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We describe how to prepare an electrically levitated nanodiamond in a superposition of orientations via
microwave driving of a single embedded nitrogen-vacancy (NV) center. Suitably aligning the magnetic
field with the NV center can serve to reach the regime of ultrastrong coupling between the NV and the
diamond rotation, enabling single-spin control of the particle’s three-dimensional orientation. We derive the
effective spin-oscillator Hamiltonian for small amplitude rotation about the equilibrium configuration and
develop a protocol to create and observe quantum superpositions of the particle orientation. We discuss the
impact of decoherence and argue that our proposal can be realistically implemented with near-future

technology.

DOI: 10.1103/PhysRevLett.129.093605

Levitated dielectric nanoparticles have been recently
cooled to their motional ground state [1-3]. This paves
the way to realize some of the formidable promises for
fundamental and applied science held by massive systems
in the quantum regime [4-8]. While in the first ground-
state-cooling experiments, the center-of-mass motion of the
optically trapped particles is Gaussian [9], the observation
of quantum interference requires generating non-Gaussian
states of motion [10]. Achieving such states requires a
nonlinearity—for instance in the form of a nonlinear
external potential [11], or by coupling the mechanical
system to a nonlinear system. In the context of spin
mechanics—the coupled dynamics of spin and mechanical
motion—the nonlinearity is provided by the spin degree of
freedom in, for instance, few electrons in solid state defects
[12—-19], superconducting qubits [20-24], or electronic
states of atoms [25-27]. Coherent spin-mechanical inter-
faces are, however, hard to realize as the coupling between
the spin and a mechanical oscillator is usually smaller than
the characteristic frequencies of the two systems, as well as
their typical decoherence rates [18,28].

In levitated systems, much attention has been devoted to
the coupling between internal spins and the center-of-mass
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motion [14,16,29-33], and more recently the rotational
motion of the hosting particle [7,34,35]. The fact that both
magnetization and mechanical rotation contribute to the
angular momentum of the body provides new and largely
unexplored means of spin-rotational coupling [35-37]. In
particular, in the presence of an applied magnetic field the
librations—small oscillations in the particle orientation
around a fixed configuration—of an electrically levitated
diamond couple to the spin of embedded nitrogen-vacancy
(NV) centers [38]. Such spin-libration coupling has the
potential for reaching the strong coupling regime [38,39],
as highlighted by recent experimental progress [40-42].
These approaches, however, require one to either carefully
select the particle shape [38] or to exploit the collective
coupling to many spins [39,42] at the cost of losing the
desired nonlinearity.

In this Letter, we theoretically show how it is possible to
achieve the so-called single-spin ultrastrong coupling
(USC) regime [43], where the coupling between a single
NV spin and the libration of a levitated diamond is even
larger than the characteristic frequencies of both the
libration and the spin degrees of freedom. We argue that
this can be experimentally implemented with only minor
modifications of existing experimental setups [38,42]. In
addition, we propose a protocol that uses such large spin-
libration coupling to prepare and read out the diamond in a
superposition of its orientation.

We consider a homogeneously charged symmetric dia-
mond, modeled as a prolate spheroid with major (minor)
semiaxis length a (b), levitated in a ring Paul trap [44]; see

Published by the American Physical Society
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FIG. 1. (a) A charged spheroidal-shaped particle with em-
bedded NV center, whose axis is aligned with body-frame
direction n; perpendicular to the symmetry axis ns, is levitated
in a ring-shaped Paul trap. The levels |+ 1) are split by
the applied field B,. (b) The rotor performs small libration
oscillations about the equilibrium orientation in the trap.
(c) Characteristic mechanical libration frequency of the rotor
as function of the applied field. (d) Frequency A of the transition
|0) <> | — 1) (qubit splitting) close to the ground state level
anticrossing, By~ 102.4 mT. (e) Spin-mechanical coupling as
function of the applied field. For a = 100 nm, b = a/5, mass
density py; = 3.5x 10° Kg/m3, e = 1072, § = 0.1, Uy, /Uy =
5x 1073, wy/27 = 5 MHz and gyromagnetic ratio y, = 1.76x
10" rad/Ts.

