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Abstract
We examine the time-dependent flow dynamics inside an idealised renal pelvis in the context of a surgical procedure
for kidney stone removal, extending previous work by Williams et al. (2020a, 2021), who showed how vortical flow
structures can hinder mass transport in a canonical two-dimensional domain. Here, we examine the time-dependent
evolution of these vortical flow structures in three-dimensions, and incorporate the presence of rigid kidney stones.
We perform direct numerical simulations, solving the transient Navier-Stokes equations in a spherical domain.
Our numerical predictions for the flow dynamics in the absence of stones are validated with experimental and 2D
numerical data from Williams et al. (2020a), and the governing parameters and flow regimes are chosen carefully
in order to satisfy several clinical constraints. The results shed light on the crucial role of flow circulation in the
renal cavity and its effect on the trajectories of rigid stones. We demonstrate that stones can either be washed out
of the cavity along with the fluid, or be trapped in the cavity via their interaction with vortical flow structures.
Additionally, we study the effect of multiple stones in the flow field within the cavity in terms of the kinetic energy,
entrapped fluid volume, and the clearance rate of a passive tracer modelled via an advection–diffusion equation.
We demonstrate that the flow in the presence of stones features a higher vorticity production within the cavity
compared with the stone-free cases.

Impact Statement

Innovative numerical algorithms for complex fluid flows together with high-performance computing architec-
tures can deliver an in-depth understanding of the flow physics of previously inaccessible problems. In this
research we have performed numerical solutions of ureteroscopy flows to provide a better understanding of
the dynamics of kidney stones during ureteroscopy, a surgical procedure designed to remove kidney stones.
For the first time (to the best of our knowledge), we have illustrated the role of rigid stones inside an idealised
renal pelvis. This research has the potential to provide a better understanding of the flow dynamics within the
cavity during ureteroscopy and subsequently could lead to better surgical practices.

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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1. Introduction

The renal pelvis is a funnel-like cavity inside the kidney which connects directly to the ureter, leading
to the urinary bladder. The kidney’s primary function – to remove waste and excess fluid from the body
– may be disrupted by the presence of kidney stones in the renal pelvis, resulting in potentially life-
threatening conditions. Kidney stones affect up to 10% of the global population, and thus constitute a
significant healthcare concern (Romero et al., 2010; Cortes et al., 2011; Turney et al., 2012). Chemically,
kidney stones are composed of calcium, phosphate, or other constituents of foods, and are usually due
to poor lifestyle and/or dehydration from low fluid intake. Very small stones, the size of a grain of sand,
may form and pass without causing any symptoms but larger stones which grow to more than 5 mm
(Khan et al., 2016) can become stuck in the renal pelvis. These enlarged stones may cause blockages
within the urinary system, often resulting in severe patient discomfort (Segura et al., 1985; Miller and
Lingeman, 2007). Thus, there is a clear necessity for a clinical procedure to efficiently remove stones
from the renal pelvis.

Onemethod for stone removal, uretersocopy, uses a laser to ablate and fragment the stone to reduce its
size and facilitate natural evacuation through the ureter. The laser is inserted through the central lumen
of the ureteroscope. To further assist with stone clearance, a jet of saline is continuously introduced to
the renal pelvis through this central lumen, in a process called irrigation. The fluid exits the renal cavity
via a narrow gap between the ureteroscope and surrounding ureter. This return flow is often facilitated
by the presence of an access sheath, a hollow tube surrounding the scope shaft, which increases the gap
– now between the scope shaft and access sheath wall – via which saline (and stone fragments) can exit.
Figure 1a provides a schematic representation of the placement of the ureteroscope and access sheath
during ureteroscopy.

Prior to laser-induced fragmentation, kidney stone sizes range between 5 and 10 mm (66%), and 10
and 15mm (28%) (Cui et al., 2013). After ablation, the stone is reduced to a large number of fragments,
ranging in radii from 'B = 1 `m to 'B = 10 mm. The stone particle sizes therefore vary by several
orders of magnitude, and particle-fluid interaction plays a non-trivial role in the renal-flow dynamics
and associated kidney stone removal. Different particle-fluid interaction behaviours are anticipated
depending on the size of the stone fragments: (i) for small stone sizes ('B . 200 `m), stones behave
as a passive tracer without affecting the flow dynamics of the renal cavity, (ii) for large stone sizes
('B & 5000 `m), stones will settle in the cavity under gravity, and (iii) for intermediate stone sizes
(200 `m . Rs . 5000 `m), a fully-coupled interaction between the rigid solid and the flow is expected.
We aim to develop a holistic understanding of the different fluid-structure interaction mechanisms at
play, including the multi-scale effects of varying solid particle sizes and their interactions with a viscous
fluid. An ability to model stone fragment behaviour – and its dependence on the number, size, and
arrangement of stone particles in the renal pelvis – has the potential to advise clinical procedure and
device design to optimise the efficiency of ureteroscopic stone removal.

