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ABSTRACT
Ureteroscopy is a commonly performed medical procedure to treat stones in the kidney and ureter using a

ureteroscope. Throughout the procedure, saline is irrigated through the scope to aid visibility and washout debris
from stone fragmentation. The key challenge that this research addresses is to build a fundamental understanding
of the interaction between the kidney stones/stone fragments and the flow dynamics in the renal pelvis flow. We
examine the time-dependent flow dynamics inside an idealised renal pelvis in the context of a surgical procedure
for kidney stone removal. Here, we examine the time-dependent evolution of these vortical flow structures in three-
dimensions, and incorporate the presence of rigid kidney stones. We perform direct numerical simulations, solving
the transient Navier-Stokes equations in a spherical domain. Our numerical predictions for the flow dynamics in the
absence of stones are validated with available experimental and numerical data, and the governing parameters and
flow regimes are chosen carefully in order to satisfy several clinical constraints. The results shed light on the crucial
role of flow circulation in the renal cavity and its effect on the trajectories of rigid stones. We demonstrate that
stones can either be washed out of the cavity along with the fluid, or be trapped in the cavity via their interaction
with vortical flow structures. Additionally, we study the effect of multiple stones in the flow field within the cavity
in terms of the kinetic energy, entrapped fluid volume, and the clearance rate of a passive tracer modelled via an
advection–diffusion equation. We demonstrate that the flow in the presence of stones features a higher vorticity
production within the cavity compared with the stone-free cases.

1 Introduction
The renal pelvis is a funnel-like cavity inside the kidney which connects directly to the ureter, leading to the urinary

bladder. The kidney’s primary function – to remove waste and excess fluid from the body – may be disrupted by the presence



of kidney stones in the renal pelvis, resulting in potentially life-threatening conditions. Kidney stones affect up to 10% of the
global population, and thus constitute a significant healthcare concern [1–3]. Chemically, the majority (80−85%) of kidney
stones are composed of calcium oxalate and are often due to poor diet/lifestyle and/or dehydration from low fluid intake.
There are many other types of kidney stones including calcium phosphate, urate, infection stones and metabolic stones (e.g.
cystine). Very small stones, the size of a grain of sand, may form and pass without causing any symptoms but larger stones
which grow to more than 5 mm [4] can become stuck in the renal pelvis. Some stones grow to fill the kidney (staghorn
stones) and can measure several centimeters across. Enlarged stones may cause blockages within the urinary system, often
resulting in severe patient discomfort [5, 6]. Thus, there is a clear necessity for a clinical procedure to efficiently remove
stones from the renal pelvis.

One method for stone removal, ureteroscopy, uses a laser to ablate and fragment the stone to reduce its size and facilitate
natural evacuation through the ureter. The laser is inserted through the central lumen of the ureteroscope. To further assist
with stone clearance, a flow of saline is continuously introduced to the renal pelvis through this central lumen, in a process
called irrigation. The fluid exits the renal cavity via a narrow gap between the ureteroscope and surrounding ureter. This
return flow is often facilitated by the presence of an access sheath, a hollow tube surrounding the scope shaft, which increases
the gap – now between the scope shaft and access sheath wall – via which saline (and stone fragments) can exit. Figure 1a
provides a schematic representation of the placement of the ureteroscope and access sheath during ureteroscopy.

Prior to laser-induced fragmentation, kidney stone sizes range between 5 and 10 mm (66%), and 10 and 15 mm (28%)
[7]. After ablation, the stone is reduced to a large number of fragments, ranging in radii from Rs = 1 µm to Rs = 1 mm. The
stone particle sizes therefore vary by several orders of magnitude, and particle-fluid interaction plays a non-trivial role in
the renal-flow dynamics and associated kidney stone removal. Different particle-fluid interaction behaviours are anticipated
depending on the size of the stone fragments: (i) for small stone sizes (Rs . 200 µm), stones behave as a passive tracer
without affecting the flow dynamics of the renal cavity, (ii) for large stone sizes (Rs & 5000 µm), stones will settle in the
cavity under gravity, and (iii) for intermediate stone sizes (200 µm . Rs . 5000 µm), a fully-coupled interaction between the
rigid solid and the flow is expected [8]. We aim to develop a holistic understanding of the different fluid-structure interaction
mechanisms at play, including the multi-scale effects of varying solid particle sizes and their interactions with a viscous fluid.
An ability to model stone fragment behaviour – and its dependence on the number, size, and arrangement of stone particles in
the renal pelvis – has the potential to advise clinical procedure and device design to optimise the efficiency of ureteroscopic
stone removal.

Previous work by [9] and [10] have proposed theoretical models of ureteral fluid mechanics, considering the ureteroscope
as a single conduit. However, during the ureteroscopic procedure, there is both the forward flow into the cavity from the
scope lumen, as well as the return flow from the kidney to the ureter through the access sheath. [11] incorporated the
effect of the return flow through the access sheath with a lumped-parameter model to relate flow rate, kidney pressure, and
ureteroscope and access sheath geometry, modelling the kidney as a linearly compliant material with constant stiffness. [12]
also considered a lumped-parameter model incorporating a more biologically accurate exponential constitutive law for the
kidney compliance, and studied the role of auxiliary ‘working tools’ – e.g. laser fibres – which are passed through the central
lumen of the ureteroscope and affect resistance to saline flow.

