due to the uncertainty
of the depth measurement with the Kinect [17], movements in the frontal plane that are less
dependent on depth changes might show a better accuracy than movements with variable
depth when measured with the Kinect.

Despite these limitations, the results presented in this study are an important step
towards rigorous validation of the Kinect tool for clinical assessment of upper limb
kinematics, providing insight into reliable and unreliable kinematic variables. These
results should be confirmed in a post-stroke population with a forthcoming clinical trial
(https://clinicaltrials.gov/ct2/show/NCT04747587, accessed on 30 March 2022).

4.5. Future Work

There is a need to replicate the validation in a population with movement disorders,
whether for a Kinect or for any other markerless system with similar benefits. In addition,
as Kinect-like systems are increasingly used in virtual reality rehabilitation to monitor the
recovery process [15,63], replication should focus on a wide variety of movements such as
those used in virtual reality rehabilitation. Indeed, the present study assessed the validity
of kinematic variables in a horizontal seated reaching task, but virtual reality protocols
cover a much wider range of variables and tasks.

However, although Kinect is still widely used in virtual reality rehabilitation, Microsoft
has not sold the Kinect since 2017. Instead, with the emergence of machine learning
for image processing, many low-cost 2D joint tracking options have come to light [64],
which have led to 3D motion reconstruction modules based on multiple RGB cameras
and joint triangulation as provided by OpenPose [65], VideoPose3D [66] or Learnable
Triangulation [67]. Microsoft has also aligned itself with the release of the Kinect Azure in

https://clinicaltrials.gov/ct2/show/NCT04747587
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2020, a new version of the Kinect that uses a deep neural network (DNN) method instead of
the random forest method used by the Kinect v2 [68]. In order to anticipate their growing
use, future work should assess the feasibility, validity and reliability of these systems in a
clinical or home environment.

5. Conclusions

The aim of this study was to assess the validity and reliability of the Kinect v2 for
quantifying upper body kinematics with application to monitoring upper limb function
after stroke. As a first step towards this goal, we induced stroke-like kinematics in healthy
volunteers to better understand the validity of the Kinect for some of the key features of
reaching kinematics compared to state-of-the-art 3D motion capture.

Our results show that the Kinect quantifies reaching efficiency, compensation with the
trunk and shoulder-elbow nonuse with sufficient reliability. Our results also show that the
Kinect does not quantify the number of velocity peaks and the peak hand velocity with
sufficient reliability for clinical monitoring. Furthermore, as the elbow is poorly tracked
by the Kinect during seated reaching, elbow extension, shoulder flexion and shoulder
abduction should be interpreted with caution.

Further studies are required to validate the use of Kinect v2 and other markerless
mocap systems in home or clinical contexts. Indeed, the quantitative variables that are
adequately monitored by markerless motion capture can effectively supplement the clinical
scales used by therapists. In addition, a periodic assessment of the deficit can allow precise
longitudinal follow-up of motor recovery, which could improve the evaluation of the
rehabilitation modalities and help to optimise the therapeutic pathway of patients. A final
advantage of using lightweight, markerless motion capture devices in clinical routine is
that an accumulation of kinematic data could allow ambitious retrospective studies to be
carried out in the long run.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22072735/s1, Figure S1: Comparison of nonuse and joint dis-
placements assessed with the Kinect and the Vicon systems. Panels in the first row illustrate PANU.
Panels in the second row illustrate proximal arm use (PAU. Panels in the third row illustrate trunk
displacement (∆ Trunk). Panels in the fourth row illustrate shoulder displacement (∆ shoulder).
Panels in the fifth row illustrate elbow displacement (∆ elbow). Panels in the sixth row illustrate hand
displacement (∆ hand). For each row, the left panel represents the Bland and Altman plot, and the
right panel represents the linear regression plot. When assessed with the Kinect, PANU is excellently
reliable but slightly overestimated, PAU is excellently reliable and very slightly underestimated, ∆
trunk is excellently reliable and slightly underestimated, ∆ shoulder is goodly reliable and slightly
underestimated, ∆ elbow is poorly reliable and slightly underestimated, ∆ hand is moderately reliable
and very slightly overestimated.
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