Previous work by Lykoudis and Roos (1970) and Yang et al. (2014) have proposed theoretical
models of ureteral fluid mechanics, considering the ureteroscope as a single conduit. However, during
the ureteroscopic procedure, there is both the forward flow into the cavity from the scope lumen, as
well as the return flow from the kidney to the ureter through the access sheath. Oratis et al. (2018)
incorporated the effect of the return flow through the access sheath with a lumped-parameter model to
relate flow rate, kidney pressure, and ureteroscope and access sheath geometry, modelling the kidney as
a linearly compliant material with constant stiffness. Williams et al. (2020b) also considered a lumped-
parameter model incorporating a more biologically accurate exponential constitutive law for the kidney
compliance, and studied the role of auxiliary ‘working tools’ – e.g. laser fibres – which are passed
through the central lumen of the ureteroscope and affect resistance to saline flow.

These lumped parameter models were able to predict the renal pressure due to irrigation and its
dependence on flow rate and scope/access sheath geometry, but the precise nature of the flow within the
renal pelvis was not considered. More recently, Williams et al. (2020a) modelled the renal pelvis in an
idealised two-dimensional, rectangular geometry, and studied in detail the steady flow patterns and their
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Flow 3

subsequent effect on the clearance time of a passive tracer, using a combination of numerical methods
and high-speed imaging techniques. Williams et al revealed the intricate vortex structures in a two-
dimensional cavity, and demonstrated the connection between the wash-out time (defined as the time
required for 90% of the initial tracer to leave the cavity) and the vortex characteristics within the cavity,
concluding that large vortices combined with low tracer diffusivity lead to prolonged wash-out times. In
a follow-up study, (Williams et al., 2021) studied the role of the inflow/outflow channel geometries on
the wash-out time of a passive tracer. Using shape optimisation techniques with an objective function
based on properties of the steady flow field, Williams et al demonstrated that changing the ureteroscope
shape results in a reduction of the size of vortical flow structures, which in turn leads to a decrease
in wash-out times. Although these studies provide valuable insights into the relationship between the
underlying flow dynamics and the washout time of a passive tracer, this knowledge is only transferable
to ureteroscopy in the regime where stone fragments are extremely small, and thus unable to influence
flow characteristics. In reality, larger stone pieces are present during ureteroscopy; thus it is necessary
to consider the two-way coupling of flow and stone dynamics for an accurate understanding of stone
removal. Additionally, there is a need to study full three-dimensional flows in cavities to unravel the
flow physics and the associated stones trajectories.

In this study, for the first time, we interrogate the two-way coupling between the fluid flow within
the kidney and the transport of kidney stones, and determine the behaviour of stone wash-out during
ureteroscopy. Considering the stones as rigid, non-porous solid objects inside a three-dimensional
idealised spherical cavity representing the renal pelvis that is connected to coaxial cylinders representing
the ureteroscope and sheath, we perform time-dependent three-dimensional direct numerical simulations
using a fictitious domain method with direct forcing approach to resolve the interaction between the
rigid solids and the flow. To orientate our study, the values of the governing parameters are chosen to
be consistent with clinically-realisable values.

The paper is organised as follows: Section 2 presents the governing equations, numerical set-up and
the validation of the numerical method. Section 3 provides a discussion of the results which are focused
on fluid-structure interaction in both the absence and the presence of stones. Finally, concluding remarks
and future perspective work are summarised in Section 4.

2. Problem formulation and numerical techniques

With the aim of studying the flow dynamics of kidney stone removal, we perform direct numerical
simulations of the transient Navier-Stokes equations in the absence of gravity in a three-dimensional
domain. We assume spherical rigid non-porous stones which move freely in the computational domain
owing to their interaction with the cavity flow. Figure 1b shows a schematic representation of the cavity
considered in this study. To simplify the tremendous complexity of the renal cavity, we consider a sphere
of radius '2 , which is connected to a ureteroscope and a ureteral access sheath. The ureteroscope and
sheath are considered to be coaxial cylinders, in which flow enters the cavity via the inner scope channel
of radius 0 and exits the cavity through the gap (width ℎ) between the access sheath and scope shaft of
radius 1. Renal stones are characterised by an irregular shape, but for the sake of simplicity, we have
considered them as perfect spherical non-porous rigid solids of radius 'B . They are placed initially in
the centre of the cavity, if not explicitly stated otherwise.

Following the immersed boundary approach (Peskin, 1977), we use a one-fluid formulation to couple
the fluid-structure interaction (FSI) problem. Within this formulation, parameters d; and `; are the
density and viscosity of the fluid, respectively. Parameters dB and `B are the density and viscosity of the
solid, respectively.

We consider dimensionless variables

x̃ =
x
0
, C̃ =

C

0/* , ũ =
u
*
, ?̃ =

?