Figs. 1(a) and 1(b). The diamond hosts a single NV center
with spin angular momentum S and spin quantization axis
aligned orthogonal to the particle symmetry axis. The Paul
trap creates a confining potential for both the particle center
of mass and orientation [38,45]. For a uniformly charged
spheroid the center-of-mass and rotational dynamics are
decoupled. The spin-rotational dynamics of the system can
then be described by

A TR I T Ry
H(f)zﬂ[(Jl—Sl) +(Jz—52)]+2—13(13—53)
+ 1D, 87 + hopes - S+ V (1), (1)

where AJ denotes the total angular momentum vector
operator of the particle. The first line of Eq. (1) is its
rotational energy where #J; — £8; is the mechanical
angular momentum along the rigid rotor’s principal axis

n; =n;(Q) (i = 1,2, 3), which is related to the laboratory-
fixed axis e; via the three Euler angles Q = {a, 5,7} [46].
The two distinct inertia moments of the spheroid are
denoted by I and /5 for rotations orthogonal to and around
the symmetry axis, respectively. We choose n; along the
NV axis, while n; is the particle symmetry axis. The NV
ground state spin triplet along the quantisation axis n; is
denoted by {|0), | £ 1) }. The first and second terms on the
second line of the Eq. (1) Hamiltonian represent respec-
tively the spin zero-field splitting of frequency D, ~ 27 X
2.87 GHz and the Larmor precession of the spin in the
external magnetic field, aligned with the space fixed e;
axis, where w; = y,,Bo/h and y,, > 0 is the NV gyro-
magnetic ratio. The mechanical rotation and the internal
spin are coupled by two different mechanisms. The first one
is the Barnett and Einstein—de Haas effect represented by
terms of the form J ,S‘l- /I;. The second coupling arises from
the interaction between the spin and the applied field, as
e S= _ cosf/sin,@ +5, sin}?sinff + 3‘3 cosﬁ, and it
can be tuned via the external field [38,40], where &, B,
and 7 are the Euler angle operators. This latter coupling
mechanism produces a spin-dependent potential for the
rotation of the particle about its symmetry axis. The last
term in Eq. (1) is the time-dependent Paul trap potential for
the rotational motion,

V(t) = % [(1 =+ g) sin?é — ?} sinfs,  (2)

where U(1) = Uy, + U, cos(wyt) is the applied voltage
generating the quadrupole electric field [55], wg/27 the ac
voltage frequency, AQ/q ~ (a*> + 2b*)/4 for b < a is the
quadrupole anisotropy of the particle, g is its total charge,
¢y the characteristic length scale of the trap, and the
asymmetry parameter 0 < 6 < 1 characterizes deviations
from the cylindrical symmetry of the Paul trap. We note that
to achieve confinements along both @ and £ it is necessary
for the Paul trap to be asymmetric (6 # 0).

A stable solution of Eq. (1) corresponds to ns||e;, spin in
| — 1) and n, antiparallel to es, that is the spin quantization
axis antialigned along the external B field [56]. In this
regime, the particle performs small oscillations (librations)
around the equilibrium orientation (@ = 0, f = /2, and
y =nx). Whene = U, AQ/(Io}¢3) < 1and Uy /U, < 1
[57], the libration dynamics has two distinct contributions,
a fast small amplitude micromotion on top of a slowly
evolving large amplitude macromotion (secular dynamics)
[45,49,58]. In this regime, it is possible to derive a
Hamiltonian describing the coherent interaction between
the NV center and the secular harmonic fluctuation of the
rotor’s orientation about the equilibrium. This is done in
three steps. First, we derive the secular Hamiltonian of the
system [46]. Second, we expand the secular Hamiltonian
about the equilibrium solution up to second order in the
libration degrees of freedom. Third, we eliminate |1) by

093605-2



PHYSICAL REVIEW LETTERS 129, 093605 (2022)

projecting the spin subsystem on the subspace
{|0), yE=A{l{).|1)}. We will consider values of the
magnetic field larger than 10 mT for which [1) is far
detuned from the remaining degrees of freedom. At the end
of these steps, & decouples from the remaining degrees of
freedom, whose dynamics are described by the following
qubit-oscillator Hamiltonian:

. hA pr I 146°
H="—"¢ =
+ [+2 o + + < 7?

2 2 2 2
A » AN 2
- hg,—&" — hg/;ﬁfﬁ + héy <£> 6° (3)
Po Po

Here, we defined the qubit splitting A = D,, — w;, the
libration frequencies @y = wy[26eU 4./ U, + 28%€%]/2,
w, = (hoy/1;)"/?, and the coupling rates g, = w0/ V2,
gp=wrfo/V2, and & =w p3/2 with the zero-point
amplitudes By = \/A/2lwy, vy = (h/V2L0,)"?. The
dynamics of @& undergoes harmonic oscillations at the
frequency w, = wo{(1 + 6/3)[3eUg./ Uy + 95%€%/2]}1/2.
We neglected the Barnett and Einstein-de Haas coupling
terms in Eq. (3), because in the libration regime they give a
negligible contribution as compared to the coupling
between the spin and the magnetic field. Figures 1(c)-
1(e) show the frequencies and coupling rates appearing
in Eq. (3) as a function of the applied magnetic field
By and for @ = 100 nm and a/b = 5. Importantly, the
system is in the USC regime as g, > w, and gz > wy
[cf. Figs. 1(c) and 1(e)].