These lumped parameter models were able to predict the renal pressure due to irrigation and its dependence on flow
rate and scope/access sheath geometry, but the precise nature of the flow within the renal pelvis was not considered. More
recently, [13] modelled the renal pelvis in an idealised two-dimensional, rectangular geometry, and studied in detail the
steady flow patterns and their subsequent effect on the clearance time of a passive tracer, using a combination of numerical
methods and high-speed imaging techniques. Williams et al revealed the intricate vortex structures in a two-dimensional
cavity, and demonstrated the connection between the wash-out time (defined as the time required for 90% of the initial
tracer to leave the cavity) and the vortex characteristics within the cavity, concluding that large vortices combined with low
tracer diffusivity lead to prolonged wash-out times. In a follow-up study, [14] studied the role of the inflow/outflow channel
geometries on the wash-out time of a passive tracer. Using shape optimisation techniques with an objective function based
on properties of the steady flow field, Williams et al demonstrated that changing the ureteroscope shape results in a reduction
of the size of vortical flow structures, which in turn leads to a decrease in wash-out times. Although these studies provide
valuable insights into the relationship between the underlying flow dynamics and the washout time of a passive tracer, this
knowledge is only transferable to ureteroscopy in the regime where stone fragments are extremely small, and thus unable to
influence flow characteristics. In reality, larger stone pieces are present during ureteroscopy; thus it is necessary to consider
the two-way coupling of flow and stone dynamics for an accurate understanding of stone removal. Additionally, there is a
need to study full three-dimensional flows in cavities to unravel the flow physics and the associated stones trajectories.

In this study, for the first time, we interrogate the two-way coupling between the fluid flow within the kidney and the
transport of kidney stones, and determine the behaviour of stone wash-out during ureteroscopy. Considering the stones
as rigid, non-porous solid objects inside a three-dimensional idealised spherical cavity representing the renal pelvis that
is connected to coaxial cylinders representing the ureteroscope and sheath, we perform time-dependent three-dimensional
direct numerical simulations using a fictitious domain method with direct forcing approach to resolve the interaction between
the rigid solids and the flow. To orientate our study, the values of the governing parameters are chosen to be consistent with
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Fig. 1. (a) Schematic representation of the regions of fluid flow during the ureteroscopic procedure; we highlight the ureteroscope via which
the flow enters the renal pelvis, and a ureteral access sheath in which the irrigation flow exits the cavity. The flow direction inside of the
renal pelvis is shown with red arrows. (b) Three-dimensional representation of the idealised geometry of the renal cavity considered in this
study with a single rigid spherical stone at center. The image shows a transversal cut to aid visualisation of the spherical stone, it also
highlights the nondimensional parameters of the cavity geometry in a three-dimensional Cartesian domain, x = (x,y,z) which is discretised
for our numerical computation by a (256)3 uniform mesh. The center of the spherical cavity corresponds to x = (0,0,0). Red and blue
arrows show the inlet and outlet channels, respectively. (c) Three-dimensional representation of the xy-, xz- and zy-planes that will be used
throughout the discussion of the results.

clinically-realisable values.
The paper is organised as follows: Section 2 presents the governing equations, numerical set-up and the validation of the

numerical method. Section 3 presents the results which are focused on fluid-structure interaction in both the absence and the
presence of stones. Finally, a discussion of the results , and concluding remarks and future perspective work are summarised
in Section 4 and 5, respectively.

2 Methods
With the aim of studying the flow dynamics of kidney stone removal, we perform direct numerical simulations of the

transient, incompressible Navier-Stokes equations in a three-dimensional domain focusing, for this present study, on the case
of the absence of gravity. We assume spherical rigid non-porous stones which move freely in the computational domain
owing to their interaction with the cavity flow. Figure 1b shows a schematic representation of the cavity considered in this
study. To simplify the tremendous complexity of the renal cavity, we consider a stiff, non-deformable sphere of radius Rc,
which is connected to a ureteroscope and a ureteral access sheath. The ureteroscope and sheath are considered to be coaxial
cylinders, in which flow enters the cavity via the inner scope channel of radius a and exits the cavity through the gap (width
h) between the access sheath and scope shaft of radius b. Renal stones are characterised by an irregular shape, but for the sake
of simplicity, we have considered them as perfect spherical non-porous rigid solids of radius Rs. They are placed initially in
the centre of the cavity, if not explicitly stated otherwise.

Following the immersed boundary approach [15], we use a one-fluid formulation to couple the fluid-structure interaction
(FSI) problem. Within this formulation, parameters ρl and µl are the density and viscosity of the fluid, respectively, and ρs
is the density of the solid.

We consider dimensionless variables

x̃ =
x
a
, t̃ =

t
a/U

, ũ =
u
U
, p̃ =

p
µlU/a

, (1)

where t, u, and p represent time, velocity, and pressure, respectively, and tildes denote dimensionless quantities. We nondi-
mensionalise spatial coordinates x = (x,y,z) with respect to the radius of the scope lumen a, u = (u,v,w) with respect to
the average irrigation flow velocity U , and time with respect to the timescale of the flow, a/U . The dimensionless time-
dependent, incompressible Navier-Stokes equations for a Newtonian viscous fluid are thus

∇ · ũ = 0, (2)



ρ̃

(
∂ũ
∂t̃

+ ũ ·∇ũ
)
+∇p̃ =

1
Re

∇
2ũ, (3)

where ρ̃ = ρs/ρl +(1−ρs/ρl)H (x̃, t̃) where H (x̃, t̃) is zero in the solid stones and unity in the fluid. The dimensionless
Reynolds number, Re = ρlUa/µl , in equation 3 relates the inertial to viscous forces. All the variables appearing in the
equations and boundary conditions are rendered dimensionless using the aforementioned scalings, unless stated otherwise.