`;*/0
, (1)
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Renal
 pelvis
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Ureteral
access
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Ureterescope

(a) (b) (c)
Figure 1. (a) Schematic representation of the regions of fluid flow during the ureteroscopic procedure;
we highlight the ureteroscope via which the flow enters the renal pelvis, and a ureteral access sheath in
which the irrigation flow exits the cavity. The flow direction inside of the renal pelvis is shown with red
arrows. (b) Three-dimensional representation of the idealised geometry of the renal cavity considered
in this study with a single rigid spherical stone at center. The image shows a transversal cut to aid
visualisation of the spherical stone, it also highlights the nondimensional parameters of the cavity
geometry in a three-dimensional Cartesian domain, x = (G, H, I) which is discretised for our numerical
computation by a (256)3 uniform mesh. The center of the spherical cavity corresponds to x = (0, 0, 0).
(c) Three-dimensional representation of the GH-, GI- and IH-planes that will be used throughout the
discussion of the results.

where t, u, and ? represent time, velocity, and pressure, respectively, and tildes denote dimensionless
quantities. We nondimensionalise spatial coordinates x = (G, H, I) with respect to the radius of the scope
lumen 0, u = (D, E, F) with respect to the average irrigation flow velocity*, and time with respect to the
timescale of the flow, 0/*. The dimensionless time-dependent, incompressible Navier-Stokes equations
for a Newtonian viscous fluid are thus

∇ · ũ = 0, (2)

d̃

(
mũ
mC̃
+ ũ · ∇ũ

)
+ ∇ ?̃ = 1

'4
∇ ·

[
˜̀(∇ũ + ∇ũ) )

]
, (3)

where d̃ = dB/d; + (1 − dB/d;) H (x̃, C̃), and we have a similar expression for the viscosity field, ˜̀,
where H (x̃, C̃) is zero in the solid stones and unity in the fluid. The dimensionless Reynolds number,
'4 = d;*0/`; , in Equation (3) relates the inertial to viscous forces. All the variables appearing in
the equations and boundary conditions are rendered dimensionless using the aforementioned scalings,
unless stated otherwise.

A no-slip condition for the immersed solid-fluid boundary, Γ, is enforced, taking into account rigid
body motion due to translation and rotation of the stones

ũΓ = ṼB + 
̃ × r̃2 (4)

where ṼB represents the translation velocity of the solid (non-dimensionalised with respect to *), 
̃
stands for its angular velocity vector (non-dimensionalised with respect to */0) and r̃2 the position
vector of the centroid of the solid (non-dimensionalised with respect to 0). ṼB and 
̃ can be computed
by averaging over the solid region.
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Flow 5

2.1. Initial and domain boundary conditions

Henceforth we drop tildes, and all quantities are now dimensionless. The simulations are initialised
with fluid and stones at rest in the absence of gravity. Solutions are sought subject to Poiseuille
inlet flow. Thus a parabolic profile for the inflow channel is specified (i.e., D = 2(1 − A2)), where
A =

√
(H − H>)2 + (I − I>)2, where H> and I> are the (dimensionless) coordinates of the centre of the

inflow channel. As outflow conditions, we impose Neumann boundary conditions for the velocity in the
streamwise direction (i.e., perpendicular to the outflow face), and the spanwise velocity components are
zero. A Dirichlet boundary condition is imposed for the pressure. This condition is a result of imposition
of zero normal stress at the outlet together with the assumption of fully-developed streamwise flow.
Additionally, we impose no-slip boundary conditions on the cavity walls.

2.2. Numerical method and validation

The Navier-Stokes equations are solved using classic finite volume techniques applied on a uniform
staggered grid (Harlow and Welch, 1965). A multigrid iterative method is used for solving the elliptic
pressure Poisson equation that arises in the projection method (Chorin, 1968) when enforcing the
incompressibility condition (Equation 2). With respect to the spatial derivatives, standard centered-
difference discretisations are used, except for the nonlinear term, which makes use of a second-order
essentially nonoscillatory (ENO) scheme (Shu and Osher, 1989; Sussman et al., 1994). The Lagrangian
motion of the solid centroid (i.e., drc/dt = Vs) is computed using a second-order in time Runga-Kutta
algorithm. In this section we have provided only a brief synopsis of the numerical approach, however
a detailed description of the immersed boundary, fictitious domain and/or direct forcing methods
implemented here can be found in Shin and Juric (2009); Shin et al. (2020); Fadlun et al. (2000);
Glowinski et al. (1999).

The validity of the numerical method was benchmarked against the experimental and numerical work
of Williams et al. (2020a) for a two-dimensional cavity with excellent agreement (more information in
the Appendix). In terms of the mesh characteristics, the computational domain is composed of a cubic
uniform Cartesian grid, and the inlet extends in the G−direction. With respect to the resolution, we have
ensured that the presented results are mesh-independent, and therefore for a uniform mesh resolution
of (256)3 (i.e., 0/ΔG = 6.4, where ΔG stands for the cell-size), the results do not significantly change
with decreasing cell size. Additionally, extensive mesh studies for turbulent two-phase jets and surface-
tension-driven phenomena using the same numerical method can be found in Constante-Amores et al.
(2020, 2021).