Let us now focus on the dispersive regime of qubit-
oscillator interaction, i.e., when |A| > g,, gp- In this case,
mechanically induced spin transitions are suppressed and
the coupling induces a spin-dependent shift of the oscillator
frequencies. As a consequence of the USC in Eq. (3), these
shifts can be exploited to prepare a non-Gaussian state of
the # degree of freedom. In the dispersive limit, the effective

dynamics of the system is diagonal in the eigenbasis of 6%,
and described by [46]

i <HT+h ) ® [1)(1] + (Hi—h—> ® )
(4a)

where A 14 depends on the sign of A. For A > 0, they read

H o

# =aub'b + o,cte, (4b)
I:\Ii XA 2\2 o nin Ky A AN2
75 bb E(b‘i‘b) +CU},C'C—3(C‘-+C> (40)

Here, we introduced the bosonic operators ¢ and b

according to = fo(b" + b) and § = , /h)2L0,(8" + &),

and the oscillator frequencies @y = [w/zj + hawp (14
CUL/A)/I]I/Z’ Xp EhC’)L(l +0)L/A)/(15)ﬂ)v 5)7 = [ha)L(1+
wr/A)/13)'%, and y, = hoy (1 4 20, /A)/(21:@,). Aside
from a small region around By = 102.4 mT where A = 0,
the qubit splitting always satisfies the dispersive regime
conditions [cf. Figs. 1(d) and 1(e)] (see also Ref. [46]).
Equation (4a) describes a spin-dependent evolution of the
and y libration modes [59]. On the other hand, the dynamics
of 7 changes between an attractive potential in Eq. (4b) to a
repulsive potential in Eq. (4c) depending on the spin state,
since 2y, > @,. The appearance of a repulsive potential for
|}) is a consequence of the large dispersive shift in the USC
regime. We remark that the following protocol does not
require the use of the quartic term 7* that is also found in the
dispersive regime [60].

Let us assume that the total system is initially uncorre-
lated, p = py ® |1)(1|, where py, is the thermal state of
Eq. (4b). The protocol consists of the following three steps
[see Figs. 2(a) and 2(b)]. (i) Apply a z/2-microwave
pulse preparing the state P = Py @ (IT) (1 + [{)(T]+
I+ 1) {L])/2 and let it evolve for a time z.
(i) Apply a =-microwave pulse such that [1(])) —
[}(1)) and let the system evolve for another time z.
(iii) Apply a z/2-microwave pulse such that [1(|)) —
(|t £ 4))/v2 and perform a spin measurement in the
basis {|1),|])}. This yields the qubit in the state |1(]))
with probability [46]

e—2r27

1
PTi(T) :Ei

Re(Tr[U} 010, Urpul),  (5)
where U, = exp(—irf,/h). The total duration of the
protocol is 27. We neglected the evolution of the oscillator
during the microwave pulses as these are typically much
shorter than the mechanical period. In Eq. (5) we included
the effect of qubit dephasing at a rate I', = 27/T,, which
acts during steps (i) and (ii) while the spin state is in a
superposition, assuming a Markovian dephasing process
[61]. Observing revivals in the final probability Eq. (5) as a
function of the duration 7 of steps (i) and (ii) is sufficient to
conclude that the oscillators were in a coherent super-
position state during the evolution [63-65]. The protocol
can be interpreted as follows. After the first microwave z/2
pulse, the state of the particle evolves in an entangled state
of the spin-oscillator system where the oscillator is in a
squeezed thermal state and in the initial thermal state
for a spin in |} ) and |1), respectively [see central panel
in Fig. 2(b)]. The 7 pulse reverses the role of the spin. The
oscillator’s state corresponding to a spin in |1) is in a
squeezed state and rotates in phase space at the rate @,
according to H 1. At the same time the oscillator state
corresponding to |]) evolves from a thermal state to a
squeezed thermal state [right panel in Fig. 2(b)]. The
second /2 pulse in step (iii) brings the two branches
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FIG. 2. (a) Pulse sequence for the spin control during the

protocol and corresponding steps (i—iii). (b) Oscillator’s state at
different steps of the protocol: initial thermal state (left panel), at
the end of step (i) (middle panel), and at the end of step (ii) (right
panel). Note that the state corresponding to [1)(]{)) is always
represented in green (red), while the 7 pulse reverses the spin
state between the middle and right panel. The rightmost panel
shows that for 7= z/®, the two squeezed states overlap
perfectly. (c) Probability P;(z) as a function of 7 in the absence
of dephasing (I'; = 0), for ny, = 1 and for negligible coupling to
the # mode. (d) P} as a function of B for T, = 0.5 ms and for
different initial thermal occupation n, (see legend), assuming that
p has the same initial temperature [46]. The maxima occur at
those values of B, where Eu/,/ @, = n. Panels (¢) and (f) show
P, (z) around 7 = 7/®, for By = 90 mT, respectively, for differ-
ent spin initial thermal occupation n, at T, = 0.5 ms and for
different dephasing times at n, = 100 as specified in the legend.