A no-slip condition for the immersed solid-fluid boundary, Γ, is enforced, taking into account rigid body motion due to
translation and rotation of the stones

ũΓ = Ṽs + Ω̃× r̃c (4)

where Ṽs represents the translation velocity of the solid (non-dimensionalised with respect to U), Ω̃ stands for its angular
velocity vector (non-dimensionalised with respect to U/a) and r̃c the position vector of the centroid of the solid (non-
dimensionalised with respect to a). Ṽs and Ω̃ can be computed by averaging over the solid region. For the collision modeling
we use the the well-known impulse-response model (for further information we refer the reader to [16]).

2.1 Initial and domain boundary conditions
Henceforth we drop tildes, and all quantities are now dimensionless. The simulations are initialised with fluid and

stones at rest in the absence of gravity. Solutions are sought subject to Poiseuille inlet flow. Thus a parabolic profile for the

inflow channel is specified (i.e., u = 2(1− r2)), where r =
√
(y− yo)

2 +(z− zo)
2, where yo and zo are the (dimensionless)

coordinates of the centre of the inflow channel. As outflow conditions, we impose Neumann boundary conditions for the
velocity in the streamwise direction (i.e., perpendicular to the outflow face), and the spanwise velocity components are zero.
A Dirichlet boundary condition is imposed for the pressure. This condition is a result of imposition of zero normal stress
at the outlet together with the assumption of fully-developed streamwise flow. Additionally, we impose no-slip boundary
conditions on the cavity walls.

2.2 Numerical method and validation
The Navier-Stokes equations are solved using classic finite volume techniques applied on a uniform staggered grid

[17]. A multigrid iterative method is used for solving the elliptic pressure Poisson equation that arises in the projection
method [18] when enforcing the incompressibility condition (Equation 2). With respect to the spatial derivatives, standard
centered-difference discretisations are used, except for the nonlinear term, which makes use of a second-order essentially
nonoscillatory (ENO) scheme [19, 20]. The Lagrangian motion of the solid centroid (i.e., drc/dt = Vs) is computed using a
second-order in time Runga-Kutta algorithm. The boundary condition Eq. 4 is enforced using the Direct Forcing approach
of [21] where the desired value of velocity is imposed directly on the solid/fluid boundary. In addition to the extensive
analysis and validation provided in [21] we validate our own implementation of the Direct Forcing method with results
shown in the Appendix. In this section we have provided only a brief synopsis of the numerical approach, however a
detailed description of the immersed boundary, fictitious domain and direct forcing methods implemented here can be found
in [21–24]. The code is wholly written by the authors in Fortran 2008 and uses a domain decomposition strategy for
parallelization with MPI.

The validity of the numerical method was benchmarked against the experimental and numerical work of [13] for a
two-dimensional cavity with excellent agreement (more information in the Appendix). In terms of the mesh characteristics,
the computational domain is composed of a cubic uniform Cartesian grid, and the inlet extends in the x−direction. With
respect to the resolution, we have ensured that the presented results are mesh-independent, and therefore for a uniform
mesh resolution of (256)3 (i.e., a/∆x = 6.4, where ∆x stands for the cell-size), the results do not significantly change with
decreasing cell size (see Appendix for more details). Additionally, extensive mesh studies for turbulent two-phase jets and
surface-tension-driven phenomena using the same numerical method can be found in [25, 26].

2.3 Physical parameters
The chosen flow parameters for this study are consistent with values used during ureteroscopy. In the clinic, irrigation

flow rates range from 50 mL/min to 200 mL/min, although introduction of a laser fibre (for stone fragmentation) to the scope
channel may reduce the flow rate by about half. The injected fluid is considered to be water, with constant physical properties
(i.e., ρl = 1000 kg/m3 and µl = 10−3 Pa.s). Therefore, the Reynolds number lies in the range 220 < Re < 2000.



In the ureteroscopy procedure, the stone is first fragmented by the laser to enable expulsion through the ureter. We
consider fragmented stone sizes ranging between 200µm < Rs < 1000µ m where there will be a fully-coupled interaction
between the flow and stone trajectory. We take the stone density as ρs = 1900 kg/m3 [27]. Gravity will play a minor role in
the flow dynamics, as indicated by the typical Froude number Fr =U/

√
ga ∼ O(102) (where g stands for the gravitational

constant); thus, the effect of gravity is not considered in this study.
The values for the cavity dimensions are identical to the previous work performed by [14], and consequently, a =

6×10−4 m, b = 2.5701×10−3 m, and h = 1.1598×10−3 m. The size of the cavity was chosen to be Rc = 10−2 m, which
could be seen as a representation of a small region of the renal pelvis. The non-dimensional length of the inlet channel is set
to 5. We note that the values for b and h are slightly larger than the typical range of scope and access sheath dimensions for
ureteroscopy procedures. These were chosen to agree with the values used in previous physical and numerical experiments
of flow in rectangular domains, simulating the dynamics of ureteroscopic flow in the renal pelvis [13, 14]. This agreement
allows us to investigate the effect of scaling up from two to three dimensions, and although exact flow solutions will depend
on the values of b and h, we anticipate reported trends in flow structure and the influence of flow on stone dynamics will be
similar for smaller values of b and h. Values for b and h more representative of ureteroscope and access sheath dimensions
were chosen for the simulations in the Discussion (see figure 7), demonstrating the potential for higher fidelity ureteroscopy
simulations using the techniques outlined in this manuscript.