2.3. Physical parameters

The chosen flow parameters for this study are consistent with values used during ureteroscopy. In the
clinic, irrigation flow rates range from 50mL/min to 200mL/min, although introduction of a laser fibre
(for stone fragmentation) to the scope channel may reduce the flow rate by about half. The injected fluid
is considered to be water, with constant physical properties (i.e., d; = 1000 kg/m3 and `; = 10−3 Pa.s).
Therefore, the Reynolds number lies in the range 220 < Re < 2000.

In the ureteroscopy procedure, the stone is first fragmented by the laser to enable expulsion through
the ureter. We consider fragmented stone sizes ranging between 200`m < 'B < 5000` m where there
will be a fully-coupled interaction between the flow and stone trajectory. We take stone density as
dB = 1900 kg/m3 and stone viscosity as `B = 0.5 Pa.s.

The values for the cavity dimensions are identical to the previous work performed by Williams et al.
(2021), and consequently, 0 = 6 × 10−4 m, 1 = 2.5701 × 10−3 m, and ℎ = 1.1598 × 10−3 m. The size of
the cavity was chosen to be '2 = 10−2 m, which could be seen as a representation of a small region of
the renal pelvis. The non-dimensional length of the inlet channel is set to 5.
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3. Results

In this section we first consider the effect of Reynolds number on three-dimensional flow in the absence
of stones, before subsequently analysing the effects of both single and multiple stones. It is worth noting
that after C = 5000, for the lowest Reynolds number (Re = 50), no further changes in the shape of the
streamlines or coherent structures were observed; however, for the higher Reynolds numbers (Re = 250,
500), flow evolution continued and a steady-state was not reached.

3.1. Three-dimensional flow dynamics in the absence of rigid stones

First, we focus on the transient dynamics of the jet. Panels (a)-(c) of Figure 2 show the instantaneous
streamlines at early times for Re = 500. For visualization purposes, we display a two-dimensional
streamlines onto the GH-plane (for sake of space only the half of the plane is shown). At early times of
the injection, the jet dynamics are characterised by an axisymmetric behaviour. The homogeneous jet
develops a ‘primary-vortex’ (labelled ‘V-1’ in figure 2a) as a result of the detachment of the velocity
boundary layer from the inlet nozzle, and its consequent roll-up in the quiescent medium. A similar
physical mechanism for the formation of the leading vortex has been reported previously by Gharib
et al. (1998); Marugán-Cruz et al. (2013); Constante-Amores et al. (2021). The primary vortex grows
over time owing to the shear-driven interaction between the high-velocity discharge of the fluid into
the quiescent medium. The primary-vortex elongates as it moves downstream until it impacts against
the surface of the cavity wall resulting in the outward radial spread of the head-vortex (see figure 2b).
The formation of a stagnation point (labelled ‘SP-1’ in figure 2b) near the cavity wall resulting in flow
separation is observed as a result of the impact of the jet against the wall. For the high Reynolds numbers
cases, we observe that the radial expansion of the jet moving outward leads to an adverse pressure
gradient until a point in which the jet-induced momentum can no longer overcome the frictional effects
of the cavity wall resulting in the formation of a stagnation point (labelled ‘SP-2’ in figure 2c) and flow
separation. This phenomenon leads to the detachment of a secondary-vortex, labelled ‘V-2’ in figure 2c
(in agreement with Garimella and Rice (1995); Sexton et al. (2018); Sivasamy et al. (2007); Lee et al.
(2008)). As the secondary vortex grows over time, a mutual-induction of V-1 and V-2 is predicted (see
panel (ii) of figure 2g): a velocity induction by the primary-vortex over the secondary-vortex causes
V-2 to go through V-1’s centre. This mutual-induction mechanism is observed during the entire flow
dynamics at high '4 numbers.