together, leading to the interference between the two
oscillator states in superposition. At 7 = z/@®, the states
of the two branches overlap perfectly, leading to a rephas-
ing of P, [Fig. 2(c)]. The evolution of the state of the mode
p during the protocol is similar [54,66] but with a rephasing
time z/@g. When @,/ = n € N, which occurs at par-
ticular B-field values B,,, the two modes rephase at the same

time, leading to a maximum value for P§ = P; |(z/,)
[Fig. 2(d)] [46]. We note that maxima in P} are obtained

even if the condition B, = B, is not met exactly. For
By ~ B, the value of P is robust to the initial thermal
occupation of the oscillators, which mostly affects its width
[Fig. 2(e)] and is mainly affected by the qubit 77 time
[Fig. 2(f)]. A superposition state can thus be successfully
created also for the oscillator in a highly occupied thermal
state as shown in Fig. 2(d). For detecting the rephasing in
P;,(7), it is, however, beneficial to reduce the initial state
temperature down to few milli-Kelvin or lower, using for
instance recently developed cooling schemes for the rota-
tional motion of levitated particle [41,45,67-70].

We discussed the protocol for the case A > 0 in Eq. (4a).
For A < 0, Eq. (3) leads to trapped dynamics for the qubit
in || ), and to a repulsive potential for both modes for |1).
For the execution of the protocol discussed above, this
regime is, however, more susceptible to imperfection as
compared to A > 0 [46].

The proposed interference protocol enables the prepa-
ration of superposition states provided the relevant
decoherence rates are smaller than the protocol’s duration
2n/®,. The qubit-oscillator system exhibits three main
damping mechanisms [39]: (i) scattering of background gas
and emission of thermal photons, (ii) electric and magnetic
field noise, and (iii) dephasing and damping of the NV spin.
The first two can be usually reduced at sufficiently low
pressure and temperatures, and by having the trapping
region sufficiently distant from the trap electrodes [39,71].
Dephasing of the NV spin poses a stronger requirement on
the feasibility of the protocol even at cryogenic temper-
atures as generally 1/75 2 @,/2x. Exceptionally long
dephasing times, such as 7% ~ 0.5 ms, which we used in
Figs. 2(d) and 2(e), have been reported [72] in isotopically
purified diamonds with low '3C concentration [73]. Let us
note that our interference protocol may actually dynami-
cally decouple the NV spin prolonging the coherence time
to T, > T, which is eventually limited to few milliseconds
due to irreversible coupling to lattice vibrations. Finally, the
visibility of the revival in Eq. (5) is also affected by
coupling between the libration and center-of-mass
oscillations of the nanodiamond. This originates from a
slight asymmetry in the charge distribution that gene-
rates a permanent dipole moment of the nanodiamond.
This coupling has been estimated in [24] and shown
to be negligible for highly charged nanoscale objects.
Postselection of the trapped particle could thus be used
to reduce this effect. Let us finally note that asymmetry in
the particle shape might add a contribution to the trapping
potential for y as shown in [35].

Several of the main ingredients of our proposal have
been independently realized. Trapping, controlling, and
cooling of the center of mass and libration of diamond
particles in a Paul trap has been realized in several
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experiments (see Refs. [5,6] and references therein).
Selective loading of a particle containing a single
NV center in optical and hybrid traps has been reported
[17,74-76]. Finally, precise spin initialization and micro-
wave control of NV centers at cryogenic temperature has
been demonstrated [77-79]. A recent experiment has also
demonstrated the possibility of tuning the libration poten-
tial between attractive and repulsive using the coupling to
an ensemble of NV in the spin para-diamagnetic regime
[42]. While putting all these results together is not a
straightforward endeavor, we see no major roadblock in
implementing our proposal in the near future.

In conclusion, we have shown that the spin-libration
coupling in electrically levitated nanodiamond can realis-
tically reach the single-spin ultrastrong coupling regime,
requiring only minor modifications of existing setups
[38,40,41]. Furthermore, we have shown how to take
advantage of such large nonlinearity to prepare non-
Gaussian states of the particle libration. In addition, the
ability to create mechanical squeezed states could be useful
for the detection of weak forces [66,80,81]. Our Letter thus
presents levitated nanodiamonds with embedded spins as a
highly attractive system for massive superposition experi-
ments exploiting ultrastrong single spin-mechanical cou-
pling rates.
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