3 Results
In this section we first consider the effect of Reynolds number on three-dimensional flow in the absence of stones,

before subsequently analysing the effects of both single and multiple stones. It is worth noting that after t = 5000, for the
lowest Reynolds number (Re = 50), no further changes in the shape of the streamlines or coherent structures were observed;
however, for the higher Reynolds numbers (Re = 250, 500), flow evolution continued and a steady-state was not reached.

3.1 Three-dimensional flow dynamics in the absence of rigid stones
First, we focus on the transient dynamics of the jet. Panels (a)-(c) of Figure 2 show the instantaneous streamlines

at early times for Re = 500. For visualization purposes, we display a two-dimensional streamlines onto the xy-plane (for
sake of space only the half of the plane is shown). At early times of the injection, the jet dynamics are characterised by
an axisymmetric behaviour. The homogeneous jet develops a ‘primary-vortex’ (labelled ‘V-1’ in figure 2a) as a result of
the detachment of the velocity boundary layer from the inlet nozzle, and its consequent roll-up in the quiescent medium.
A similar physical mechanism for the formation of the leading vortex has been reported previously by [26, 28, 29]. The
primary vortex grows over time owing to the shear-driven interaction between the high-velocity discharge of the fluid into
the quiescent medium. The primary-vortex elongates as it moves downstream until it impacts against the surface of the cavity
wall resulting in the outward radial spread of the head-vortex (see figure 2b). The formation of a stagnation point (labelled
‘SP-1’ in figure 2b) near the cavity wall resulting in flow separation is observed as a result of the impact of the jet against
the wall. For the high Reynolds numbers cases, we observe that the radial expansion of the jet moving outward leads to
an adverse pressure gradient until a point in which the jet-induced momentum can no longer overcome the frictional effects
of the cavity wall resulting in the formation of a stagnation point (labelled ‘SP-2’ in figure 2c) and flow separation. This
phenomenon leads to the detachment of a secondary-vortex, labelled ‘V-2’ in figure 2c (in agreement with [30–33]). As the
secondary vortex grows over time, a mutual-induction of V-1 and V-2 is predicted (see panel (ii) of figure 2g): a velocity
induction by the primary-vortex over the secondary-vortex causes V-2 to go through V-1’s centre. This mutual-induction
mechanism is observed during the entire flow dynamics at high Re numbers.

Panels (d)-(f) of figure 2 highlight the instantaneous streamlines at t = 5000 for Re = 50, Re = 250, and Re = 500,
respectively. For visualization purposes, we have also shown a two-dimensional streamlines onto the xy-plane. The azimuthal
component of the vorticity field ωωω=O×u (e.g. the circumferential direction around the axis of the jet), is shown as a contour
field underneath the streamlines. For the smallest Reynolds number, the jet ejection results in an axisymmetric flow with no
formation of secondary vortices. A closer inspection of the same figure shows that the areas of closed streamlines (i.e., the
main vortical structure) are surrounded by streamlines which show a direct path between the inflow and outflow channels
with no recirculation regions; these outcomes are in agreement with [13, 14]. Increasing the Reynolds number results in the
breaking of the symmetry of the flow patterns, and subsequently, enhances the formation of complex flow patterns inside
of the cavity. The primary vortex is no longer aligned axisymmetrically in the cavity as displayed in figures 2(e)-(f). At
higher Re, there is a reduction in the number of direct paths from the inlet to the outlet channels owing to the increase of the
inertia within the cavity. Additionally, by inspection of the azimuthal vorticity in the xy-plane, we observe that the highest
vorticity generation coincides with the velocity boundary layer between the injected-jet and the surrounding fluid, which
leads to strong tangential flow with respect to the initial quiescent medium. Attention is now turned to the value of vorticity
(red/blue contours in Figures 2d-f) which increases as the Reynolds number increases. For Re = 50, the azimuthal vorticity
component dominates over its streamwise counterpart (not shown) because of the low inertia; however, as the Reynolds
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Fig. 2. Time-dependent flow dynamics inside of the idealised renal cavity for Re = (50,250,500). Panels (a)-(c) correspond to early
flow dynamics for Re = 500 at t = (27,138,194) through two-dimensional representations of the predicted streamlines in a half of the
xy−plane. Panels (d)-(f) correspond to two-dimensional representations of the predicted streamlines in a xy−plane together with the
azimuthal vorticity ωθ at t = 5000 for Re = (50,250,500) in columns one to three, respectively; Panel (g) shows the spatio-temporal
evolution of the three-dimensional coherent structures by representing the entrapped fluid volume when Q > 0, Vv normalised by the volume
of the cavity, Vc, for Re = (50,250,500). Additionally, we refer the reader to Supplementary Material ‘Animation-Fig2.avi’ to see a video
from panel (e).



number increases, the streamwise component becomes more prominent, becoming of the same order of magnitude with
respect to its azimuthal counterpart, explaining the disruption of the axisymmetric behaviour of the coherent structures as
explained below.