Panels (d)-(f) of figure 2 highlight the instantaneous streamlines at C = 5000 for Re = 50, Re = 250,
and Re = 500, respectively. For visualization purposes, we have also shown a two-dimensional stream-
lines onto the GH-plane. The azimuthal component of the vorticity field8 = O×u (e.g. the circumferential
direction around the axis of the jet), is shown as a contour field underneath the streamlines. For the
smallest Reynolds number, the jet ejection results in an axisymmetric flow with no formation of sec-
ondary vortices. A closer inspection of the same figure shows that the areas of closed streamlines (i.e.,
the main vortical structure) are surrounded by streamlines which show a direct path between the inflow
and outflow channels with no recirculation regions; these outcomes are in agreement with (Williams
et al., 2020a, 2021). Increasing the Reynolds number results in the breaking of the symmetry of the flow
patterns, and subsequently, enhances the formation of complex flow patterns inside of the cavity. The
primary vortex is no longer aligned axisymmetrically in the cavity as displayed in figures 2(e)-(f). At
higher '4, there is a reduction in the number of direct paths from the inlet to the outlet channels owing
to the increase of the inertia within the cavity. Additionally, by inspection of the azimuthal vorticity in
the GH-plane, we observe that the highest vorticity generation coincides with the velocity boundary layer
between the injected-jet and the surrounding fluid, which leads to strong tangential flow with respect
to the initial quiescent medium. Attention is now turned to the value of vorticity (red/blue contours in
Figures 2d-f) which increases as the Reynolds number increases. For '4 = 50, the azimuthal vorticity
component dominates over its streamwise counterpart (not shown) because of the low inertia; however,
as the Reynolds number increases, the streamwise component becomes more prominent, becoming of
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'4 = 50 '4 = 250 '4 = 500

(a) (b) (c)

(d) (e) (f)

(i)

(ii)

(iii)
(iv)

(i) (ii) (iii) (iv)

(g)
Figure 2. Time-dependent flow dynamics inside of the idealised renal cavity for Re = (50, 250, 500).
Panels (a)-(c) correspond to early flow dynamics for '4 = 500 at t = (27, 138, 194) through two-
dimensional representations of the predicted streamlines in a half of the GH−plane. Panels (d)-(f)
correspond to two-dimensional representations of the predicted streamlines in a GH−plane together with
the azimuthal vorticityl\ at C = 5000 for Re = (50, 250, 500) in columns one to three, respectively; Panel
(g) shows the spatio-temporal evolution of the three-dimensional coherent structures by representing
the entrapped fluid volume when & > 0, +E normalised by the volume of the cavity, +2 , for Re =
(50, 250, 500). Additionally, we refer the reader to Supplementary Material ‘Animation-Fig2.avi’ to see
a video from panel (e).
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the same order of magnitude with respect to its azimuthal counterpart, explaining the disruption of the
axisymmetric behaviour of the coherent structures as explained below.

Figure 2g displays the time-dependent flow dynamics by plotting the volume ratio +E/+2 occupied
by the vortical structures (i.e., recirculation regions+E ), predicted by the Q-criterion inside of the cavity
(with volume +2). The Q-criterion measures the dominance of vorticity l over that of strain s, i.e.,
& = 1/2( |8 |2 − |s|2) (Hunt et al., 1988). The flow regions with a positive Q-criterion value are defined
as the recirculation zone (i.e., vortex-dominated regions). Thus, the volume representation of figure 2g
denotes flow regions in which & > 0. A similar approach was used by (Williams et al., 2020a, 2021) to
quantify the vortex-regions for a two-dimensional system (i.e., det Ou > 0).

For '4 = 50, the axisymmetric primary-vortex defines the global flow dynamics and the vortex-
dominated region reaches a steady state resulting in a constant entrapped recirculating fluid within the
cavity (see figure 2g). At higher '4, the Q-criterion predicts larger vortex-dominated regions inside
of the cavity with a linear increase of the entrapped-fluid volume at early times of the simulation (see
figure 2g). The increase in the rich dynamics of the flow structures is evident by observing the spatial
development of the coherent structures (i.e., regions of dominant vorticity). At short times, the jet
impacts the cavity wall (see panel (i) of figure 2g), and eventually results in the formation of secondary
vortices which are advected towards the centre of the primary vortex (see panel (ii)) while the primary
vortex grows over time. Once the primary vortex reaches its maximum size, the entire flow almost
behaves as a steady state (see panels (iii)-(iv)).

To see the impact of the vortical structures on the trajectories of rigid stones, in the next section we
turn our attention to the effect of flow dynamics on the motion of stones within the cavity.

3.2. Effect of flow dynamics on rigid kidney stones

In this section, we consider the effect of renal pelvis flows on the dynamics of a single rigid stone, of
varying size, placed initially in the centre of the cavity (e.g., as displayed in Figure 1b). We vary the
stone size between 0.416 < 'B < 1.66 (nondimensional values). Additionally, we only report results for
Re = 250 and Re = 500 as these correspond to larger values of inertia prompting richer flow dynamics
within the cavity.

Figure 3 shows the trajectories of the stones over time by tracking their centroid as both three-
dimensional trajectories (Figure 3a,b) and projections onto the GH-, GI- and IH-planes (Figures 3c-h).
At early stages of the simulation, the rigid stones are dragged towards the back of the cavity – as a result
of their interaction with the head-vortex – and eventually collide against the cavity wall. The stones
subsequently settle into a circulatory motion owing to their interaction with the local vorticity field.