Figure 2g displays the time-dependent flow dynamics by plotting the volume ratio Vv/Vc occupied by the vortical struc-
tures (i.e., recirculation regions Vv), predicted by the Q-criterion inside of the cavity (with volume Vc). The Q-criterion
measures the dominance of vorticity ω over that of strain s, i.e., Q = 1/2(|ωωω|2−|s|2) [34]. The flow regions with a positive
Q-criterion value are defined as the recirculation zone (i.e., vortex-dominated regions). Thus, the volume representation of
figure 2g denotes flow regions in which Q > 0. A similar approach was used by [13, 14] to quantify the vortex-regions for a
two-dimensional system (i.e., det Ou > 0).

For Re= 50, the axisymmetric primary-vortex defines the global flow dynamics and the vortex-dominated region reaches
a steady state resulting in a constant entrapped recirculating fluid within the cavity (see figure 2g). At higher Re, the Q-
criterion predicts larger vortex-dominated regions inside of the cavity with a linear increase of the entrapped-fluid volume at
early times of the simulation (see figure 2g). The increase in the rich dynamics of the flow structures is evident by observing
the spatial development of the coherent structures (i.e., regions of dominant vorticity). At short times, the jet impacts the
cavity wall (see panel (i) of figure 2g), and eventually results in the formation of secondary vortices which are advected
towards the centre of the primary vortex (see panel (ii)) while the primary vortex grows over time. Once the primary vortex
reaches its maximum size, the entire flow almost behaves as a steady state (see panels (iii)-(iv)).

To see the impact of the vortical structures on the trajectories of rigid stones, in the next section we turn our attention to
the effect of flow dynamics on the motion of stones within the cavity.

3.2 Effect of flow dynamics on rigid kidney stones
In this section, we consider the effect of renal pelvis flows on the dynamics of a single rigid stone, of varying size,

placed initially in the centre of the cavity (e.g., as displayed in Figure 1b). We vary the stone size between 0.416 < Rs < 1.66
(nondimensional values). Additionally, we only report results for Re = 250 and Re = 500 as these correspond to larger values
of inertia prompting richer flow dynamics within the cavity.

Figure 3 shows the trajectories of the stones over time by tracking their centroid as both three-dimensional trajectories
(Figure 3a,b) and projections onto the xy-, xz- and zy-planes (Figures 3c-h). At early stages of the simulation, the rigid stones
are dragged towards the back of the cavity – as a result of their interaction with the head-vortex – and eventually collide
against the cavity wall. The stones subsequently settle into a circulatory motion owing to their interaction with the local
vorticity field.

For Re = 250, the stones become trapped in the primary vortex, leading to their circulation in the vortex-dominated
region (see Figure 3a). Inspection of the stones’ movement in each projection plane (Figure 3c-d) shows that the stones
are trapped in the primary vortex (we refer the reader to Supplementary material ‘Animation-Fig3.avi’ where we show the
transient dynamics of the stone of size Rs = 0.833 together with the Q-criterion). Interestingly, the radii of the trajectories
grow over time, so it is expected that eventually the stones would be displaced to a non vortex-dominated region (e.g., near
the cavity exit), where they will washout together with the fluid. Nonetheless, for the considered non-dimensional time of
t < 5000, the rigid stones remain trapped in the primary vortex during the entire simulation.

Still considering Re = 250, now we compare the effect of stone size on the flow pattern and particle trajectory. For
the smallest stone size (e.g., Rs = 0.416), the stone follows the primary vortex, and its circulation radius grows over time.
The simulations predict smaller circulation radii for the largest stone size and stronger entrapment in the vortical structure
because the stones start stationary, so a larger stone would require a larger force to attain the same velocity.

For Re = 500, richer flow dynamics are predicted owing to the higher fluid inertia, which in turn leads to more complex
stone trajectories (see Figures 3b,f-h). At early time in the simulations, the rigid stones similarly enter into a circulatory
motion due to their interaction with the primary vortex; however, the higher fluid inertia induces the stones to leave the
primary vortical structure, which eventually results in the smallest stone, i.e., Rs = 0.416, being flushed out of the cavity by
the flow (at t = 3507). Therefore, for the first time (to the best of the authors’ knowledge), we have provided a simulation of
stones being washed out of the cavity along with the fluid during the ureteroscopy procedure.

Above we have considered the effect of flow dynamics on single rigid stones placed in the centre of the cavity. To
investigate how the initial position of the rigid stones affects the fate of the stone, we consider ten stones within the cavity,
initially placed on random grid points as indicated in figure 4a. Panels of figure 4(b)-(i) show snapshots of the flow pattern
and trajectory of stones over time via projections onto the xz-, xy- and zy-planes. We found that stones initially positioned
near the centre of the cavity are pushed towards the outflow channel as the primary vortex grows in size, and eventually
advect directly out of the cavity. Conversely, stones initially placed further downstream of the injection point are entrapped
in a circulatory motion owing to their interaction with the primary-vortex, and subsequently, the stone’s dynamics are similar
to those described above for a single stone that does not leave the domain. Therefore, some stones leave the cavity into
the ‘ureteral access sheath’, whereas others are still entrapped in the main vortical structure (see Supplementary Material
‘Animation-Fig4.avi’).
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Fig. 3. Trajectories of single rigid stones up to t = 5000. Panels (a) and (b) correspond to a three-dimensional representation of the
trajectories for Re = 250 and Re = 500, respectively. Panels (c)-(h) correspond to the projection of the trajectory onto the xy-, xz- and
yz-plane for Re = 250 (middle panels) and Re = 500 (bottom panels), respectively. The red circles correspond to the limits of the cavity,
where the center of the spherical cavity corresponds to x = (0,0,0).

We acknowledge that to better understand the interaction between kidney stones and the flow cavity, it would be in-
teresting to use Lagrangian coherent structures (LCS) based on particle trajectories to naturally find borderlines in the flow
that partition different regions with different trajectory behavior. This will connect the particle initial and final locations.
However, this is out of the scope of the manuscript, and should be addressed in futures studies.

3.3 Effect of rigid kidney stones on flow dynamics
In the previous section, we considered the effect of the flow field on the trajectories of small stones which are not likely

to significantly affect the flow dynamics. In this section, we will consider the influence of larger kidney stones on the flow
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Fig. 4. Trajectories of multiple rigid stones (i.e., ten) of size Rs = 0.833 up to t = 5000. Panels (a)-(c) show the initial location of the
stationary stones, the location of the stones at t = 5000 for Re = 250, and Re = 500, respectively. Additionally, a two-dimensional
representation of the velocity streamlines in the xy-plane have been added to visualise the flow field. Some stones have left the renal cavity
and are found in the ureteral access sheath, meanwhile others are trapped in the primary vortex. Panels (d)-(i) correspond to the projection
of the trajectory for four selected stones onto the xz-, xy- and zy-plane for Re = 250 (middle panels) and Re = 500 (bottom panels),
respectively. The colour of the trajectories correspond to the coloured stones of panels (a)-(c). See Supplementary Material ‘Animation-
Fig4.avi’.

dynamics by exploring the fluid kinetic energy, the clearance rate of a passive tracer and the entrapped fluid volume when
Q > 0, depending on the number of stones, Np. On this basis, we consider a passive tracer of concentration C(x, t) within
the cavity which is passively advected by the flow field. The nondimensional advection-diffusion equation for the tracer
concentration is expressed as

∂C
∂t

+u ·∇C =
1
Pe

∇
2C, (5)



where Pe = Ua/D represents the ratio of convective to diffusive time-scales (e.g., D stands for the tracer diffusion coef-
ficient). Following [14], we assume that the initial tracer concentration is evenly distributed inside of the cavity, and zero
elsewhere. We have selected Pe = 500, guided by the previous work from [13]. We assume no-flux boundary conditions on
the walls of the cavity (i,e., ∂C/∂n = 0), and Neumann boundary conditions for C on the outlet channels which allow the
passive tracer to leave the computational domain. To quantify the effect of the rigid stones on the flow dynamics, an approach
proposed by [13, 14] was employed in this work which measures the clearance rate at which the passive tracer leaves the
cavity. Thus, the nondimensional loss at time t is expressed as

Closs =

∫
V [C(x,0)−C(x, t)]dV∫

V [C(x,0)]dV
(6)

where V refers to the reduced volume of the cavity based on the number of stones.
In Figure 5, we show the influence of stones on the fluid kinetic energy, defined as Ek =

∫
V (u2/2)dV , the entrapped

fluid volume for Rs = 2 1 and Pe = 500, and the clearance rate of the passive tracer. Inspection of the kinetic energy Ek
in figure 5a,d reveals a complex relationship with the number of stones, Np. For all values of Np, at early times (t < 35),
Ek grows independently of the number of stones. Then the kinetic energy plateaus, but for Np > 0, we observe irregular
oscillatory behaviour with increased amplitude for higher Np. The fluid must do work to accelerate the stones, taking some
of the kinetic energy of the fluid, but since the motion of the stones is quite irregular, they experience numerous accelerations
and decelerations. Hence, the more stones there are, the more noisy the kinetic energy.

Panels (b), (e) of figure 5 plot the ratio of entrapped fluid volume (i.e. with Q > 0) to total fluid volume. At early times,
a linear growth of the entrapped fluid volume is observed. As mentioned above there is a direct link between the entrapped
volume and vorticity production. [35] showed that vorticity is produced at boundaries; thus, the addition of stones in the
cavity implies the addition of regions for production of vorticity. However, the stones may also disrupt vortical structures,
depending on their location within the cavity. This is demonstrated in figure 6, which shows a snapshot of the instantaneous
vorticity field (in a fixed plane) for three scenarios: (a) the absence of stones, (b) stones with position held fixed, and (c) freely
moving stones. Comparing (b) and (c) to (a), we see the two-sided impact of stones, both in producing partially detached
vortices, and in disrupting vortical structures; similar findings were reported by [36]. Due to this complex interplay, a cavity
with more stones may have increased entrapped volume at some times, and decreased entrapped volume at other times, a
noisy and unpredictable relationship as demonstrated in figure 5 (b), (e).

We now turn our attention to the clearance rate plots (panels (c), (f) of figure 5), which show the percentage of tracer that
has exited the cavity over time. It has been previously demonstrated [14] that the reduction of vortex structures within the cav-
ity results in a reduction in the time needed for the clearance of the tracer, while clearance time depends non-monotonically
on the fluid kinetic energy. Given the complex relationships between stone presence and both kinetic energy and vorticity,
it is perhaps not surprising then that the clearance rate does not exhibit a clear trend. The highest number of stones does
perform the worst in terms of tracer clear out, it is by a small margin, and the smaller number of stones performs slightly
better than the base case of no stones.