For Re = 250, the stones become trapped in the primary vortex, leading to their circulation in
the vortex-dominated region (see Figure 3a). Inspection of the stones’ movement in each projection
plane (Figure 3c-d) shows that the stones are trapped in the primary vortex (we refer the reader to
Supplementary material ‘Animation-Fig3.avi’ where we show the transient dynamics of the stone of
size 'B = 0.833 together with the Q-criterion). Interestingly, the radii of the trajectories grow over time,
so it is expected that eventually the stones would be displaced to a non vortex-dominated region (e.g.,
near the cavity exit), where they will washout together with the fluid. Nonetheless, for the considered
non-dimensional time of C < 5000, the rigid stones remain trapped in the primary vortex during the
entire simulation.

Still considering '4 = 250, now we compare the effect of stone size on the flow pattern and particle
trajectory. For the smallest stone size (e.g., 'B = 0.416), the stone follows the primary vortex, and its
circulation radius grows over time. The simulations predict smaller circulation radii for the largest stone
size and stronger entrapment in the vortical structure because the stones start stationary, so a larger stone
would require a larger force to attain the same velocity.

For Re = 500, richer flow dynamics are predicted owing to the higher fluid inertia, which in turn leads
to more complex stone trajectories (see Figures 3b,f-h). At early time in the simulations, the rigid stones
similarly enter into a circulatory motion due to their interaction with the primary vortex; however, the
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(a) (b)

(c) (d) (e)

(f) (g) (h)
Figure 3. Trajectories of single rigid stones up to C = 5000. Panels (a) and (b) correspond to a three-
dimensional representation of the trajectories for Re = 250 and Re = 500, respectively. Panels (c)-(h)
correspond to the projection of the trajectory onto the GH-, GI- and HI-plane for Re = 250 (middle
panels) and Re = 500 (bottom panels), respectively. The red circles correspond to the limits of the
cavity, where the center of the spherical cavity corresponds to x = (0, 0, 0).

higher fluid inertia induces the stones to leave the primary vortical structure, which eventually results in
the smallest stone, i.e., 'B = 0.416, being flushed out of the cavity by the flow (at C = 3507). Therefore,
for the first time (to the best of the authors’ knowledge), we have provided a simulation of stones being
washed out of the cavity along with the fluid during the ureteroscopy procedure.

Above we have considered the effect of flow dynamics on single rigid stones placed in the centre
of the cavity. To investigate how the initial position of the rigid stones affects the fate of the stone,
we consider ten stones within the cavity, initially placed on random grid points as indicated in figure
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 4. Trajectories of multiple rigid stones (i.e., ten) of size 'B = 0.833 up to C = 5000. Panels (a)-
(c) show the initial location of the stationary stones, the location of the stones at C = 5000 for Re = 250,
and Re = 500, respectively. Additionally, a two-dimensional representation of the velocity streamlines
in the xy-plane have been added to visualise the flow field. Some stones have left the renal cavity and are
found in the ureteral access sheath, meanwhile others are trapped in the primary vortex. Panels (d)-(i)
correspond to the projection of the trajectory for four selected stones onto the GH-, GI- and HI-plane for
Re = 250 (middle panels) and Re = 500 (bottom panels), respectively. The colour of the trajectories
correspond to the coloured stones of panels (a)-(c). See Supplementary Material ‘Animation-Fig4.avi’.

4a. Panels of figure 4(b)-(i) show snapshots of the flow pattern and trajectory of stones over time via
projections onto the GH-, GI- and HI-planes. We found that stones initially positioned near the centre of
the cavity are pushed towards the outflow channel as the primary vortex grows in size, and eventually
advect directly out of the cavity. Conversely, stones initially placed further downstream of the injection
point are entrapped in a circulatory motion owing to their interaction with the primary-vortex, and
subsequently, the stone’s dynamics are similar to those described above for a single stone that does not
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Flow 11

leave the domain. Therefore, some stones leave the cavity into the ‘ureteral access sheath’, whereas others
are still entrapped in the main vortical structure (see Supplementary Material ‘Animation-Fig4.avi’).

3.3. Effect of rigid kidney stones on flow dynamics

In the previous section, we considered the effect of the flow field on the trajectories of small stones which
are not likely to significantly affect the flow dynamics. In this section, we will consider the influence of
larger kidney stones on the flow dynamics by exploring the fluid kinetic energy, the clearance rate of
a passive tracer and the entrapped fluid volume when & > 0, depending on the number of stones, #? .
On this basis, we consider a passive tracer of concentration � (x, C) within the cavity which is passively
advected by the flow field. The nondimensional advection-diffusion equation for the tracer concentration
is expressed as

m�

mC
+ u · ∇� = 1

%4
∇2�, (5)

where %4 = *0/D represents the ratio of convective to diffusive time-scales (e.g.,D stands for the tracer
diffusion coefficient). Following Williams et al. (2021), we assume that the initial tracer concentration
is evenly distributed inside of the cavity, and zero elsewhere. We assume no-flux boundary conditions
on the walls of the cavity (i,e., m�/mn = 0), and Neumann boundary conditions for � on the outlet
channels which allow the passive tracer to leave the computational domain. To quantify the effect of the
rigid stones on the flow dynamics, an approach proposed byWilliams et al. (2020a, 2021) was employed
in this work which measures the clearance rate at which the passive tracer leaves the cavity. Thus, the
nondimensional loss at time C is expressed as