4 Discussion
A fundamental challenge in optimising protocols in ureteroscopy procedures is understanding the flow of irrigation fluid

within the kidney, the movement of kidney stone particles and/or dust, and how larger stone fragments may impact fluid
flow. Stone destruction via laser lithotripsy can create a range of sizes of stone fragments or dust [37], which, if not removed
efficiently via irrigation fluid, can obscure the operating clinician’s field-of-view [38, 39]. Previous theoretical studies have
uncovered the interplay between fluid structure, in particular the presence of vortical regions, and dust washout. These
studies uncovered qualitative features and enabled large parameter exploration with minimal computational cost, but were
restricted to a highly idealised two-dimensional geometry. To bridge the gap towards clinical relevance, in this paper we
have extended this framework by incorporating discrete stone particles of finite size that both move with and modulate the
flow, solved in a more realistic three-dimensional setting. The chosen parameters for the flow dynamics and the stone sizes
are consistent with clinically-realisable systems, and the numerical framework was validated against the experimental and
numerical work presented by [13] for the two-dimensional geometry.

In contrast to the aforementioned 2D studies, the vortex structure we have uncovered in the present study are more
complex both in terms of spatial structure, interaction, and time-dependence. Specifically, we observed that the injection
of a fluid jet via a modelled ureteroscope nozzle results in the formation of a primary vortex owing to the detachment of
the velocity boundary layer from the nozzle. The primary vortex grows over time, and its axisymmetric shape becomes
more disrupted with increasing Reynolds number. In the absence of stones, we have quantified the temporal entrapped fluid

1Rs = 2 was chosen as it is larger than the size of the outflow channel, h, and therefore the stones will remain within the cavity
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Fig. 5. The effect of rigid stones on the flow field as a function of the number, Np, for Rs = 2 and Pe = 500. Kinetic energy, entrapped fluid
volume when Q > 0, and the clearance rate of a passive tracer are shown in columns one to three, respectively. The top and bottom panels
correspond to Re = 250 and Re = 500, respectively.

(a) (b) (c)

Fig. 6. Two-dimensional representation of the vorticity field in the xz-plane (y = 2) in the absence of stones, fixed stone location and stones
which move freely in the cavity, corresponding to panels (a− c), respectively. The conditions for the simulations are Re = 250 and Rs = 2
and Np = 18 (for cases b and c). The colour represents the vorticity magnitude |ω|, where appropriate scales are shown in the panel.
Irregular vortex production can be seen around the rigid stones which move freely.

volume by identifying the recirculation zones through the Q-criterion, i.e. Q > 0, integrated over the cavity domain. At
low inertia, a steady state is reached, and subsequently a constant volume for the entrapped-fluid is predicted. At increasing
inertia, a steady state is not reached owing to the formation of a secondary vortex from the cavity walls. Mutual induction
of the primary and secondary vortices characterise the complex flow dynamics observed in the system. The increase of
fluid inertia at larger Reynolds numbers also results in an increase in the streamwise vorticity component with respect to
its azimuthal vorticity counterpart. Thus, it is responsible for the loss of the axisymmetric behaviour observed in the small
Reynolds number case.

With rigid stones introduced in the cavity flow, two different behaviours were observed: either they become trapped in
a circulatory motion in the primary vortical structure or they are flushed out of the cavity together with the fluid through the
ureteral access sheath. Both regimes were found to coexist in the studied cases and the outcome of the stones depended on
the initial location of the stationary stone, and the importance of inertia. More fluid inertia allows for higher probability of



a stone to leave the cavity within the same temporal frame. We have also studied the effect of multiple stones in the flow
dynamics by exploring the fluid kinetic energy, entrapped fluid volume and the clearance rate of a passive tracer. We have
shown that the solid boundaries, due to the the presence of stones, cause an increase in the vorticity production, which results
in richer flow dynamics within the cavity.

We have simulated for the first time (to the best of our knowledge) the two possible outcomes for the kidney stone
trajectories during ureteroscopy – trapping or wash-out – and this can be considered to be a significant step forward in
the understanding of the dynamics of kidney stones in the renal cavity flow during the surgical procedure. The complex
behaviour outlined above highlights the need for computational fluid mechanics tools in ureteroscopy, and demonstrates a
strong potential for optimising driving flow conditions to promote stone removal. In practice, this may best be achieved with
time-dependent driving flow, a complication we have not considered here.

As well as incorporating time-dependent inlet conditions, the approach we described in this manuscript may naturally
be extended to a systematic follow-up analysis predicting the flow characteristics and stone motions in an actual renal
cavity geometry, potentially incorporating full three-dimensional time-dependent simulations and coupling of moving solids,
buoyancy effects, and heat-transfer considerations. We have restricted attention to an idealised spherical cavity, and an actual
renal pelvis would provide a more representative interaction of stones with the fluid. Figure 7 shows a preliminary simulation
from an actual renal pelvis extracted from imaging in a patient, in which we have selected a branch of the complex renal
pelvis and introduced the ureteroscope together with rigid stones; results at long times show that the stones are trapped in
one of the branches of the renal cavity. This avenue of research could lead to the next generation of in-silico models that are
patient-specific, and translate our understanding ‘from bench-to-bedside’.