�l>BB =

∫
V [� (x, 0) − � (x, C)] 3V∫

V [� (x, 0)] 3V
(6)

whereV refers to the reduced volume of the cavity based on the number of stones.
In Figure 5, we show the influence of stones on the fluid kinetic energy, defined as �: =

∫
V (u

2/2)3V,
the entrapped fluid volume for 'B = 21 and %4 = 500, and the clearance rate of the passive tracer.
Inspection of the kinetic energy �: in figure 5a,d reveals a complex relationship with the number of
stones, #? . For all values of #? , at early times (C < 35), �: grows independently of the number of
stones. Then the kinetic energy plateaus, but for #? > 0, we observe irregular oscillatory behaviour with
increased amplitude for higher #? . The fluid must do work to accelerate the stones, taking some of the
kinetic energy of the fluid, but since the motion of the stones is quite irregular, they experience numerous
accelerations and decelerations. Hence, the more stones there are, the more noisy the kinetic energy.

Panels (b), (e) of figure 5 plot the ratio of entrapped fluid volume (i.e. with & > 0) to total fluid
volume. At early times, a linear growth of the entrapped fluid volume is observed. As mentioned above
there is a direct link between the entrapped volume and vorticity production. Batchelor (1967) showed
that vorticity is produced at boundaries; thus, the addition of stones in the cavity implies the addition of
regions for production of vorticity. However, the stones may also disrupt vortical structures, depending
on their location within the cavity. This is demonstrated in figure 6, which shows a snapshot of the
instantaneous vorticity field (in a fixed plane) for three scenarios: (a) the absence of stones, (b) stones
with position held fixed, and (c) freely moving stones. Comparing (b) and (c) to (a), we see the two-sided
impact of stones, both in producing partially detached vortices, and in disrupting vortical structures;
similar findings were reported by Essmann et al. (2020). Due to this complex interplay, a cavity with
more stones may have increased entrapped volume at some times, and decreased entrapped volume at
other times, a noisy and unpredictable relationship as demonstrated in figure 5 (b), (e).

1'B = 2 was chosen as it is larger than the size of the outflow channel, ℎ, and therefore the stones will remain within the cavity
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(a) (b) (c)

(d) (e) (f)
Figure 5. The effect of rigid stones on the flow field as a function of the number, #? , for 'B = 2 and
%4 = 500. Kinetic energy, entrapped fluid volume when& > 0, and the clearance rate of a passive tracer
are shown in columns one to three, respectively. The top and bottom panels correspond to Re = 250 and
Re = 500, respectively.

(a) (b) (c)
Figure 6. Two-dimensional representation of the vorticity field in the GI-plane (H = 2) in the absence of
stones, fixed stone location and stones which move freely in the cavity, corresponding to panels (0 − 2),
respectively. The conditions for the simulations are '4 = 250 and 'B = 2 and #? = 18 (for cases b and
c). The colour represents the vorticity magnitude |l |, where appropriate scales are shown in the panel.
Irregular vortex production can be seen around the rigid stones which move freely.

We now turn our attention to the clearance rate plots (panels (c), (f) of figure 5), which show the
percentage of tracer that has exited the cavity over time. It has been previously demonstrated Williams
et al. (2021) that the reduction of vortex structures within the cavity results in a reduction in the time
needed for the clearance of the tracer, while clearance time depends non-monotonically on the fluid
kinetic energy. Given the complex relationships between stone presence and both kinetic energy and
vorticity, it is perhaps not surprising then that the clearance rate does not exhibit a clear trend. The
highest number of stones does perform the worst in terms of tracer clear out, it is by a small margin,
and the smaller number of stones performs slightly better than the base case of no stones.
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4. Conclusions and Recommendations

Time-dependent three-dimensional numerical simulations were carried out to study the flow dynamics
inside of a renal pelvis in the context of kidney-stone removal. Particular attention was paid to the
temporal motion of spherical rigid-stones which move freely in the cavity. The numerical framework
has been validated against the experimental and numerical work presented by Williams et al. (2020a)
for a two-dimensional geometry. The chosen parameters for the flow dynamics and the stone sizes are
consistent with clinically-realisable systems. The injection of a fluid jet via a modelled ureteroscope
nozzle results in the formation of a primary vortex owing to the detachment of the velocity boundary
layer from the nozzle. The primary vortex grows over time, and its axisymmetric shape becomes more
disrupted with increasing Reynolds number. In the absence of stones, we have quantified the temporal
entrapped fluid volume by identifying the recirculation zones through the Q-criterion, i.e. & > 0,
integrated over the cavity domain. At low inertia, a steady state is reached, and subsequently a constant
volume for the entrapped-fluid is predicted. At increasing inertia, a steady state is not reached owing
to the formation of a secondary vortex from the cavity walls. Mutual induction of the primary and
secondary vortices characterise the complex flow dynamics observed in the system. The increase of
fluid inertia at larger Reynolds numbers also results in an increase in the streamwise vorticity component
with respect to its azimuthal vorticity counterpart. Thus, it is responsible for the loss of the axisymmetric
behaviour observed in the small Reynolds number case.

With rigid stones introduced in the cavity flow, two different behaviours were observed: either they
become trapped in a circulatory motion in the primary vortical structure or they are flushed out of the
cavity together with the fluid through the ureteral access sheath. Both regimes were found to coexist
in the studied cases and the outcome of the stones depended on the initial location of the stationary
stone, and the importance of inertia. More fluid inertia allows for higher probability of a stone to leave
the cavity within the same temporal frame. We have also studied the effect of multiple stones in the
flow dynamics by exploring the fluid kinetic energy, entrapped fluid volume and the clearance rate of
a passive tracer. We have shown that the solid boundaries, due to the the presence of stones, cause an
increase in the vorticity production, which results in richer flow dynamics within the cavity.

We have simulated for the first time (to the best of our knowledge) the two possible outcomes for the
kidney stone trajectories during ureteroscopy – trapping or wash-out – and this can be considered to be
a significant step forward in the understanding of the dynamics of kidney stones in the renal cavity flow
during the surgical procedure. The approach we described in this manuscript may naturally be extended
to a systematic follow-up analysis predicting the flow characteristics and stone motions in an actual
renal cavity geometry, potentially incorporating full three-dimensional time-dependent simulations and
coupling of moving solids, buoyancy effects, heat-transfer considerations and an oscillatory pressure.
Figure 7 shows a preliminary simulation from an actual renal pelvis extracted from imaging in a patient,
in which we have selected a branch of the complex renal pelvis and introduced the ureteroscope. This
avenue of research could lead to the next generation of in-silico models that are patient-specific, and
translate our understanding ‘from bench-to-bedside’.

The present work is limited by the assumption of rigid cavity walls. This assumption is realistic
for the inflow and outflow channels; however, the walls of an actual renal cavity are characterised
by deformability that is inherent to any true physiological structure. Deformability of the renal pelvis
would certainly affect the flow structure inside of the cavity, potentially resulting in more complex flow
dynamics, and constituting a fruitful area of future research. The numerical method used in this study
may naturally be extended to include deformability of the renal cavity and inclusion of these effects
constitutes a realistic short-term follow-up to the present study.

Appendix: Validation of the flow-solver

In order to assess the accuracy of our numerical code, we have validated our predictions against the
experimental and numerical data fromWilliams et al. (2020a). Figure 8 highlights qualitative validation

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52



14

Figure 7. The left panel shows a three-dimensional renal pelvis from a patient which has been
reconstructed using CT scans. The right panel shows a preliminary simulation to demonstrate the
capabilities of the methodology used in this research. We have extracted one of the branches of the renal
pelvis (highlighted in the left panel), and have introduced a ureteroscope. Computed velocity is shown
to visualise the flow dynamics inside of the cavity.

of our numerical frame-work in terms of numerical streamlines for Re = 7 and Re = 34. It is clear that
the transient solutions of the Navier Stokes equations provided by our numerical method are capable of
predicting the rich dynamics observed by the flow-visualisation experiments, and previous numerical
simulations based on the steady solutions of the flow equations. Additionally, we want to highlight that
the flow-solver has also been successfully validated for two-phase turbulent jets in previous works, such
as Constante-Amores et al. (2020, 2021).

With respect to the numerical accuracy of the interaction of themoving solidwith the flow,we refer the
reader to Shin et al. (2020), who described extensively the numerical formulation and provided extensive
benchmark tests of the fluid-structure interaction of solids (either as rigid or deformable structures)
with multiphase flows using a combination of immersed boundary and fictitious domain-direct forcing
methods.
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Exp. (Williams et al., 2020a) Simulations (Williams et al., 2020a) This study

(a) (b) (c)

(d) (e) (f)
Figure 8. Direct comparison of the streamlines from our numerical predictions, third column, with
both experimental and simulation results reported by Williams et al. (2020a), first and second columns,
for a two-dimensional cavity characterised by 1 = 1.933, ℎ = 4.2835, and cavity-length U = 21.7 (here,
U stands for the nondimensional length of the rectangular cavity). Panels (a)-(c) and (d)-(f) represent
the flow dynamics with Re = 7 and Re = 34, respectively.
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