The present work is limited by the assumption of rigid cavity walls. This assumption is realistic for the inflow and
outflow channels; however, the walls of an actual renal cavity are characterised by deformability that is inherent to any
true physiological structure. Deformability of the renal pelvis would certainly affect the flow structure inside of the cavity,
potentially resulting in more complex flow dynamics, and constituting a fruitful area of future research. The numerical
method used in this study may naturally be extended to include deformability of the renal cavity and inclusion of these
effects constitutes a realistic short-term follow-up to the present study. We have limited our study to perfectly spherical
kidney stones, but their inherent complex three-dimensional shape will play a major role in the fluid-structure interaction.
We have only studied equal-sized rigid stones in the cavity, but in surgical procedures, stone destruction via laser lithotripsy
leads to obliteration of the stone into a large range of sizes, and subsequently, future research should consider the potential
effects of uneven-sized stones. Particle-particle interaction should be taken into account in future studies as it would become
more important as the particles become larger and more numerous. Additionally, future studies would also quantify the
enstrophy within the renal cavity as a function of the time, as a measure of the rotational energy of the fluid flow.

5 Conclusions
This work has focused on understanding the fluid mechanics of ureteroscope irrigation through three-dimensional nu-

merical simulations. This study is limited to stiff, non-deformable solids for both the stones and the renal pelvis cavity.
The numerical predictions show the close interplay between the local vorticity and the stones, and their interaction decides
the outcome of the stones: either they become trapped in a circulatory motion in the primary vortical structure or they are
flushed out of the cavity together with the fluid through the ureteral access sheath. We have also studied the efficacy of debris
clearance influenced by the presence of different numbers of kidney stones.
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Appendix: Validation of the numerical method
This section provides some validation studies for the immersed solid solver, flow-solver and mesh studies to provide

conclusive evidence of the accuracy of our numerical predictions.
In order to assess the accuracy of our flow solver, we have validated our predictions against the experimental and

numerical data from [13]. Figure 8 highlights qualitative validation of our numerical frame-work in terms of numerical
streamlines for Re = 7 and Re = 34. It is clear that the transient solutions of the Navier Stokes equations provided by our
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Fig. 8. Direct comparison of the streamlines from our numerical predictions, third column, with both experimental and simulation results
reported by [13], first and second columns, for a two-dimensional cavity characterised by b = 1.933, h = 4.2835, and cavity-length α =
21.7 (here, α stands for the nondimensional length of the rectangular cavity). Panels (a)-(c) and (d)-(f) represent the flow dynamics with
Re = 7 and Re = 34, respectively.

numerical method are capable of predicting the rich dynamics observed by the flow-visualisation experiments, and previous
numerical simulations based on the steady solutions of the flow equations. Additionally, we want to highlight that the
flow-solver has also been successfully validated for two-phase turbulent jets in previous works, such as [25, 26, 41].

For the validation of the immersed solid solver using the Direct Forcing approach of [21], we have considered the
transient and terminal velocities of a solid sphere settling under gravity in a quiescent fluid. We compare our numerical
predictions against the experiments of [42], where solid spheres are released in water. We have considered the case of a
particle with density ratio of ρs/ρl = 2.56 and Re = dsρsUt/µl = 41, whereds and Ut correspond to the particle diameter
and terminal velocity of the particle (e.g. computations are assumed to reach steady-state when the settling velocity is below
0.1% for one period of dimensionless time). The experiments were done under the assumption of an unbounded liquid bath,
therefore our simulations are performed in a sufficiently large domain to avoid effects from the boundaries. Figure 9a shows
the predicted settling velocity for two different levels of refinement (e.g., 6 and 10 cells per sphere radius, which corresponds
to the low (‘LR’) and high resolution (‘HR’) simulations, respectively). As shown in figure 9a, the predictions from the
immersed solid solver present an excellent agreement with respect to experimental measures for the transient and terminal
velocity (e.g., the latter with error of less than 0.1%). Additionally, we acknowledge that the same numerical method has
been previously validated with respect to the interaction of a moving solid with the flow, we refer the reader to [23], who
described extensively the numerical formulation and provided extensive benchmark tests of the fluid-structure interaction
of solids (either as rigid or deformable structures) with multiphase flows using a combination of immersed boundary and
fictitious domain-direct forcing methods.

Finally, we aim to provide conclusive evidence that our numerical results are mesh-independent. To this end, the kinetic
energy for Re = 250 in the absence of stones are tested for different mesh resolutions. Figure 9b shows the temporal
evolution of Ek for two types of refinements (e.g., ‘LR’ and ‘HR’ refer to levels of refinement characterised by a/∆x = 6.4
and a/∆x = 12.8, respectively). As shown in figure 9b, both level of refinements are capable of predicting accurately the
dynamics at steady state. Thus, we conclude that a mesh characterised with a/∆x = 6.4 is sufficiently refined to ensure
mesh-independent results while providing a good compromise with the computational cost of the simulation. Therefore, we
have proved that the ‘LR’ mesh is capable of predicting the complex dynamics of the phenomena, and consequently detailed
analysis of the vortical structures is performed using a ‘LR’ mesh-type (unless stated otherwise).



(a) (b)

Fig. 9. (a) Settling velocity of a solid sphere at Re = 41 in relation to the experimental results reported by [42], here the velocity has
been normalised with respect to the experimental observation at steady state, Ut∗. (b) Mesh study for Re = 250 in the absence of stones
highlighting the temporal evolution of the kinetic energy Ek.


